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The Continuos Problem

The problem we shall be concerned with reads as follows: Given a
smooth enough function f , find u such that{

(−∆)1/2u = f in Ω,
u = 0 on ∂Ω,

where Ω ⊂ Rd , with d = 1, 2 is a bounded domain with a smooth
boundary ∂Ω and (−∆)1/2 denotes the square root of the Laplace
operator −∆ in Ω with zero boundary values on ∂Ω.
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Applications

Concerning applications, nonlocal operators are of importance in a wide
range of applications:

I Finance.

I Image Processing.

I Quasi-geostrophic flow models.

I Modeling hydraulic fractures and the evolution of a viscous liquid
thin film.

The development of efficient computational solution techniques for this
problem is fundamental.
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Definition of the Square Root of the Laplacian

Spectral theory of the Laplacian −∆ in a smooth bounded domain Ω with
zero Dirichlet boundary values. There exists a sequence of eigenvalues

0 < λ1 < λ2 ≤ · · ·λk ≤ · · · → ∞

and,

there exists an orthonormal basis {ϕk} of L2(Ω), where ϕk ∈ H1
0 (Ω)

is an eigenfunction corresponding to λk :{
−∆ϕk = λkϕk in Ω

ϕk = 0 on ∂Ω,
(1)

for k = 1, 2, · · · . Regularity theory =⇒ ϕk ∈ C∞(Ω̄) for k = 1, 2, · · · .
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Definition of the Square Root of the Laplacian

The square root of the Dirichlet Laplacian, for a smooth function u, is
given by

u =
∞∑

k=1

ckϕk 7→ (−∆)1/2u =
∞∑

k=1

ckλ
1/2
k ϕk .

Density results =⇒ (−∆)1/2 : H1
0 (Ω)→ L2(Ω).

Then if f ∈ L2(Ω), we
have

f =
∞∑

k=1

fkϕk =⇒ ck = fkλ
−1/2
k

Numerical disadvantages: We need to find a sufficiently large number of
eigenfunctions to obtain an accurate approximation.

Enrique Otárola A FEM for the Square Root of the Laplace Operator



Outline
The Square Root of the Laplace Operator

The Harmonic Extension and the Truncated Problem
The Galerkin Approximation of the Harmonic Extension

Numerical Implementation in deal.ii
Numerical Results

Definition of the Square Root of the Laplacian

The square root of the Dirichlet Laplacian, for a smooth function u, is
given by

u =
∞∑

k=1

ckϕk 7→ (−∆)1/2u =
∞∑

k=1

ckλ
1/2
k ϕk .

Density results =⇒ (−∆)1/2 : H1
0 (Ω)→ L2(Ω). Then if f ∈ L2(Ω), we

have
f =

∞∑
k=1

fkϕk =⇒ ck = fkλ
−1/2
k

Numerical disadvantages: We need to find a sufficiently large number of
eigenfunctions to obtain an accurate approximation.
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Definition of the square root of the Laplacian

On the other hand, this operator can be seen as a singular integral

(−∆)1/2u(x) = Cd

∫
Ω

u(x)− u(y)

|x − y |d+1
dy ,

where Cd is a normalization constant.

Numerical disadvantages: the integrand is singular and the matrix
obtained is dense. These inconveniences complicate the numerical
computation.
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Harmonic Extension

The approach presented by X. Cabre and J. Tan, (2010): relation
between the nonlocal operator (−∆)1/2 and its harmonic extension.

Given u defined in Ω, we consider its harmonic extension v in the cylinder
C := Ω× (0,∞), with v vanishing on ∂LC := ∂Ω× [0,∞).

−∆v = 0 in C = Ω× (0,∞),

v = 0 on ∂LC = ∂Ω× [0,∞),
∂v

∂ν
= f on Ω× {0},

where ν is the unit outer normal to C at Ω× {0}.

Then,

u = trΩv := v(·, 0)

.
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Spaces for v and u

Space for v:

H1
0 (C) := {v ∈ H1(C)|v = 0 a.e. on ∂LC = ∂Ω× [0,∞)}.

Space for u:

V0(Ω) = H
1/2
00 (Ω) =

[
H1

0 (Ω), L2(Ω)
]

1/2,2

=

{
u ∈ H1/2(Ω)

∣∣∣∣ ∫
Ω

u2(x)

d(x)
dx < +∞

}
.
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Truncated Problem

Numerically, it cannot be solved because C is an infinite domain =⇒ We
need to consider a suitable truncated problem.

Why can we truncate the problem? Given M > 0, v satisfies

‖∇v‖2
L2(Ω×(M,∞)) < e−2

√
λ1M‖f ‖2

V0(Ω)∗ .

