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Abstract We adopt the integral definition of the fractional Laplace operator
and analyze solution techniques for fractional, semilinear, and elliptic optimal
control problems posed on Lipschitz polytopes. We consider two strategies
of discretization: a semidiscrete scheme where the admissible control set is
not discretized and a fully discrete scheme where such a set is discretized
with piecewise constant functions. As an instrumental step, we derive error
estimates for finite element discretizations of fractional semilinear elliptic par-
tial differential equations (PDEs) on quasi-uniform and graded meshes. With
these estimates at hand, we derive error bounds for the semidiscrete scheme
and improve the ones that are available in the literature for the fully discrete
scheme.
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1 Introduction

In this work we are interested in the analysis of finite element discretization
techniques for a distributed optimal control problem involving a fractional,
semilinear, and elliptic PDE. To make the discussion precise, we let Ω ⊂ R

n,
with n ≥ 2, be an open, bounded, and Lipschitz polytope. Given α > 0,
the so-called regularization parameter, and L : Ω × R → R, a Carathéodory
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function of class C2 with respect to the second variable, we introduce the cost
functional

J(u, z) :=

ˆ

Ω

L(x, u(x))dx +
α

2

ˆ

Ω

|z(x)|2dx; (1.1)

further assumptions on L will be deferred until section 2.3. We are then inter-
ested in finding min J(u, z) subject to the fractional, semilinear, and elliptic
PDE

(−∆)su+ a(·, u) = z in Ω, u = 0 in Ωc, Ωc = R
n \Ω, s ∈ (0, 1), (1.2)

and the control constraints a ≤ z(x) ≤ b for a.e. x ∈ Ω; a, b ∈ R are such
that a < b. In (1.2), (−∆)s corresponds to the integral fractional Laplacian
and a denotes a nonlinear function; see section 2.3 for assumptions on a. We
will refer to the previously introduced optimization problem as the fractional
semilinear optimal control problem.

The development and analysis of solution techniques for problems involv-
ing suitable definitions of fractional diffusion is a relatively new but rapidly
growing area of research. We refer the interested reader to [7,12] for a com-
plete overview of the available results and limitations. In contrast to these
advances, the study of numerical methods for optimal control problems in-
volving fractional diffusion has not been as developed. Restricting ourselves
to problems that consider the spectral definition, we mention [3,15,29] within
the linear–quadratic scenario, [30,33] for sparse PDE-constrained optimiza-
tion, and [32] for bilinear optimal control. Concerning problems involving the
integral definition of fractional diffusion, we mention [13,20] for the linear–
quadratic case, [6] for bilinear optimal control, and [31] for semilinear optimal
control. We conclude this paragraph by mentioning the advances in parameter
identification for nonlocal/fractional operators of [14,23,10] and the ones, at
the continuous level, in fractional semilinear optimal control [31,5], external
optimal control for fractional diffusion [2], and fractional optimal control with
state constraints [4].

This paper extends the recent work [31] in several directions. In what
follows, we briefly detail our main contributions and improvements on the
available theory:

1. Finite element discretizations of fractional semilinear PDEs : We discretize
fractional semilinear PDEs using continuous piecewise linear finite elements
and derive in Theorems 5.1 and 5.2 error bounds on Lipschitz polytopes.
We improve upon [31] and extend the global estimates in [8] to a semilin-
ear setting. As an instrumental step, we derive regularity estimates. For
s ≥ n/(4(n− 1)), the estimates of Theorems 5.1 and 5.2 are improved in
Theorem 5.3 by considering suitable graded meshes but at the expense
of requiring that Ω satisfies an exterior ball condition. The restriction
s ≥ n/(4(n− 1)) guarantees that we can utilize [8, estimate (3.17)].

2. Regularity estimates for optimal variables : We derive regularity estimates
for an optimal triplet (ū, p̄, z̄) in Hölder and Sobolev spaces; see Theorems
4.3, 4.4, and 4.5. The results in Sobolev spaces hold under the assumption
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that Ω satisfies an exterior ball condition and improves upon [31], where
∂Ω ∈ C∞.

3. Finite element discretizations for the optimal control problem. For the fully
discrete scheme of [31], we derive a nearly-optimal estimate for the error
commited within the approximation of an optimal control variable on Lips-
chitz polytopes. This improves upon [31], where ∂Ω ∈ C∞. In addition, we
propose a semidiscrete scheme based on the variational discretization ap-
proach [22] and perform an error analysis on conforming and shape regular
families of simplicial triangulations. Under the assumption that Ω satisfies
an exterior ball condition, in Theorem 7.8 we improve the aforementioned
error analysis by considering suitable graded meshes.

2 Notation and preliminaries

We begin this section by fixing notation and the setting in which we will
operate. Throughout this work n ≥ 2 and Ω ⊂ R

n is an open, bounded, and
Lipschitz polytope. We will denote by Ωc the complement of Ω. If X and Z
are Banach function spaces, we write X →֒ Z to denote that X is continuously
embedded in Z. We denote by X′ and ‖ · ‖X the dual and the norm of X,
respectively. We denote by 〈·, ·〉X′,X the duality paring between X′ and X and
simply write 〈·, ·〉 when the spaces X′ and X are clear from the context. Let
{xn}∞n=1 be a sequence in X. We denote by xn → x and xn ⇀ x the strong and
weak convergence, respectively, of {xn}

∞
n=1 to x. The relation a . b indicates

that a ≤ Cb, with a positive constant C that does not depend on either a, b,
or the discretization parameters but that might depend on s, n, and Ω. The
value of C might change at each occurrence.

2.1 Function spaces

For any s ≥ 0, we define Hs(Rn), the fractional Sobolev space of order s over
R

n, by [35, Definition 15.7]

Hs(Rn) :=
{

v ∈ L2(Rn) : (1 + |ξ|2)
s

2F(v) ∈ L2(Rn)
}

,

endowed with the norm ‖v‖Hs(Rn) := ‖(1 + |ξ|2)
s

2F(v)‖L2(Rn). We define

H̃s(Ω) as the closure of C∞
0 (Ω) in Hs(Rn) and immediately notice that it can

be equivalently characterized as the following space of zero-extension functions
[27, Theorem 3.29]:

H̃s(Ω) = {v|Ω : v ∈ Hs(Rn), supp v ⊂ Ω}. (2.1)

We endow H̃s(Ω) with the following inner product and norm [27, page 75]:

(v, w)H̃s(Ω) :=

ˆ

Rn

ˆ

Rn

(v(x) − v(y))(w(x) − w(y))

|x− y|n+2s
dxdy

and ‖v‖H̃s(Ω) := (v, v)
1
2

H̃s(Ω)
. We denote by H−s(Ω) the dual space of H̃s(Ω).

We conclude this section with the following Sobolev embedding results.
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Proposition 2.1 (embedding results) Let s ∈ (0, 1). If q ∈ [1, 2n/(n−2s)],
then Hs(Ω) →֒ Lq(Ω). If q ∈ [1, 2n/(n − 2s)), then Hs(Ω) →֒ Lq(Ω) is
compact.

Proof A proof of Hs(Ω) →֒ Lq(Ω) can be found in [1, Theorem 7.34] while the
compactness of the embedding for q < 2n/(n− 2s) follows from [1, Theorem
6.3]. ⊓⊔

2.2 The fractional Laplace operator

For s ∈ (0, 1) and smooth functions w : Rn → R, there are several equivalent
definitions of (−∆)s in R

n. In fact, (−∆)s can be naturally defined via Fourier
transform: F((−∆)sw)(ξ) = |ξ|2sF(w)(ξ). Equivalently, (−∆)s can be defined
by means of the following pointwise formula:

(−∆)sw(x) = C(n, s) p.v.

ˆ

Rn

w(x) − w(y)

|x− y|n+2s
dy, (2.2)

where C(n, s) = 22ssΓ (s+ n
2 )π

−n

2 Γ−1(1−s). Here, p.v. stands for the Cauchy
principal value and C(n, s) is a normalization constant that is introduced to
guarantee that definition (2.2) is equivalent to the one via Fourier transform;
see [26, Chapter 1, §1] for details. We notice that (2.2) clearly displays the
nonlocal structure of (−∆)s: computing (−∆)sw(x) requires the values of w
at points arbitrarily far away from x. In addition to these two definitions, sev-
eral other equivalent definitions of (−∆)s in R

n are available in the literature
[25]—for instance, the ones based on the Balakrishnan formula and a suitable
harmonic extension.

In bounded domains there are also several definitions of (−∆)s. For func-
tions supported in Ω̄, we may utilize the integral representation (2.2) to define
(−∆)s. This gives rise to the so-called restricted or integral fractional Lapla-
cian, which, from now on, we shall simply refer to as the integral fractional
Laplacian. Notice that we have materialized a zero Dirichlet condition by re-
stricting (−∆)s to acting only on functions that are zero outside Ω. We must
mention that in bounded domains, and in addition to the integral fractional
Laplacian, there are, at least, two other nonequivalent definitions of nonlo-
cal operators related to the fractional Laplacian: the regional and the spectral
fractional Laplacians; see the discussion in [21, §6].

To present suitable weak formulations for problems involving (−∆)s, we
introduce

A : H̃s(Ω)× H̃s(Ω) → R, A(v, w) := C(n,s)
2 (v, w)H̃s(Ω). (2.3)

We notice thatA is just a multiple of the inner product in H̃s(Ω). In particular,
A is bilinear and bounded. We denote by ‖·‖s the norm induced by A: ‖v‖s :=
√

A(v, v) = C(n, s)|v|H̃s(Ω) with C(n, s) =
√

C(n, s)/2.
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2.3 Assumptions

The following set of assumptions allows us to perform an analysis for the
fractional semilinear optimal control problem including existence of solutions,
first order necessary optimality conditions, and necessary and sufficient second
order optimality conditions. We must immediately mention that depending on
the property under interest, the requirements differ and would have to be
specified anew. To avoid this, we list a set of assumptions to hold throughout
the article.

(A.1) a : Ω × R → R is a Carathéodory function of class C2 with respect to the
second variable and a(·, 0) ∈ Lr(Ω) for r > n/2s.

(A.2) ∂a
∂u (x, u) ≥ 0 for a.e. x ∈ Ω and for all u ∈ R.

(A.3) For all m > 0, there exists a positive constant Cm such that

2
∑

i=1

∣

∣

∣

∣

∂ia

∂ui
(x, u)

∣

∣

∣

∣

≤ Cm,

∣

∣

∣

∣

∂2a

∂u2
(x, v) −

∂2a

∂u2
(x,w)

∣

∣

∣

∣

≤ Cm|v − w|

for a.e. x ∈ Ω and u, v, w ∈ [−m,m].

(B.1) L : Ω × R → R is a Carathéodory function of class C2 with respect to the
second variable and L(·, 0) ∈ L1(Ω).

(B.2) For all m > 0, there exist ψm, φm ∈ Lr(Ω), with r > n/2s, such that
∣

∣

∣

∣

∂L

∂u
(x, u)

∣

∣

∣

∣

≤ ψm(x),

∣

∣

∣

∣

∂2L

∂u2
(x, u)

∣

∣

∣

∣

≤ φm(x),

for a.e. x ∈ Ω and u ∈ [−m,m].

We briefly comment on the set of assumptions (A.1)–(B.2). Assumption
(A.2) allows us to apply the theory of monotone operators for (1.2) while
the fact that a(·, 0) ∈ Lr(Ω) in (A.1) guarantees that solutions to fractional
semilinear PDEs are bounded in L∞(Ω). Assumptions on the first and second
derivatives of a, L are needed to perform first and second order optimality
conditions, respectively.

3 Fractional semilinear PDEs

In this section, we introduce a weak formulation for a fractional semilinear
PDE and review results regarding the well-posedness of such a formulation
and regularity estimates for its solution.

