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Abstract. In two-dimensional Lipschitz domains, we analyze a Brinkman–Darcy–Forchheimer
problem on the weighted spaces H1

0
(ω,Ω)×L2(ω,Ω)/R, where ω belongs to the Muckenhoupt class

A2. Under a suitable smallness assumption, we prove the existence and uniqueness of a solution. We
propose a finite element method and obtain a quasi-best approximation result in the energy norm à
la Céa under the assumption that Ω is convex. We also develop an a posteriori error estimator and
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1. Introduction. In this article, we are concerned with the study of existence
and finite element approximation results for a Brinkman–Darcy–Forchheimer problem
under rough or singular forcing. Specifically, we will study the following nonlinear

system of partial differential equations (PDEs):

(1) −∆u+ (u · ∇)u+ |u|u+ u+∇p = f in Ω, div u = 0 in Ω, u = 0 on ∂Ω.

Here, Ω denotes an open and bounded domain of R2 with Lipschitz boundary ∂Ω, u
and p stand for the velocity and pressure of the fluid, respectively, f is an externally
applied force, and | · | denotes the Euclidean norm. Contrary to what is usually found
in the literature, our main source of originality and novelty arises from the fact that
f is singular, say a Dirac measure, so that the problem cannot be understood in the
classical setting inherited by the space H1

0(Ω)× L
2(Ω)/R.

Darcy’s law is a linear relationship that describes the creep flow of Newtonian
fluids in porous media. This law is supported by years of experimental data and has
numerous applications in engineering. It is therefore not surprising that its analy-
sis and approximation have been studied by several authors. Nevertheless, Darcy’s
law can be inaccurate when modeling fluid flow through porous media with high
Reynolds numbers or through media with high porosity. To overcome this inaccuracy,
Forchheimer proposed a modification of Darcy’s law in [29] and formulated the so-
called Darcy–Forchheimer equations. Several discretization techniques for the Darcy–
Forchheimer equations have been studied in the literature; for a non-exhaustive list,
we refer the interested reader to [33, 48, 47, 9, 27, 16]. The incorporation of −∆u

and the convective term (u · ∇)u in the Darcy–Forchheimer equations leads to the
so-called convective Brinkman–Forchheimer model (1). This model was derived by
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(gilberto.campana@usm.cl.
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(enrique.otarola@usm.cl, http://eotarola.mat.utfsm.cl/).

1

mailto:alejandro.allendes@usm.cl
http://aallendes.mat.utfsm.cl/
mailto:gilberto.campana@usm.cl
mailto:enrique.otarola@usm.cl
http://eotarola.mat.utfsm.cl/


2 A. ALLENDES, G. CAMPAÑA AND E. OTÁROLA

the authors of [57] as the governing momentum equation based on local volume av-
eraging and matched asymptotic expansion, assuming a two-dimensional stationary,
isotropic, incompressible, homogeneous flow through a fluid-saturated porous medium;
see also [38]. Further justifications for the inclusion of the so-called Brinkman and
convective terms in (1) were presented later in [56]. We refer the interested reader
to [35, 53, 58, 59] for further insights, analysis, and applications of this model. To
conclude this paragraph, we would like to mention that recently in [41, 18, 17] dis-
cretization methods with finite elements for the system (1), but under smooth forcing,
have been considered.

While it is true that the study of finite element methods for (1) and similar models
is mature in a standard setting, applications and models have recently appeared where
the motion of a fluid is described by (1) or a modification of it, but because of the
singularity of the forces f , the problem must be understood in a completely different
setting, and rigorous approximation techniques are scarce. For example, the author of
[40] models the motion of active thin structures using the Stokes equations (a linear
model related to (1)), with a forcing term corresponding to a linear combination of
Dirac measures. A second example comes from PDE-constrained optimization theory.
In [31, 15, 30] a problem is formulated where the state is determined by the stationary
Stokes/Navier–Stokes equations, but with a measure-valued control. Finally, we refer
the reader to [14], where the authors study a class of asymptotically Newtonian fluids
(Newtonian under large shear rates) under singular forcing. In particular, the authors
provide existence and uniqueness results as well as some regularity properties for
solutions; see [46] for some extensions to convex polyhedral domains.

In this article, we continue our research program focused on the development of
finite element solution methods for fluid models under rough forcing. The central idea
we pursue is to introduce a weight and work in the corresponding weighted Lebesgue
and Sobolev spaces so that singular forcing fits into our functional framework. One of
the first references is [44], where we proved the well-posedness of the Stokes problem
over a reduced class of weighted spaces. Later, in [24] and [6], we developed a priori
and a posteriori error estimates, respectively, for suitable finite element approxima-
tions of the Stokes problem analyzed in [44]. The research program continued with
the analysis and approximation of the Navier–Stokes equations presented in [45]. A
posteriori error estimates for suitable discretizations of such a nonlinear model can
be found in [7]. Regarding the approximation of coupled problems involving fluid
flow equations and a suitable temperature equation under singular forcing we refer
the interested reader to [4, 5, 8]. This brings us to the present article and its main
contributions. Before presenting the main contributions of our work, we would like
to refer to [18, 20, 41, 50], where different solution methods for the problem (1) with
f smooth are discussed. As far as we know, this is the first paper that deals with the
numerical approximation of (1) when f is singular.

Let us comment on the main contributions of our article:
• Existence and uniqueness of a solution: We introduce a notion of weak solution

in H1
0(ω,Ω)×L

2(ω,Ω)/R and use a fixed-point argument to show that the proposed
weak problem admits a unique solution under a suitable smallness assumption on f .
To accomplish this task, we first establish the well-posedness of a Brinkman problem in
the space H1

0(ω,Ω)×L
2(ω,Ω)/R using the continuity method and the well-posedness

of the Stokes problem from [44, Theorem 17].
• Finite element discretization: We propose a finite element scheme for the prob-

lem (1) based on the following two classical inf-sup stable pairs: the mini element
and the Taylor–Hood element. We show that the proposed scheme admits a unique
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solution. Moreover, we obtain a quasi-best approximation result in the energy norm
à la Céa. We must immediately note that since f is very singular, (u, p) is not ex-
pected to have any regularity properties beyond those necessary for the problem to be
well-posed. Consequently, convergence rates in the energy norm cannot be obtained
from the derived quasi-best approximation result.
• A posteriori error analysis: Due to the singularity of the force f in (1), no

smooth solutions are to be expected. This lack of smoothness motivates the devel-
opment of a posteriori error estimators and adaptive methods to efficiently solve (1).
We develop an a posteriori error estimator based on residuals for the proposed finite
element discretization method. We show that the developed estimator is globally re-
liable; see Theorem 14. In Theorem 16, we investigate efficiency properties for the
proposed local indicators. Furthermore, we develop an adaptive finite element method
based on the proposed error estimator and present numerical experiments in convex
and non-convex domains.

The article is structured as follows. In Section 2, we introduce the notation
and recall basic facts about weights and weighted Sobolev spaces. In Section 3, we
analyze a Brinkman problem on weighted spaces. In Section 4, we introduce a weak
formulation for the system (1) and establish a well-posedness result. A finite element
method is presented in Section 5. Here, we also obtain a quasi-best approximation
result à la Céa. In Section 6, we propose an error estimator for suitable inf-sup stable
finite element pairs and introduce a Ritz projection on weighted spaces. We prove
that the energy norm of the error can be bounded by the energy norm of the Ritz
projection and obtain the global reliability of the proposed estimator. We also study
local efficiency estimates. We conclude the paper with Section 7, where we present a
series of numerical experiments to illustrate our results.

2. Notation and preliminaries. Let us set the notation and specify the frame-
work in which we will work.

2.1. Notation. We adopt classical notation for Lebesgue and Sobolev spaces.
Let W and Z be Banach function spaces. We write W →֒ Z to indicate that W is
continuously embedded in Z. We denote byW ′ and ‖·‖W the dual space and norm of
W , respectively. For p ∈ (1,∞), we denote by p′ its Hölder conjugate, which is such
that 1/p+ 1/p′ = 1. The relation a . b means that there exists a positive constant
independent of a, b, and the discretization parameters such that a ≤ Cb. The value
of C may vary at each occurrence. Finally, we note that the spaces of vector-valued
functions and their elements are indicated by boldface.

2.2. Weighted function spaces. A weight is a locally integrable function on
R

2 defined to be nonnegative. Let ω be a weight and let E ⊂ R
2 be a measurable

set. We define ω(E) =
´

E
ωdx. If the measurable set E ⊂ R

2 has positive Lebesgue
measure, we define

ffl

E ω(x)dx = ω(E)/|E|.
In what follows, we turn our attention to the weights ω belonging to the Muck-

enhoupt class Ap: Let p ∈ [1,∞). A weight ω is said to belong to the Muckenhoupt
class Ap if [21, 22, 42, 55]

(2)

[ω]A1 := sup
B

(
 

B

ω

)

sup
x∈B

1

ω(x)
<∞, p = 1,

[ω]Ap
:= sup

B

(
 

B

ω

)(
 

B

ω
1

1−p

)p−1

<∞, p ∈ (1,∞),

where the supremum is taken over all balls B ∈ R
2. The class A∞ is defined by
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A∞ := ∪p<∞Ap. For p ∈ [1,∞), [ω]Ap
is called the Muckenhoupt characteristic of

ω. When p ∈ (1,∞), there is some symmetry in Ap with respect to Hölder conjugate
exponents: ω′ = ω1/(1−p) ∈ Ap′ if and only if ω ∈ Ap [55, Remark 1.2.4]. Finally, we
note that if 1 ≤ p < q <∞, then Ap ⊂ Aq [55, Remark 1.2.4].

A prototypical example of an Ap weight is a power weight: Let α ∈ R and let z
be an interior point in Ω. For p > 1, the weight

dαz (x) := |x− z|α(3)

belongs to Ap if and only if α ∈ (−2, 2(p−1)) [54, Chapter IX, Corollary 4.4]. For this
particular weight, there is a neighborhood of ∂Ω in which the weight is strictly positive
and continuous. It is, therefore, appropriate to introduce the following restricted class
of Muckenhoupt weights [28, Definition 2.5].

