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Abstract. The purpose of this work is the design and analysis of a posteriori error estimators for
low-order stabilized finite element approximations of a generalized Boussinesq problem. We consider
standard stabilization procedures over conforming finite element spaces and a nonconforming one that
delivers a divergence-free discrete velocity field. The analysis, that is valid for two and three-dimensional
domains, relies on a smallness assumption on the solution and is based on a technique that involves
the Ritz projection of the residuals. The devised a posteriori error estimators are proven to be globally
reliable and locally efficient. Three dimensional numerical experiments reveal a competitive performance
of adaptive procedures driven by the designed a posteriori error estimators.

1. Introduction

In this work we will be interested in the design and analysis of a posteriori error estimators for a
steady–state generalized Boussinesq problem [39, 42] which is a particular instance of an incompressible
nonisothermal fluid flow model: it corresponds to a nonlinear system of partial differential equations
(PDEs) that couples the stationary incompressible Navier–Stokes equations for the fluid variables (velocity
and pressure) with a convection–diffusion equation for the temperature variable; the fluid viscosity and
the thermal conductivity depend on the temperature of the fluid. To make matters precise, let Ω be an
open and bounded domain of Rd (d ∈ {2, 3}) with Lipchitz boundary ∂Ω and g, f , and h be given data.
We shall be concerned with the following problem: Find (u, p, t) such that





−div(ε(t)∇u) + u · ∇u +∇p− gt = f in Ω,
divu = 0 in Ω,

−div(κ(t)∇t) + u · ∇t = h in Ω,
u = 0 on Γ,
t = 0 on Γ,

(1)

where u denotes the fluid velocity, p the pressure, and t the temperature. The data of the problem is
such that f , g ∈ L2(Ω) and h ∈ L2(Ω). The functions ε and κ denote the fluid viscosity and the thermal
conductivity, respectively; additional regularity requirements on ε and κ will be imposed in Section 3.
A rather incomplete list of problems where the model (1) appears includes fume cupboard ventilation,
heat exchangers, coolingof electronic equipments, cooling of nuclear reactors, climate predictions, oceanic
flows, and many others.

To the best of our knowledge, the first work that propose and study solution techniques for the classical
Boussinesq problem, which correspond to the special case of (1) where ε and ν are positive constants,
is [13]. In this work, the authors obtain existence and, under a smallness assumption on the data, local
uniqueness results. In addition, the authors propose a family of finite element solution techniques based
on stable Stokes elements for the fluid variables and Lagrange elements for the temperature variable:
the well–posedness of such discrete systems is obtained and rates of convergence are derived. Later,
the authors of [24] propose a mixed formulation of the classical Boussinesq problem on two-dimensional
polygonal domains: they study regularities properties of the solution and propose and analyze a mixed
formulation where the gradients of the velocity and the temperature are introduced as new unknowns;
quasi–optimal error estimates are provided. For further extensions and developments, we refer the reader
to [4, 14, 16, 18, 19, 22, 28] and references therein.

A step in the analysis of the continuous problem (1), where the coefficients ε and κ are temperature-
dependent, has been achieved in [30]. In this work, the authors study, under certain conditions on
the temperature dependency of the viscosity and thermal conductivity, the existence and regularity of
solutions of (1) using a spectral Galerkin method combined with fixed point arguments; see also [35]. On
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the basis of these results, the authors of [36] propose a conforming finite element method, prove its well–
posedness [36, Proposition 3.1] and derive error estimates [36, Theorem 3.1] under a smallness assumption
on the problem data. Later, an alternative approach is proposed in [33]: divergence-conforming Brezzi–
Douglas–Marini (BDM) elements of order k for the approximation of the velocity, discontinuous elements
of order k − 1 for the pressure, and continuous elements of order k for the temperature. The resulting
mixed finite element method has the distinct property that it yields exactly divergence-free velocity
approximations. The authors derive optimal error estimates for problems with small and sufficiently
smooth solutions [33, Section 5]. For further extensions and developments, we refer the reader to [5, 6,
7, 9, 34, 37] and references therein.

In an attempt to design and analyze an efficient solution technique for problem (1), specially on a
three dimensional scenario, we will consider the so-called adaptive finite element methods (AFEMs).
AFEMs are iterative methods that improve the quality of the finite element approximation to a PDE
while striving to keep an optimal distribution of computational resources measured in terms of degrees of
freedom. An essential ingredient of an AFEM is an a posteriori error estimator: a computable quantity
that depends on the discrete solution and data, and provides information about the local quality of
the approximate solution. Therefore, it can be used for adaptive mesh refinement and coarsening, error
control and equidistribution of the computational effort. The a posteriori error analysis for standard finite
element approximations of linear second-order elliptic boundary value problems has a solid foundation
[41]. In contrast, the a posteriori error analysis of finite element discretizations of problem (1) has been
much less explored. When ε and κ are constants and d ∈ {2, 3}, the author of [4] propose and analyze, on
the basis of the theory developed in [41], an a posteriori error estimator. He proved that the estimator is
global reliable and locally efficient [4, Theorem 4.1]. We also mention the reference [43]. More recently,
the authors of [20, 21], based on augmented fully-mixed formulations, present error estimators that are
globally reliable and globally efficient; see [20, Theorems 3.1 and 3.13] and [21, Theorem 3.1]. When
d = 2 and only the fluid viscocity ε is temperature dependent, an a posteriori error analysis has been
recently performed in [8], where the authors prove that the devised error estimator is globally reliable [8,
Theorem 3.1] and globally efficient [8, Theorem 3.13].

To the best of our knowledge, the a posteriori error analysis for problem (1), where d ∈ {2, 3} and both
the fluid viscosity and the thermal conductivity depend on the temperature of the fluid, has not been
considered before. This is the main contribution of our work. Since the numerical resolution of problem
(1) is a dauting task, based on [5], we approximate the solution to (1) with low-order conforming stabilized
finite element schemes. To derive the global reliability of the proposed a posteriori error estimators we
invoke the ideas developed in [2] and prove that the total error is bounded by the energy norm of the Ritz
projection of the residuals; see Theorem 29. In Theorems 4 and 5, and under particular elections of the
stabilization terms, we prove that the designed error estimators are globally reliable. The local efficiency
of our error estimators follow standard arguments [41]. We also include an a posteriori error analysis for
a particular nonconforming scheme with a post-processed final solution which has the advantage of being
solenoidal.

The outline of this paper is as follows. In Section 2 we introduce some terminology used throughout
this work. In Section 3 we introduce the generalized Boussinesq problem that we will study: we review the
main properties of the forms involved in the formulation and a result about existence of solutions. We also
derive a uniqueness result under a smallness assumption on the continuous variables and data. In Section
4, we introduce stabilization procedures over conforming finite element spaces and a nonconforming one
that delivers a divergence-free discrete velocity field. The core of our work is Section 5, where, in section
5.1, we provide an estimate for the total error in terms of the energy norm of the Ritz projection of the
residuals which we utilize, in Section 5.2, to derive reliability estimates for the devised a posteriori error
estimators. Efficiency estimates for such estimators are derived in Section 5.4. Finally, in section 6 we
present a series of numerical examples in three dimensions that illustrate the theory.

2. Notation and preliminaries

Let us set notation and describe the setting we shall operate with. Throughout this work d ∈ {2, 3}
and Ω ⊂ R

d is an open and bounded polytopal domain with Lipschitz boundary Γ := ∂Ω.
We shall use standard notation for Lebesgue and Sobolev spaces, norms, and inner products. For

an open and bounded domain O ⊂ R
d (d = 2, 3), r ≥ 0, and p ∈ [1,∞], Lp(O) denotes the space

of p-integrable functions over O and W r,p(O) the usual Sobolev space. We denote by ‖ · ‖Lp(O) and
‖ · ‖W r,p(O) the classical norms on Lp(O) and W r,p(O), respectively. When r = 2, W r,p(O) is the Hilbert
space Hr(O), for which we denote by ‖ · ‖Hr(O) its norm and by | · |Hr(O) its seminorm. We use bold
letters to denote the vector-valued counterparts of the aforementioned spaces and an extra underaccent
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for their matrix-valued counterparts. We denote by X(Ω) the space of functions that belong to H1
0(O)

and are solenoid; H(div,O) stands for the space of functions that belongs to L2(O) whose divergence
belongs to L2(O).

We now proceed to define notation associated with the discretization of the domain. Let T = {K}
be a shape-regular partition of Ω̄ into simplicial elements K in the sense of Ciarlet [17].

For a fixed partition T , let F denote the set of all element edges(2D)/faces(3D), FI ⊂ F denote the
set of interior edges(2D)/faces(3D), and V index the set {xn} of all the vertices in the mesh.

For an element K ∈ T , let

• Pn(K) denotes the space of polynomials on K of total degree at most n;
• FK ⊂ F denotes the set containing the individual edges(2D)/faces(3D) of K;
• |K| denotes the area(2D)/volume(3D) of K;
• hK denote the diameter of K;
• nK

γ denotes the unit exterior normal to the edge(2D)/face(3D) γ ∈ FK ;
• v|K denotes the restriction of v to the element K.