3.1 Weak formulation

Let s ∈ (0, 1), f ∈ H−s(Ω), and a = a(x, u) : Ω × R → R be a Carathéodory
function that is monotone increasing in u. Assume that, for every m > 0, there
exits ϕm ∈ Lt(Ω) such that

|a(x, u)| ≤ |ϕm(x)| a.e. x ∈ Ω, u ∈ [−m,m], t = 2n/(n+ 2s). (3.1)
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Within this setting, we introduce the following weak formulation:

u ∈ H̃s(Ω) : A(u, v) + 〈a(·, u), v〉 = 〈f, v〉 ∀v ∈ H̃s(Ω). (3.2)

The following existence and uniqueness result follows from [31, Theorem
3.1].

Theorem 3.1 (well-posedness of fractional semilinear PDEs) Let n ≥
2, s ∈ (0, 1), and r > n/2s. If f ∈ Lr(Ω), a satisfies (3.1), and a(·, 0) ∈ Lr(Ω),
then problem (3.2) admits a unique solution u ∈ H̃s(Ω)∩L∞(Ω). In addition,
we have the bound

|u|Hs(Rn) + ‖u‖L∞(Ω) . ‖f − a(·, 0)‖Lr(Ω), (3.3)

with a hidden constant that is independent of u, a, and f .

3.2 Regularity estimates

In order to derive a priori error estimates for suitable finite element discretiza-
tions of problem (3.2), it is of fundamental importance to understand the
regularity properties of the solution to (3.2).

3.2.1 The linear case

We begin our studies by providing some basic regularity results for the linear
case a ≡ 0.

Proposition 3.1 (Hölder regularity) Let s ∈ (0, 1), and let Ω be a bounded
Lipschitz domain satisfying an exterior ball condition. Let u be the solution to
(−∆)su = f in Ω and u = 0 in Ωc. If f ∈ L∞(Ω), then u ∈ Cs(Rn) and

‖u‖Cs(Rn) . ‖f‖L∞(Ω), (3.4)

with a hidden constant that only depends on Ω and s.

Proof See [34, Proposition 1.1]. ⊓⊔

The following remark presents an example that is essential.

Remark 3.1 (optimal regularity) Let Ω = B(0, 1) ⊂ R
n and f ≡ 1. Within

this setting, the solution to (−∆)su = f in Ω and u = 0 in Ωc is given by [18]

u(x) =
Γ (n2 )

22sΓ (n+2s
2 )Γ (1 + s)

(

1− |x|2
)s

+
, t+ = max{t, 0}.

The solution u ∈ Cs(Ω̄) but it does not belong to Cα(Ω̄) for any α > s. In
this sense, the Cs(Ω̄)-regularity result stated in Proposition 3.1 is optimal [34,
page 276].
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We present a regularity result in Sobolev spaces; see [8, Theorem 2.1] and
[9].

Proposition 3.2 (Sobolev regularity) Let s ∈ (0, 1), and let Ω be a bounded
Lipschitz domain. Let u be the solution to (−∆)su = f in Ω and u = 0 in Ωc.
If f ∈ L2(Ω), then there exist constants C, ζ > 0 such that u ∈ Hs+θ−ǫ(Ω),
where θ = 1

2 for 1
2 < s < 1 and θ = s − ǫ > 0 for 0 < s ≤ 1

2 ; 0 < ǫ < s. In
addition, we have

‖u‖H2s−2ǫ(Ω) ≤ Cǫ−
1
2
−ζ‖f‖L2(Ω), s ∈ (0, 12 ], ∀0 < ǫ < s,

‖u‖
Hs+1

2
−ǫ(Ω)

≤ Cǫ−
1
2 ‖f‖L2(Ω), s ∈ (12 , 1), ∀0 < ǫ < s+ 1

2 .
(3.5)

The constant C is independent of ǫ but depends on Ω, n, and s.

The following comments are in order with [8]. First, the Lipschitz assump-
tion on Ω is optimal in the sense that if Ω was a C∞ domain, then no further
regularity could be inferred. Thus, reentrant corners play no role in the global
regularity of solutions: the boundary behavior u(x) ≈ dist(x, ∂Ω)sv(x), with
v being Hölder continuous up to ∂Ω, dominates any point singularities that
could originate from them. We refer the interested reader to [19] for further
details. Second, in general the smoothness of the right-hand side cannot make
solutions any smoother than ∩ǫ>0H̃

s+1/2−ǫ(Ω). These two comments are il-
lustrated within the setting of the example in Remark 3.1.

For s ∈ (0, 12 ), the regularity properties of Proposition 3.2 can be improved
but at the expense of considering a smoother domain Ω and a smoother forcing
term f.

Proposition 3.3 (Sobolev regularity) Let s ∈ (0, 12 ), and let Ω be a bounded
Lipschitz domain satisfying an exterior ball condition. Let u solve (−∆)su = f

in Ω and u = 0 in Ωc. If f ∈ C
1
2
−s(Ω̄), then u ∈ Hs+ 1

2
−ǫ(Ω) and

‖u‖
Hs+1

2
−ǫ(Ω)

. ǫ−1‖f‖
C

1
2
−s(Ω̄)

, s ∈ (0, 12 ), ∀0 < ǫ < s+ 1
2 , (3.6)

with a hidden constant that is independent of ǫ but depends on Ω, n, and s.

Proof See [7, Theorem 3.3]. ⊓⊔

3.2.2 The semilinear case

We now derive a regularity result in Hölder spaces for the solution to the
fractional semilinear PDE (3.2).

Theorem 3.2 (Hölder regularity) Let n ≥ 2 and s ∈ (0, 1). Let Ω be a
bounded Lipschitz domain satisfying an exterior ball condition. Let a be as in
the statement of Theorem 3.1. Assume, in addition, that a = a(x, u) is locally
Lipschitz in u, uniformly for x ∈ Ω. If f, a(·, 0) ∈ L∞(Ω), then u ∈ Cs(Rn).
In addition, we have the bound

‖u‖Cs(Rn) . ‖f − a(·, 0)‖L∞(Ω),

with a hidden constant that depends on Ω and s.
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Proof We begin the proof by noticing that, for every m > 0 and v ∈ [−m,m],
we have |a(x, v)| ≤ |a(x, 0)|+|a(x, v)−a(x, 0)| ≤ |a(x, 0)|+CL|v| for a.e. x ∈ Ω.
Here, CL denotes the Lipschitz constant of a. This proves that a(·, u) ∈ L∞(Ω).
The fact that u ∈ Cs(Rn) thus follows immediately from Proposition 3.1. In
addition, we have

‖u‖Cs(Rn) . ‖f − a(·, 0)‖L∞(Ω) + ‖u‖L∞(Ω) . ‖f − a(·, 0)‖L∞(Ω).

To obtain the first estimate we have utilized again the fact that a = a(x, u)
is locally Lipschitz in u, uniformly for x ∈ Ω. The second estimate follows
directly from Theorem 3.1: ‖u‖L∞(Ω) . ‖f−a(·, 0)‖L∞(Ω). This concludes the
proof. ⊓⊔

In view of the regularity requirements on the forcing term f stated in Propo-
sition 3.3, the following remark, which provides necessary and sufficient con-
ditions for the boundedness of a Nemitskii operator in Hölder spaces, is of
particular importance.

Remark 3.2 (The Nemitskii operator in Hölder spaces) Let g be a real-valued
function defined on Ω × R. We introduce the Nemitskii operator induced by
g as follows: G(x)(u) := g(x, u(x)) with x ∈ Ω and u varying in a suitable
space of real-valued functions defined on Ω. G maps C0,̺(Ω̄), with ̺ ∈ (0, 1],
into itself if g satisfies the following condition: For every m > 0, there exists
M = M(m) > 0 such that

|g(x, u)− g(y, v)| ≤ M
{

|x− y|̺ + m−1|u− v|
}

(3.7)

for all x, y ∈ Ω̄ and for all u, v ∈ R such that |u|, |v| ≤ m. In other words,
we demand that g = g(x, u) be Hölder continuous in x, uniformly for u in
bounded intervals of R, and locally Lipschitz in u, uniformly for x ∈ Ω̄. This
condition is also necessary when Ω is a general open and bounded set of Rn

[11, Theorem 1.1].

Theorem 3.3 (Sobolev regularity) Let s ∈ [ 14 , 1) and n ≥ 2. Let Ω be a
bounded Lipschitz domain such that it satisfies an exterior ball condition for
s < 1

2 . Let a be as in the statement of Theorem 3.1. Assume, in addition, that
a = a(x, u) is locally Lipschitz in u, uniformly for x ∈ Ω, a(·, 0) ∈ L2(Ω) for
s ∈ [ 12 , 1), a(·, 0) ∈ L∞(Ω) for s ∈ [ 14 ,

1
2 ), and that a satisfies (3.7) with

̺ = 1
2 − s for s ∈ [ 14 ,

1
2 ). (3.8)

If f ∈ Lr(Ω), for r > n/2s and, in addition,

f ∈ C
1
2
−s(Ω̄) for s ∈ [ 14 ,

1
2 ), f ∈ L2(Ω) for s ∈ [ 12 , 1) (3.9)

then, we have that u ∈ Hs+ 1
2
−ǫ(Ω) for every ǫ ∈ (0, ǫ⋆); the precise value of

ǫ⋆ is described in estimates (3.10), (3.11), and (3.12).



Error estimates for fractional semilinear optimal control on Lipschitz polytopes 9

Proof We consider three cases.
Case 1: s ∈ (12 , 1). Since a = a(x, u) is locally Lipschitz in u, uniformly

for x ∈ Ω, and a(·, 0) ∈ L2(Ω), we deduce that a(·, u) ∈ L2(Ω) and thus that
f − a(·, u) ∈ L2(Ω). We can thus apply the regularity results of Proposition
3.2 to arrive at

‖u‖
Hs+1

2
−ǫ(Ω)

. ǫ−
1
2

(

‖f − a(·, 0)‖L2(Ω) + ‖u‖L2(Ω)

)

. ǫ−
1
2 ‖f − a(·, 0)‖L2(Ω) ∀0 < ǫ < s+ 1

2 , s ∈ (12 , 1),
(3.10)

upon utilizing again that a = a(x, u) is locally Lipschitz in u, uniformly for
x ∈ Ω, and the stability estimate ‖u‖Hs(Rn) . ‖f−a(·, 0)‖L2(Ω), which follows
from Theorem 3.1. In both estimates the hidden constant is independent of ǫ.

Case 2: s = 1
2 . In this case, we have that u ∈ Hs+ 1

2
−2ǫ(Ω). This follows

from the arguments elaborated in the previous case and Proposition 3.2. In
addition, we have

‖u‖
Hs+1

2
−2ǫ(Ω)

. ǫ−
1
2
−ζ‖f − a(·, 0)‖L2(Ω) ∀0 < 2ǫ < s+ 1

2 , s = 1
2 . (3.11)

The hidden constant is independent of ǫ.
Case 3: s ∈ [ 14 ,

1
2 ). Within this setting, Theorem 3.2 guarantees that u ∈

Cs(Rn). We can thus invoke the fact that a satisfies (3.7) with ̺ = 1
2 − s to

arrive at f − a(·, u) ∈ C̺(Ω̄) (see Remark 3.2). We are thus in position to
invoke the results of Proposition 3.3 to deduce that u ∈ Hs+1/2−ǫ(Ω) together
with the bounds

‖u‖
Hs+1

2
−ǫ(Ω)

. ǫ−1
[

‖f‖
C

1
2
−s(Ω̄)

+ ‖a(·, u)‖
C

1
2
−s(Ω̄)

]

. ǫ−1
[

1 + ‖f‖
C

1
2
−s(Ω̄)

+ ‖u‖Cs(Ω̄)

]

∀ǫ ∈ (0, s+ 1
2 ), s ∈ [ 14 ,

1
2 ), (3.12)

with a hidden constant that is independent of ǫ. ⊓⊔

We now present a regularity result for s ∈ (0, 12 ). When s ∈ [ 14 ,
1
2 ) the result

is weaker than the one obtained in Theorem 3.3. Nevertheless, it holds under
weaker assumptions on the forcing term f , the nonlinear function a, and the
domain Ω.