Definition 1 (restricted class Ap(D)). Let p ∈ [1,∞) and let D ⊂ R
2 be a

Lipschitz domain. A weight ̟ ∈ Ap is said to belong to Ap(D) if there is an open

set G ⊂ D and ǫ,̟l > 0 such that: {x ∈ D : dist(x, ∂D) < ǫ} ⊂ G, ̟ ∈ C(G), and
̟l ≤ ̟(x) for all x ∈ G.

Let us now introduce Lebesgue and Sobolev weighted spaces. To this end, let
E ⊂ R

2 be an open set, p ∈ [1,∞), and ω ∈ Ap. The space of Lebesgue p-integrable
functions with respect to the measure ω(x)dx is denoted by Lp(ω,E). W 1,p(ω,E) is
defined as the space of functions v ∈ Lp(ω,E) with derivatives Dαv ∈ Lp(ω,E) for
|α| ≤ 1; derivatives being understood in a week sense. We equip W 1,p(ω,E) with the
norm [55, Section 2.1]

(4) ‖ · ‖ :W 1,p(ω,E)→ R, ‖v‖W 1,p(ω,E) :=
(

‖v‖pLp(ω,E) + ‖∇v‖
p
Lp(ω,E)

)
1
p

.

We also define the space W 1,p
0 (ω,E) as the closure of C∞

0 (E) in W 1,p(ω,E). When
p = 2, we set H1(ω,E) := W 1,p(ω,E) and H1

0 (ω,E) := W 1,p
0 (ω,E). The spaces

Lp(ω,E), W 1,p(ω,E), and W 1,p
0 (ω,E) are Banach spaces [55, Proposition 2.1.2] and

smooth functions are dense [55, Corollary 2.1.6]; see also [34, Theorem 1]. Moreover,
given the weighted Poincaré inequality of [26, Theorem 1.3], we have that ‖∇v‖Lp(ω,E)

is an equivalent norm to the norm defined in (4) on the space W 1,p
0 (ω,E).

3. A Brinkman problem under singular forcing. In this section, we study
the well-posedness of the following Brinkman problem: Find (u, p) such that

(5) −∆u+ u+∇p = f in Ω, div u = g in Ω, u = 0 on ∂Ω,

where we allow the data f and g to be singular. The analysis of problem (5) is a key
step to establish the well-posedness of the Brinkman–Darcy–Forchheimer model (1).

We begin our studies by proposing a weak formulation for (5). Given ω ∈ A2,
f ∈ H−1(ω,Ω), and g ∈ L2(ω,Ω)/R, find (u, p) ∈ H1

0(ω,Ω)× L
2(ω,Ω)/R such that

(6)

ˆ

Ω

(∇u : ∇v + u · v − p div v + q div u) = 〈f ,v〉 +

ˆ

Ω

gq,

for all v ∈ H1
0(ω

−1,Ω) and q ∈ L2(ω−1,Ω)/R. Here, 〈·, ·〉 stands for the duality
pairing between H−1(ω,Ω) := H1

0(ω
−1,Ω)′ and H1

0(ω
−1,Ω). Note that because of

the boundary conditions for u in problem (5), we must necessarily have
´

Ω
g = 0.

Let us introduce

(7) X := H1
0(ω,Ω)× L

2(ω,Ω)/R, Y := H1
0(ω

−1,Ω)× L2(ω−1,Ω)/R.

The well-posedness of the Brinkman problem is established in the following result.
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Theorem 2 (well-posedness of the Brinkman problem). Let d ∈ {2, 3} and let

Ω ⊂ R
d be a bounded Lipschitz domain. Let ω ∈ A2(Ω). If f ∈ H−1(ω,Ω) and

g ∈ L2(ω,Ω)/R, then there exists a unique solution (u, p) ∈ H1
0(ω,Ω) × L

2(ω,Ω)/R
of problem (6), which satisfies the following estimate

(8) ‖∇u‖L2(ω,Ω) + ‖p‖L2(ω,Ω) ≤ CB

(

‖f‖H−1(ω,Ω) + ‖g‖L2(ω,Ω)

)

, CB > 0.

Proof. Inspired by the proof of [32, Theorem 6.8], we proceed on the basis of the
method of continuity presented in [32, Theorem 5.2]. We split the proof in four steps.

Step 1. A bounded linear map S associated to a Stokes problem. We define

S : X → Y ′, 〈S(u, p), (v, q)〉 :=

ˆ

Ω

(∇u : ∇v − p div v + q div u).(9)

We notice that S is a bounded linear operator. In fact, we have the bound

‖S(u, p)‖Y′ = sup
(0,0) 6=(v,q)∈Y

〈S(u, p), (v, q)〉

‖(v, q)‖Y
. ‖∇u‖L2(ω,Ω) + ‖p‖L2(ω,Ω),

where ‖(v, q)‖Y := ‖∇v‖L2(ω−1,Ω) + ‖q‖L2(ω−1,Ω). We now introduce the following
weak formulation associated with the Stokes operator S. Given g ∈ H−1(ω,Ω) and
h ∈ L2(ω,Ω)/R, find (ϕ, ψ) ∈ X such that 〈S(ϕ, ψ), (v, q)〉 = 〈g,v〉 + (h, q)L2(Ω) for
all (v, q) ∈ Y. The well-posedness of this Stokes system follows from [44, Theorem
17].

Step 2. A bounded linear map B associated to a Brinkman problem. We define

B : X →Y ′, 〈B(u, p), (v, q)〉 :=

ˆ

Ω

(∇u : ∇v+u · v−p div v+q div u).(10)

The map B is linear and bounded. In particular, we have ‖B(u, p)‖Y′ . ‖∇u‖L2(ω,Ω)+
‖p‖L2(ω,Ω). With B at hand, problem (6) can be equivalently written as follows: Find
(u, p) ∈ X such that 〈B(u, p), (v, q)〉 = 〈f ,v〉 + (g, q)L2(Ω) for all (v, q) ∈ Y.

Step 3. The a priori estimate (8). Let us introduce, for t ∈ [0, 1], the operator

(11) Lt : X → Y
′, Lt := (1− t)S + tB.

Observe that L0 = S, L1 = B, and that Lt is a linear and bounded operator from X
into Y ′. Let us consider the following family of equations: Find (u, p) ∈ X such that
〈Lt(u, p), (v, q)〉 = 〈f ,v〉+(g, q)L2(Ω) for all (v, q) ∈ Y, where t ∈ [0, 1]. For t ∈ [0, 1],
the solvability of this problem is then equivalent to the invertibility of the map Lt.
Let (ut, pt) ∈ X be a solution to such a problem. In what follows, we prove

‖∇ut‖L2(ω,Ω) + ‖pt‖L2(ω,Ω) . ‖f‖H−1(ω,Ω) + ‖g‖L2(ω,Ω),(12)

which is equivalent to ‖(ut, pt)‖X . ‖Lt(u, p)‖Y′ . An important observation is that
(ut, pt) can be seen as a solution to the following Stokes problem: Find (ut, pt) ∈ X
such that 〈S(ut, pt), (v, q)〉 = 〈f ,v〉+(g, q)L2(Ω)− t(ut,v)L2(Ω) for all (v, q) ∈ Y. We
can thus apply the estimate in [44, Theorem 17] to arrive at

‖∇ut‖L2(ω,Ω) + ‖pt‖L2(ω,Ω) . ‖f‖H−1(ω,Ω) + ‖g‖L2(ω,Ω) + ‖ut‖L2(ω,Ω).(13)

To obtain (12), we proceed by a contradiction argument. Assuming that (12)
is false, it is possible to find sequences {(uk, pk)}k∈N ⊂ H1

0(ω,Ω) × L
2(ω,Ω)/R and
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{(fk, gk)}k∈N ⊂ H−1(ω,Ω)× L2(ω,Ω)/R such that (uk, pk, fk, gk) satisfies, for k ∈ N,
〈Lt(uk, pk), (v, q)〉 = 〈fk,v〉 + (gk, q)L2(Ω) for all (v, q) ∈ Y and ‖∇uk‖L2(ω,Ω) +
‖pk‖L2(ω,Ω) = 1, but ‖fk‖H−1(ω,Ω) + ‖gk‖L2(ω,Ω) → 0 as k ↑ ∞. Since {(uk, pk)}k∈N

is uniformly bounded in H1
0(ω,Ω) × L

2(ω,Ω)/R, we deduce the existence of a non-
relabelared subsequence {(uk, pk)}k∈N such that uk ⇀ u in H1

0(ω,Ω) and pk ⇀ p in
L2(ω,Ω)/R as k ↑ ∞. The limit (u, p) satisfies Lt(u, p) = 0 in Y ′. Consequently,
(u, p) = (0, 0). On the other hand, the compact embedding H1

0(ω,Ω) →֒ L2(ω,Ω)
[36, Theorem 4.12], [45, Proposition 2] shows that uk → 0 in L2(ω,Ω). We can thus
invoke the G̊arding-like inequality (13) to deduce that

1=‖∇uk‖L2(ω,Ω)+‖pk‖L2(ω,Ω) . ‖fk‖H−1(ω,Ω)+‖gk‖L2(ω,Ω)+‖uk‖L2(ω,Ω)→0, k ↑ ∞,

which is a contradiction. We have thus obtained the desired estimate (12).
Step 4. The method of continuity and the well-posedness of (6). With the estimate

(12) at hand, we invoke [32, Theorem 5.2] and the fact that L0 = S maps X onto Y ′

to deduce that L1 = B maps X onto Y ′ as well, i.e., problem (6) admits a solution.
Since problem (6) is linear, estimate (12) guarantees the uniqueness of solutions. We
have thus proved that problem (6) is well-posed.

4. A Brinkman–Darcy–Forchheimer model. In this section, we show the
existence of solutions to the system (1). Before doing so, recall that the convective
term (v ·∇)v can be rewritten as div(v⊗v) if v is sufficiently smooth and solenoidal.
This property is used to propose a weak formulation for the system (1).