For an edge(2D)/face(3D) γ ∈ F , let

• |γ| denotes the length(2D)/area(3D) of the edge(2D)/face(3D) γ;
• hγ denotes the diameter of the edge(2D)/face(3D) γ;
• Ωγ = {K ∈ T : γ ∈ FK};
• v|γ denotes the restriction of v to the edge(2D)/face(3D) γ;

• ϕγ denotes the lowest order Raviart-Thomas basis function satisfying, for all γ ∈ FI ∩ FK , that

ϕγ(x) = ±
|γ|

d|K|
(x− xγ), divϕϕϕγ = ±

|γ|

|K|
, ∇ϕγ|K = ±

|γ|

d|K|
I, ‖∇ϕϕϕγ‖

2
L
≈

2(K) ≤ Chd−2
γ , (2)

where xγ correspond to the vertex opposite to the edge(2D)/face(3D) γ and I is the identity
matrix. The signs ± are chosen by fixing a normal vector for every γ ∈ FI , as depicted in Figure
1, and C > 0 is independent of any mesh size; we also notice that ϕγ|γ′ ·nγ′ = 0 for all γ, γ′ ∈ FK

with γ 6= γ′.
• JφKγ , on γ = FK+ ∩FK− , denotes the jump of the function φ, which is defined by fixing a normal
vector for every γ ∈ FI , based on Figure 1, as

JφKγ = φK+ − φK− . (3)

K+ K+K−

K−
nγ

nγγ

γ

Figure 1. For γ = FK+ ∩FK− , by fixing a normal vector nγ pointing from K+ to K−,
the lowest order Raviart–Thomas basis function and inter element jumps are defined.

For n ∈ V , we let λn denote the continuous, piecewise linear basis function associated to the vertex
xn, characterized by the conditions λn ∈ P1(K) for all K ∈ T and λn(xm) = δnm for all m ∈ V , where
δnm denotes the Kronecker symbol.

We introduce the broken Sobolev space

H1(T ) :=
{
φ : φ|K ∈ H1(K) ∀ K ∈ T

}

and the finite element spaces

V (T ) := {v ∈ C(Ω) : v|K ∈ P1(K) ∀ K ∈ T } ∩H1
0 (Ω),

Q(T ) := {q ∈ L2
0(Ω) : q|K ∈ P0(K) ∀ K ∈ T }.

For K ∈ T and nonnegative integers ℓ, we denote by ΠK,ℓ the L2(K)-orthogonal projection operator

onto Pℓ(K). This operator is defined as

(v −ΠK,ℓ(v), w)L2(K) = 0 ∀ w ∈ Pℓ(K).

The vector countepart will be denoted by ΠK,ℓ.
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Throughout the manuscript we will frequently make use of the following inequalities. First, a Poincaré
inequality, that is valid for v ∈ H1

0 (Ω), and second, a standard Sobolev embedding estimate, that holds
for w ∈ H1(Ω) and p ∈ [1,∞) for d = 2 and p ∈ [1, 6] for d = 3:

‖v‖L2(Ω) ≤ CP,Ω|v|H1(Ω), ‖w‖Lp(Ω) ≤ Cp,Ω‖w‖H1(Ω); (4)

their obvious extensions being considered for vector-valued functions. In the latter case and for simplicity,
we maintain the same notation for the involved constants with the convention that for the analysis that
follows we will choose the one with maximum value.

Finally, in the manuscript we shall use C to denote a positive constant that is independent of the size
of the elements in the mesh and whose value may change whenever it is written in two different places.

3. Model problem

We consider the following generalized Boussinesq problem: Find (u, p, t) such that




−div(ε(t)∇u) + u · ∇u +∇p− gt = f in Ω,
divu = 0 in Ω,

−div(κ(t)∇t) + u · ∇t = h in Ω,
u = 0 on Γ,
t = 0 on Γ,

(5)

where u denotes the fluid velocity, p the pressure, and t the temperature. The data of the problem is
such that f , g ∈ L2(Ω) and h ∈ L2(Ω). The functions ε and κ denote the fluid viscosity and the thermal
conductivity, respectively. We assume that ε and κ strictly positive and uniformly bounded:

0 < ε1 ≤ ε(t) ≤ ε2, 0 < κ1 ≤ κ(t) ≤ κ2, a.e. in Ω, ∀ t ∈ H1(Ω). (6)

In addition, we assume that ε and κ are Lipschitz: there exist constants εlip > 0 and κlip > 0 such that

|ε(t1)− ε(t2)| ≤ εlip|t1 − t2|, |κ(t1)− κ(t2)| ≤ κlip|t1 − t2|, a.e. in Ω, ∀ t1, t2 ∈ H1(Ω). (7)

Remark (nonhomogeneous Dirichlet boundary conditions). To simplify the presentation of the material, in
this work we will only consider homogeneous Dirichlet boundary conditions. The case of nonhomogenous
Dirichlet boundary conditions for the continuous problem, as it is customary, can be treated by a change
of variable which leads to modifications in the right-hand sides of (5); see [13, 30]. We also mention
that, from the discrete point of view, in [34] the authors consider a nonhomogeneous Dirichlet boundary
condition for the temperature variable which is weakly imposed in the overall weak system; the latter
being optimally approximated by standard conforming finite element spaces.

The weak formulation of (5) reads as follows: Find (u, p, t) ∈ H1
0(Ω)× L2

0(Ω)×H1
0 (Ω) such that





A(t;u,v) + C(u;u,v)− B(v, p)−D(t,v) = F(v) ∀ v ∈ H1
0(Ω),

B(u, q) = 0 ∀ q ∈ L2
0(Ω),

A (t; t, w) + C (u; t, w) = H(w) ∀ w ∈ H1
0 (Ω).

(8)

The involved forms in (8) are defined as

A(r;v,w) :=

ˆ

Ω

ε(r)∇v : ∇w, C(r;v,w) :=

ˆ

Ω

(r · ∇v) ·w, B(v, q) :=

ˆ

Ω

q div v,

D(r,v) :=

ˆ

Ω

r g · v, A (r; v, w) :=

ˆ

Ω

κ(r)∇v · ∇w, C (r; v, w) :=

ˆ

Ω

(r · ∇v)w.

(9)

In addition,

F(v) :=

ˆ

Ω

f · v, H(w) :=

ˆ

Ω

hw. (10)

The existence of solutions for problem (8) follows from [30, Theorem 2.1]: If ∂Ω is Lipschitz, the
functions ε and κ are continuous, f , g ∈ L2(Ω), and h ∈ L2(Ω), then there exists a weak solution for
problem (8). Stricly speaking [30, Theorem 2.1] only shows the existence of a weak solution for (8) when
f = 0 and h = 0. However, from a slight modification of the argumentes presented in [30], we can
conclude the existence of weak solutions when f 6= 0 and h 6= 0.
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3.1. Stability properties. This section is devoted to list a series of continuity, coercivity, and inf–sup
properties of the forms defined in (9). First, in view of (6), we immediately conclude the coercivity of
the bilinear forms A and A . In fact,

ε1|v|
2
H1(Ω) ≤ A(r;v,v), κ1|v|

2
H1(Ω) ≤ A (r; v, v) (11)

for all v ∈ H1
0(Ω), v ∈ H1

0 (Ω) and r ∈ H1(Ω). Second, invoking (6), again, which guarantees that ε and
κ are bounded, we conclude that

|A(r;v,w)| ≤ ε2|v|H1(Ω)|w|H1(Ω), |A (r; v, w)| ≤ κ2|v|H1(Ω)|w|H1(Ω) (12)

for all v,w ∈ H1
0(Ω), v, w ∈ H1

0 (Ω), and r ∈ H1(Ω). Third, an application of the Sobolev embedding
L4(Ω) →֒ H1(Ω) combined with the Hölder’s inequality yield

C(r;v,w) ≤ CD,Ω|r|H1(Ω)|v|H1(Ω)|w|
H1(Ω), C (r; v, w) ≤ CD,Ω|r|H1(Ω)|v|H1(Ω)|w|H1(Ω), (13)

for all r,v,w ∈ H1
0(Ω) and v, w ∈ H1

0 (Ω). The constant CD,Ω is defined as

CD,Ω := C2
4,Ω(1 + C2

P,Ω). (14)

Fourth, invoking the Lipschitz property that ε and κ satisfy and utilizing Hölder’s inequality combined
with the Sobolev embedding L6(Ω) →֒ H1(Ω) we arrive at

|A(t1;v,w)−A(t2;v,w)| ≤ εlipCΩ|t1 − t2|H1(Ω)‖∇v‖
L3(Ω)|w|

H1(Ω),

|A (t1; v, w)− A (t2; v, w)| ≤ κlipCΩ|t1 − t2|H1(Ω)‖∇v‖L3(Ω)|w|H1(Ω),
(15)

for all v ∈ W
1,3
0 (Ω), w ∈ H1

0(Ω), v ∈ W 1,3
0 (Ω), w ∈ H1

0 (Ω), and t1, t2 ∈ H1(Ω). Here, CΩ = C6,Ω(1 +

C2
P,Ω)

1
2 . Fifth, for s ∈ X(Ω), v ∈ H1

0 (Ω) and v ∈ H1
0 (Ω), we have that

C(s;v,v) = 0, C (s; v, v) = 0. (16)

Sixth, for g,v ∈ H1(Ω) and r ∈ H1(Ω), we have that

D(r,v) ≤ CD,Ω‖g‖L2(Ω)|r|H1(Ω)|v|H1(Ω). (17)

Finally, the bilinear form B satisfies the inf–sup condition [23, 26]

sup
v∈H1

0
(Ω)\{0}

B(v, q)

|v|
H1(Ω)

≥ β‖q‖L2(Ω) ∀ q ∈ L2
0(Ω). (18)

3.2. A uniqueness result. In what follows we derive an uniqueness result for problem (8). To accom-
plish this task, we rewrite (8) as the following restricted problem [26]: Find (u, t) ∈ X(Ω)×H1

0 (Ω) such
that {

A(t;u,v) + C(u;u,v)−D(t,v) = F(v) ∀ v ∈ X(Ω),
A (t; t, w) + C (u; t, w) = H(w) ∀ w ∈ H1

0 (Ω).
(19)

A unique pressure p ∈ L2
0(Ω) can be obtained in view of de Rham’s Theorem [23, Theorem B.73].