Theorem 3.4 (Sobolev regularity) Let s ∈ (0, 12 ) and n ≥ 2. Let Ω be
a bounded Lipschitz domain. Let a be as in the statement of Theorem 3.1.
Assume, in addition, that a = a(x, u) is locally Lipschitz in u, uniformly for
x ∈ Ω, and a(·, 0) ∈ L2(Ω). If f ∈ Lr(Ω) ∩ L2(Ω), for r > n/2s, then
u ∈ H2s−2ǫ(Ω) for every ǫ ∈ (0, s) and

‖u‖H2s−2ǫ(Ω) . ǫ−
1
2
−ζ‖f − a(·, 0)‖L2(Ω), s ∈ (0, 12 ), ∀0 < ǫ < s,

where ζ is as in the statement of Proposition 3.2.

Proof The proof follows similar arguments to those elaborated in the proof of
Theorem 3.3. For brevity, we skip the details. ⊓⊔
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4 Fractional semilinear PDE-constrained optimization

We consider the following weak version of the fractional semilinear optimal
control problem: Find

min{J(u, z) : (u, z) ∈ H̃s(Ω) × Zad} (4.1)

subject to the fractional, semilinear, and elliptic state equation

A(u, v) + (a(·, u), v)L2(Ω) = (z, v)L2(Ω) ∀v ∈ H̃s(Ω). (4.2)

Here, Zad := {v ∈ L2(Ω) : a ≤ v(x) ≤ b a.e. x ∈ Ω} and a, b ∈ R are such
that a < b.

In view of the assumptions on a, Theorem 3.1 guarantees that (4.2) admits
a unique solution u ∈ H̃s(Ω)∩L∞(Ω). We thus introduce the control to state
map S : Lr(Ω) → H̃s(Ω) ∩ L∞(Ω) which, given a control z, associates to it
the unique state u that solves (4.2). We also introduce j : Zad → R by the
relation j(z) = J(Sz, z).

The existence of an optimal solution z̄ ∈ Zad follows from [31, Theorem
4.1].

4.1 First order necessary optimality conditions

In this section, we state first order necessary optimality conditions for (4.1)–
(4.2). We must immediately mention that, since (4.1)–(4.2) is not convex, we
distinguish between local and global solutions and present optimality condi-
tions in the context of local solutions in L2(Ω).

To formulate first order optimality conditions, we introduce the adjoint
state p ∈ H̃s(Ω) ∩ L∞(Ω) as the solution to the adjoint equation

A(v, p) +

(

∂a

∂u
(·, u)p, v

)

L2(Ω)

=

(

∂L

∂u
(·, u), v

)

L2(Ω)

∀v ∈ H̃s(Ω). (4.3)

The well-posedness of the adjoint problem (4.3) follows from assumptions (A.2)
and (B.2), which guarantee that ∂a/∂u(x, u) ≥ 0, for a.e. x ∈ Ω and for all
u ∈ R, and that ∂L/∂u(·, u) ∈ Lr(Ω), for some r > n/2s.

First order optimality conditions for our optimal control problem read as
follows: If z̄ ∈ Zad denotes a locally optimal control for (4.1)–(4.2), then [31,
Theorem 4.4]

(p̄+ αz̄, z − z̄)L2(Ω) ≥ 0 ∀z ∈ Zad, (4.4)

where p̄ ∈ H̃s(Ω) ∩ L∞(Ω) denotes the solution to (4.3) with u replaced by
ū = Sz̄.

Define Π[a,b] : L
1(Ω) → Zad by Π[a,b](v) := min{b,max{v, a}} a.e. in Ω.

The following projection formula is of fundamental importance to study reg-
ularity estimates. If z̄ ∈ Zad denotes a locally optimal control for (4.1)–(4.2),
then [36, page 217]

z̄(x) := Π[a,b](−α
−1p̄(x)) a.e. x ∈ Ω. (4.5)
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Since p̄ ∈ H̃s(Ω) ∩ L∞(Ω) and s ∈ (0, 1), it is immediate that z̄ ∈ Hs(Ω) ∩
L∞(Ω).

4.2 Second order optimality conditions

In (4.4) we stated first order necessary optimality conditions. Since our optimal
control problem is not convex, sufficiency requires the use of second order
optimality conditions. To elaborate on these conditions, we introduce some
preliminary concepts. Let z̄ ∈ Zad satisfy (4.4). We define p̄ := p̄+αz̄ and the
cone of critical directions :

Cz̄ := {v ∈ L2(Ω) : (4.7) holds and p̄(x) 6= 0 =⇒ v(x) = 0}, (4.6)

where condition (4.7) reads as follows:

v(x) ≥ 0 a.e. x ∈ Ω if z̄(x) = a, v(x) ≤ 0 a.e. x ∈ Ω if z̄(x) = b. (4.7)

Second order necessary optimality conditions for problem (4.1)–(4.2) can
be found in [31, Theorem 4.6]. Reference [31] also provides sufficient second
order conditions, which hold under the extra assumptions that n ∈ {2, 3}
and s > n/4. By exploiting the fact that Zad ⊂ L∞(Ω), we remove these
assumptions and improve upon [31].

Theorem 4.1 (second order sufficient optimality conditions) Let n ≥
2 and s ∈ (0, 1). Let ū ∈ H̃s(Ω), p̄ ∈ H̃s(Ω), and z̄ ∈ Zad satisfy (4.2), (4.3),
and (4.4). If j′′(z̄)v2 > 0 for all v ∈ Cz̄ \ {0}, then there exists κ > 0 and
δ > 0 such that

j(z) ≥ j(z̄) + κ
2 ‖z − z̄‖2L2(Ω) (4.8)

for every z ∈ Zad such that ‖z̄ − z‖L2(Ω) ≤ δ.

Proof The proof basically follows the arguments elaborated in the proof of
[31, Theorem 4.7]. The only argument that needs to be modified is the one
that allows the convergence of the sequences {ûk}k∈N and {p̂k}N to ū and
p̄, respectively, in H̃s(Ω) ∩ L∞(Ω) as k ↑ ∞. Observe that the convergence
ẑk → z̄ in L2(Ω) as k ↑ ∞ combined with the fact that {ẑk}k∈N is uniformly
bounded in L∞(Ω) allow us to conclude that ẑk → z̄ in Lι(Ω) as k ↑ ∞
for every ι ∈ (2,∞). With such a convergence result at hand, we rewrite the
problem that ū− ûk solves as a linear problem [36, Theorem 4.16], invoke the
assumptions on a, and utilize the stability bound (3.3) to deduce that ûk → ū
in H̃s(Ω) ∩ L∞(Ω) as k ↑ ∞ without further assumptions on n and s. Let us
now observe that assumptions (A.3) and (B.2) guarantee that

∥

∥

∥

∥

∂a

∂u
(·, ū)−

∂a

∂u
(·, ûk)

∥

∥

∥

∥

Lr(Ω)

+

∥

∥

∥

∥

∂L

∂u
(·, ū)−

∂L

∂u
(·, ûk)

∥

∥

∥

∥

Lr(Ω)

→ 0, k ↑ ∞.

As a result, p̂k → p̄ in H̃s(Ω)∩L∞(Ω) as k ↑ ∞. This concludes the proof. ⊓⊔
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The following result is the starting point to derive error estimates for suit-
able finite element discretizations of the optimal control problem (4.1)–(4.2).

Theorem 4.2 (equivalent optimality conditions) Let n ≥ 2 and s ∈
(0, 1). Let ū ∈ H̃s(Ω), p̄ ∈ H̃s(Ω), and z̄ ∈ Zad satisfy the first order opti-
mality conditions (4.2), (4.3), and (4.4). Then, the following statements are
equivalent:

j′′(z̄)v2 > 0 ∀v ∈ Cz̄ \ {0} ⇐⇒ ∃ν, τ > 0 : j′′(z̄)v2 ≥ ν‖v‖2L2(Ω) (4.9)

for all v ∈ Cτ
z̄ , where C

τ
z̄ := {v ∈ L2(Ω) : (4.7) holds and |p̄(x)| > τ =⇒

v(x) = 0}.

Proof The proof of the equivalence (4.9) follows from a combination of the
arguments elaborated in the proofs of [31, Theorem 4.8] and Theorem 4.1. ⊓⊔

4.3 Regularity estimates

In this section, we derive regularity estimates for an optimal triplet (ū, p̄, z̄).
To accomplish this task, we will assume that, in addition to (A.1)–(A.3) and
(B.1)–(B.2), a and L satisfy the following assumptions:

(C.1) For s ∈ [ 14 ,
1
2 ) and for all m > 0, there exists a positive constant Cm such

that |a(x, u)| ≤ Cm and |∂L/∂u(x, u)| ≤ Cm for a.e. x ∈ Ω and u ∈ [−m,m].

With assumption (C.1) at hand, we derive a first regularity result in Hölder
spaces.

Theorem 4.3 (Hölder regularity) Let n ≥ 2 and s ∈ [ 14 ,
1
2 ). Let Ω be a

bounded Lipschitz domain satisfying an exterior ball condition. Let (ū, p̄, z̄) be
an optimal triplet. Then, ū ∈ Cs(Rn), p̄ ∈ Cs(Rn), and z̄ ∈ Cs(Ω̄).

Proof Since z̄ − a(·, ū) ∈ L∞(Ω), we are in position to utilize the regularity
results of Proposition 3.1 to obtain that ū ∈ Cs(Rn) together with

‖ū‖Cs(Rn) . ‖z̄ − a(·, ū)‖L∞(Ω) . ‖z̄ − a(·, 0)‖L∞(Ω) + ‖ū‖L∞(Ω)

. ‖z̄ − a(·, 0)‖L∞(Ω), s ∈ [ 14 ,
1
2 ).

(4.10)

In all three estimates the hidden constant is independent of ū and z̄ but
it depends on Ω and s. To obtain the second estimate in (4.10), we have
used that a = a(x, u) is locally Lipschitz in u, uniformly for x ∈ Ω. The
third estimate in (4.10) follows from (3.3). To derive a regularity result for
p̄, we observe that p̄ ∈ L∞(Ω). This is a consequence of the existence of
r > n/2s such that ∂L/∂u(·, ū) ∈ Lr(Ω) (see assumption (B.2)) and the
fact that 0 ≤ ∂a/∂u(·, ū) ∈ L∞(Ω) (see assumption (A.3)). Consequently,
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assumption (C.1) guarantees that ∂L/∂u(·, ū) − ∂a/∂u(·, ū)p̄ ∈ L∞(Ω). We
can thus invoke Proposition 3.1 to conclude that p̄ ∈ Cs(Rn) together with

‖p̄‖Cs(Rn) .

∥

∥

∥

∥

∂L

∂u
(·, ū)−

∂a

∂u
(·, ū)p̄

∥

∥

∥

∥

L∞(Ω)

.

∥

∥

∥

∥

∂L

∂u
(·, ū)

∥

∥

∥

∥

L∞(Ω)

+ ‖p̄‖L∞(Ω) ,

(4.11)
upon utilizing the first estimate in (A.3). Finally, the projection formula (4.5)
and [24, Theorem A.1] allow us to conclude that z̄ ∈ Cs(Ω̄) with a similar
estimate. ⊓⊔

To present regularity results in Sobolev spaces we will assume, in addition,
that a, ∂a/∂u, and ∂L/∂u satisfy the following assumptions:

(D.1) Let s ≥ 1
2 . For all m > 0 and u ∈ [−m,m], a(·, u), ∂L/∂u(·, u) ∈ L2(Ω).

(D.2) For s ∈ [ 14 ,
1
2 ), a, ∂a/∂u, and ∂L/∂u satisfy (3.7) with ̺ = 1

2 − s.

Theorem 4.4 (Sobolev regularity) Let n ≥ 2, s ∈ [ 14 , 1), and let Ω be a
bounded Lipschitz domain such that it satisfies an exterior ball condition for
s < 1

2 . If (ū, p̄, z̄) denotes an optimal triplet, then

ū, p̄, z̄ ∈ Hs+ 1
2
−ǫ(Ω) (4.12)

for every ǫ ∈ (0, ǫ∗); ǫ∗ > 0 being described in estimates (4.13)–(4.18).