Consider M adequately large and define vM in a bounded domain
CM := Ω× (0,M), imposing a zero Dirichlet condition on Ω× {M}:

−∆vM = 0 in CM = Ω× (0,M),

vM = 0 on ∂LCM := ∂Ω× [0,M],

vM = 0 on Ω× {M},
∂vM

∂ν
= f on Ω× {0},
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Weak Formulation of the Truncated Problem

Find vM ∈ H1
0 (CM) such that∫

CM

∇vM · ∇ψ =

∫
Ω

f trΩψ, for all ψ ∈ H1
0 (CM).

H1
0 (CM) := {v ∈ H1(CM)|v = 0 a.e. on ∂LCM ,

and v = 0 a.e. on Ω× {M}}.

How good is this truncated problem?

M >
1√
λ1

ln

(
2

ε2

)
=⇒ ‖v − vM‖H1

0 (CM ) ≤ ε‖f ‖V0(Ω)∗ .
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Galerkin Approximation

Given a family of partitions Tk of the domain CM into quadrilateral
elements, we define for n ≥ 1

Vn,0 := {v ∈ C 0(CM) : v |T ∈ Qn(T ) ∀T ∈ Tk} ∩ H1
0 (CM),

Galerkin approximation for vM is given by: Find vM
h ∈ Vn,0 such that∫

CM

∇vM
h · ∇wh = 〈f , trΩwh〉, for all wh ∈ Vn,0.

Standard FEM theory + truncated problem property implies

‖v − vM
h ‖H1

0 (C) ≤ C
(
ε‖f ‖V0(Ω)∗ + h‖v‖H2(CM )

)
,

where h = maxT∈T hT .
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Numerical Implementation in deal.ii

The main function is similar to the steps discussed in class. We
implement Qk adaptive refinement, Qk global refinement, and Qk

exponential refinement, k ≥ 1, in dimension d = 2, 3.

int main ()
{

const unsigned int dim = 3; //We can choose dim = 2 or dim = 3.
try{

std::cout << "Solving with Q1 elements, adaptive refinement" << std::endl
<< "=============================================" << std::endl
<< std::endl;

LaplaceProblem<dim>
laplace_problem ( LaplaceProblem<dim>::adaptive_refinement);

laplace_problem.run ();
std::cout << std::endl;

}
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Numerical Implementation in deal.ii

Template class LaplaceProblem. The class that does all the work.

template <int dim> class LaplaceProblem{
public:

enum RefinementMode{global_refinement, adaptive_refinement, exp_refinement};
LaplaceProblem (const RefinementMode refinement_mode);
~LaplaceProblem ();
void run ();

Member functions. They do what their names suggest.

private:
void setup_system ();
void assemble_system ();
void solve ();
void refine_grid ();
void process_solution (const unsigned int cycle);

};
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Numerical Implementation in deal.ii

Some member variables:

Triangulation<dim> triangulation;
DoFHandler<dim> dof_handler;
FE_Q<dim> fe;
ConstraintMatrix hanging_node_constraints;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> solution;
Vector<double> system_rhs;
const RefinementMode refinement_mode;
ConvergenceTable convergence_table;

};

Enrique Otárola A FEM for the Square Root of the Laplace Operator



Outline
The Square Root of the Laplace Operator

The Harmonic Extension and the Truncated Problem
The Galerkin Approximation of the Harmonic Extension

Numerical Implementation in deal.ii
Numerical Results

Numerical implementation in deal.ii

LaplaceProblem::run. The code is implemented in cycles. For each kind
of mesh, we consider a fixed number of cycles and we solve.

template <int dim> void LaplaceProblem<dim>::run (){
for (unsigned int cycle=0; cycle<7; ++cycle){

if (cycle == 0){
// Here we generate the first mesh!
GridGenerator::subdivided_hyper_rectangle(triangulation,

subdivisions2,p1,p2,false);
}else{

refine_grid ();
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Numerical Example

We consider Ω = (0, 1) and f (x) = πsin(πx), then CM = (0, 1)× (0,M)
u(x) = sin(πx) and v(x , y) = sin(πx)e−πy .

‖v − vM
h ‖H1

0 (C) ≤ C
(
ε‖f ‖V0(Ω)∗ + h‖v‖H2(CM )

)
, ε = ε(M)

M should change with h to get ε ≈ h

M = − 2

π
ln

(
h√
2

)
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Some Global Meshes

Figure: Degrees of freedom: 20, 81, 238 respectively.
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Results with Global Refinement

Figure: vM
h with 238 degrees of freedom.
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Results with Global Refinement

Computing L2 and H1 error norms.