4.1. Weak formulation. For a given weight ω in the class A2, we define the
bilinear forms a0 : H1

0(ω,Ω)×H1
0(ω

−1,Ω)→ R, a1 : L2(ω,Ω)×L2(ω−1,Ω)→ R, and
b± : H1

0(ω
±1,Ω)× L2(ω∓1,Ω)/R→ R by

a0(w,v) :=

ˆ

Ω

∇w : ∇v, a1(w,v) :=

ˆ

Ω

w · v, b±(v, q) := −

ˆ

Ω

q div v,

respectively. With a0 and a1 at hand, we define a : H1
0(ω,Ω) ×H1

0(ω
−1,Ω) → R by

a(w,v) := a0(w,v) + a1(w,v). We now introduce forms associated to the nonlinear
terms (u · ∇)u and |u|u in (1). We define c : [H1

0(ω,Ω)]
2 × H1

0(ω
−1,Ω) → R and

d : [H1
0(ω,Ω)]

2 ×H1
0(ω

−1,Ω)→ R, respectively, by

c(u,w;v) := −

ˆ

Ω

u⊗w : ∇v, d(u,w;v) :=

ˆ

Ω

|u|w · v.

With these ingredients, let us consider the following weak formulation for the
system (1): Find (u, p) ∈ X such that

a(u,v) + b−(v, p) + c(u,u;v) + d(u,u;v) = 〈f ,v〉, b+(u, q) = 0,(14)

for all (v, q) ∈ Y. Here, 〈·, ·〉 denotes the duality pairing between H−1(ω,Ω) and
H1

0(ω
−1,Ω). We recall that the spaces X and Y are defined in (7).

In the following, we will use the following inf-sup condition on weighted spaces,
which follows directly from the existence of a right inverse of the divergence; see [1,
Theorem 2.8], [23, Theorem 3.1], [24, Lemma 6.1], and [51, Theorem 1]:

‖p‖L2(ω,Ω) . sup
0 6=v∈H1

0(ω
−1,Ω)

b−(v, p)

‖∇v‖L2(ω−1,Ω)
∀p ∈ L2(ω,Ω)/R.(15)
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We will also make use of the following weighted inf-sup condition for a0 [44]:

(16) inf
0 6=v∈H1

0(ω,Ω)
sup

0 6=w∈H1
0(ω

−1,Ω)

a0(v,w)

‖∇v‖L2(ω,Ω)‖∇w‖L2(ω−1,Ω)

= inf
0 6=w∈H1

0(ω
−1,Ω)

sup
0 6=v∈H1

0(ω,Ω)

a0(v,w)

‖∇v‖L2(ω,Ω)‖∇w‖L2(ω−1,Ω)

> 0,

which holds under the further restriction that ω ∈ A2(Ω).
The following result guarantees the boundedness of the convective and Forch-

heimer terms on weighted spaces.

Lemma 3 (boundedness of the convective and Forchheimer terms). If ω ∈ A2,

u,w ∈ H1
0(ω,Ω), and v ∈ H1

0(ω
−1,Ω), then

(17)
|c(u,w;v)| ≤ C2

4→2‖∇u‖L2(ω,Ω)‖∇w‖L2(ω,Ω)‖∇v‖L2(ω−1,Ω),

|d(u,w;v)| ≤ C2
4→2C2→2‖∇u‖L2(ω,Ω)‖∇w‖L2(ω,Ω)‖∇v‖L2(ω−1,Ω).

Here, C4→2 and C2→2 denote the best constants in the embeddings H1
0(ω,Ω) →֒

L4(ω,Ω) and H1
0(ω

−1,Ω) →֒ L2(ω−1,Ω), respectively.

Proof. Since we are in two dimensions and ω and ω−1 belong to A2, [26, Theorem
1.3] shows that there exists ζ > 0 such that H1

0(ω
±1,Ω) →֒ L2k(ω±1,Ω) for every

k ∈ [1, 2 + ζ]. Consequently,

|c(u,w;v)| ≤ ‖u‖L4(ω,Ω)‖w‖L4(ω,Ω)‖∇v‖L2(ω−1,Ω)

≤ C2
4→2‖∇u‖L2(ω,Ω)‖∇w‖L2(ω,Ω)‖∇v‖L2(ω−1,Ω).

Similarly, |d(u,w;v)| ≤ C2
4→2C2→2‖∇u‖L2(ω,Ω)‖∇w‖L2(ω,Ω)‖∇v‖L2(ω−1,Ω).

4.2. Well-posedness for small data. We begin this section with a redefinition
of the mapping B : X → Y ′ and the definition of NL : X → Y ′ and F ∈ Y ′ as

〈B(u, p), (v, q)〉 := a(u,v) + b−(v, p) + b+(u, q),

〈NL(u, p), (v, q)〉 := c(u,u;v) + d(u,u;v),

and 〈F , (v, q)〉 := 〈f ,v〉, respectively. Here, (v, q) ∈ Y. We recall that the spaces X
and Y are defined in (7). With this functional framework, we can reformulate the
problem (14) as an equivalent equation in Y ′: B(u, p) +NL(u, p) = F .

The map B is linear and bounded; see the proof of Theorem 2 for details. If Ω is
Lipschitz and ω belongs to A2(Ω), then Theorem 2 guarantees that B has a bounded
inverse. We thus introduce

T : X → X , (u, p) = T (w, r) = B−1[F −NL(w, r)].(18)

To prove the existence of a solution to the system (14), we use a fixed point argument
applied to the map T and prove that the existence and uniqueness of solutions is
guaranteed if the datum f is sufficiently small. We begin the analysis with a standard
contraction argument; see, for instance, [49, Theorem 3.1], [52, Theorem 5.6], and
[45, Proposition 1]. To present such a result, we define A := (3Ce‖B−1‖)−1 > 0 and
BA := {w ∈ H1

0(ω,Ω) : div w = 0, ‖∇w‖L2(ω,Ω) ≤ A}, where Ce := C2
4→2(1 +C2→2)

and ‖B−1‖ denotes the Y ′ → X norm of B−1. Let us introduce, in addition, the map
T1 : H1

0(ω,Ω) → H1
0(ω,Ω) defined as w 7→ PrT (w, 0), where Pr : X → H1

0(ω,Ω)
corresponds to the projection onto the velocity component.
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Proposition 4 (T1 : BA → BA is a contraction). Let Ω be a bounded Lipschitz

domain and ω ∈ A2(Ω). If the forcing term f is sufficiently small so that

(19) Ce‖B
−1‖2‖f‖H−1(ω,Ω) <

1
6 ,

then T1 maps BA to itself and T1 is a contraction in BA.

Proof. The proof follows the same arguments as in the proof of [45, Proposition
1]. For the sake of brevity, we skip the details.

The existence and uniqueness of solutions for small data is as follows.

Theorem 5 (well-posedness for small data). Let Ω ⊂ R
2 be a bounded Lipschitz

domain and ω ∈ A2(Ω). If f is such that (19) holds, then problem (14) admits a

unique solution (u, p). Moreover, we have the bounds

‖∇u‖L2(ω,Ω) ≤
3
2‖B

−1‖‖f‖H−1(ω,Ω),(20)

‖p‖L2(ω,Ω) . ‖∇u‖L2(ω,Ω) + ‖∇u‖
2
L2(ω,Ω) + ‖f‖H−1(ω,Ω),(21)

where the hidden constants are independent of u, p, and f .

Proof. We apply proposition 4 to deduce the existence of a unique fixed point
u ∈ BA of T1. We now invoke the existence of a right inverse of the divergence operator
over A2-weighted spaces [23, Theorem 3.1] to obtain the existence and uniqueness of
the pressure p. To deduce (20) we use that u is the unique fixed point of T1:

‖∇u‖L2(ω,Ω) ≤ ‖B
−1‖‖f‖H−1(ω,Ω) +

1
3‖∇u‖L2(ω,Ω).

Finally, to obtain (21) we utilize the weighted inf-sup condition (15).

5. Finite element approximation: a priori error estimates. In this sec-
tion, we analyze a finite element solution technique that approximates solutions to
(14). To accomplish this task, we will begin the section by introducing some termi-
nology and a few basic ingredients [13, 19, 25]. In what follows, we operate under the
assumption that Ω is a Lipschitz polytope so that it can be triangulated exactly.

5.1. Triangulation and assumptions. Let T = {K} be a conforming parti-
tion of Ω̄ into closed triangles K. Define hK = diam(K) and hT = max{hK : K ∈
T }. We introduce T as a collection of shape regular conforming triangulations that
are refinements of an initial mesh T0. We denote by S the set of internal interelement
boundaries γ of T . For γ ∈ S , we define hγ to be the length of γ. For K ∈ T , we
introduce the set SK as the subset of S containing the sides of K. For γ ∈ S , we
introduce Nγ as the subset of T containing the two elements that have γ as a side.
For K ∈ T , we define

(22) NK = {K ′ ∈ T : SK ∩SK′ 6= ∅}, N ∗
K = {K ′ ∈ T : K ∩K ′ 6= ∅}.

Below, we will indistinctively denote by NK , N ∗
K , and Nγ either the sets themselves

or the union of the elements that comprise them.
Let T ∈ T. We denote by V(T ) and P(T ) the finite element spaces that

approximate the velocity field and the pressure, respectively. We will work with the
following two classical examples:

(a) The mini element, which is defined by [25, Section 4.2.4]

V(T ) = {vT ∈ C(Ω) : ∀K ∈ T ,vT |K ∈ [W(K)]2} ∩H1
0(Ω),(23)

P(T ) = {qT ∈ L
2
0(Ω) ∩ C(Ω) : ∀K ∈ T , qT |K ∈ P1(K)},(24)
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where W(K) := P1(K) ⊕ B(K) and B(K) denotes the space spanned by a
local bubble function.