We now present a uniqueness result that follows standard arguments. When compared with [33,
Theorem 2.3], our result improves upon regularity: it demands (u, t) ∈ W 1,3(Ω)×W 1,3(Ω). Similarly, it
requires a smallness assumption on the continuous variables; the latter being crucial in order to perform
an a posteriori error analysis; see Theorem 2.

Theorem 1 (uniqueness). Let (u, t) ∈ [X(Ω)∩W 1,3(Ω)]× [H1
0 (Ω)∩W

1,3(Ω)] be a solution to (19), and
assume that

max
{
‖g‖

L2(Ω), |u|W 1,ℓ(Ω), |t|W 1,ℓ(Ω)

}
< M := min

{
ε1

2CD,Ω

,
κ1

(κlip + εlip)CΩ + CD,Ω

}
, (20)

where ℓ ∈ {2, 3}. Then, problem (8) admits a unique solution.

Proof. Let us assume that there exist two solutions (u, t) and (u∗, t∗) of (19) that satisfy (20). Subtracting
the corresponding variational formulations we arrive at

[A(t;u,v)−A(t∗;u∗,v)] + [C(u;u,v)− C(u∗;u∗,v)]−D(t− t∗,v) = 0 ∀ v ∈ X(Ω), (21)

and that

[A (t; t;w)− A (t∗; t∗, w)] + [C (u; t, w)− C (u∗; t∗, w)] = 0 ∀ w ∈ H1
0 (Ω). (22)
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Since A, C, A , and C are linear in the second and third argument, we can thus write the following
expressions:

A(t;u,v)−A(t∗;u∗,v) = A(t;u− u∗,v) + [A(t;u∗,v)−A(t∗;u∗,v)] ,

C(u;u,v)− C(u∗;u∗,v) = C(u;u− u∗,v) + C(u− u∗;u∗,v),

A (t; t;w)− A (t∗; t∗, w) = A (t; t− t∗;w) + [A (t; t∗, w)− A (t∗; t∗, w)] ,

C (u; t, w)− C (u∗; t∗, w) = C (u; t− t∗, w) + C (u− u∗; t∗, w).

Set v = u− u∗ ∈ X(Ω) in (21) and invoke (11) and (16) to conclude that

ε1|u−u∗|2
H1(Ω) ≤ |A(t;u∗,u−u∗)−A(t∗;u∗,u−u∗)|+ |C(u−u∗;u∗,u−u∗)|+ |D(t− t∗,u−u∗)|

≤ εlipCΩM |t− t∗|H1(Ω)|u− u∗|
H1(Ω) + CD,ΩM |u− u∗|2

H1(Ω) + CD,ΩM |t− t∗|H1(Ω)|u− u∗|
H1(Ω),

where we have also used (15), (13), (17), and the smallness assumption (20). This immediately implies
that (

ε1 − CD,ΩM
)
|u− u∗|

H1(Ω) −
(
εlipCΩM + CD,ΩM

)
|t− t∗|H1(Ω) ≤ 0. (23)

Similarly, set w = t− t∗ in (22). Notice that, since u ∈ X(Ω), C (u; t− t∗, t− t∗) = 0. Then,

κ1|t− t∗|2H1(Ω) ≤ |A (t; t∗, t− t∗)− A (t∗; t∗, t− t∗)|+ |C (u− u∗; t∗, t− t∗)|

≤ κlipCΩM |t− t∗|2H1(Ω) + CD,ΩM |u− u∗|
H1(Ω)|t− t∗|H1 ,

which immediately yields

− CD,ΩM |u− u∗|
H1(Ω) +

(
κ1 − κlipCΩM

)
|t− t∗|H1(Ω) ≤ 0. (24)

Adding (23) and (24), we conclude that
(
ε1 − 2CD,ΩM

)
|u− u∗|

H1(Ω) +
(
κ1 − ((κlip + εlip)CΩ + CD,Ω)M

)
|t− t∗|H1(Ω) ≤ 0.

The result then follows from the use of assumption (20). This concludes the proof. �

Remark (regularity of u and t). In what follows we will assume that solutions to problem (5) are such
that (u, t) ∈ W 1,3(Ω) ×W 1,3(Ω). We mention that, when the simplified case ε ≡ 1 and κ ≡ 1 takes
place, a proof of such a regularity result can be obtained upon invoking the results of [32]. In fact, based
on [27, Section 7.3.3] and [38, Chapter II, Section 1.3], let us consider the homogeneous problem for the
incompressible Stokes system with Dirichlet boundary conditions:





−∆ϕ+∇ψ = τ , in Ω,

divϕ = 0, in Ω,

ϕ = 0, on ∂Ω,

and define the associated Green operator as GDτ = ϕ. The authors of [32] have proved that, if Ω is a
bounded and Lipschitz domain, then the Green operator GD is bounded from W−1,p(Ω) into W 1,p(Ω)
for p ∈ (2n/(n + 1) − ǫ, 2n/(n − 1) + ǫ) and ǫ = ǫ(Ω) > 0. With this result at hand, and invoking a
similar argument based on the regularity results of [29, Theorem 0.5] (see also [29, 31]), the fact that
(u, t) ∈ W 1,3(Ω)×W 1,3(Ω) thus follows.

4. Stabilized finite element discretizations

To approximate the solution of problem (8) we will consider the following two stabilized finite element
approximations.

4.1. A conforming low order method (SFEM1). First, we introduce the following low-order stabi-
lized finite element approximation: Find (u

T
, p

T
, t

T
) ∈ V (T )×Q(T )× V (T ) such that





A(t
T
;u

T
,v

T
) + C(u

T
;u

T
,v

T
)− B(v

T
, p

T
) + SF (uT

,v
T
)− G(t

T
,v

T
) = F(v

T
)

B(uT , qT ) +
∑

γ∈FI

hγ
12

ˆ

γ

JpT KγJqT Kγ = 0

a(t
T
; t

T
, w

T
) + c(u

T
; t

T
, w

T
) + ST (tT , wT

) = H(w
T
),

(25)

for all (v
T
, q

T
, w

T
) ∈ V (T ) × Q(T ) × V (T ). In (25), SF (·, ·) and ST (·, ·) denote linear stabilization

terms associated to the fluid and temperature equations, respectively. We will assume that SF and ST

are such that a unique solution to problem (25) exists.
An a priori error analysis for a slight variation of the scheme (25) has been recently performed in [5].

We also mention [34], where the authors investigate an scheme for (5) based on stable Stokes elements
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for the fluid variables and Lagrange elements for the temperature variable; no stabilization terms are
considered.

4.2. A nonconforming low order divergence-free solution (SFEM2). The second solution tech-
nique is based on (25). In fact, when the solution to the discrete problem (25) is computed, we consider,
as a final solution, the triple (L(uT , pT ), pT , tT ), where L(uT , pT ) is defined as follows:

L(uT , pT ) := uT +
∑

γ∈FI

hγ
12

JpT Kγϕγ , (26)

where ϕγ denotes the Raviart-Thomas basis function defined in (2); notice that the discrete variables
p

T
and t

T
are not modified. The main advantage of this postprocessing step is that the final velocity

approximation is solenoidal [5, Theorem 1]. This is,

divL(uT , pT ) = 0 in Ω. (27)

In practice this could be of interest since, as the numerical experiments of [5, Section 6] reveal, the triple
(L(u

T
, p

T
), p

T
, t

T
) seems to be a more accurate solution than (u

T
, p

T
, t

T
).