Vector<float> difference_per_cell (triangulation.n_active_cells());

VectorTools::integrate_difference (dof_handler, solution, Solution<dim>(),
difference_per_cell, QGauss<dim>(q_points_norm ),
VectorTools::L2_norm);

const double L2_error = difference_per_cell.l2_norm();
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Results with Global Refinement

Figure: Decay of the L2 and H1 norms of the error.
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Estimates for the Function u

What about u?

Trace results imply an estimate for u

‖u − uM
h ‖H1/2

00 (Ω)
≤ ‖v − vM

h ‖H1
0 (C)

≤ C
(
ε‖f ‖V0(Ω)∗ + h‖v‖H2(CM )

)
, ε = ε(M)

However, notice that this estimate is not optimal! Optimal estimate

‖u − uM
h ‖H1/2

00 (Ω)
≤ C

(
ε‖f ‖V0(Ω)∗ + h3/2‖f ‖H1(Ω)

)
, ε = ε(M)
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Figure: Decay of the L2, H1/2 and H1 norms of the error.
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Exponential Refinement

We exploit the behavior of the real solution

v(x , y) =
∑

ckϕke
−
√
λky , for all (x , y) ∈ C,

to design an exponential mesh. 2D case: We do global refinement in x
and exponential refinement in y . Using interpolation results we get

‖v − vM
h ‖2

H1
0 (CM ) ≤ C

Ny∑
k=1

(hy
k )

3
e−
√
λ1yk ≤ CN−1,

and finally we obtain

yk+1 = yk +
1

k
N−2/3e

√
λ1/3yk .
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Some Exponential Meshes

Figure: Degrees of freedom: 54, 170, 627 respectively.
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Figure: Decay of the L2, H1/2 and H1 norms of the error.

Enrique Otárola A FEM for the Square Root of the Laplace Operator



Outline
The Square Root of the Laplace Operator

The Harmonic Extension and the Truncated Problem
The Galerkin Approximation of the Harmonic Extension

Numerical Implementation in deal.ii
Numerical Results

Adaptive Refinement

The estimate

‖v − vM
h ‖H1

0 (C) ≤ C
(
ε‖f ‖V0(Ω)∗ + h‖v‖H2(CM )

)
,

is not computable and provides only asysmptotic information. We create
a mesh adapted to the function v . Basic ingredient:

‖v − vM
h ‖H1

0 (C) ≤ C1ET (vM
h ) ≤ C2

(
‖v − vM

h ‖H1
0 (C) + oscT (vM

h )
)

Error Estimator Implemented in deal.ii

E2
T (vM

h ,T ) =
hT

24

∫
∂T

[
∂vM

h

∂ν

]
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3D Numerical Example

We consider Ω = (0, 1)× (0, 1) and f (x) =
√

2π sin(πx) sin(πy), then

u(x) = sin(πx) sin(πy) and v(x , y) = sin(πx)sin(πy)e−
√

2πy .

We have optimal estimates for every refinement: adaptive, exponential
and global. We show the results obtained using Adaptivity.
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An Adaptive Mesh. M = 4.

Figure: Degrees of freedom: 13435.
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Convergence Table for v

n cells H1-error L2-error
0 4 4.016e-01 - 4.790e-02 -
1 32 6.419e-01 -0.68 7.156e-02 -0.58
2 228 6.252e-01 0.04 6.094e-02 0.23
3 1628 4.190e-01 0.58 2.845e-02 1.10
4 11400 2.312e-01 0.86 8.959e-03 1.67
5 79265 1.188e-01 0.96 2.394e-03 1.90
6 549238 5.983e-02 0.99 6.091e-04 1.97
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Results with Adaptive Refinement

Figure: Decay of the L2, H1/2 and H1 norms of the error.
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Results with Adaptive Refinement

Figure: uM
h and vM

h with 13435 degrees of freedom.
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3D Numerical Example

We consider the following numerical example. Given a smooth function
f (x , y) =

√
2π sin(πx) sin(πy), find u such that{

(−∆)1/2u = f in Ω,
u = 0 on ∂Ω,

where Ω = (−1, 1)2 - disk(0,0)(0.5).

GridGenerator::hyper_cube_with_cylindrical_hole (triangulation, inner_radius,
outer_radius, extension, repetition,true);
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An Adaptive Mesh. M = 4.

Figure: Meshes for z = 0 and z = 4.
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An Adaptive Mesh. M = 4.

Figure: Degrees of freedom: 22492.
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An Adaptive Mesh. M = 4.

Figure: uM
h computed with 22492 degrees of freedom.
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Questions?
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