(b) The lowest order Taylor–Hood pair, which is defined by [25, Section 4.2.5]

V(T ) = {vT ∈ C(Ω) : ∀K ∈ T ,vT |K ∈ [P2(K)]2} ∩H1
0(Ω),(25)

P(T ) = {qT ∈ L
2
0(Ω) ∩ C(Ω) : ∀K ∈ T , qT |K ∈ P1(K)}.(26)

We must immediately notice that if ω ∈ A2, we have that the previously de-
fined spaces are such that: V(T ) ⊂ W

1,∞
0 (Ω) ⊂ H1

0(ω,Ω) and P(T ) ⊂ L∞(Ω) ⊂
L2(ω,Ω)/R. In addition, these pairs of spaces satisfy the following compatibility
condition [24, Theorems 6.2 and 6.4]: There exists β > 0 such that

β‖qT ‖L2(ω±1,Ω) ≤ sup
0 6=vT ∈V(T )

b∓(vT , qT )

‖∇vT ‖L2(ω∓1,Ω)

∀qT ∈ P(T ).(27)

As a final ingredient, if K+, K− ∈ T are such that K+ 6= K− and ∂K+∩∂K− =
γ, we define the jump or interelement residual of a discrete tensor valued function
wT on an internal side γ ∈ S by

(28) JwT · νK := wT · ν
+|K+ +wT · ν

−|K− ,

where ν+ and ν− correspond to the unit normals on γ pointing towards K+ and K−,
respectively.

5.2. The scheme. Let ω ∈ A2(Ω) and f ∈ H−1(ω,Ω). We introduce the follow-
ing discrete approximation of (14): Find (uT , pT ) ∈ V(T )× P(T ) such that.

(29)
a(uT ,vT ) + b−(vT , pT ) + c(uT ,uT ;vT ) + d(uT ,uT ;vT ) = 〈f ,vT 〉,

b+(uT , qT ) = 0,

for all vT ∈ V(T ) and qT ∈ P(T ), respectively.
Let us denote by BT the discrete version of the operator B induced by the dis-

cretization (29). The following results are based on the following assumption:

Assumption 6. The linear and bounded map BT is such that B−1
T

is uniformly
bounded over all partitions T .

The fact that the operator B−1
T

exists is not an issue. Since we are dealing with
finite dimensional spaces, the existence and uniqueness of solutions to the discrete
problem (29) are guaranteed by the compatibility condition (27). The most important
point in Assumption 6 is that B−1

T
satisfies a suitable estimate with respect to the

problem data that is uniform with respect to the discretization.
The existence of a unique discrete solution is the content of the following result.

Theorem 7 (well-posedness for small data). Let Ω ⊂ R
2 be a bounded Lipschitz

polytope, and let ω ∈ A2(Ω). If f is such that (19) holds with B−1 replaced by B−1
T

,

then (29) admits a unique solution (uT , pT ) ∈ V(T )×P(T ) satisfying the stability

bound

‖∇uT ‖L2(ω,Ω) ≤
3
2‖B

−1
T
‖‖f‖H−1(ω,Ω),(30)

‖pT ‖L2(ω,Ω) . ‖∇uT ‖L2(ω,Ω) + ‖∇uT ‖
2
L2(ω,Ω) + ‖f‖H−1(ω,Ω),(31)

The hidden constants are independent of uT , pT , and f .
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Proof. The proof follows from the arguments developed in the proof of Theorem
5. We briefly mention that instead of B−1 we use the fact that B−1

T
is uniformly

bounded with respect to discretization.

To present the auxiliary estimate of Lemma 8 and the quasi-best approximation
result of Theorem 9, we will operate under the following assumption: Let Ω be a
convex polytope, ω ∈ A2(Ω), and (u, p) ∈ H1

0(ω,Ω) × L
2(ω,Ω)/R with u solenoidal.

Let (BT u,BT p) ∈ V(T )×P(T ) be the Brinkman projection of (u, p), i.e., the pair
(BT u,BT p) is such that

(32)
a(BT u,vT ) + b−(vT ,BT p) = a(u,vT ) + b−(vT , p),

b+(BT u, qT ) = 0,

for all vT ∈ V(T ) and qT ∈ P(T ). Then, we have

‖∇BT u‖L2(ω,Ω) + ‖BT p‖L2(ω,Ω) . ‖∇u‖L2(ω,Ω) + ‖p‖L2(ω,Ω),(33)

where the hidden constant is independent of (u, p), (BT u,BT p), and hT . When the
Brinkman operator in (32) is replaced by the Stokes operator, the desired estimate
can be found in [24, Theorem 4.1]. We note that in view of the arguments developed
in the proof of [24, Theorem 4.1], the only missing ingredient to obtain (33) is the
error estimate [24, estimate (3.9)] for a regularized Green’s function. If this estimate
were available for the Brinkman operator and the finite element pairs considered in
(23)–(24) and (25)–(26), then the desired estimate (33) would follow immediately.

Lemma 8 (auxiliary estimate). Let Ω ⊂ R
2 be a convex polytope, and let ω ∈

A2(Ω). If f is such that (19) holds, then

(34) ‖∇(u−BT u)‖L2(ω,Ω) + ‖p−BT p‖L2(ω,Ω)

. inf
wT ∈V(T )

‖∇(u−wT )‖L2(ω,Ω) + inf
qT ∈P(T )

‖p− qT ‖L2(ω,Ω),

where the hidden constant is independent of (u, p), (BT u,BT p), and hT .

Proof. The proof is rather standard; it follows, for instance, from the arguments
developed in the proof of [24, Corollary 4.2].

As it is useful for the following analysis, we define, for v ∈ H1
0(ω

−1,Ω),

(35) Θ(u,uT ;v) := c(u,u;v)− c(uT ,uT ;v) + d(u,u;v) − d(uT ,uT ;v).

Note that Θ(u,uT ;v) = c(u, eu;v)+ c(eu,uT ;v)+d(u,u;v)−d(uT ,uT ;v). More-
over, for any v ∈ H1

0(ω
−1,Ω), the following bound can be derived from the estimates

in (17) allow us to conclude the following bound:

|Θ(u,uT ;v)| ≤ C2
4→2

(

‖∇u‖L2(ω,Ω) + ‖∇uT ‖L2(ω,Ω)

)

‖∇eu‖L2(ω,Ω)‖∇v‖L2(ω−1,Ω)

+ C2
4→2C2→2

(

‖∇u‖L2(ω,Ω) + ‖∇uT ‖L2(ω,Ω)

)

‖∇eu‖L2(ω,Ω)‖∇v‖L2(ω−1,Ω),

where we have written the differenceD := d(u,u;v)−d(uT ,uT ;v) asD = [d(u,u;v)−
d(uT ,u;v)] + d(uT ,u−uT ;v) and used that ||u|u ·v− |uT |u ·v| ≤ |u−uT ||u||v|.

We now obtain the following quasi-best approximation result.

Theorem 9 (quasi-best approximation result). Let Ω ⊂ R
2 be a convex polytope,

and let ω ∈ A2(Ω). Let f be sufficiently small so that (19) holds and that (19) also

holds, but with B−1 replaced by B−1
T

. Let us also assume that

3C

2
‖f‖H−1(ω,Ω)

[

‖B−1‖+ ‖B−1
T
‖
]

<
1

2
,(36)
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where C := CBC
2
4→2(1 + C2→2). Here, CB > 0 denotes the hidden constant in the

bound (33) and C4→2 and C2→2 denote the best constants in the Sobolev embeddings

H1
0(ω,Ω) →֒ L4(ω,Ω) and H1

0(ω
−1,Ω) →֒ L2(ω−1,Ω), respectively. Then, we can

establish the following quasi-best approximation result:

(37) ‖∇(u− uT )‖L2(ω,Ω) + ‖p− pT ‖L2(ω,Ω)

. inf
wT ∈V(T )

‖∇(u−wT )‖L2(ω,Ω) + inf
qT ∈P(T )

‖p−qT ‖L2(ω,Ω),

where the hidden constant may depend on f and u, but is independent of hT .

Proof. Define eT := BT u−uT and εT := BT p−pT , where (BT u,BT p) cor-
responds to the Brinkman projection of (u, p). Invoke the definition of the Brinkman

projection to infer that

(38)
a(eT ,vT ) + b−(vT , εT ) = −Θ(u,uT ;vT ) ∀vT ∈ V(T ),

b+(eT , qT ) = 0 ∀qT ∈ P(T ).

We now use the stability bound (33) of the Brinkman projection and the previously
derived bound for the term Θ defined in (35) to obtain

(39) ‖∇eT ‖L2(ω,Ω) + ‖εT ‖L2(ω,Ω)

≤ C
[

‖∇u‖L2(ω,Ω) + ‖∇uT ‖L2(ω,Ω)

]

‖∇(u− uT )‖L2(ω,Ω),

where C = CBC
2
4→2(1 + C2→2) and CB > 0 corresponds to the hidden constant in

the estimate (33). The error can therefore be controlled with a simple application of
the triangle inequality, which shows that

‖∇(u− uT )‖L2(ω,Ω) + ‖p− pT ‖L2(ω,Ω) ≤ ‖∇(u−BT u)‖L2(ω,Ω)

+ ‖p−BT p‖L2(ω,Ω) + ‖∇eT ‖L2(ω,Ω) + ‖εT ‖L2(ω,Ω),

combined with the estimate of Lemma 8, the bound (39), and the estimates (20) and
(30). In fact, we have

‖∇(u− uT )‖L2(ω,Ω) + ‖p− pT ‖L2(ω,Ω) . inf
wT ∈V(T )

‖∇(u−wT )‖L2(ω,Ω)

+ inf
qT ∈P(T )

‖p−qT ‖L2(ω,Ω)+
3C

2
‖f‖H−1(ω,Ω)

[

‖B−1‖+ ‖B−1
T
‖
]

‖∇(u−uT )‖L2(ω,Ω).

To conclude the proof, we use the assumption (36) so that the term involving ‖∇(u−
uT )‖L2(ω,Ω) that appears on the right-hand side of the previous estimate can be
absorbed into the left.