5. A posteriori error analysis

In this section we analyze a posterior error estimates for the finite element scheme (25) that approx-
imates the solution to (8). To begin with such an analysis, we first define the velocity error e

u
, the

pressure error ep, and the temperature error et as follows:

e
u
:= u− uT , ep := p− pT , et := t− tT . (28)

5.1. Reliability analysis: a Ritz projection of the errors. To construct an a posteriori error esti-
mator that provides an upper bound for the error, in energy-type norms, we will consider, on the basis
of the ideas developed in [2], a Ritz projection of the residuals. To be precise, such a Ritz projection
(Φ, ψ, ϕ) is defined as the solution to the following problem: Find (Φ, ψ, ϕ) ∈ H1

0(Ω) × L2
0(Ω) ×H1

0 (Ω)
such that
ˆ

Ω

∇Φ : ∇v +

ˆ

Ω

ψq +

ˆ

Ω

∇ϕ · ∇w = [A(t;u,v)−A(tT ;uT ,v)] + [C(u;u,v)− C(uT ;uT ,v)]

− B(v, ep)−D(et,v) + B(eu, q) + [A (t; t, w)− A (tT ; tT , w)] + [C (u; t, w) − C (uT ; tT , w)] , (29)

for all v ∈ H1
0(Ω), q ∈ L2

0(Ω), and w ∈ H1
0 (Ω). The existence and uniqueness of (Φ, ψ, ϕ) follows from

the continuity properties of the forms A, B, C, D, A , and C and the Lax–Milgram Theorem.
We now prove that the sum of the energy norms of the velocity, pressure, and temperature errors can

be bounded in terms of the the energy norm of the Ritz projection.

Theorem 2 (upper bound for the error). If ξ satisfies




κlipCΩ‖∇t‖L3(Ω) + κlipCΩ‖∇et‖L3(Ω) + CD,Ω|eu|H1(Ω) ≤ ξ,

εlipCΩ‖∇u‖
L3(Ω) + εlipCΩ‖∇e

u
‖
L3(Ω) + CD,Ω‖g‖L2(Ω) ≤ ξ,

CD,Ω|eu|H1(Ω) + CD,Ω|u|H1(Ω) + CD,Ω|t|H1(Ω) ≤ 2ξ,

(30)

and

0 < ξ < min

{
κ1,

ε1κ1
ε1 + 3κ1

}
, (31)

then, there exists a positive constant C that does not depend neither on (Φ, ϕ, ψ) nor (u, p, t) such that

|eu|
2
H1(Ω) + ‖ep‖

2
L2(Ω) + |et|

2
H1(Ω) ≤ C

(
|Φ|2

H1(Ω) + ‖ψ‖2L2(Ω) + |ϕ|2H1(Ω)

)
. (32)

Proof. We divide the proof in several steps.
Step 1. We begin by exploiting the fact that A, B, A , and C are linear in the second and third

component to write (29) as follows:
ˆ

Ω

∇Φ : ∇v +

ˆ

Ω

ψq +

ˆ

Ω

∇ϕ · ∇w

=
[
A(t; e

u
,v) + {(A(t;u,v)−A(tT ;u,v))− (A(t; e

u
,v)−A(tT ; e

u
,v))}

]

+
[
C(u; eu,v)− C(eu; eu,v) + C(eu;u,v)

]
+ B(eu, q)− B(v, ep)−D(et,v)

+
[
A (t; et, w) + {(A (t; t, w)− A (tT ; t, w))− (A (t; et, w) − A (tT ; et, w))}

]

+ [C (u; et, w)− C (e
u
; et, w) + C (e

u
; t, w)] .

(33)
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Step 2. Set (v, q, w) = (0, 0, et) and invoke (11), (12), and (13) to conclude that

κ1|et|
2
H1(Ω) ≤ κlipCΩ|et|

2
H1(Ω)‖∇t‖L3(Ω) + κlipCΩ|et|

2
H1(Ω)‖∇et‖L3(Ω) + CD,Ω|et|

2
H1(Ω)|eu|H1(Ω)

+ CD,Ω|eu|H1(Ω)|t|H1(Ω)|et|H1(Ω) + |ϕ|H1(Ω)|et|H1(Ω)

= |et|
2
H1(Ω)

{
κlipCΩ‖∇t‖L3(Ω) + κlipCΩ‖∇et‖L3(Ω) + CD,Ω|eu|H1(Ω)

}

+ |et|H1(Ω)

{
CD,Ω|t|H1(Ω)|eu|H1(Ω) + |ϕ|H1(Ω)

}
.

Notice that we have also used (16) which guarantees that C (u; et, et) = 0. Since ξ is such that (30) holds,
we arrive at

(κ1 − ξ) |et|H1(Ω) ≤ CD,Ω|t|H1(Ω)|eu|H1(Ω) + |ϕ|H1(Ω). (34)

Notice that, since ξ satisfies (31), κ1 − ξ > 0.

Step 3. Set (v, q, w) = (v, 0, 0), with v ∈ H1
0(Ω), in (29). This yields

B(v, ep) = −

ˆ

Ω

∇Φ : ∇v +A(t;u,v)−A(tT ;uT ,v) + C(u;u,v)− C(uT ;uT ,v)−D(et,v).

Invoking the inf-sup condition (18) and utilizing that the right-hand side of (29) can be equivalently
written as the right-hand side of (33), we can thus conclude that

β‖ep‖L2(Ω) ≤ sup
v∈H1

0
(Ω)\{0}

|B(v, ep)|

|v|
H1

0
(Ω)

≤ |Φ|
H1(Ω) + ε2|eu|H1(Ω) + 2CD,Ω|u|H1(Ω)|eu|H1(Ω)

+ CD,Ω|eu|
2
H1(Ω) + |et|H1(Ω)

{
εlipCΩ‖∇u‖

L3(Ω) + εlipCΩ‖∇e
u
‖
L3(Ω) + CD,Ω‖g‖L2(Ω)

}
. (35)

By using (30), it then follows that

β‖ep‖L2(Ω) ≤ |Φ|
H1(Ω) + |eu|H1(Ω)

{
ε2 + 2CD,Ω|u|H1(Ω) + CD,Ω|eu|H1(Ω)

}
+ |et|H1(Ω)ξ.

We thus invoke (34) and conclude that

β‖ep‖L2(Ω) ≤ |Φ|
H1(Ω) + |eu|H1(Ω)

{
ε2 + 2CD,Ω|u|H1(Ω) + CD,Ω|eu|H1(Ω)

}

+ ξ(κ1 − ξ)−1
{
CD,Ω|t|H1(Ω)|eu|H1(Ω) + |ϕ|H1(Ω)

}
. (36)

Step 4. Set (v, q, w) = (e
u
,−ep, 0) in (33) and invoke similar arguments to the ones used in the

previous step to conclude that

ε1|eu|
2
H1(Ω)

≤ |Φ|
H1(Ω)|eu|H1(Ω) + εlipCΩ|et|H1(Ω)‖∇u‖

L3(Ω)|eu|H1(Ω) + εlipCΩ|et|H1(Ω)‖∇e
u
‖
L3(Ω)|eu|H1(Ω)

+ CD,Ω|eu|
3
H1(Ω) + CD,Ω|eu|

2
H1(Ω)|u|H1(Ω) + CD,Ω‖g‖L2(Ω)|et|H1(Ω)|eu|H1(Ω) + ‖ψ‖L2(Ω)‖ep‖L2(Ω)

≤ |eu|
2
H1(Ω)

{
CD,Ω|eu|H1(Ω) + CD,Ω|u|H1(Ω)

}
+ |Φ|

H1(Ω)|eu|H1(Ω)

+ |et|H1(Ω)|eu|H1(Ω)

{
εlipCΩ‖∇u‖

L3(Ω) + εlipCΩ‖∇eu‖L3(Ω) + CD,Ω‖g‖L2(Ω)

}
+ ‖ψ‖L2(Ω)‖ep‖L2(Ω)

≤ 2ξ|eu|
2
H1(Ω) + |Φ|

H1(Ω)|eu|H1(Ω) + ξ|et|H1(Ω)|eu|H1(Ω) + ‖ψ‖L2(Ω)‖ep‖L2(Ω),

where, to obtain the last inequality, we have used (30). We thus utilize the estimates for |et|H1(Ω) and

‖ep‖L2(Ω) obtained in (34) and (36), respectively to conclude that

ε1|eu|
2
H1(Ω)

≤ |e
u
|2
H1(Ω)

{
2ξ +

ξ

κ1 − ξ
CD,Ω|t|H1(Ω)

}
+

1

β
‖ψ‖L2(Ω)|Φ|

H1(Ω)

+
ξ

κ1 − ξ

1

β
‖ψ‖L2(Ω)|ϕ|H1(Ω) + |eu|H1(Ω)

{
|Φ|

H1(Ω) +
ξ

κ1 − ξ
|ϕ|H1(Ω)

+
1

β
‖ψ‖L2(Ω)

[
ξ

κ1 − ξ
CD,Ω|t|H1(Ω) + ε2 + 2CD,Ω|u|H1(Ω) + CD,Ω|eu|H1(Ω)

]}
.
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We invoke (30), which guarantees that CD,Ω|t|H1(Ω) ≤ 2ξ and that CD,Ω|u|H1(Ω) + CD,Ω|eu|H1(Ω) ≤ 2ξ

to conclude that

ε1|eu|
2
H1(Ω) ≤ |eu|

2
H1(Ω)

{
2ξ +

2ξ2

κ1 − ξ

}
+

1

β
‖ψ‖L2(Ω)|Φ|

H1(Ω) +
1

β

ξ

κ1 − ξ
‖ψ‖L2(Ω)|ϕ|H1(Ω)

+ |eu|H1(Ω)

{
|Φ|

H1(Ω) +
ξ

κ1 − ξ
|ϕ|H1(Ω) +

1

β
‖ψ‖L2(Ω)

[
2ξ2

κ1 − ξ
+ ε2 + 4ξ

]}
.