Proof We consider three cases.
Case 1: s ∈ (12 , 1). Since z̄ − a(·, ū) ∈ L2(Ω), we can invoke the regularity

results of Proposition 3.2 to deduce ū ∈ Hs+1/2−ǫ(Ω) for every 0 < ǫ < s+ 1
2 .

In addition,

‖ū‖
Hs+1

2
−ǫ(Ω)

. ǫ−
1
2

(

‖z̄ − a(·, 0)‖L2(Ω) + ‖ū‖L2(Ω)

)

. ǫ−
1
2 ‖z̄ − a(·, 0)‖L2(Ω) ∀ǫ ∈ (0, s+ 1

2 ), s ∈ (12 , 1),
(4.13)

upon utilizing that a = a(x, u) is locally Lipschitz in u, uniformly for x ∈ Ω,
and the stability bound |ū|Hs(Rn) . ‖f−a(·, 0)‖L2(Ω). Similarly, the regularity
results of Proposition 3.2 applied now to the adjoint equation (4.3) allow us
to conclude that p̄ ∈ Hs+1/2−ǫ(Ω), for every 0 < ǫ < s+ 1

2 , together with the
estimates

‖p̄‖
Hs+1

2
−ǫ(Ω)

. ǫ−
1
2

[

∥

∥

∥

∥

∂L

∂u
(·, ū)

∥

∥

∥

∥

L2(Ω)

+ ‖p̄‖L2(Ω)

]

. ǫ−
1
2

∥

∥

∥

∥

∂L

∂u
(·, ū)

∥

∥

∥

∥

L2(Ω)

∀ǫ ∈ (0, s+ 1
2 ), s ∈ (12 , 1).

(4.14)

On the basis of the projection formula (4.5), an application of [28, Theorem 1]
reveals that z̄ ∈ Hs+1/2−ǫ(Ω), for every 0 < ǫ < s+ 1

2 , with a similar estimate.
Case 2: s = 1

2 . An immediate application of Proposition 3.2 reveals that

‖ū‖
Hs+1

2
−2ǫ(Ω)

. ǫ−
1
2
−ζ‖z̄ − a(·, 0)‖L2(Ω) ∀ 2ǫ ∈ (0, s+ 1

2 ), s = 1
2 . (4.15)
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We now notice that (A.3), (D.1), and the well-posedness of the adjoint equation
(4.3) reveal that ∂L/∂L(·, ū) − ∂a/∂u(·, ū)p̄ ∈ L2(Ω). Invoke Proposition 3.2
to obtain

‖p̄‖
Hs+1

2
−2ǫ(Ω)

. ǫ−
1
2
+ζ

∥

∥

∥

∥

∂L

∂u
(·, ū)

∥

∥

∥

∥

L2(Ω)

∀ 2ǫ ∈ (0, s+ 1
2 ), s = 1

2 . (4.16)

The projection formula (4.5) combined with an application of [28, Theorem 1]
reveal that z̄ ∈ Hs+1/2−2ǫ(Ω), for every 2ǫ ∈ (0, s+ 1

2 ), with a similar estimate.

Case 3: s ∈ [ 14 ,
1
2 ). Since z̄ ∈ C1/2−s(Ω̄), which follows from 1/2−s ≤ s and

Theorem 4.3, we can invoke assumption (D.2) and Proposition 3.3 to conclude
that

‖ū‖
Hs+1

2
−ǫ(Ω)

. ǫ−1
(

1 + ‖z̄‖Cs(Ω̄) + ‖ū‖Cs(Ω̄)

)

s ∈ [ 14 ,
1
2 ), (4.17)

for every 0 < ǫ < s + 1
2 ; compare with estimate (3.12). We now notice that

∂L/∂u(·, ū) − ∂a/∂u(·, ū)p̄ ∈ C1/2−s(Ω̄). In fact, by assumption (D.2) we
have that ∂L/∂u(·, ū) ∈ C1/2−s(Ω̄). On the other hand, Theorem 4.3 guar-
antees that p̄ ∈ Cs(Rn). This combined with (D.2) allow us to conclude that
∂a/∂u(·, ū)p̄ ∈ C1/2−s(Ω̄); observe that 1/2− s ≤ s. We thus invoke Proposi-
tion 3.3 to arrive at p̄ ∈ Hs+1/2−ǫ(Ω), for every 0 < ǫ < s+ 1

2 , together with
the bound

‖p̄‖
Hs+1

2
−ǫ(Ω)

. ǫ−1

(∥

∥

∥

∥

∂L

∂u
(·, ū)

∥

∥

∥

∥

C
1
2
−s(Ω̄)

+ ‖p̄‖
C

1
2
−s(Ω̄)

+ ‖p̄‖L∞(Ω)

[

1 + ‖ū‖
C

1
2
−s(Ω̄)

]

)

∀0 < ǫ < s+ 1
2 , s ∈ [ 14 ,

1
2 ). (4.18)

The projection formula (4.5) and [28, Theorem 1] reveal that z̄ ∈ Hs+1/2−ǫ(Ω),
for every 0 < ǫ < s+ 1

2 , with a similar estimate. This concludes the proof. ⊓⊔

We conclude with a regularity result for s ∈ (0, 12 ). When s ∈ [ 14 ,
1
2 ) the

result is weaker than the one obtained in Theorem 4.4. However, it holds under
weaker assumptions on the control problem data. In fact, in what follows, we
do not operate under assumptions (C.1), (D.1)and (D.2).

Theorem 4.5 (Sobolev regularity) Let n ≥ 2, s ∈ (0, 12 ), and let Ω be
a bounded Lipschitz domain. Assume that, for all m > 0 and u ∈ [−m,m],
a(·, u), ∂L/∂u(·, u) ∈ L2(Ω). If (ū, p̄, z̄) ∈ H̃s(Ω) × H̃s(Ω) × Zad denotes an
optimal triplet, then

ū, p̄, z̄ ∈ H2s−2ǫ(Ω) (4.19)

for every ǫ ∈ (0, s).

Proof The proof follows similar arguments to those elaborated in the proof of
Theorem 4.4. For brevity, we skip the details. ⊓⊔
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5 Finite element approximation of fractional semilinear PDEs

Let us begin by describing the finite element framework that we will adopt. To
avoid technical difficulties, we assume that Ω is a Lipschitz polytope so that it
can be triangulated exactly; when needed, we shall additionally assume that
it satisfies an exterior ball condition. Let T be a collection of conforming and
simplicial triangulations T = {T } of Ω̄, which are obtained by subsequent
refinements of an initial mesh. We assume that T is shape regular. Finally, we
define hT := max{hT : T ∈ T }, where hT := diam(T ).

Given a mesh T ∈ T, we introduce the basic finite element space V(T ) =
{vT ∈ C0(Ω) : vT |T ∈ P1(T ) ∀T ∈ T , vT = 0 on ∂Ω}. The following com-
ments are now in order. First, for every s ∈ (0, 1), V(T ) ⊂ H̃s(Ω). Second, we
enforce a classical homogeneous Dirichlet boundary condition at ∂Ω. Observe
that discrete functions are trivially extended by zero to Ωc.

5.1 The discrete problem

We introduce the following finite element approximation of the semilinear el-
liptic PDE (3.2): Find uT ∈ V(T ) such that

A(uT , vT ) +

ˆ

Ω

a(x, uT (x))vT (x)dx =

ˆ

Ω

f(x)vT (x)dx (5.1)

for all vT ∈ V(T ). Let r, f , and a be as in the statement of Theorem 3.1. Since
the bilinear formA is coercive and a is monotone increasing in u, an application
of Brouwer’s fixed point theorem yields the existence of a unique solution for
problem (5.1). In addition, we have the stability bound ‖uT ‖s . ‖f‖H−s(Ω).

5.2 Error estimates

In what follows, we derive error estimates for the proposed finite element
scheme. To accomplish this task, we will assume that

(E.1) The nonlinear function a satisfies |a(x, u) − a(x, v)| ≤ |φ(x)||u − v| for
a.e. x ∈ Ω and u, v ∈ R, where φ ∈ Lr(Ω) and r = n

2s .

To simplify the presentation of the derived error bounds, we define

Λ(f, a) := 1 + ‖f‖
C

1
2
−s(Ω̄)

+ ‖f − a(·, 0)‖L∞(Ω),

Σ(f, a) := ‖f − a(·, 0)‖L2(Ω).
(5.2)

Theorem 5.1 (error estimates) Let n ≥ 2 and s ∈ (0, 1). Let Ω ⊂ R
n

be a bounded Lipschitz domain. Let a be as in the statement of Theorem 3.1.
Assume, in addition, that a satisfies (E.1). Let u ∈ H̃s(Ω) and uT ∈ V(T )
be the solutions to (3.2) and (5.1), respectively. Then, we have the quasi-best
approximation result

‖u− uT ‖s . ‖u− vT ‖s ∀vT ∈ V(T ). (5.3)
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If, in addition, s ∈ [ 14 , 1), Ω satisfies an exterior ball condition for s < 1
2 ,

a = a(x, u) is locally Lipschitz in u, uniformly for x ∈ Ω, a(·, 0) ∈ L2(Ω) for
s ∈ [ 12 , 1), a(·, 0) ∈ L∞(Ω) for s ∈ [ 14 ,

1
2 ), a satisfies (3.7) with ̺ as in (3.8),

and f ∈ Lr(Ω) (r > n/2s) satisfies (3.9), then we have the quasi-optimal a
priori error estimates

‖u− uT ‖s . h
1
2

T
| log hT |Λ(f, a), s ∈ [ 14 ,

1
2 ), (5.4)

‖u− uT ‖s . h
1
2

T
| log hT |

3
2
+ζΣ(f, a), s = 1

2 , (5.5)

‖u− uT ‖s . h
1
2

T
| log hT |

1
2Σ(f, a), s ∈ (12 , 1). (5.6)

Here, ζ is as in the statement of Proposition 3.2. Let ϑ := min{s, 12}. If, in
addition, (E.1) holds with r replaced by v := n/s, then we have the L2(Ω)-error
estimates:

‖u− uT ‖L2(Ω) . h
ϑ+ 1

2

T
| log hT |

3
2
+ζΛ(f, a), s ∈ [ 14 ,

1
2 ), (5.7)

‖u− uT ‖L2(Ω) . h
ϑ+ 1

2

T
| log hT |2(

3
2
+ζ)Σ(f, a), s = 1

2 , (5.8)

‖u− uT ‖L2(Ω) . h
ϑ+ 1

2

T
| log hT |Σ(f, a), s ∈ (12 , 1). (5.9)

In all estimates the hidden constant is independent of u, uT , and hT .

Proof The proof of (5.3) follows from the monotonicity of a = a(x, u) in the
second variable, Galerkin orthogonality, assumption (E.1), and the Sobolev
embedding of Proposition 2.1, Hs(Ω) →֒ Lq(Ω), which holds for every q ∈
[1, 2n/(n− 2s)]:

‖u− uT ‖2s ≤ A(u − uT , u− uT ) + (a(·, u)− a(·, uT ), u− uT )L2(Ω)

= A(u − uT , u− vT ) + (a(·, u)− a(·, uT ), u− vT )L2(Ω)

≤ ‖u− uT ‖s‖u− vT ‖s + ‖φ‖Lr(Ω)‖u− uT ‖Lq(Ω)‖u− vT ‖Lq(Ω)

≤ ‖u− uT ‖s‖u− vT ‖s[1 + C‖φ‖Lr(Ω)], vT ∈ V(T ), C > 0.