6. Finite element approximation: a posteriori error estimates. In this
section, we develop an a posteriori error estimator for problem (29). To do so, we
assume that the external density force f has a certain structure, i.e., f := Fδz, where
F ∈ R

2. It is therefore appropriate to consider α ∈ (0, 2) and the weight dαz as defined
in (3). We note that d±α

z
∈ A2, d

α
z
∈ A2(Ω), and δz ∈ H1

0 (d
−α
z
,Ω)′; see [39, Lemma

7.1.3] and [37, Remark 21.19].
In what follows, we assume that F ∈ R

2 is such that (19) holds. Moreover, we
assume that F ∈ R

2 is such that (19) holds with B−1 replaced by B−1
T

. We note that
under these conditions, problems (14) and (29) are well-posed; see Theorems 5 and 7.
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Let us begin our studies by redefining the spaces X and Y as follows: X =
H1

0(d
α
z ,Ω)×L

2(dαz ,Ω)/R and Y = H1
0(d

−α
z ,Ω)×L2(d−α

z ,Ω)/R. We define the velocity
error eu and the pressure error ep as

(40) eu := u− uT ∈ H1
0(d

α
z ,Ω), ep := p− pT ∈ L

2(dαz ,Ω)/R.

6.1. Ritz projection. As an instrumental step to perform a global reliability
analysis, we study a suitable Ritz projection (Φ, ψ) of the residuals. (Φ, ψ) is defined
as the solution to the system: Find (Φ, ψ) ∈ X such that

(41)
(∇Φ,∇v)L2(Ω) = a(eu,v)+b−(v, ep)+Θ(u,uT ;v) ∀v ∈ H1

0(d
−α
z
,Ω),

(ψ, q)L2(Ω) = b+(eu, q) ∀q ∈ L2(d−α
z ,Ω)/R.

Here, Θ(u,uT ;v) is defined as in (35).
As proved in the next result, the problem (41) is well-posed.

Theorem 10 (existence and uniqueness of the Ritz projection). There exists a

unique solution (Φ, ψ) ∈ X to the system (41). Moreover, the following estimate

holds:

(42) ‖∇Φ‖L2(dα
z
,Ω) + ‖ψ‖L2(dα

z
,Ω) . ‖∇eu‖L2(dα

z
,Ω) + ‖ep‖L2(dα

z
,Ω)

+ ‖∇eu‖L2(dα
z
,Ω)

(

‖∇u‖L2(dα
z
,Ω) + ‖∇uT ‖L2(dα

z
,Ω)

)

,

with a hidden constant independent of (Φ, ψ), (u, p), and (uT , pT ).

Proof. We start with the introduction of the linear functional G as follows:

G : H1
0(d

−α
z
,Ω)→ R, G(v) := a(eu,v) + b−(v, ep) + Θ(u,uT ;v).(43)

Let us show that G belongs to H1
0(d

−α
z ,Ω)′. To accomplish this task, we first control

the nonlinear term Θ(u,uT ; ·) defined in (35). Owing to the estimates of Lemma 3,
we obtain the bound

(44) ‖Θ(u,uT ; ·)‖
H1

0(d
−α
z ,Ω)′ ≤ C

2
4→2(1 + C2→2)‖∇eu‖L2(dα

z
,Ω)Λ(u,uT ),

where Λ(u,uT ) := ‖∇u‖L2(dα
z
,Ω) + ‖∇uT ‖L2(dα

z
,Ω). Consequently,

‖G‖
H1

0(d
−α
z

,Ω)′ ≤ (1 + C2→2)‖∇eu‖L2(dα
z
,Ω) + ‖ep‖L2(dα

z
,Ω)

+ C2
4→2(1 + C2→2)‖∇eu‖L2(dα

z
,Ω)Λ(u,uT ) =: Γ(u,uT , p).

Since dαz ∈ A2(Ω) and G ∈ (H1
0(d

−α
z ,Ω))′, we can use the results of [44] to derive the

existence of a unique Φ ∈ H1
0(d

α
z
,Ω) that satisfies the first equation of the problem

(41) and the estimate

(45) ‖∇Φ‖L2(dα
z
,Ω) . Γ(u,uT , p).

Finally, since eu ∈ H1
0(d

α
z ,Ω), b+(eu, ·) defines a linear and continuous functional in

the space L2(d−α
z ,Ω)/R. As a consequence, we deduce the existence and uniqueness

of ψ ∈ L2(dα
z
,Ω)/R satisfying the second equation in (41) and the estimate

‖ψ‖L2(dα
z
,Ω) . ‖div eu‖L2(dα

z
,Ω).(46)

Thus, we can derive the desired estimate (42) by collecting the bounds (45) and (46).
This concludes the proof.
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6.2. An upper bound for the error. In this section, we derive an upper bound
for the energy norm of the error in terms of the energy norm of the Ritz projection.

Let us begin the analysis by introducing the map F : H1
0(d

−α
z
,Ω)→ R as

F(v) := (∇Φ,∇v)L2(Ω) −Θ(u,uT ;v),(47)

where Θ(u,uT ;v) is defined in (35). It is clear that the map F is linear; here, u and
uT are given. In addition, in view of (44), F satisfies the estimate

(48) ‖F‖
H1

0(d
−α
z ,Ω)′ ≤ ‖∇Φ‖L2(dα

z
,Ω) + C2

4→2(1 + C2→2)‖∇eu‖L2(dα
z
,Ω)Λ(u,uT ),

where Λ(u,uT ) := ‖∇u‖L2(dα
z
,Ω) + ‖∇uT ‖L2(dα

z
,Ω).

Having introduced the linear map F, we note that, given the equations in problem
(41), the pair (eu, ep) can be considered as a solution to the following problem: Find
(eu, ep) ∈ X such that, for every v ∈ H1

0(d
−α
z ,Ω) and q ∈ L2(d−α

z ,Ω)/R,

(49) a(eu,v) + b−(v, ep) = F(v), b+(eu, q) = (ψ, q)L2(Ω).

With all these ingredients at hand, we present the following result.

Proposition 11 (upper bound for the error). Let F ∈ R
2 be such that

1− CBC
2
4→2(1 + C2→2)(‖∇u‖L2(dα

z
,Ω) + ‖∇uT ‖L2(dα

z
,Ω)) ≥ λ > 0,(50)

where λ < 1. Then, the following upper bound for the error (eu, ep) holds:

(51) ‖∇eu‖L2(dα
z
,Ω) + ‖ep‖L2(dα

z
,Ω) . ‖∇Φ‖L2(dα

z
,Ω) + ‖ψ‖L2(dα

z
,Ω),

with a hidden constant independent of (u, p), (uT , pT ), and (Φ, ψ).

Proof. Invoke the estimate in Theorem 2 and the bound (48) to deduce that

‖∇eu‖L2(dα
z
,Ω) + ‖ep‖L2(dα

z
,Ω) ≤ CB

(

‖F‖
H1

0(d
−α
z

,Ω)′ + ‖ψ‖L2(dα
z
,Ω)

)

≤ CB

(

‖∇Φ‖L2(dα
z
,Ω) + C2

4→2(1 + C2→2)‖∇eu‖L2(dα
z
,Ω)Λ(u,uT ) + ‖ψ‖L2(dα

z
,Ω)

)

.

With this bound at hand, we invoke the smallness assumption (50) to conclude.

6.3. A residual-type error estimator. In what follows, we introduce an a
posteriori error estimator for the finite element approximation (29) of problem (14)
based on the discrete pairs (V(T ),P(T )) defined in (23)–(24) or (25)–(26). To
present it, we first introduce, for K ∈ T , the local distance

(52) DK := max
x∈K
|x− z|.

We thus define, for K ∈ T and γ ∈ S , the element residual RK and the interelement

residual Jγ as

RK := (∆uT − uT − (uT · ∇)uT − uT div uT − |uT |uT −∇pT )|K .(53)

Jγ := J(∇uT − pT I) · νK,(54)

where (uT , pT ) denotes the solution to the discrete problem (29) and I ∈ R
2×2

denotes the identity matrix. The jump J(∇uT − pT I) · νK of the discrete tensor
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valued function ∇uT − pT I is defined as in (28). For K ∈ T and α ∈ (0, 2), we
define the element error indicator

(55) Eα(uT , pT ;K) :=
(

h2KD
α
K‖RK‖

2
L2(K) + ‖div uT ‖

2
L2(dα

z
,K)

+hKD
α
K‖Jγ‖

2
L2(∂K\∂Ω) + hαK |F|

2#({z} ∩K)
)

1
2

.

By #(E) we understand the cardinality of the set E. We note that in (55) we consider
our elements K to be closed sets. We define the a posteriori error estimator as

Eα(uT , pT ;T ) :=

(

∑

K∈T

E2α(uT , pT ;K)

)
1
2

.(56)

6.4. A quasi-interpolation operator. To derive a posteriori error estimates,
we will use the quasi-interpolation operator ΠT : L1(Ω)→ V(T ) introduced in [43].
In particular, the following properties of ΠT will be relevant to our analysis [6, 43].

Proposition 12 (stability and interpolation estimates for the operator ΠT ). Let
K ∈ T and α ∈ (−2, 2). Then, for every v ∈ H1(d±α

z ,N ∗
K), we have

‖∇ΠT v‖
L2(d±α

z
,K) . ‖∇v‖L2(d±α

z
,N∗

K
),(57)

‖v −ΠT v‖
L2(d±α

z ,K) . hK‖∇v‖L2(d±α
z ,N∗

K
).(58)

Moreover, if α ∈ (0, 2), then

‖v −ΠT v‖L2(K) . hKD
α
2

K‖∇v‖L2(d−α
z

,N∗
K
).(59)

The hidden constants in both estimates are independent of v, K, and T .

Proof. See [6, Proposition 4].

Proposition 13 (trace interpolation estimate for the operator ΠT ). Let K ∈ T ,

γ ⊂ SK , α ∈ (0, 2), and v ∈ H1(d−α
z
,N ∗

K). Then,

(60) ‖v−ΠT v‖L2(γ) . h
1
2

KD
α
2

K‖∇v‖L2(d−α
z ,N∗

K
),

where the hidden constant is independent of v, K, and the mesh T .