Denote δ = 2ξ +
2ξ2

κ
1
−ξ = 2ξκ1

κ
1
−ξ . Invoke the basic estimate ab ≤ (δ/2)a2 + (1/2δ)b2 to conclude that

(
ε1 − δ −

δ

2

)
|e

u
|2
H1(Ω) ≤ C

(
|Φ|2

H1(Ω) + |ϕ|2H1(Ω) + ‖ψ‖2L2(Ω)

)
, (37)

with a constant C that does not depend neither on (Φ, ϕ, ψ) nor (u, p, t). Notice that, in view of (31),
we have

ε1 − δ −
δ

2
= ε1 −

3

2
δ =

1

κ1 − ξ
(ε1(κ1 − ξ)− 3ξκ1) > 0.

We can finally conclude that

|e
u
|2
H1(Ω) ≤ C

(
|Φ|2

H1(Ω) + |ϕ|2H1(Ω) + ‖ψ‖2L2(Ω)

)
.

Step 5. The desired estimate (32) follows from the previous estimate combined with (34) and (36). �

Remark (global reliability and local efficiency estimates). In [2], the authors prove, for the Stokes and
Ossen equations, that the energy norm of the error is equivalent to the energy norm of the Ritz projection
of the residuals. On the basis of such a result, a posteriori error estimates were derived: global reliability
and local efficiency estimates. In our case, we will only consider the upper bound (32) for the error. From
this bound a reliability analysis can be obtained; see Theorems 3, 4, and 5. In section 5.4, we will derive
local efficiency estimates on the basis of standard bubble functions arguments.

5.2. Reliability analysis: a residual-type error estimation. In Theorem 2 we proved that the total
error is bounded by the energy norm of the Ritz projection of the residuals. In this section we focus on
bounding each term appearing in the right-hand side of (32). We proceed on the basis of three steps.

Step 1: Set (v, q, w) = (v, 0, 0) in (29). Let us denote by IT the Clément-type interpolation operator
of [40, equation 3.3]. Utilizing (8) and an integration by parts formula we conclude, for v ∈ H1

0(Ω), that

ˆ

Ω

∇Φ : ∇v =
∑

K∈T



ˆ

K

RK(v − IT (v))−
1

2

∑

γ∈F
K

ˆ

γ

Jγ(v − IT (v))


− SF (uT , IT (v)), (38)

where {
RK := f + div(ε(t

T
)∇u

T
)|K − u

T |K∇u
T |K −∇p

T |K + gt
T |K ,

Jγ := J(ε(t
T
)∇u

T
− p

T
I) · nγK.

(39)

The term Jγ is defined as follows: for γ ∈ FK ∩ FK′ with K 6= K ′ and K,K ′ ∈ T ,

Jγ = J(ε(tT )∇uT − pT I) · nγK = (ε(tT )|K∇u
T |K − p

T |KI) · nK
γ + (ε(tT )|K′∇u

T |K′ − p
T |K′I) · nK′

γ .

Define

ϑ2F :=
∑

K∈T

ϑ2K,F , ϑ2K,F := h2K‖RK‖2
L2(K) +

∑

γ∈FK∩F
I

hK‖Jγ‖
2
L2(γ). (40)

We invoke [40, Lemma 3.3] and the fact that
´

Ω ∇Φ : ∇v is coercive on H1
0(Ω) to conclude that

|Φ|2
H1(Ω) ≤ C


ϑ2F +

[
sup

v∈H1
0
(Ω)\{0}

SF (uT
, IT (v))

|v|
H1(Ω)

]2
 . (41)

Step 2: Set (v, q, w) = (0, ψ, 0) in (29). This yields

‖ψ‖2L2(Ω) = B(eu, ψ) = −B(uT , ψ) ≤ ‖∇ · uT ‖L2(Ω)‖ψ‖L2(Ω),

upon using the definition of the bilinear form B, the fact that u ∈ X(Ω), and the Cauchy–Schwarz
inequality. The previous inequality immediately yields

‖ψ‖2L2(Ω) ≤ ‖∇ · uT ‖2L2(Ω).
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Step 3: Set (v, q, w) = (0, 0, w) in (29). Following similar arguments to the ones developed in Step 1,
we arrive at that the following error-type equation, which holds for all w ∈ H1

0 (Ω),

ˆ

Ω

∇ϕ · ∇w =
∑

K∈T



ˆ

K

RK(w − IT (w)) −
1

2

∑

γ∈F
K

ˆ

γ

Jγ(w − IT (w))


 − ST (tT , IT (w)), (42)

where {
RK := h+ div(κ(t

T
)∇t

T
)|K − u

T |K · ∇t
T |K ,

Jγ := Jκ(t
T
)∇t

T
· nγK.

(43)

The jump term Jγ is defined as the one presented in (39).
Define

ϑ2T :=
∑

K∈T

ϑ2K,T , ϑ2K,T := h2K‖RK‖2L2(K) +
∑

γ∈FK∩F
I

hK‖Jγ‖
2
L2(γ). (44)

Applying the same arguments that lead to (45) we conclude that

|ϕ|2H1(Ω) ≤ C


ϑ2T +

[
sup

w∈H1
0
(Ω)\{0}

ST (tT , IT (w))

|w|H1(Ω)

]2
 . (45)

Define the a posteriori error estimator ϑ as

ϑ2 :=
∑

K∈T

ϑ2K ,

where the error indicator ϑK is defined by

ϑ2K := h2K

(
‖RK‖2

L2(K) + ‖RK‖2L2(K)

)
+ ‖∇ · uT ‖2L2(K)

+
∑

γ∈FK∩FI

hK

(
‖Jγ‖

2
L2(γ) + ‖Jγ‖

2
L2(γ)

)
. (46)

With this definition at hand, we present the following global reliability result.

Theorem 3 (global reliability). Let (u, p, t) be the solution to (8) and (u
T
, p

T
, t

T
) its finite element

approximation given as the solution to (25). If (30) holds then, there exist a positive constant C such

that

|e
u
|2
H1(Ω) + ‖ep‖

2
L2(Ω) + |et|

2
H1(Ω)

≤ C


ϑ2 +

[
sup

v∈H1
0
(Ω)\{0}

SF (uT
, IT (v))

|v|
H1(Ω)

]2
+

[
sup

w∈H1
0
(Ω)\{0}

ST (tT , IT (w))

|w|H1(Ω)

]2
 . (47)

Proof. The desired result follows from combining the estimates obtained in Steps 1, 2, and 3, together
with the result of Theorem 2. �

5.3. Elections for stabilized terms: a final upper bound. In this section, we consider some partic-
ular elections of stabilization terms SF and ST and estimate the so-called consistency errors that appear
in the right-hand side of the a posteriori error estimate (47) thereby obtaining a final upper bound for
the error in terms of computable quantities.

For the fluid flow, we consider a grad-div type of stabilization term, that was first introduced, for a
Stokes problem, in [25]:

SF (vT ,wT ) = τ
∑

K∈T

hK

ˆ

K

∇ · vT ∇ ·wT , vT ,wT ∈ V (T ).

The positive parameter τ is the so-called stabilization constant. We stress that the election SF ≡ 0 is
also valid.

Second, for for the temperature equation, we can consider the following election [15]:

ST (vT , wT ) = τ̃
∑

γ∈FI

h2γ

ˆ

γ

J∇vT · nγKJ∇wT · nγK, vT , wT ∈ V (T ).

where τ̃ > 0 corresponds to a stabilization constant. We mention that the election ST ≡ 0 is valid as
well.

With these ingredients at hand, we are ready to state and prove the following result.
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Theorem 4 (final global reliability). Let (u, p, t) be the solution to (8) and (u
T
, p

T
, t

T
) its finite element

approximation given as the solution to (25). If (30) holds, then there exists a positive constant C such

that

|eu|
2
H1(Ω) + ‖ep‖

2
L2 + |et|

2
H1(Ω) ≤ Cη2,

where the error estimator η is defined as

η2 :=
∑

K∈T

η2K ,

with the local indicators ηK being defined as

η2K := h2K

(
‖RK‖2

L2(K) + ‖RK‖2L2(K)

)
+ (1 + τ2h2K)‖∇ · uT ‖2L2(K)

+
∑

γ∈FK∩FI

hK

(
‖Jγ‖

2
L2(γ) +

(
1 + τ̃h3K

)
‖Jγ‖

2
L2(γ)

)
. (48)

Proof. In view of the result of Theorem 3 it suffices to control the consistency terms SF and ST . We
begin by controlling the term SF . In fact, we have that

sup
v∈H

1
0(Ω)

v 6=0

SF (uT
, IT (v))

|v|
H1(Ω)

= sup
v∈H

1
0(Ω)

v 6=0

∑

K∈T

τhK

ˆ

K

∇ · uT ∇ · IT (v)

|v|
H1(Ω)

≤ C

(
∑

K∈T

τ2h2K‖∇ · uK‖2L2(K)

)1/2

,

where we have used the local stability of the interpolation operator IT [40, Lemma 3.3], the finite
overlapping property of stars, and a Cauchy–Schwarz inequality.