Here, r = n/2s and q = 2n/(n− 2s). Observe that r−1 + q−1 + q−1 = 1.
Assume now that Ω satisfies an exterior ball condition for s < 1

2 so that we
have at hand the results of Theorem 3.3. Let s ∈ (0, 1)\{ 1

2}. To obtain (5.4) and
(5.6), we bound ‖u−vT ‖s in (5.3) on the basis of two ingredients. The first one
is the bound that is used to prove that H̃s(Ω) = Hs

0(Ω) for s ∈ (0, 1) \ { 1
2}

[27, Theorem 3.33]: ‖u − vT ‖s . ‖u − vT ‖Hs(Ω) for all vT ∈ V(T ) and

s ∈ (0, 1) \ { 1
2}. The second ingredient is the localization of fractional order

Sobolev seminorms [16,17]:

|v|2Hs(Ω) ≤
∑

T

[
ˆ

T

ˆ

ST

|v(x)− v(y)|2

|x− y|n+2s
dydx+

c(n, σ)

sh2sT
‖v‖2L2(T )

]

, s ∈ (0, 1),

for v ∈ Hs(Ω). Here, ST = ∪{T ′ ∈ T : T ′ ∩ T 6= ∅}, c(n, σ) denotes a
positive constant, and σ is the shape regularity coefficient of the family T.
With these two ingredients at hand, the rest of the proof relies on utilizing
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interpolation error estimates for the Scott–Zhang operator [7, Proposition 3.6],
[8, Proposition 3.1] on the basis of the regularity results obtained in Theorem
3.3. Since the regularity estimate (3.10) depends on ǫ as ǫ−1/2, we obtain, for
every ǫ ∈ (0, 12 ), the error estimate

‖u− uT ‖s . h
1
2

T
ǫ−

1
2h−ǫ

T
‖f − a(·, 0)‖L2(Ω), s ∈ (12 , 1),

with a hidden constant independent of ǫ. In view of a
1

ln a = e for a ∈ R+ \ {1},
we thus set ǫ = | log hT |−1 to arrive at the error estimate (5.6). The error
estimate (5.4) follows similar arguments upon utilizing the regularity estimate
(3.12). Let us now analyze the special case s = 1

2 and derive the error estimate
(5.5). To accomplish this task, we utilize a fractional Hardy inequality and an
interpolation error estimate for the Scott–Zhang operator: Let t ∈ (12 , 1) and
δ ∈ (0, t− 1

2 ), then [8, inequality (3.11)]

‖v −ΠT v‖ 1
2
. δ−1h

t− 1
2
−δ

T
|v|Ht(Ω), v ∈ Ht(Ω). (5.10)

We thus invoke the regularity estimate (3.11) and utilize the previous estimate
with v = u and t = 1− 2ǫ to conclude that

‖u− uT ‖ 1
2
. h

1
2

T
δ−1h−δ

T
ǫ−

1
2
−ζh−2ǫ

T
Σ(f, a) . h

1
2

T
| log hT |

3
2
+ζΣ(f, a), (5.11)

upon taking ε = δ = | log hT |−1.
The error estimate in L2(Ω) follows from duality. Define 0 ≤ χ ∈ L

n

s (Ω)
by

χ(x) =
a(x, u(x))− a(x, uT (x))

u(x)− uT (x)
if u(x) 6= uT (x), χ(x) = 0 if u(x) = uT (x).

Let z ∈ H̃s(Ω) be the solution to A(v, z) + (χz, v)L2(Ω) = 〈f, v〉 for all v ∈

H̃s(Ω); f ∈ H−s(Ω). Let zT be the finite element approximation of z within
V(T ). Thus,

〈f, u− uT 〉 = A(u − uT , z) + (χz, u− uT )L2(Ω)

= A(u − uT , z− zT ) +A(u − uT , zT ) + (χz, u − uT )L2(Ω)

= A(u− uT , z− zT ) + (a(·, u)− a(·, uT ), z− zT )L2(Ω)

≤ ‖u− uT ‖s‖z− zT ‖s + ‖φ‖Lr(Ω)‖u− uT ‖Lq(Ω)‖z− zT ‖Lq(Ω), (5.12)

where r = n/2s and q = 2n/(n−2s). Set f = u−uT ∈ L2(Ω). Since φ ∈ L
n

s (Ω),
χz ∈ L2(Ω). We thus invoke Proposition 3.2 to obtain the regularity estimate

‖z‖Hs+θ−ǫ(Ω) . ǫ−ξ‖u− uT ‖L2(Ω) ∀0 < ǫ < s, θ = min{s− ǫ, 12}, (5.13)

where ξ = 1
2 if s ∈ (12 , 1) and ξ =

1
2 + ζ if s ∈ (0, 12 ]. If s 6=

1
2 , we thus obtain

‖z− zT ‖s . hθ−ǫ
T

|z|Hs+θ−ǫ(Ω) . ǫ−ξhθ−ǫ
T

‖u− uT ‖L2(Ω).
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Set ǫ = | log hT |−1 to conclude that ‖z− zT ‖s . hϑ
T
| log hT |ξ‖u− uT ‖L2(Ω),

where ϑ = min{s, 12}. We now invoke (5.12) and the bound (5.6) to obtain,
for s ∈ (12 , 1),

‖u− uT ‖2L2(Ω) . ‖u− uT ‖s‖z− zT ‖s . h
1
2
+ϑ

T
| log hT |‖u− uT ‖L2(Ω)Σ(f, a).

The case s ∈ [ 14 ,
1
2 ] follows similar arguments. This concludes the proof. ⊓⊔

Remark 5.1 (error estimates) The energy-norm error bounds (5.4)– (5.6) im-
prove the ones recently obtained in [31, Theorem 5.2, estimate (5.6)]: the factor
h−ǫ in [31, estimate (5.6)], where ǫ > 0 is arbitrarily small, has been removed.
We also mention that the derived error estimates are in agreement with re-
spect to regularity. The L2(Ω)-norm error estimates (5.7)–(5.9) read, up to
logarithm factors, as follows:

‖u− uT ‖L2(Ω) . h
s+ 1

2

T
, s ∈ [ 14 ,

1
2 ], ‖u− uT ‖L2(Ω) . hT , s ∈ (12 , 1).

Both bounds improve the one derived in [31, Theorem 5.2, estimate (5.7)].
In addition, if s ∈ [ 14 ,

1
2 ], the error bound is in agreement with respect to

regularity. In contrast, when s ∈ (12 , 1), the derived error bound is suboptimal
with respect to regularity. To conclude, we notice that the error bounds of [31,
Theorem 5.2] hold under the assumption that ∂Ω ∈ C∞. We improve upon
them by assuming that Ω is a Lipschitz polytope that additionally satisfies an
exterior ball condition when s < 1

2 .

We now present error estimates for s ∈ (0, 12 ) that are suboptimal in terms
of regularity. When s ∈ [ 14 ,

1
2 ) the derived error estimates hold under weaker

regularity assumptions that the ones stated in Theorem 5.1.

Theorem 5.2 (error estimates) Let n ≥ 2, s ∈ (0, 12 ), and r > n/2s. Let
Ω ⊂ R

n be a bounded Lipschitz domain. Assume that a is as in the statement
of Theorem 3.1 and satisfies, in addition, (E.1). If, in addition, a = a(x, u) is
locally Lipschitz in u, uniformly for x ∈ Ω, a(·, 0) ∈ L2(Ω) and f ∈ L2(Ω) ∩
Lr(Ω), then we have the following a priori error estimate in the energy-norm:

‖u− uT ‖s . hsT | log hT |
1
2
+ζ‖f − a(·, 0)‖L2(Ω), s ∈ (0, 12 ). (5.14)

Here, ζ is as in the statement of Proposition 3.2. If, in addition, (E.1) holds
with r replaced by v = n/s, then we have the following a priori error estimate
in L2(Ω):

‖u− uT ‖L2(Ω) . h2sT | log hT |2(
1
2
+ζ)‖f − a(·, 0)‖L2(Ω), s ∈ (0, 12 ). (5.15)

In both estimates the hidden constant is independent of u, uT , and hT .

Proof The proof follows the arguments elaborated in the proof of Theorem 5.1
but now utilizing the regularity results of Theorem 3.4. ⊓⊔



Error estimates for fractional semilinear optimal control on Lipschitz polytopes 19

5.2.1 Error estimates on suitable graded meshes

Let us assume that we have at hand a family of meshes {T } of Ω̄ such that,
in addition to shape regularity, {T } satisfies a suitable mesh refinement near
the boundary of Ω [7,8]: Given a mesh parameter h > 0, there is a number
µ ≥ 1 such that for every T ∈ T

hT ≤ C(σ)hµ if T ∩ ∂Ω 6= ∅,

hT ≤ C(σ)hdist(T, ∂Ω)(µ−1)/µ if T ∩ ∂Ω = ∅.
(5.16)

Here, C(σ) denotes a constant that only depends on the shape regularity
coefficient σ of {T }. The number of degrees of freedom N of the corresponding
finite element space V(T ) can be related to the discretization parameter h as
follows [8, (3.13)]:

N ≈ h−n if µ < n
n−1 , N ≈ h−n| log h| if µ = n

n−1 , N ≈ h(1−n)µ if µ > n
n−1 .

If µ ≤ n/(n − 1), h and N satisfy the optimal relation h ≈ N− 1
n (up to a

logarithmic factor if µ = n/(n− 1).)
We now present error estimates on the graded meshes dictated by (5.16)

that improve the ones obtained in Theorem 5.1 for shape regular families of
conforming and simplicial triangulations. Since we will utilize the results of
Theorem 3.2, we will assume that Ω satisfies an exterior ball condition.

Theorem 5.3 (error estimates on graded meshes) Let n ≥ 2, s ∈ (0, 1),
and let Ω ⊂ R

n be a bounded Lipschitz domain satisfying an exterior ball
condition. Let µ = n/(n−1) be the parameter that dictates the mesh refinement
(5.16), and let β⋆ = n/(2(n − 1)) − s. Assume that a is as in the statement
of Theorem 3.1. If, in addition, s ≥ n/(4(n− 1)), a(·, 0) ∈ L∞(Ω), a satisfies
(3.7) with ̺ = β⋆, and f ∈ Cβ(Ω̄), where β ≥ β⋆, then we have the following
error bounds

‖u− uT ‖s . h
n

2(n−1) | log h|υ, s ∈
[

n
4(n−1) , 1

)

, (5.17)

‖u− uT ‖L2(Ω) . h
n

2(n−1)+ϑ
| log h|℘, s ∈

[

n
4(n−1) , 1

)

, (5.18)

where ϑ = min{s, 12}, υ = 1 if s 6= 1
2 and υ = 2 if s = 1

2 , ℘ = 3
2 if s > 1

2 ,
℘ = 5

2+ζ if s =
1
2 , and ℘ = 3

2+ζ if s <
1
2 . The constant ζ is as in the statement

of Proposition 3.2. In both estimates the hidden constant is independent of u,
uT , and hT .

Proof We begin the proof by noticing that, since a satisfies (3.7) with ̺ = β⋆,
then (E.1) holds. We can thus invoke the best approximation result (5.3) of
Theorem 5.1 to immediately deduce the error bound ‖u−uT ‖s . ‖u−ΠT u‖s,
whereΠT denotes the Scott–Zhang operator. The desired error estimate (5.17)
is thus a consequence of [8, estimate (3.14)] and [8, Theorem 3.5] upon ob-
taining that f − a(·, u) ∈ Cβ⋆(Ω̄). To accomplish this task, we invoke the
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regularity results of Theorem 3.2 to deduce that u ∈ Cs(Rn). Since a satisfies
(3.7) with ̺ = β⋆, the arguments in Remark 3.2 reveal that a(·, u) ∈ Cβ⋆(Ω̄).
Notice that s ≥ β⋆ = n/(2(n−1))−s because s ≥ n/(4(n−1)). Consequently,
f − a(·, u) ∈ Cγ(Ω̄), where γ = min{β, β⋆} = β⋆.

With the previous regularity result at hand, the error estimate (5.18) in
L2(Ω) follows from [8, Proposition 3.10]. This concludes the proof. ⊓⊔

5.3 A convergence property

Let Ω be a bounded Lipschitz domain. Assume that a is as in the statement of
Theorem 3.1 and satisfies, in addition, (E.1). Let u ∈ H̃s(Ω) be the solution
to (3.2), and let uT ∈ V(T ) be the solution to (5.1) with f replaced by
fT ∈ Lr(Ω), with r > n/2s. Then, we have [31, Proposition 5.3]

fT ⇀ f in Lr(Ω) =⇒ uT → u in Lq(Ω), hT ↓ 0, (5.19)

for every q ≤ 2n/(n− 2s).