Proof. See [6, Proposition 5].

6.5. Reliablity. Let us now derive a global reliability bound for the estimator
Eα defined in (56).

Theorem 14 (global reliability). Let α ∈ (0, 2), let the pair (u, p) ∈ H1
0(d

α
z ,Ω)×

L2(dαz ,Ω)/R be the solution to (14), and let (uT , pT ) ∈ V(T )×P(T ) be the solution

to the discrete system (29). If F is such that (50) holds, then

‖∇eu‖L2(dα
z
,Ω) + ‖ep‖L2(dα

z
,Ω) . Eα(uT , pT ;T ),(61)

with a hidden constant independent of (u, p) and (uT , pT ), the size of the elements

in the mesh T , and #T .
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Proof. To provide the computable upper bound (61), we will utilize the fact that
the energy norm of the error can be bounded in terms of the energy norm of the Ritz
projection and proceed in three steps.

Step 1: Let v ∈ H1
0(d

−α
z ,Ω) be arbitrary. We utilize the first equation of problems

(41) and (14) to conclude that

(62) (∇Φ,∇v)L2(Ω) = 〈Fδz,v〉 −
∑

K∈T

ˆ

K

(∇uT : ∇v + uT · v

−uT ⊗ uT : ∇v + |uT |uT · v − pT div v) .

Applying a standard integration by parts argument, on the basis of the fact that, for
γ ∈ S , (J(uT ⊗ uT )νK,v)L2(γ) = 0, yields the identity

(∇Φ,∇v)L2(Ω) = 〈Fδz,v〉 +
∑

γ∈S

ˆ

γ

Jγ · v +
∑

K∈T

ˆ

K

RK · v.(63)

We recall that the element residual RK and the interelement residual Jγ are defined
as in (53) and (54), respectively.

Let us now observe that, for every (vT , qT ) ∈ V(T )× P(T ), we have

〈Fδz,vT 〉 − a(uT ,vT )− b−(vT , pT )− c(uT ,uT ;vT )− d(uT ,uT ;vT ) = 0,

which follows from rewriting the first equation in (29). Set vT = ΠT v into the
previous relation, apply an integration by parts formula, and utilize the relation (63)
to arrive at

(64) (∇Φ,∇v)L2(Ω) = 〈Fδz,v −ΠT v〉 +
∑

K∈T

ˆ

K

RK · (v −ΠT v)

+
∑

γ∈S

ˆ

γ

Jγ · (v −ΠT v) =: I + II + III.

In what follows, we control the terms I, II, and III following the arguments devel-
oped in [7]. Let us begin with the control of the term I. To accomplish this task, we
invoke the local bound of [2, Theorem 4.7], the interpolation error bound (58), and
the stability estimate (57) as follows: If K ∈ T is such that z ∈ K, then

I . |F|
(

h
α
2 −1

K ‖v −ΠT v‖
L2(d−α

z
,K) + h

α
2

K‖∇(v −ΠT v)‖
L2(d−α

z
,K)

)

. |F|h
α
2

K‖∇v‖L2(d−α
z ,N∗

K
).

To bound the terms II and III, we invoke Hölder’s inequality and the interpolation
error estimates (59) and (60) to obtain

II .
∑

K∈T

hKD
α
2

K‖RK‖L2(K)‖∇v‖L2(d−α
z ,N∗

K
),

III .
∑

γ∈S

h
1
2

KD
α
2

K‖Jγ‖L2(γ)‖∇v‖L2(d−α
z

,N∗
K
).

Having bounded the terms I, II, and III, we invoke the inf-sup condition (16) and
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the identity (64) to obtain an estimate for ‖∇Φ‖L2(dα
z
,Ω):

(65) ‖∇Φ‖2
L2(dα

z
,Ω) .

[

sup
0 6=v∈H1

0(d
−α
z ,Ω)

(∇Φ,∇v)

‖∇v‖
L2(d−α

z
,Ω)

]2

.
∑

K∈T

(

hKD
α
K‖Jγ‖

2
L2(∂K\∂Ω) + h2KD

α
K‖RK‖

2
L2(K) + hαK |F|

2#({z} ∩K)
)

,

upon utilizing a finite overlapping property of stars, which guarantees that

[

∑

K∈T

‖∇v‖2
L2(d−α

z
,N∗

K
)

]

1
2

. ‖∇v‖
L2(d−α

z
,Ω).

Consequently, we have ‖∇Φ‖L2(dα
z
,Ω) . Eα(uT , pT ;T ).

Step 2: Let ψ ∈ L2(dαz ,Ω). A basic computation reveals that the function q̃ :=
dαzψ ∈ L

2(d−α
z ,Ω). Define q = q̃ + c, where c ∈ R is such that q ∈ L2(d−α

z ,Ω)/R.
Substituting q into the second equation of problem (41), we obtain

‖ψ‖2L2(dα
z
,Ω) = (ψ, q)L2(Ω) = b+(eu, q)

= b+(eu, d
α
zψ) = −b+(uT , d

α
zψ) ≤ ‖div uT ‖L2(dα

z
,Ω)‖ψ‖L2(dα

z
,Ω),

upon utilizing that
´

Ω
ψ = 0 and

´

Ω
div eu = 0. We have thus obtained the estimate

‖ψ‖L2(dα
z
,Ω) ≤ ‖div uT ‖L2(dα

z
,Ω).

Step 3: The desired estimate (61) is obtained from (51) and the estimates derived
in steps 1 and 2. This completes the proof.

6.6. Local efficiency bounds. We use classical residual estimation techniques
based on the bubble functions constructed in [2] to derive efficiency bounds for the
local indicator Eα(uT , pT ;K) defined in (55).

Given K ∈ T , we introduce an element bubble function ϕK which satisfies the
following properties: 0 ≤ ϕK ≤ 1,

ϕK(z) = 0, |K| .

ˆ

K

ϕK , ‖∇ϕK‖L∞(RK) . h−1
K ,(66)

and there exists a simplex K∗ ⊂ K such that RK := supp(ϕK) ⊂ K∗. Notice that,
since ϕK satisfies (66), we have the bound

‖θ‖L2(RK) . ‖ϕ
1
2

Kθ‖L2(RK) ∀θ ∈ P5(RK).(67)

Second, given γ ∈ S , we introduce a bubble function ϕγ that satisfies the follow-
ing properties: 0 ≤ ϕγ ≤ 1,

ϕγ(z) = 0, |γ| .

ˆ

γ

ϕγ , ‖∇ϕγ‖L∞(Rγ) . h−1
γ ,(68)

and Rγ := supp(ϕγ) is such that, if Nγ = {K,K ′}, there are simplices K∗ ⊂ K and
K ′

∗ ⊂ K
′ such that Rγ ⊂ K∗ ∪K ′

∗ ⊂ K ∪K
′.

The following estimates are relevant to the efficiency analysis to be performed.
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Proposition 15 (estimates for bubble functions). Let α ∈ (0, 2), K ∈ T , and

ϕK be the function that satisfies (66). Then,

hK‖∇(θϕK)‖
L2(d−α

z
,K) . D

−α
2

K ‖θ‖L2(K) ∀θ ∈ P5(K).(69)

Let α ∈ (0, 2), γ ∈ S , and ϕγ be the function that satisfies (68). Then

h
1
2

K‖∇(θϕγ)‖L2(d−α
z ,Nγ)

. D
−α

2

K ‖θ‖L2(γ) ∀θ ∈ P3(γ).(70)

θ is extended to the elements in Nγ as a constant along the direction normal to γ.

Proof. See [2, Lemma 5.2].

We are now ready to analyze efficiency bounds for the local error indicator
Eα(uT , pT ;K) defined in (55).

Theorem 16 (local efficiency). Let the pair (u, p) ∈ H1
0(d

α
z
,Ω)×L2(dα

z
,Ω)/R be

the solution to (14), and let (uT , pT ) ∈ V(T )×P(T ) be the solution to the discrete

problem (29). If F is such that (50) holds, then

(71) Eα(uT , pT ;K)2 . ‖∇eu‖
2
L2(dα

z
,NK) + ‖ep‖

2
L2(dα

z
,NK) + h2K‖eu‖

2
L2(dα

z
,NK)

+ (1 + h2K)‖eu‖
2
L4(dα

z
,NK) +

∑

K′∈N∗
K

h2K′Dα
K′‖|uT |uT −ΠK′(|uT |uT )‖2

L2(K′).

Here, ΠK corresponds to orthogonal projection operator onto [P0(K)]2, N ∗
K is defined

in (22), and the hidden constant is independent of (u, p) and (uT , pT ), the size of

the elements in the mesh T , and #T .

Proof. We bound each contribution in (55) separately. In doing so, we proceed
in five steps.

Step 1: Let K ∈ T . In a first step, we bound the term h2KD
α
K‖RK‖2L2(K). To

accomplish this task, we define

R̃K := (∆uT − uT − (uT · ∇)uT − uT div uT −ΠK(|uT |uT )−∇pT )|K .

Notice that R̃K = RK+ |uT |uT −ΠK(|uT |uT ). A simple application of the triangle
inequality yields a first estimate for ‖RK‖L2(K):

‖RK‖L2(K) ≤ ‖R̃K‖L2(K) + ‖ΠK(|uT |uT )− |uT |uT ‖L2(K).(72)

It thus suffices to control ‖R̃K‖L2(K). To do this, we define φK := ϕKR̃K , and
observe that (67) guarantees the bound

‖R̃K‖
2
L2(K) .