We now bound the consistency term related with the temperature equation. Let γ ∈ FK ∩ FK′ with
K 6= K ′ and K,K ′ ∈ T . We begin with the following basic estimate, which holds for wT ∈ V (T ):

‖J∇wT · nγK‖2L2(γ) ≤ C
∑

K∈Ωγ

h−1
K ‖∇wT ‖2L2(K).

Consequently,

sup
w∈H1

0
(Ω)\{0}

ST (tT , IT (w))

|w|H1(Ω)

≤ sup
w∈H1

0
(Ω)\{0}

1

|w|H1(Ω)


∑

γ∈FI

τ̃2h4γ‖J∇tT · nγK‖2L2(γ)




1/2
∑

γ∈FI

‖J∇IT (w) · nγK‖2L2(γ)




1/2

≤ C sup
w∈H1

0
(Ω)\{0}

1

|w|H1(Ω)


∑

γ∈FI

τ̃2h3γ‖J∇tT · nγK‖2L2(γ)




1/2
∑

γ∈FI

∑

K∈Ωγ

‖∇IT (w)‖2L2(K)




1/2

.

We now invoke the finite overlapping property of stars to conclude that

sup
w∈H1

0
(Ω)\{0}

ST (tT , IT (w))

|w|H1(Ω)

≤ C


∑

γ∈FI

τ̃2h3γ‖J∇tT · nγK‖2L2(γ)




1/2

.

This concludes the proof. �

We now focus in providing a posteriori error estimates for when the SFEM2 technique is used. In
order to present the following result and, since, in this case, the velocity field is a nonconforming function,
we introduce the notation:

e
L
:= u− L(uT , pT ), |v|2

H1(T ) :=
∑

K∈T

|v|2
H1(K). (49)

We present the following a posteriori error estimate.

Theorem 5 (final global reliability). Let (u, p, t) be the solution to problem (8) and (L(u
T
, p

T
), p

T
, t

T
)

its nonconforming finite element approximation which enriches the velocity field as described in (26). If

(30) holds then, there exists a positive constant C such that

|eL|
2
H1(T ) + ‖ep‖

2
L2 + |et|

2
H1(Ω) ≤ CΘ2,
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where the error estimator Θ is defined as

Θ2 :=
∑

K∈T

Θ2
K ,

with the local indicators ΘK being defined as

Θ2
K := h2K

(
‖RK‖2

L2(K) + ‖RK‖2L2(K)

)
+ (1 + τ2h2K)‖∇ · uT ‖2L2(K)

+
∑

γ∈FK∩FI

hK

(
‖Jγ‖

2
L2(γ) +

(
1 + τ̃h3K

)
‖Jγ‖

2
L2(γ) + ‖JpT K‖2L2(γ)

)
. (50)

Proof. In view of [5, Theorem 4], that is still valid in our framework (see also [12, Lemma 3.9]), we have
that

|e
L
|2
H1(T ) ≤ C


|e

u
|2
H1(Ω) +

∑

γ∈F
I

hγ
12

‖JpT K‖2L2(γ)


 .

The desired estimate thus follows from invoking the result of Theorem 4. �

5.4. Local efficiency analysis. We now proceed to investigate the local efficiency properties of the
devised a posteriori error estimators on the basis of standard bubble function arguments [3, 41]. Before
proceeding with such analysis, we introduce the following notation: For an edge, triangle or tetrahedron
G, let V(G) be the set of vertices of G. With this notation at hand, we introduce element and edge
bubble functions as follows. Let K ∈ T and γ ∈ FI . We define

βK := (d+ 1)d+1
∏

v∈V(K)

λv|K , βγ|K := dd
∏

v∈V(γ)

λv|K with K ∈ Ωγ . (51)

The following estimates will be frequently used in what follows: If v
T

∈ V (T ), then [3, 41]

C‖vT ‖2L2(K) ≤

ˆ

K

βKv
2
T ≤ C‖vT ‖L2(K), ‖βKvT ‖L2(K) + hK |βKvT |H1(K) ≤ C‖vT ‖L2(K). (52)

and

C‖vT ‖2L2(γ) ≤

ˆ

γ

βγv
2
T ≤ C‖vT ‖L2(γ), h

− 1
2

K ‖βγvT ‖L2(K) + h
1
2

K |βγvT |H1(K) ≤ C‖vT ‖L2(γ), (53)

where K ∈ Ωγ . We consider the natural extensions of (52) and (53) for the vector-value case.

Theorem 6 (local efficiency). Let (u, p, t) be the solution to problem (8) and (u
T
, p

T
, t

T
) its finite

element approximation given as the solution to (25). If (30) holds, then the local error indicator ηK ,

defined in (48), satisfies, for every K ∈ T ,

η2K ≤ C
∑

γ∈FK

∑

K′∈Ωγ

(
‖eu‖

2
H1(K′) + ‖ep‖

2
L2(K′) + ‖et‖

2
H1(K′) + h2K′

(
‖oscK′‖2

L2(K′) + ‖oscK′‖2L2(K′)

))
.

Proof. We examine each of the contributions of ηK separately. We proceed in three steps:

Step 1: For K ∈ T , we define the following residuals and oscillation terms:
{

R̂K := ΠK,1(f ) + div(ε(t
T
)∇u

T |K)− u
T
∇u

T
−∇p

T |K +ΠK,1(gtT |K),

oscK := f −ΠK,1(f) + gt
T

−ΠK,1(gtT |K).
(54)

Since (u, p, t) solves (8), the definition of the forms A, B, C, and D combined with an integration by parts
formula allow us to conclude the following error equation, which holds for any v ∈ H1

0(Ω):

∑

K∈T

ˆ

K

R̂Kv −
∑

γ∈FI

ˆ

γ

Jγv = [A(t;u,v)−A(tT ;uT ,v)]

+ [C(u;u,v)− C(uT ;uT ,v)]− B(v, ep)−D(et,v)−
∑

K∈T

ˆ

K

oscKv. (55)

We recall that Jγ is defined as in (39). With this error equation at hand we now proceed to control the
contributions of ηK . We begin with RK . Let K ∈ T . In view of (39) and (54), a simple application of
the triangle inequality reveals that

‖RK‖
L2(K) ≤ ‖R̂K‖

L2(K) + ‖oscK‖
L2(K). (56)
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It thus suffices to bound R̂K To accomplish this task, we set v = βKR̂K as test function in (55). This
yields

‖R̂K‖2
L2(K) ≤

∣∣∣A(t;u, βKR̂K)−A(tT ;uT , βKR̂K)
∣∣∣+
∣∣∣C(u;u, βKR̂K)− C(uT ;uT , βKR̂K)

∣∣∣

+
∣∣∣B(βKR̂K , ep) +D(et, βKR̂K) + (oscK , βKR̂K)L2(Ω)

∣∣∣ =: I + II + III. (57)

We proceed to estimate the terms on the right-hand side of the previous expression. We begin with the
control of I. In fact, rewriting the difference in I as in (29), we arrive at

I =
∣∣∣A(t; eu, βKR̂K) +

[
(A(t;u, βKR̂K)−A(tT ;u, βKR̂K))− (A(t; eu, βKR̂K)−A(tT ; eu, βKR̂K))

]∣∣∣

≤ C
[
|eu|H1(K) + ‖et‖H1(K)

(
‖∇u‖

L3(K) + ‖∇eu‖L3(K)

)]
|βKR̂K |

H1(K)

≤ C
(
|e

u
|
H1(K) + ‖et‖H1(K)

)
h−1
K ‖βKR̂K‖

L2(K),

where we have used local version of the estimates (12) and (15), an assumption from (30), and an
inverse inequality. Second, applying similar arguments, we estimate the terms related with the nonlinear
convective derivatives. In fact, we have that

II = |C(u; eu, βKR̂K)− C(eu; eu, βKR̂K) + C(eu;u, βKR̂K)|

≤ C
[
‖u‖

H1(K)|eu|H1(K) + ‖eu‖H1(K)

(
|eu|H1(K) + |u|

H1(K)

)]
‖βKR̂K‖

H1(K)

≤ C‖eu‖H1(K)(1 + h−1
K )‖βKR̂K‖

L2(K).

Finally, we control the term III on the basis of (20):

III ≤ C
(
‖ep‖L2(K) + ‖g‖

L2(Ω)‖et‖H1(K)+
)
‖βKR̂K‖

H1(K) + ‖oscK‖
L2(K)‖βKR̂K‖

L2(K)

≤ C
(
‖ep‖L2(K) + ‖et‖H1(K)

)
(1 + h−1

K )‖βKR̂K‖
L2(K) + ‖oscK‖

L2(K)‖βKR̂K‖
L2(K).

Gathering the previous results and utilizing (52), we conclude that

h2K‖R̂K‖2
L2(K) ≤ C

(
(1 + h2K)

(
‖e

u
‖2
H1(K) + ‖ep‖

2
L2(K) + ‖et‖

2
H1(K)

)
+ h2K‖oscK‖2

L2(K)

)
, (58)

In view of (56), h2K‖RK‖2
L2(K) can also be controlled with the right-hand side of (58).