6 Finite element approximation of the adjoint equation

We introduce the following finite element approximation of (4.3): Find qT ∈
V(T ) such that

A(vT , qT ) +

(

∂a

∂u
(·, u)qT , vT

)

L2(Ω)

=

(

∂L

∂u
(·, u), vT

)

L2(Ω)

(6.1)

for all vT ∈ V(T ), where u ∈ H̃s(Ω) ∩L∞(Ω) corresponds to the solution to
(4.2). We observe that assumption (B.2) guarantees that ∂L/∂u(·, u) ∈ Lr(Ω)
for r > n/2s while assumption (A.2) reveals that ∂a/∂u(x, u) ≥ 0 for a.e. x ∈
Ω and for all u ∈ R. The existence and uniqueness of a discrete solution
qT ∈ V(T ) to problem (6.1) is thus immediate.

Since it will be useful, we present the following Galerkin orthogonality
property:

A(vT , p− qT ) +

(

∂a

∂u
(·, u)(p− qT ), vT

)

L2(Ω)

= 0 ∀vT ∈ V(T ). (6.2)

To present error estimates concisely, we define

Υ (L) :=

∥

∥

∥

∥

∂L

∂u
(·, ū)

∥

∥

∥

∥

L2(Ω)

,

Ψ(L, a) :=

∥

∥

∥

∥

∂L

∂u
(·, ū)

∥

∥

∥

∥

C
1
2
−s(Ω̄)

[

1 + ‖z̄ − a(·, 0)‖L∞(Ω)

]

.
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Theorem 6.1 (error estimates) Let n ≥ 2, s ∈ [ 14 , 1), and let Ω be a
bounded Lipschitz domain such that it satisfies an exterior ball condition for
s < 1/2. Assume that (A.1)–(A.3), (B.1)–(B.2), (C.1), and (D.1)–(D.2) hold.
Let p ∈ H̃s(Ω) be the solution to (4.3), and let qT ∈ V(T ) be the solution to
the discrete problem (6.1). Then, we have the following a priori error estimates
in the energy-norm:

‖p− qT ‖s . h
1
2

T
| log hT |Ψ(L, a), s ∈ [ 14 ,

1
2 ), (6.3)

‖p− qT ‖s . h
1
2

T
| log hT |

3
2
+ζΥ (L), s = 1

2 , (6.4)

‖p− qT ‖s . h
1
2

T
| log hT |

1
2Υ (L), s ∈ (12 , 1). (6.5)

Here, ζ is as in the statement of Proposition 3.2. Let ϑ = min{s, 12}. We also
have the following a priori error estimates in L2(Ω):

‖p− qT ‖L2(Ω) . h
ϑ+ 1

2

T
| loghT |

3
2
+ζΨ(L, a), s ∈ [ 14 ,

1
2 ). (6.6)

‖p− qT ‖L2(Ω) . h
ϑ+ 1

2

T
| loghT |2(

3
2
+ζ)Υ (L), s = 1

2 . (6.7)

‖p− qT ‖L2(Ω) . h
ϑ+ 1

2

T
| loghT |Υ (L), s ∈ (12 , 1). (6.8)

In all estimates, the hidden constant is independent of p, qh, and hT .

Proof In view of ‖p − qT ‖2s = A(p − qT , p − qT ), setting vT as qT in (6.2)
yields

‖p− qT ‖2s = A(p− qT , p) +

(

∂a

∂u
(·, u)(p− qT ), qT

)

L2(Ω)

.

We now utilize Galerkin orthogonality again, but now as it is in (6.2), to
deduce

‖p− qT ‖2s = A(p− qT , p− vT ) +

(

∂a

∂u
(·, u)(p− qT ), qT − vT

)

L2(Ω)

for every vT ∈ V(T ). Write qT − vT = (qT − p) + (p − vT ), observe that
(∂a/∂u(·, u)(p−qT ), qT −p)L2(Ω) ≤ 0, and utilize assumption (A.3) combined
with the fact that u ∈ L∞(Ω) to obtain

‖p−qT ‖2s ≤ ‖p−qT ‖s‖p−vT ‖s+Cm‖p−qT ‖L2(Ω)‖p−vT ‖L2(Ω), vT ∈ V(T ).

This bound allows us to obtain the quasi-best approximation property: ‖p −
qT ‖s . inf{‖p− vT ‖s : vT ∈ V(T )}. The energy-norm error estimates (6.3)–
(6.5) thus follow from similar arguments to the ones developed in the proof of
Theorem 5.1 upon utilizing the regularity estimates (4.14), (4.16), and (4.18).
The L2(Ω)-norm error bounds (6.6)–(6.8) follow from a duality argument.
This concludes the proof. ⊓⊔
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Let us now introduce uT ∈ V(T ) as the solution to (5.1) with f replaced
by zT ; zT corresponds to an arbitrary piecewise constant function over the
mesh T . We also introduce the discrete function pT ∈ V(T ) as the solution
to the following problem:

A(vT , pT ) +

(

∂a

∂u
(·, uT )pT , vT

)

L2(Ω)

=

(

∂L

∂u
(·, uT ), vT

)

L2(Ω)

(6.9)

for all vT ∈ V(T ). In what follows, we analyze error bounds for p − pT . To
accomplish this task, we define q as the solution to the weak problem: Find
q ∈ H̃s(Ω) such that

A(v, q) +

(

∂a

∂u
(·, uT )q, v

)

L2(Ω)

=

(

∂L

∂u
(·, uT ), v

)

L2(Ω)

(6.10)

for all vT ∈ V(T ).
Since we are operating under local assumptions on a = a(x, u) and L =

L(x, u), i.e., assumptions that hold for u on bounded intervals of R, in what
follows we assume that solutions uT to problem (5.1) are uniformly bounded
in L∞(Ω), i.e.,

∃C > 0 : ‖uT ‖L∞(Ω) ≤ C ∀T ∈ T. (6.11)

With (6.11) at hand, the assumptions imposed on the data allow us to
conclude that (6.9) and (6.10) are well-posed. In particular, there exists a
unique solution q ∈ H̃s(Ω) ∩ L∞(Ω) to (6.10). If, for every m > 0 and u ∈
[−m,m], ∂L/∂u(·, u) ∈ L2(Ω), we can apply Proposition 3.2 to deduce that
q ∈ Hs+θ−ǫ(Ω) together with

‖q‖H2s−2ǫ(Ω) . ǫ−
1
2
−ζ

∥

∥

∥

∥

∂L

∂u
(·, uT )

∥

∥

∥

∥

L2(Ω)

, s ∈ (0, 12 ], ∀0 < ǫ < s,

‖q‖
Hs+1

2
−ǫ(Ω)

. ǫ−
1
2

∥

∥

∥

∥

∂L

∂u
(·, uT )

∥

∥

∥

∥

L2(Ω)

, s ∈ (12 , 1), ∀0 < ǫ < s+ 1
2 .

(6.12)

With (6.12) at hand, the arguments elaborated in the proof of Theorem 6.1
yield the error bound

‖q − pT ‖s . hϑT | log hT |υ
∥

∥

∥

∥

∂L

∂u
(·, uT )

∥

∥

∥

∥

L2(Ω)

, ϑ = min{s, 12}. (6.13)

Here, υ = 1
2 if s > 1

2 , υ = 3
2 + ζ if s = 1

2 , and υ = 1
2 + ζ if s < 1

2 . ζ is as in the
statement of Proposition 3.2. In addition, we have an error bound in L2(Ω):

‖q − pT ‖L2(Ω) . h2ϑT | log hT |2υ
∥

∥

∥

∥

∂L

∂u
(·, uT )

∥

∥

∥

∥

L2(Ω)

, 0 < s < 1. (6.14)

A second ingredient within the analysis of error bounds for p − pT is to
introduce the auxiliary variable

y ∈ H̃s(Ω) : A(y, v) + 〈a(·, y), v〉 = 〈zT , v〉 ∀v ∈ H̃s(Ω). (6.15)
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The well-posedness of (6.15) follows from Theorem 3.1; observe that zT ∈
L∞(Ω) for every T ∈ T. In particular, we have that y ∈ H̃s(Ω) ∩ L∞(Ω). If,
for every m > 0 and u ∈ [−m,m], a(·, u) ∈ L2(Ω), the fact that zT ∈ L2(Ω),
uniformly with respect to discretization, allows us to conclude the following
regularity result: y ∈ Hs+θ−ǫ(Ω), where θ = 1

2 for 1
2 < s < 1 and θ = s− ǫ > 0

for 0 < s ≤ 1
2 .

We are now in position to derive error estimates.

Theorem 6.2 (error estimates) Let n ≥ 2 and s ∈ (0, 1). Let Ω be a
bounded Lipschitz domain. Assume that (A.1)–(A.3), (B.1)–(B.2), and (6.11)
hold. Assume, in addition, that, for every m > 0 and u ∈ [−m,m],

a(·, u),
∂L

∂u
(·, u) ∈ L2(Ω) (6.16)

and that ∂L/∂u = ∂L/∂u(x, u) is locally Lipschitz with respect to u. Let p ∈
H̃s(Ω) be the solution to (4.3), and let pT ∈ V(T ) be the solution to (6.9).
Then, we have

‖p− pT ‖s . hϑT | log hT |υ + ‖z − zT ‖L2(Ω), ϑ = min{s, 12}. (6.17)

If, in addition, a satisfies (E.1) with r replaced by v = n/s, then

‖p− pT ‖L2(Ω) . h2ϑT | log hT |2υ + ‖z − zT ‖L2(Ω), ϑ = min{s, 12}. (6.18)

Here, υ = 1
2 if s > 1

2 , υ = 3
2 + ζ if s = 1

2 , and υ = 1
2 + ζ if s < 1

2 . ζ is as in
Proposition 3.2. In both estimates, the hidden constant is independent of hT .

Proof We follow the proof of [31, Theorem 6.2] and bound ‖p−pT ‖s as follows:
‖p−pT ‖s ≤ ‖p− q‖s+ ‖q−pT ‖s, where q denotes the solution to (6.10). The
control of ‖q − pT ‖s follows from (6.13): ‖q − pT ‖s . hϑ

T
| log hT |υ. It thus

suffices to bound ‖p− q‖s. To accomplish this task, let us first observe that,
for every v ∈ H̃s(Ω),

p− q ∈ H̃s(Ω) : A(v, p− q) +

(

∂a

∂u
(·, u)(p− q), v

)

L2(Ω)

=

([

∂a

∂u
(·, uT )−

∂a

∂u
(·, u)

]

q, v

)

L2(Ω)

+

(

∂L

∂u
(·, u)−

∂L

∂u
(·, uT ), v

)

L2(Ω)

.

Set v = p − q ∈ H̃s(Ω) and use that ∂a/∂u = ∂a/∂u(x, u) and ∂L/∂u =
∂L/∂u(x, u) are locally Lipschitz in u to obtain ‖p− q‖s . ‖u−uT ‖L2(Ω)[1+
‖q‖L∞(Ω)].

We now bound ‖u − uT ‖L2(Ω) on the basis of similar arguments: ‖u −
uT ‖L2(Ω) ≤ ‖u − y‖L2(Ω) + ‖y − uT ‖L2(Ω), where y denotes the solution to
(6.15). Since zT ∈ L2(Ω), uniformly with respect to discretization, and (6.16)
holds, we have at hand the regularity estimates (3.5) for y. These estimates
and the arguments elaborated in the proofs of Theorems 5.1 and 6.1 yield
‖y−uT ‖L2(Ω) . h2ϑ

T
| log hT |2υ . To bound ‖u−y‖L2(Ω), we write the problem

that u − y solves and derive a stability estimate on the basis of (A.1)–(A.3):
‖u − y‖L2(Ω) . ‖z − zT ‖L2(Ω). A collection of the derived estimates yield
(6.17). The proof of (6.18) follows similar arguments. ⊓⊔
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7 Finite element approximation of the fractional control problem

We consider two strategies to discretize the optimal control problem (4.1)–
(4.2): a semidiscrete approach where the admisible control set is not discretized
and a fully discrete strategy where control variables are discretized with piece-
wise constant functions.