ˆ

RK

|R̃K |
2ϕK =

ˆ

K

R̃K · φK .(73)

Let us now utilize that ϕK(z) = 0 to immediately deduce the relations φK(z) =
ϕK(z)R̃K (z) = 0. We thus set v = φK as a test function in the identity (63) and use
that φK |γ = 0, for every γ ∈ SK , to obtain

ˆ

K

R̃K · φK = (∇Φ,∇φK)L2(Ω) +

ˆ

K

(|uT |uT −ΠK(|uT |uT )) · φK .(74)
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We now control |(∇Φ,∇φK)L2(K)|. For this purpose, we set v = φK as a test function
in the first equation of problem (41) and use the property suppφK ⊂ K and Hölder’s
inequality to obtain the bound

(75) |(∇Φ,∇φK)L2(K)| . ‖∇eu‖L2(dα
z
,K)‖∇φK‖L2(d−α

z
,K)

+ ‖eu‖L2(dα
z
,K)‖φK‖L2(d−α

z
,K) + ‖ep‖L2(dα

z
,K)‖∇φK‖L2(d−α

z
,K) + ‖eu‖L4(dα

z
,K)

·
[

‖u‖L4(dα
z
,K) + ‖uT ‖L4(dα

z
,K)

]

[

‖∇φK‖L2(d−α
z ,K) + ‖φK‖L2(d−α

z ,K)

]

.

We now notice that, in view of [26, Theorem 1.3], we have the bounds: ‖u‖L4(dα
z
,K) .

‖∇u‖L2(dα
z
,Ω) and ‖uT ‖L4(dα

z
,K) . ‖∇uT ‖L2(dα

z
,Ω). On the other hand, the estimate

(69) and the estimate (5.6) in [2] allow us to conclude

‖∇φK‖L2(d−α
z ,K) . h−1

K D
−α

2

K ‖R̃K‖L2(K), ‖φK‖L2(d−α
z ,K) . D

−α
2

K ‖R̃K‖L2(K),

respectively. Based on these bounds, the estimates (73) and (75) in conjunction with
the relation (74) and the smallness assumption (50) allow us to derive the local a
posteriori bound

(76) h2KD
α
K‖R̃K‖

2
L2(K) . ‖∇eu‖

2
L2(dα

z
,K) + ‖ep‖

2
L2(dα

z
,K) + h2K‖eu‖

2
L2(dα

z
,K)

+ (1 + h2K)‖eu‖
2
L4(dα

z
,K) + h2KD

α
K‖|uT |uT −ΠK(|uT |uT )‖2

L2(K).

A collection of (72) and (76) yields the desired estimate for h2KD
α
K‖RK‖2L2(K).

Step 2: Let K ∈ T and γ ∈ SK . In what follows, we bound hKD
α
K‖Jγ‖

2
L2(γ). To

do this, we use arguments similar to those leading to (76) but now using the bubble
function ϕγ . Define the function Λγ = ϕγJγ , where Jγ and ϕγ are defined in (54) and
(68), respectively. We utilize the construction of the bubble function ϕγ to deduce
the bound

‖Jγ‖
2
L2(γ) .

ˆ

γ

|Jγ |
2ϕγ =

ˆ

γ

Jγ ·Λγ .(77)

Now, set v = Λγ in the identity (63) and use that Λγ is such that Λγ(z) = 0 and
supp(Λγ) ⊆ Rγ = supp(ϕγ) ⊂ K∗ ∪K ′

∗ ⊂ ∪{K
′ : K ′ ∈ Nγ} to arrive at

(78)

ˆ

γ

Jγ ·Λγ = (∇Φ,∇Λγ)L2(Ω) −
∑

K′∈Nγ

ˆ

K′

R̃K′ ·Λγ

+
∑

K′∈Nγ

ˆ

K′

(|uT |uT −ΠK′(|uT |uT )) ·Λγ .
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In view of this identity, similar arguments to those developed to obtain (75) yield

(79)

ˆ

γ

Jγ ·Λγ ≤
∣

∣(∇Φ,∇Λγ)L2(Nγ )

∣

∣

+
∑

K′∈Nγ

(

‖R̃K′‖L2(K′) + ‖|uT |uT −ΠK′(|uT |uT )‖L2(K′)

)

‖Λγ‖L2(K′)

.
∑

K′∈Nγ

(

‖∇eu‖L2(dα
z
,K′) + ‖ep‖L2(dα

z
,K′)

)

‖∇Λγ‖L2(d−α
z ,K′) + ‖eu‖L2(dα

z
,K′)

· ‖Λγ‖L2(d−α
z

,K′) + ‖eu‖L4(dα
z
,K′)

(

‖∇Λγ‖L2(d−α
z

,K′) + ‖Λγ‖L2(d−α
z

,K′)

)

+
∑

K′∈Nγ

(

‖R̃K′‖L2(K′) + ‖|uT |uT −ΠK′(|uT |uT )‖L2(K′)

)

‖Λγ‖L2(K′).

The terms ‖∇Λγ‖L2(d−α
z

,K′) and ‖Λγ‖L2(d−α
z

,K′) can be controlled in view of (70) and

[2, estimate (5.8)], respectively. In fact, we have

(80) ‖∇Λγ‖L2(d−α
z

,K′) . h
− 1

2

K′ D
−α

2

K′ ‖Jγ‖L2(γ), ‖Λγ‖L2(d−α
z

,K′) . h
1
2

K′D
−α

2

K′ ‖Jγ‖L2(γ).

We also observe that ‖Λγ‖L2(K′) ≈ |K
′|

1
2 |γ|−

1
2 ‖Λγ‖L2(γ) ≈ h

1
2

K′‖Λγ‖L2(γ), as a con-
sequence of |K ′| ≈ h2K′ , |γ| ≈ hK′ , and standard arguments. With these ingredients
at hand, the inequalities in (79) show that

ˆ

γ

Jγ ·Λγ .
∑

K′∈Nγ

(

‖∇eu‖L2(dα
z
,K′) + ‖ep‖L2(dα

z
,K′)

)

h
− 1

2

K′ D
−α

2

K′ ‖Λγ‖L2(γ)

+
∑

K′∈Nγ

[

‖eu‖L2(dα
z
,K′)h

1
2

K′ + ‖eu‖L4(dα
z
,K′)(h

− 1
2

K′ + h
1
2

K′)
]

D
−α

2

K′ ‖Λγ‖L2(γ)

+
∑

K′∈Nγ

h
1
2

K′(‖R̃K′‖L2(K′) + ‖|uT |uT −ΠK′(|uT |uT )‖L2(K′))‖Λγ‖L2(γ).

The desired control for the term hKD
α
K‖Jγ‖

2
L2(γ) follows from replacing the previous

estimate in (77):

(81) hKD
α
K‖Jγ‖

2
L2(γ) .

∑

K′∈Nγ

(

‖∇eu‖
2
L(dα

z
,K′)+‖ep‖

2
L2(dα

z
,K′) + h2K′‖eu‖

2
L2(dα

z
,K′)

+ (1 + h2K′)‖eu‖
2
L4(dα

z
,K′) + h2K′Dα

K′‖|uT |uT −ΠK′(|uT |uT )‖2
L2(K′)

)

.

Step 3: Let K ∈ T . The control of ‖div uT ‖L2(dα
z
,K) follows easily from the

mass conservation equation div u = 0. In fact,

‖div uT ‖L2(dα
z
,K) = ‖div eu‖L2(dα

z
,K) . ‖∇eu‖L2(dα

z
,K).(82)

Step 4: Let K ∈ T . We now control hαK |F|
2#({z} ∩K). Let us first note that if

K∩{z} = ∅, then the desired bound (71) follows directly from the estimates obtained
in the Steps 1, 2, and 3. On the other hand, if K ∩ {z} = {z}, we must obtain a
bound for hαK |F|

2 in (55). To accomplish this task, we invoke the smooth function µ
introduced in the proof of [2, Theorem 5.3], which is such that

µ(z) = 1, ‖µ‖L∞(Ω) = 1, ‖∇µ‖L∞(Ω) . h−1
K , supp(µ) ⊂ N ∗

K .(83)
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With µ at hand, we define vµ := Fµ ∈ H1
0(d

−α
z
,Ω). Let us now invoke the fact that

(u, p) and (Φ, ψ) solve problems (14) and (41), respectively, to obtain

(84) |F|2 = 〈Fδz,vµ〉 = a(u,vµ) + b−(vµ, p) + c(u,u;vµ) + d(u,u;vµ)

= (∇Φ,∇vµ)L2(Ω) + a(uT ,vµ) + b−(vµ, pT ) + c(uT ,uT ;vµ) + d(uT ,uT ;vµ).

Since supp(µ) ⊂ N ∗
K , similar arguments to the ones utilized to obtain (75) yields

(85) |(∇Φ,∇vµ)L2(Ω)| . ‖eu‖L2(dα
z
,N∗

K
)‖vµ‖L2(d−α

z
,N∗

K
)

+
[

‖∇eu‖L2(dα
z
,N∗

K
) + ‖ep‖L2(dα

z
,N∗

K
)

]

‖∇vµ‖L2(d−α
z ,N∗

K
)

+ ‖eu‖L4(dα
z
,N∗

K
)

[

‖∇vµ‖L2(d−α
z

,N∗
K
) + ‖vµ‖L2(d−α

z
,N∗

K
)

]

.

In view of the identity (84), the bound (85), and basic estimates on the basis of an
integrations by parts arguments, we obtain

|F|2 .
[

‖∇eu‖L2(dα
z
,N∗

K
) + ‖ep‖L2(dα

z
,N∗

K
)

]

‖∇vµ‖L2(d−α
z

,N∗
K
) + ‖eu‖L2(dα

z
,N∗

K
)

· ‖vµ‖L2(d−α
z

,N∗
K
) + ‖eu‖L4(dα

z
,N∗

K
)

[

‖∇vµ‖L2(d−α
z

,N∗
K
) + ‖vµ‖L2(d−α

z
,N∗

K
)

]

+
∑

K′∈T :K′⊂N∗
K

(

‖R̃K′‖L2(K′) + ‖|uT |uT −ΠK′(|uT |uT )‖L2(K′)

)

‖vµ‖L2(K′)

+
∑

K′∈T :K′⊂N∗
K

∑

γ∈SK′ :γ 6⊂∂NK

‖Jγ‖L2(γ)‖vµ‖L2(γ).