If γ ∈ FK ∩ FK′ with K 6= K ′ and K,K ′ ∈ T , we set in (55) v = βγJγ , which is supported in Ωγ .
Similar arguments to the ones that we have previously used combined with (53) allow us to conclude that

hK‖Jγ‖
2
L2(γ) ≤ C


 ∑

K∈Ωγ

(1 + h2K)
(
‖e

u
‖2
H1(K) + ‖ep‖

2
L2(K) + ‖et‖

2
H1(K)

)
+ h2K‖oscK‖2

L2(K)


 . (59)

Step 2: We now proceed to bound the term ‖∇ · u
T
‖L2(K). In fact, using that u ∈ X(Ω), we

immediately arrive at the estimate

‖∇ · uT ‖L2(K) := ‖∇ · e
u
‖L2(K) ≤ d|e

u
|
H1(K).

Step 3: For K ∈ T , we define the following residual and oscillation terms:
{

R̂K := ΠK,1(h) + div(κ(t
T
)∇t

T
)|K − u

T |K · ∇t
T |K ,

oscK := h− ΠK,1(h).
(60)

With this definiton at hand, we invoke the definitions of RK and Jγ , given in (43), the definitions of
the forms A and C , given in (9), and an integration by parts formula to conclude the following error
equation, which holds for w ∈ H1

0 (Ω):

∑

K∈T

ˆ

K

R̂Kw −
∑

γ∈FI

ˆ

γ

Jγw = A (t; t, w)− A (tT ; tT , w)

+ C (u; t, w)− C (uT ; tT , w) −
∑

K∈T

ˆ

K

oscKw. (61)

Set w = βKR̂K as a test function in (61). We apply similar arguments to the ones developed in Step 1

to conclude that
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A (t; t, βKR̂K)− A (tT ; tT , βKR̂K)

≤ C
(
|et|H1(K) + ‖et‖H1(K)

(
‖∇t‖L3(K) + ‖∇et‖L3(K)

))
|βKR̂K |H1(K) ≤ C‖et‖H1(K)|βKR̂K |H1(K),

and that

C (u; t, w) − C (uT ; tT , w)

≤ C
(
|et|H1(K)

(
‖u‖

H1(K) + ‖eu‖H1(K)

)
+ |t|H1(K)‖eu‖H1(K)

)
‖βKR̂K‖H1(K)

≤ C
(
|et|H1(K) + ‖e

u
‖
H1(K)

)
‖βKR̂K‖H1(K).

Combining the derived bounds with (52) and (53), we conclude that

h2K‖RK‖2L2(K) ≤ C
(
(1 + h2K)

(
‖et‖

2
H1(K) + ‖eu‖

2
H1(K)

)
+ h2K‖oscK‖2L2(K)

)
,

hK‖Rγ‖
2
L2(γ) ≤ C

∑

K∈Ωγ

(
(1 + h2K)

(
‖et‖

2
H1(K) + ‖e

u
‖2
H1(K)

)
+ h2K‖oscK‖2L2(K)

)
.

Gathering all of our previous finding we conclude the desired estimate. �

We conclude with the following result.

Theorem 7 (local efficiency). Let (u, p, t) be the solution to (8) and (L(u
T
, p

T
), p

T
, t

T
) its noncon-

forming finite element approximation which enriches the velocity field as described in (26). If p ∈ H1(Ω)
and (30) holds, then the error indicator ΘK , given as in (50), satisfies, for every K ∈ T , that

Θ2
K ≤ C

∑

γ∈FK

∑

K′∈Ωγ

(1 + h2K)

(
‖e

u
‖2
H1(K′) + ‖ep‖

2
L2(K′) + ‖et‖

2
H1(K′)

+ h2K′

(
|ep|

2
H1(K′) + ‖oscK′‖2

L2(K′) + ‖oscK′‖2L2(K′)

))
.

Proof. Since p ∈ H1(Ω), we have, for γ ∈ FI , that JpK = 0. Consequently, hK‖Jp
T

K‖2L2(γ) = hK‖JepK‖
2
L2(γ).

Since hγ ≤ ChK , due to the mesh regularity, we apply a scaled trace inequality to arrive at

hK‖JpT K‖2L2(γ) = hK‖JepK‖
2
L2(γ) ≤ C

∑

K∈Ωγ

(
‖ep‖

2
L2(K) + h2K |ep|

2
H1(K)

)
.

The result then follows from using the previous bound combined with the results of Theorem 6. �

6. Numerical examples

In this section we conduct a series of numerical examples that illustrate the performance of the a
posteriori error estimators that we have desgined and analyzed in previous sections. All the numerical
experiments have been carried out with the help of a code that we implemented using C++. All matrices
have been assembled exactly. The right hand sides and approximation errors are computed by a quad-
rature formula which is exact for polynomials of degree 14. The global linear systems were solved using
the multifrontal massively parallel sparse direct solver (MUMPS) [10, 11]. The graphical representations
of the obtained finite element solutions were performed with the help of ParaView [1].

For when the solution technique SFEM1 is considered, we measure experimental rates of convergence
for the error in the energy-type norms:

‖(ξ, φ)‖2F := |ξ|2HHH1(Ω) + ‖φ‖2L2(Ω), ‖|(ξ, φ, θ)|‖2 = ‖(ξ, φ)‖2F + |et|
2
H1(Ω).

When the scheme SFEM2 is considered, we employ the following broken norms for measuring experi-
mental rates of convergence:

‖(ξ, φ)‖2F(T ) := |ξ|2
H1(T )

+ ‖φ‖2L2(Ω), ‖|(ξ, φ, θ)|‖2
T

= ‖(ξ, φ)‖2F(T ) + |et|
2
H1(Ω),

where | · |H1(T ) is defined in (49). We denote by NDOF the total number of degrees of freedom, which
is given by

NDOF = #(V(T )) + #(Q(T )) + #(V (T )).

We solve the discrete system (25) on the basis of the fix–point strategy presented in [5, Section 6]. We
thus calculate the local error indicators ηK , for when we consider the SFEM1 scheme, or the local error
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indicators ΘK for when the SFEM2 scheme is considered, in order to drive an adaptive mesh refinement
procedure, and the global error estimator η (Θ), in order to assess the accuracy of the approximation.
The following refinement criterion was used: Mark an element K for refinement if

η2K ≥ 0.5 max
K′∈T

η2K′ (Θ2
K ≥ 0.5 max

K′∈T

Θ2
K′). (62)

The adaptive loop generates a sequence of adaptive meshes on which experimental rates of convergence
were computed.

To measure the aforementioned experimental rates of convergence for the error, we construct exact
solutions for problem (8) that are based on the following functions:

u1(x, y, z) = curl
[
(xy(1− x)(1 − y)z(1− z))2eee1

]
,

u2(x, y, z) = curl

[
xy(1 − x)(1 − y)

(
z −

e−(1−z)/ε − e−1/ε

1− e−1/ε

)2

eee3

]
,

p1(x, y, z) = xyz − 1/8, p2(x, y, z) = xyz(1− x)(1 − y)(1− z)− 1/216,

t1(x, y, z) = xyz(1− x)(1 − y)(1− z), t2(x, y, z) = xyz(1− x)(1 − y)(1− z) arctan

(
x− 0.5

κ

)
,

where eee1 = [1 0 0], and eee3 = [0 0 1].
As is customary in a posteriori error analysis, in order to measure the efficiency of the involved adaptive

algorithm, with respect to the error norm, we consider the following effectivity indices:

ef1 =
η

‖|(eu, ep, et)|‖
, ef2 =

Θ

‖|(eu, ep, et)|‖T

.

Finally, we mention that in all of our numerical examples we have chosen, as stabilization parameters,
τ = τ̃ = 1.

6.1. The Stokes equation coupled with a convection–diffusion equation. We first consider a
simplified version of (5) that correspond to a system of PDEs that couples the homogeneous problem for
the incompressible Stokes system with a convection-diffusion equation. To be precise, we consider the
following system of PDEs 




−ε∆u+∇p− gt = f in Ω,
divu = 0 in Ω,

−κ∆t+ u · ∇t = h in Ω,
u = 0 on Γ,
t = 0 on Γ,

(63)

with ε and κ being positive constants. On the basis of similar arguments to the ones developed in Section
5.1, and in particular in Theorem 2, the following estimate can be derived:

ε|e
u
|2
H1(Ω) +

1

ε
‖ep‖

2
L2(Ω) + κ|et|

2
H1(Ω) ≤ C

(
ε|Φ|2

H1(Ω) +
1

ε
‖ψ‖2L2(Ω) + κ|ϕ|2H1(Ω)

)
. (64)

The a posteriori error analysis that we have performed can be adapted to this simplified case. In fact,
when the SFEM1 scheme is considered, the following a posteriori error estimator can be designed

ω2 =
∑

K∈T

ω2
K , ω2

K = ω2
F,K + ω2

T,K , ω2
F =

∑

K∈T

ω2
F,K , ω2

T =
∑

K∈T

ω2
T,K .