7.1 A fully discrete scheme

We consider the following fully discrete approximation of the PDE-constrained
optimization problem (4.1)–(4.2): Find

min{J(uT , zT ) : (uT , zT ) ∈ V(T )× Zad(T )} (7.1)

subject to the discrete state equation

A(uT , vT ) +

ˆ

Ω

a(x, uT (x))vT (x)dx =

ˆ

Ω

zT (x)vT (x)dx (7.2)

for all vT ∈ V(T ). Here, Zad(T ) = Zad ∩ Z(T ), where Z(T ) is defined as
follows: Z(T ) = {vT ∈ L∞(Ω) : vT |T ∈ P0(T ) ∀T ∈ T } .

The existence of a solution follows standard arguments. To present first
order optimality conditions, we introduce ST : Z(T ) ∋ zT 7→ uT ∈ V(T )
and jT (zT ) := J(ST zT , zT ). If z̄T is a local minimum for (7.1)–(7.2), then
(ūT , p̄T , z̄T ) ∈ V(T )× V(T )× Zad(T ) satisfies the optimality system

A(ūT , vT ) + (a(·, ūT ), vT )L2(Ω) = (z̄T , vT )L2(Ω) (7.3)

A(vT , p̄T ) +

(

∂a

∂u
(·, ūT )p̄T , vT

)

L2(Ω)

=

(

∂L

∂u
(·, ūT ), vT

)

L2(Ω)

(7.4)

(p̄T + αz̄T , zT − z̄T )L2(Ω) ≥ 0 (7.5)

for all vT ∈ V(T ) and for all zT ∈ Zad(T ).

7.1.1 Convergence of discretizations

The following result improves upon [31, Theorem 7.2]: it requires weaker as-
sumptions on Ω and L.

Theorem 7.1 (convergence) Let n ≥ 2 and s ∈ (0, 1). Let Ω be a bounded
Lipschitz domain. Assume that (A.1)–(A.3) and (B.1)–(B.2) hold. Assume,
in addition, that (6.11) hold. Let z̄T be a global solution of (7.1)–(7.2) for
T ∈ T. Then, there exist nonrelabeled subsequences {z̄T } such that z̄T ⇀∗ z̄
in L∞(Ω) as hT ↓ 0, with z̄ being a global solution of (4.1)–(4.2). In addition,
we have

‖z̄ − z̄T ‖L2(Ω) → 0, jT (z̄T ) → j(z̄), (7.6)

as hT ↓ 0.
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Proof Since {z̄T } is uniformly bounded in L∞(Ω), we deduce the existence of
a nonrelabeled subsequence {z̄T } such that z̄T ⇀∗ z̄ in L∞(Ω) as hT ↓ 0. Let
z̃ ∈ Zad be a global solution of (4.1)–(4.2). Define z̃T ∈ Zad(T ) by z̃T |T :=
´

T
z̃(x)dx/|T | for T ∈ T and define p̃ as the solution to (4.3) with u replaced

by ũ := Sz̃. Observe that p̃ ∈ H̃s(Ω) ∩L∞(Ω). Invoke the projection formula
(4.5) and [28, Theorem 1] to obtain z̃ ∈ Hs(Ω). Consequently, ‖z̃−z̃T ‖L2(Ω) →
0 as hT ↓ 0. The rest of the proof follows the arguments elaborated in the
proof of [31, Theorem 7.2]. ⊓⊔

We now present a second convergence result [31, Theorem 7.3].

Theorem 7.2 (convergence) Let the assumptions of Theorem 7.1 hold. Let
z̄ be a strict local minimum of problem (4.1)–(4.2). Then, there exists a se-
quence {z̄T } of local minima of the fully discrete optimal control problems
satisfying (7.6).

7.1.2 Error estimates

Let {z̄T } ⊂ Zad(T ) be a sequence of local minima of (7.1)–(7.2) such that
‖z̄ − z̄T ‖L2(Ω) → 0 as hT ↓ 0; z̄ being a local solution of the continuous
problem (4.1)–(4.2); see Theorems 7.1 and 7.2. In this section, we derive the
bound (7.8) for the error ‖z̄− z̄T ‖L2(Ω). The following result is instrumental.

Theorem 7.3 (instrumental error bound) Let the assumptions of Theo-
rem 7.1 hold. Assume that, for every m > 0 and u ∈ [−m,m], (6.16) holds. Let
z̄ ∈ Zad satisfy the conditions (4.9). If (7.8) is false, then there exists h⋆ > 0
such that

C‖z̄ − z̄T ‖2L2(Ω) ≤ [j′(z̄T )− j′(z̄)] (z̄T − z̄) ∀hT ≤ h⋆, (7.7)

where C = 2−1min{ν, α}, ν is the constant appearing in (4.9), and α is the
regularization parameter.

Proof With the equivalence (4.9) of Theorem 4.2 at hand, the proof follows
the arguments in [31, Theorem 7.4]. ⊓⊔

We are now ready to derive a bound for the error z̄ − z̄T in L2(Ω).

Theorem 7.4 (error estimate) Let the assumptions of Theorem 7.3 hold.
Assume, in addition, that ∂L/∂u = ∂L/∂u(x, u) is locally Lipschitz in u. Let
z̄ ∈ Zad satisfy the second order conditions (4.9). Then, there exists h⋆ > 0
such that

‖z̄ − z̄T ‖L2(Ω) . h2ϑT | log hT |2υ ∀hT ≤ h⋆, ϑ = min{s, 12}. (7.8)

Here, υ = 1
2 if s > 1

2 , υ = 3
2 + ζ if s = 1

2 , and υ = 1
2 + ζ if s < 1

2 ; ζ is as in
the statement of Proposition 3.2. The hidden constant is independent of hT .



26 Enrique Otárola

Proof We proceed by contradiction and assume that the desired error estimate
(7.8) does not hold so that we have at hand the instrumental one of Theorem
7.3.

Set zT = ΠT z̄ in (7.5) to deduce that j′
T
(z̄T )(ΠT z̄ − z̄T ) ≥ 0. Here,

ΠT : L2(Ω) → Z(T ) denotes the orthogonal projection operator onto piece-
wise constant functions over T . We now invoke the continuous variational
inequality (4.4) to arrive at j′(z̄)(z̄T − z̄) ≥ 0. With these two inequalities at
hand, we utilize (7.7) to obtain

C‖z̄−z̄T ‖2L2(Ω) ≤ [j′T (z̄T )−j′(z̄T )](ΠT z̄−z̄T )+j′(z̄T )(ΠT z̄−z̄) =: IT +JT .

To bound the term IT , we use the definition of ΠT and proceed as follows:

IT = (p̄T − p(z̄T ), ΠT z̄ − z̄T )L2(Ω) = (p̄T − p(z̄T ), ΠT (z̄ − z̄T ))L2(Ω)

. ‖p̄T − p(z̄T )‖L2(Ω)‖z̄ − z̄T ‖L2(Ω) ≤ Ch4ϑT | log hT |4υ +
C

4
‖z̄ − z̄T ‖2L2(Ω).

Here, p(z̄T ) denotes the solution to (4.3) with u replaced by Sz̄T . The error
bound ‖p̄T − p(z̄T )‖L2(Ω) . h2ϑ

T
| log hT |2υ follows from the arguments elab-

orated within the proofs of Theorems 6.1 and 6.2. For brevity, we skip the
details.

We control the term JT on the basis of similar arguments. In fact, we have

JT = (p(z̄T ) + αz̄T , ΠT z̄ − z̄)L2(Ω) = (p(z̄T ), ΠT z̄ − z̄)L2(Ω)

= (p(z̄T )−ΠT p(z̄T ), ΠT z̄ − z̄)L2(Ω) . h4ϑT | log hT |2η, ϑ = min{s, 12},

where η = 0 if s > 1
2 and η = 1

2 + ζ if s ≤ 1
2 . To simplify the presentation,

we define ep := p(z̄T )−ΠT p(z̄T ). To obtain the bound for JT , we have used
the estimates

‖ep‖L2(Ω) . hT , ‖ΠT z̄ − z̄‖L2(Ω) . hT , for s > 1
2 ,

‖ep‖L2(Ω) . h2sT | log hT |
1
2
+ζ , ‖ΠT z̄ − z̄‖L2(Ω) . h2sT | log hT |

1
2
+ζ , for s ≤ 1

2 .

These bounds follow from standard error estimates for the orthogonal pro-
jection ΠT combined with the regularity results of Proposition 3.2, which
guarantee that

p(z̄T ) ∈ H1(Ω) for s > 1
2 , p(z̄T ) ∈ H2s−2ǫ(Ω) for s ≤ 1

2 ,

together with the bound ‖p(z̄T )‖H2s−2ǫ(Ω) . ǫ−
1
2
−ζ . Here, ǫ ∈ (0, s) and

ζ is as in the statement of Proposition 3.2. Observe that ∂L/∂u(·,Sz̄T ) −
∂a/∂u(·,Sz̄T )p(z̄T ) ∈ L2(Ω) uniformly with respect to discretization. We
notice that the same regularity properties can be obtained for z̄.

Finally, we collect the bounds obtained for IT and JT to obtain ‖z̄ −
z̄T ‖L2(Ω) . h2ϑ

T
| log hT |2υ. This is a contradiction and concludes the proof.

⊓⊔
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Remark 7.1 (improvements on the theory) The error bound (7.8) improves the
one in [31, Theorem 7.5] in several directions. First, (7.8) holds for n ≥ 2 and
s ∈ (0, 1). This is in contrast to [31, estimate (7.15)], which holds for n ∈ {2, 3}
and s > n/4. Second, in contrast to [31, Theorem 7.5], where ∂Ω ∈ C∞, in
Theorem 7.4 we assume that Ω is merely Lipschitz.

Remark 7.2 (error bound (7.8)) If s ≥ 1
2 , the bound (7.8) reads ‖z̄−z̄T ‖L2(Ω) .

hT | log hT |2υ, which is nearly–optimal in terms of approximation. If s < 1
2 ,

(7.8) reads ‖z̄ − z̄T ‖L2(Ω) . h2s| log hT |2υ, which is suboptimal in terms of
approximation.

We now present error bounds for ū− ūT and p̄− p̄T .

Theorem 7.5 (error estimates) Let the assumptions of Theorem 7.4 hold.
Then, there exist h⋆ > 0 such that

‖ū− ūT ‖s . hϑT | log hT |υ , ‖ū− ūT ‖L2(Ω) . h2ϑT | log hT |2υ ,

‖p̄− p̄T ‖s . hϑT | log hT |υ , ‖p̄− p̄T ‖L2(Ω) . h2ϑT | log hT |2υ,
(7.9)

for every hT ≤ h⋆.

Proof The bound for ‖ū− ūT ‖s is contained in the proof of Theorem 6.2:

‖ū− ȳ‖s . ‖z̄ − z̄T ‖L2(Ω) . h2ϑT | log hT |2υ, ‖ȳ − ūT ‖s . hϑT | log hT |υ,

upon utilizing (7.8). Thus, ‖ū − ūT ‖s . hϑ
T
| log hT |υ. The bound for ‖ū −

ūT ‖L2(Ω) follows similar arguments upon utilizing the error estimate ‖ȳ −

ūT ‖L2(Ω) . h2ϑ
T
| log hT |2υ. The bounds for the error committed in the ap-

proximation of p̄ are the content of Theorem 6.2. ⊓⊔

7.2 The variational discretization approach

In this section, we propose a semidiscrete scheme that is based on the so-called
variational discretization approach [22]. The scheme, which involves discretiza-
tion only on the state space (Zad is not discretized), reads as follows: Find
min{J(uT , z) : (uT , z) ∈ V(T )× Zad} subject to

A(uT , vT ) +

ˆ

Ω

a(x, uT (x))vT (x)dx =

ˆ

Ω

z(x)vT (x)dx ∀vT ∈ V(T ).