We now use the estimates

‖µ‖L2(γ) . h
1
2

K , ‖µ‖L2(N∗
K
) . hK , ‖µ‖L2(d−α

z
,N∗

K
) . h

1−α
2

K ,

and ‖∇µ‖
L2(d−α

z
,N∗

K
) . h

−α
2

K together with the fact that, since z ∈ K, we have hK ≈

DK , to conclude that

(86) |F|2 . h
−α

2

K |F|

[

‖∇eu‖
2
L2(dα

z
,N∗

K
)+‖ep‖

2
L2(dα

z
,N∗

K
) + h2K‖eu‖

2
L2(dα

z
,N∗

K
)

+ (1 + h2K)‖eu‖
2
L4(dα

z
,N∗

K
)

]
1
2

+ h
−α

2

K |F|

[

∑

K′∈T :K′⊂N∗
K

∑

γ∈SK′ :γ 6⊂∂N∗
K

h
1
2

K′D
α
2

K′‖Jγ‖L2(γ)

+
∑

K′∈T :K′⊂N∗
K

hK′D
α
2

K′

(

‖R̃K′‖L2(K′) + ‖|uT |uT −ΠK′(|uT |uT )‖L2(K′)

)

]

.

Replacing the estimates (76) and (81) in the previous bound allows us to conclude.
Step 5: By combining the estimates derived in the previous steps, i.e., estimates

(76), (81), (82) and (86), we obtain the desired local efficiency estimate (71). This
completes the proof.

7. Numerical experiments. In this section, we present a series of numerical
examples that illustrate the performance of the estimator Eα.

The numerical examples were carried out with a C++ code implemented by us. All
matrices were assembled exactly, and the global linear systems were solved with the



A BRINKMAN–DARCY–FORCHHEIMER MODEL UNDER SINGULAR FORCING 21

multifrontal massively parallel sparse direct solver (MUMPS) [10, 11]. A quadrature
formula was used to compute the right-hand sides, the local indicators, and the error
estimator, which guarantees accuracy by using polynomials of degree 19. ParaView
[12] was used to visualize suitable finite element approximations.

For a given partition T , we solve the discrete system (29) with the lowest order
Taylor–Hood pair (25)–(26) using the iterative strategy described in Algorithm 1.
Once we obtain a discrete solution, for each K ∈ T we compute the local error
indicator Eα(uT , pT ;K), defined in (55), to drive the adaptive procedure described
in Algorithm 2. In this way, a sequence of adaptively refined meshes is generated
from the initial meshes shown in Figure 1.

(A.1) (A.2) (A.3)

Fig. 1. The initial meshes used in the adaptive algorithm, Algorithm 2, when (A.1) Ω = (0, 1)2,
(A.2) Ω = (−1, 1)2 \ [0, 1) × (−1, 0], and (A.3) Ω = ((−1.5, 1.5) × (0, 1)) ∪ ((−0.5, 0.5)× (−2, 1)).

Finally, we define the total number of degrees of freedom as Ndof := dim V(T )+
dim P(T ).

Algorithm 1 Iterative Scheme.

Input: Initial guess (u0
T
, p0

T
) ∈ V(T ) × P(T ), interior point z ∈ Ω, F ∈ R

2, and
tol=10−8. Set i=1;
1: Find (ui

T
, pi

T
) ∈ V(T )× P(T ) such that

a(ui
T
,vT ) + b−(vT , p

i
T
) + c(ui−1

T
,ui

T
;vT ) + d(ui−1

T
,ui

T
;vT ) = 〈Fδz,vT 〉,

b+(u
i
T
, qT ) = 0,

for all vT ∈ V(T ) and qT ∈ P(T ), respectively.
2: If |(ui

T
, pi

T
) − (ui−1

T
, pi−1

T
)| > tol, set i ← i + 1 and go to step 1. Otherwise,

return (uT , pT ) = (ui
T
, pi

T
). Here, | · | denotes the Euclidean norm.

Algorithm 2 Adaptive Algorithm.

Input: Initial mesh T0, interior point z ∈ Ω, α ∈ (0, 2), and F ∈ R
2;

1: Utilize Algorithm 1 to solve the discrete problem (29);
2: For each K ∈ T compute the local error indicator Eα(uT , pT ;K) defined in (55);
3: Mark an element K ∈ T for refinement if;

Eα(uT , pT ;K) > 1
2 max
K′∈T

Eα(uT , pT ;K ′);

4: From step 3 construct a new mesh using a longest edge bisection algorithm. Set
i← i+ 1 and go to step 1.

7.1. Convex and non-convex domains. We investigate the performance of
the developed a posteriori error estimator in problems posed on convex and non-
convex domains with homogeneous Dirichlet boundary conditions. We recall that we
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are considering the discrete problem (29) in the discrete framework defined by the
spaces (25)–(26). This framework is called the Taylor–Hood approximation.

7.1.1. Convex domain. We investigate the performance of the a posteriori
error estimator Eα(uT , pT ;T ) when used to guide the adaptive procedure of Al-

gorithm 2. In particular, we study the effects of varying the exponent α in the
Muckenhoupt weight. For this purpose, we consider Ω = (0, 1)2, z = (0.5, 0.5)T,
F = (1, 1)T, and α = {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75}.

Figure 2 shows the results obtained for Example 1. We note that the devised a
posteriori error estimator Eα achieves optimal computational convergence rates for all
considered values of the parameter α. We also note that most of the refinement focus
on the singular source point.

Eα(uT , pT ; T )

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

Ndof
−1

α = 0.25
α = 0.5
α = 0.75
α = 1.0
α = 1.25
α = 1.5
α = 1.75

(B.1) (B.2) (B.3) (B.4)

Fig. 2. Example 1: Computational rates of convergence for Eα(uT , pT ;T ) considering α ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75} (B.1) and the meshes obtained after 20 adaptive refinements for
α = 0.5 (156 elements and 85 vertices) (B.2); α = 1.0 (192 elements and 105 vertices) (B.3); and
α = 1.5 (304 elements and 167 vertices) (B.4).

7.1.2. Non-convex domain. We consider Ω = (−1, 1)2 \ [0, 1) × (−1, 0], z =
(0.5, 0.5)T, and F = (1, 1)T. Figure 3 shows the results obtained for Example 2. We
note that optimal computational convergence rates are obtained for all considered
values of the parameter α: α ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75}. We also note that
most of the refinement is concentrated around the singular source point and that the
geometric singularity for α ≥ 1 is quickly noticed

Eα(uT , pT ; T )
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Fig. 3. Example 2: Computational rates of convergence for Eα(uT , pT ;T ) considering α ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75} (B.1) and the meshes obtained after 40 adaptive refinements for
α = 0.5 (534 elements and 280 vertices) (B.2); α = 1.0 (1917 elements and 994 vertices) (B.3);
and α = 1.5 (2401 elements and 1247 vertices) (B.4).

7.2. A series of Dirac delta points. We consider Ω = ((−1.5, 1.5)× (0, 1)) ∪
((−0.5, 0.5) × (−2, 1)) and go beyond the theory by considering nonhomogeneous
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Dirichlet boundary conditions and a series of Dirac delta sources on the right-hand
side:

u = (y(1 − y), 0)T

u = (0, 0)T

u = (0, 0)T

u = (0, 0)T

u = (0, 0)T

u = (0, 0)T

u = (y(1 − y), 0)T

u = (0, 0)T

z1

z2

b

b

Fig. 4. Example 3: T–shaped domain with Dirac delta source points located at z1 = (0, 0.5)
and z2 = (0,−1).

(87) −∆u+ (u · ∇)u+ |u|u+ u+∇p =
∑

z∈Z

Fzδz in Ω,

where Z ⊂ Ω denotes a finite set with #Z > 1 and {Fz}z∈Z ⊂ R
2. In particular, we

consider Fz = (1, 1)T for all z ∈ Z. Let us introduce the weight

ρ(x) =

{

dα
z
(x), ∃ z ∈ Z : |x− z| < dZ

2 ,

1, |x− z| ≥ dZ
2 ∀ z ∈ Z,

(88)

where dZ = min{dist(Z, ∂Ω),min{|z − z′| : z, z′ ∈ Z, z 6= z′}}. With this weight at
hand, we modify the definition of the spaces X and Y as follows: X = H1

0(ρ,Ω) ×
L2(ρ,Ω) \ R, and Y = H1

0(ρ
−1,Ω) × L2(ρ−1,Ω) \ R. The weight ρ belongs to the

Muckenhoupt class A2 (see [3, Theorem 6]) and also to the restricted class A2(Ω).
Define DK,Z := minz∈Z {maxx∈K |x− z|}. With all these ingredients, we propose the
following a posteriori error estimator when considering the Taylor–Hood scheme:

Dα(uT , pT ;T ) :=

(

∑

K∈T

D2
α(uT , pT ;K)

)
1
2

,(89)

where the local errors indicators are such that

(90) D2
α(uT , pT ;K) := h2KD

α
K,Z‖RK‖

2
L2(K) + hKD

α
K,Z‖Jγ‖

2
L2(∂K\∂Ω)

+‖div uT ‖
2
L2(ρ,K) +

∑

z∈Z∩K

hαK |Fz|
2.

Figure 5 shows the results obtained for Example 3. It shows the adaptive mesh
obtained after 60 iterations, the streamlines associated with the velocity field uT ,
the pressure contours, and the velocity and pressure elevations. It can be observed
that the developed a posteriori error estimator achieves an optimal computational
convergence rate and that most of the refinement is concentrated on the singular
sources and the geometric singularities involved.

8. Conflict of interest. The authors have not disclosed any competing inter-
ests.
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Dα(uT , pT ;T )

10
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10
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(C.1) (C.2) (C.3)

(C.4) (C.5) (C.6)

Fig. 5. Example 3: Computational rate of convergence for D1.0(uT , pT ;T ) (C.1); the mesh
obtained after 60 adaptive refinements (4378 elements and 2263 vertices) (C.2); streamlines for
|uT | (C.3); elevation for |uT | (C.4); pressure contour (C.5); and elevation for pT (C.6).

9. Data availability. The datasets generated during and/or analyzed during
the current study are available from the corresponding author on reasonable request.
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