The error indicators ωF,K and ωF,T are given by

ω2
F,K :=

h2K
ε

‖RK‖2
L2(K) +

1

ε

(
1 + τ2h2K

)
‖∇ · uT ‖2L2(K) +

∑

γ∈FK∩FI

hK
ε

‖Jγ,K‖2
L2(γ),

ω2
T,K :=

h2K
κ

‖RK‖2L2(K) +
∑

γ∈FK∩FI

hK
κ

(
1 + τ̃h3K

)
‖Jγ,K‖2L2(γ),

with obvious modifications for the terms RK and Jγ,K . We recall that τ and τ̃ denote stabilization
parameters. For the SFEM2 solution technique, we design the following error estimator and error
indicators to drive adaptive procedures:

Ξ2 :=
∑

K∈T

Ξ2
K , Ξ2

K = Ξ2
F,K + Ξ2

T,K , Ξ2
F :=

∑

K∈T

Ξ2
F,K , Ξ2

T :=
∑

K∈T

Ξ2
T,K ,
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with

Ξ2
F,K :=

h2K
ε

‖RK‖2
L2(K) +

1

ε

(
1 + τ2h2K

)
‖∇ · uT ‖2L2(K) +

∑

γ∈FK∩FI

hK

(
1

ε
‖Jγ,K‖2

L2(γ) + ε‖JpT K‖2L2(γ)

)
,

Ξ2
T,K :=

h2K
κ

‖RK‖2L2(K) +
∑

γ∈FK∩FI

hK
κ

(
1 + τ̃h3K

)
‖Jγ,K‖2L2(γ).

The marking criteria (62) is used to drive the underlying adaptive procedure.
Finally, we mention that the norms used to measure experimental rates of convergence for the error

need to be suitable modified. In fact,

‖(ξ, φ)‖2F := ε|ξ|2
H1(Ω) +

1

ε
‖φ‖2L2(Ω), ‖|(ξ, φ, θ)|‖2 = ‖(ξ, φ)‖2F + κ|θ|2H1(Ω),

for when the SFEM1 method is chosen, and

‖(ξ, φ)‖2F(T ) := ε|ξ|2
H1(T ) +

1

ε
‖φ‖2L2(Ω), ‖|(ξ, φ, θ)|‖2

T
= ‖(ξ, φ)‖2F(T ) + κ|θ|2H1(Ω),

for when the SFEM2 solution is considered.
To measure the efficiency of the involved adaptive algorithm we introduce the following effectivity

indices

ẽf1 =
ω

‖|(e
u
, ep, et)|‖

, ẽf2 =
Ξ

‖|(e
u
, ep, et)|‖T

.

Example 1: We let Ω = (0, 1)3, ε = 10−3, κ = 10−3, and g = (0, 0, 1)T . The forcing terms f and
h are such that the exact solution to (8) reads

u(x, y, z) = uuu2(x, y, z), p(x, y) = p2(x, y, z) t(x, y) = t2(x, y, z).

Example 2: We let Ω = (0, 1)3, ε = 1, κ = 1, f ≡ 0, and h ≡ 0. We explore the performance of the
devised a posteriori error estimators in a setting that goes beyond the presented theory: the so-called
differentially heated cavity flow problem. To be precise, we consider problem (63), but with the boundary
conditions as stated in Figure 3. We also set

g = (0, 0, Ra)T ,

where Ra corresponds to the Rayleigh’s number. The latter is associated with the heat transfer inside
the fluid; a low value for Ra implies that the conduction transfer is dominant, while a high value of Ra
(Ra > 1000) implies that the convection transfer is dominant. In this specific example we set Ra = 105.

In Figure 2 we present the results obtained for Example 1: experimental rates of convergence for
error and error estimators, their individual contributions, and the effectivity index ẽf2. We also present
graphic representations of the involved discrete functions and slices of the final mesh which contains
1025888 elements and 182633 vertices. Similar results are presented, for Example 2, in Figure 4.

6.2. The generalized Boussinesq problem.

Example 3: We let Ω = (0, 1)3, ε(t) = e−t, κ(t) = et, and g = (0, 0, 1)T . The terms f and h are
such that

u(x, y, z) = uuu1(x, y, z), p(x, y, z) = p1(x, y, z), t(x, y, z) = t1(x, y, z).

In order to present numerical results, we define the following a posteriori error estimators

η2F :=
∑

K∈T

η2F,K , η2F,K := h2K‖RK‖2
L2(K) + (1 + τ2h2K)‖∇ · uT ‖2L2(K) +

∑

γ∈FK∩FI

hK‖Jγ‖
2
L2(γ),

η2T :=
∑

K∈T

η2T,K , η2T,K := h2K‖RK‖2L2(K) +
∑

γ∈FK∩F
I

hK
(
1 + τ̃h3K

)
‖Jγ‖

2
L2(γ),

and

Θ2
F :=

∑

K∈T

Θ2
K,F , Θ2

F,K := η2F,K +
∑

γ∈FK∩FI

hK‖JpT K‖2L2(γ),

Θ2
T :=

∑

K∈T

Θ2
T,F , Θ2

T,K := η2T,K .
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Figure 2. Example 1 (SFEM2 scheme) (a), (b), (c) and (d): Experimental rates of
convergence for errors, error estimators, individual contributions, and the effectivity
index ẽf2. (e): Discrete pressure for fixed and different values of x. (h): Discrete
temperature for fixed and different values of z. (f) and (i): Streamlines of the velocity
field u

T
and L(u

T
, p

T
), respectively, combined with its magnitude value. (g) and (j):

Slices of the final mesh, that contains 1025888 elements and 182633 vertices, at different
fixed values of x and z, respectively.

Notice that the error estimators η and Θ defined by (48) and (50), respectively are such that, η2 = η2F +η2T
and Θ2 = Θ2

F +Θ2
T .

Example 4: In this example, we explore the performance of the devised a posteriori error estima-
tors in a setting that goes beyond the presented theory: we consider problem (5) together with the same
parameters and boundary conditions as in Example 2.

In Figure 5 we present the results obtained for Example 3: experimental rates of convergence for the
error and error estimators, effectivity indices ef1 and ef2, and graphic representations of the involved
finite element solutions. Similar results are presented for Example 4 in Figure 6.
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Figure 3. Boundary conditions for Example 2 and Example 4, where we have considered
g = (0, 0, Ra)T with Ra = 105.
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Figure 4. Example 2 (SFEM2 scheme). (a): Experimental rates of convergence for
the error estimator Ξ and its individual contributions ΞF and ΞT . (b): The final mesh:
1454531 elements and 263798 vertices. (c) and (d): Streamlines of the velocity field u

T

and L(u
T
, p

T
), respectively, combined with a representation of the discrete temperature.

6.3. Conlusions. From the presented numerical examples several general conclusions can be drawn:

• We observe optimal experimental rates of convergence for all the total errors, error estimators,
and individual contributions.

• The devised error estimators accurately identify boundary and interior layers and direct most of
the refinement to these regions.

• In all the numerical experiments that involve an exact solution, the effectivity indices remain
bounded. More precisely, when the solution technique start to properly resolve the involved
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Figure 5. Example 3. (a), (b), (c) and (d): Experimental rates of convergence for errors
and error estimators, individual contributions, and effectivity indices. (e): Streamlines
of the velocity uT combined with its magnitude value when the SFEM1 is used; the
involved mesh contains 200345 elements and 37857 vertices. (f) and (g): Discrete ap-
proximations of the pressure and temperature, respectively, for fixed values of x when
the SFEM1 is used. (h): Streamlines of the velocity L(u

T
, p

T
) combined with its mag-

nitude value when the SFEM2 is used; the involved mesh contains 138243 elements and
26353 vertices. (i) and (j): Discrete approximations of the pressure and temperature,
respectively, for fixed values of x when the SFEM2 is used.

layers, we observe, from Figures 2 and 5, that ẽf2 ≈ 4.9556 and ef1 ≈ 9.1582 and ef2 ≈
10.2633, respectively. These numerical results provide evidence of a competitive performance of
the adaptive procedures that are driven by the devised error estimators.
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Figure 6. Example 4: (a) and (b): Experimental rates of convergence for error esti-
mators and individual contributions. (c): A slice of the streamlines at y = 0.5 over the
obtained final mesh when the SFEM1 is used. The mesh contains 895987 elements and
171243 vertices. (f) An analogous representation when the SFEM2 scheme is employed.
The final mesh contains 1009395 elements and 194304 vertices. (d) and (e): Streamlines
of the velocity field u

T
and L(u

T
, p

T
), respectively, combined with a representation of

the discrete temperature for the SFEM1 scheme. (g) and (h) Analogous representations
for the SFEM2 scheme.

• From Figure 5 it can be observed that ef2 > ef1. Notice, in addition, that |‖(e
L
, ep, et)|‖T

<
|‖(u, ep, et)|‖. The following insight could explain why the SFEM1 scheme is slightly less efficient
than the SFEM2 scheme: notice that the error estimator ΘK , defined in (50), when compared
with ηK , defined in (48), present an extra pressure jump term. Notice, in addition, that both
estimators bound the total error.

• In Examples 2 and 4, we consider particular scenarios that go beyond the presented theory. In
spite of this fact, optimal experimental rates of convergence are observed.
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