(7.10)
The existence of a solution and first order optimality conditions follow

standard arguments. In particular, if z̄ denotes a local minimum, then

j′T (z̄)(z− z̄) = (p̄T + αz̄, z− z̄)L2(Ω) ≥ 0 ∀z ∈ Zad, (7.11)

where p̄T ∈ V(T ) solves (7.4) with ūT = ST z̄, i.e., ūT solves (7.10) with
z replaced by z̄. We notice that, in view of (7.11), the following projection
formula holds [36, section 4.6]: z̄(x) = Π[a,b](−α

−1p̄T (x)) for a.e. x ∈ Ω. The
scheme thus induces a discretization of optimal controls by projecting p̄T into
the admissible control set. Since z̄ implicitly depends on T , in what follows
we adopt the notation z̄T .
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7.2.1 Convergence of discretizations

Within the setting of Theorem 7.1, we present the following convergence re-
sults:

– Let T ∈ T and let z̄T ∈ Zad be a global solution of the semidiscrete
scheme. Then, there exist nonrelabeled subsequences of {z̄T } such that
z̄T ⇀∗ z̄ in L∞(Ω) as hT ↓ 0 and (7.6) holds; z̄ is a global solution to
(4.1)–(4.2).

– Let z̄ ∈ Zad be a strict local minimum of (4.1)–(4.2). Then, there exists a
sequence of local minima {z̄T } of the semidiscrete scheme satisfying (7.6).

The proof of these results follow very similar arguments to the ones in the
proofs of Theorems 7.1 and 7.2. For brevity, we do not present further details.

7.2.2 Error estimates

Let {z̄T } ⊂ Zad be a sequence of local minima such that z̄T → z̄ in L2(Ω)
as hT ↓ 0; z̄ ∈ Zad being a local solution of (4.1)–(4.2). In what follows, we
derive a bound for z̄ − z̄T in L2(Ω). The following result is instrumental.

Theorem 7.6 (instrumental error bound) Let n ≥ 2 and s ∈ (0, 1). Let Ω
be a bounded Lipschitz domain. Assume that (A.1)–(A.3), (B.1)–(B.2), (6.16),
and (6.11) hold. Let z̄ ∈ Zad satisfy the conditions (4.9). Then, there exists
h⋆ > 0 such that

C‖z̄ − z̄T ‖2L2(Ω) ≤ [j′(z̄T )− j′(z̄)] (z̄T − z̄) ∀hT ≤ h⋆, (7.12)

where C = 2−1 min{ν, α}, α is the regularization parameter, and ν is the con-
stant appearing in (4.9).

Proof Define vT = (z̄T − z̄)/‖z̄T − z̄‖L2(Ω). We assume that (up to a sub-
sequence if necessary) vT ⇀ v in L2(Ω) as hT ↓ 0. We prove that v ∈ Cz̄ ,
where Cz̄ is defined in (4.6). Observe that vT satisfies (4.7) because z̄T ∈ Zad.
Since the set of elements satisfying (4.7) is weakly closed in L2(Ω), we con-
clude that v satisfies (4.7) as well. We now prove that p̄(x) 6= 0 =⇒ v(x) = 0
for a.e. x ∈ Ω; recall that p̄ = p̄ + αz̄. Define p̄T (x) := p̄T (x) + αz̄T (x).
The convergence property (5.19) and Theorem 6.2 allow us to conclude that
z̄T → z̄ in L2(Ω) guarantee that p̄T → p̄ in L2(Ω) as hT ↓ 0. Invoke (7.11)
with z = z̄ to thus conclude that
ˆ

Ω

p̄(x)v(x)dx = lim
hT ↓0

1

‖z̄T − z̄‖L2(Ω)

[
ˆ

Ω

[p̄T (x) + αz̄T (x)][z̄T (x) − z̄(x)]dx

]

≤ 0.

On the other hand, since v satisfies (4.7), we have that p̄(x)v(x) ≥ 0 and thus
that

´

Ω
p̄(x)v(x)dx = 0. Consequently, p̄(x) 6= 0 implies that v(x) = 0 for

a.e. x ∈ Ω. We have thus proved that v ∈ Cz̄.
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We now proceed to derive (7.6). To accomplish this task, we write

(j′(z̄T )−j′(z̄))(z̄T − z̄) = j′′(ẑT )(z̄T − z̄)2, ẑT := z̄+θT (z̄T − z̄), (7.13)

where θT ∈ (0, 1). Let u
ẑT

solve (4.2) with z replaced by ẑT , and let p
ẑT

be the solution to (4.3) with u replaced by u
ẑT

. Since z̄T → z̄ in L2(Ω) as
hT ↓ 0 and {z̄T } is uniformly bounded in L∞(Ω), we deduce that u

ẑT
→ ū

and p
ẑT

→ p̄ in H̃s(Ω) ∩ L∞(Ω) as hT ↓ 0; see the proof of Theorem 4.1.
Similarly, we have that φT := S′(ẑT )vT ⇀ S′(z̄)v =: φ in H̃s(Ω) as hT ↓ 0.
We thus obtain that

lim
hT ↓0

j′′(ẑT )v2T = lim
hT ↓0

ˆ

Ω

[

∂2L

∂u2
(x, u

ẑT
)φ2T − p

ẑT

∂2a

∂u2
(x, u

ẑT
)φ2T + αv2T

]

dx

= α+

ˆ

Ω

[

∂2L

∂u2
(x, ū)φ2 − p̄

∂2a

∂u2
(x, ū)φ2

]

dx = α+ j′′(z̄)v2 − α‖v‖2L2(Ω).

Since z̄ satisfies (4.9), we have limhT →0 j
′′(ẑT )v2

T
≥ min{ν, α} upon utilizing

that ‖v‖L2(Ω) ≤ 1. This yields the existence of h∗ > 0 such that j′′(ẑT )v2
T

≥
2−1min{ν, α} for hT ≤ h∗. In view of the definition of vT and (7.13), we thus
arrive at (7.12). ⊓⊔

We are now ready to derive a bound for the error z̄ − z̄T in L2(Ω).

Theorem 7.7 (error estimate) Let the assumptions of Theorem 7.6 hold.
Assume, in addition, that ∂L/∂u = ∂L/∂u(x, u) is locally Lipschitz in u. Let
z̄ ∈ Zad satisfy the second order conditions (4.9). Then, there exists h⋆ > 0
such that

‖z̄ − z̄T ‖L2(Ω) . h2ϑT | log hT |2υ ∀hT ≤ h⋆ ϑ = min{s, 12}. (7.14)

Here, υ = 1
2 if s > 1

2 , υ = 3
2 + ζ if s = 1

2 , and υ = 1
2 + ζ if s < 1

2 ; ζ is as in
the statement of Proposition 3.2. The hidden constant is independent of hT .

Proof We invoke the instrumental estimate (7.12), the continuous variational
inequality (4.4), and the semidiscrete one (7.11) to arrive at

C‖z̄ − z̄T ‖2L2(Ω) ≤ [j′(z̄T )− j′T (z̄T )] (z̄T − z̄).

We now observe that (j′(z̄T )− j′
T
(z̄T ))(z̄T − z̄) = (p(z̄T )− p̄T , z̄T − z̄)L2(Ω).

Here, p̄T solves (7.4) and p(z̄T ) denotes the solution to (4.3) with u being
the solution to (4.2) with z replaced by z̄T . Similar arguments to the ones
elaborated within the proofs of Theorems 6.1 and 6.2 can be utilized to obtain
‖p(z̄T ) − p̄T ‖L2(Ω) . h2ϑ

T
| log hT |2υ . This bound implies the desired error

estimate (7.14) and concludes the proof. ⊓⊔
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7.2.3 Error estimates on graded meshes

In this section, we operate under the family of graded meshes {T } of Ω̄
dictated by (5.16) and obtain a bound for z̄ − z̄T in L2(Ω), which improves
the one derived for the fully discrete scheme in Theorem 7.4 and the one
obtained for the semidiscrete scheme in Theorem 7.7.

Theorem 7.8 (error bound on graded meshes) Let the assumptions
of Theorem 7.7 hold. Assume that Ω satisfies, in addition, an exterior ball
condition. Let µ = n/(n − 1) be the parameter that dictates (5.16), and let
β⋆ = n/(2(n − 1)) − s. Assume that a, ∂a/∂u, and ∂L/∂u satisfy (3.7) with
̺ = β⋆. If a(·, 0) ∈ L∞(Ω) and z̄T , ūT ∈ Cβ⋆(Ω̄), uniformly with respect to
discretization, then there exists h∇ > 0 such that

‖z̄− z̄T ‖L2(Ω) . h
n

2(n−1)+ϑ
| log h|υ, ϑ = min{s, 12},

[

n

4(n− 1)
, 1

)

(7.15)

for all h ≤ h∇. Here, υ = 3
2 if s > 1

2 , υ = 5
2 + ζ if s = 1

2 , and υ = 3
2 + ζ

if s < 1
2 ; ζ is as in the statement of Proposition 3.2. The hidden constant is

independent of h.

Proof We begin the proof by by considering h sufficiently small such that
hT ≤ h⋆, where h⋆ is as in (7.12). Consequently, we have at hand the estimate
in (7.12). We now follow the proof of Theorem 7.7 and observe that it suffices
to bound p(z̄T )− p̄T in L2(Ω). To accomplish this task, we define r ∈ H̃s(Ω)
as the solution to

A(v, r) +

(

∂a

∂u
(·, ūT )r, v

)

L2(Ω)

=

(

∂L

∂u
(·, ūT ), v

)

L2(Ω)

(7.16)

for all v ∈ H̃s(Ω). We recall that p(z̄T ) denotes the solution to (4.3) with u
replaced by Sz̄T and write the problem that p(z̄T ) − r solves. Observe that
(A.3), (6.11), and (6.16) yield

L :=
∂a

∂u
(·, ūT )−

∂a

∂u
(·, Sz̄T ) ∈ L2(Ω), N :=

∂L

∂u
(·, Sz̄T )−

∂L

∂u
(·, ūT ) ∈ L2(Ω),

We thus invoke a basic stability bound for the aforementioned problem on
the basis of assumption (A.2) and the fact that L and N belong to L2(Ω),
uniformly with respect to discretization, and utilize the fact that ∂a/∂u =
∂a/∂u(x, u) and ∂L/∂u = ∂L/∂u(x, u) are locally Lipschitz in u to obtain

‖p(z̄T )− r‖s . ‖N‖L2(Ω) + ‖L‖L2(Ω) . ‖Sz̄T − ūT ‖L2(Ω).

We now derive a bound for ‖Sz̄T − ūT ‖L2(Ω). Since {z̄T } ⊂ Zad, a(·, 0) ∈
L∞(Ω), and Ω satisfies an exterior ball condition, Proposition 3.1 reveals that
Sz̄T ∈ Cs(Ω̄). Utilize now that a satisfies (3.7) with ̺ = β⋆ and that z̄T

belongs to Cβ⋆(Ω̄), uniformly with respect to discretization, to obtain z̄T −
a(·, Sz̄T ) ∈ Cβ⋆(Ω̄), upon using the results of Remark 3.2 and the inequality
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β⋆ = n/(2(n − 1)) − s ≤ s. Apply (5.18) to arrive at ‖Sz̄T − ūT ‖L2(Ω) .

h0| log h|υ, where o = n/2(n− 1) + ϑ. To bound r − p̄T , we observe that p̄T

is the finite element approximation of r within V(T ) and use [8, Proposition
3.10]: ‖r−p̄T ‖L2(Ω) . ho| logh|υ. Notice that, ∂a/∂u and ∂L/∂u satisfies (3.7)

with ̺ = β⋆ and ūT ∈ Cβ⋆(Ω̄). Thus, ∂L/∂u(·, ūT )−∂a/∂u(·, ūT )r ∈ Cβ⋆(Ω̄)
uniformly with respect to discretization. Observe that r ∈ Cs(Ω̄) and s ≥ β⋆.

⊓⊔
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33. Otárola, E., and Salgado, A. J. Sparse optimal control for fractional diffusion.
Comput. Methods Appl. Math. 18, 1 (2018), 95–110.

34. Ros-Oton, X., and Serra, J. The Dirichlet problem for the fractional Laplacian:
regularity up to the boundary. J. Math. Pures Appl. (9) 101, 3 (2014), 275–302.

35. Tartar, L. An introduction to Sobolev spaces and interpolation spaces, vol. 3 of Lecture
Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2007.
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