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MULTILEVEL METHODS FOR NONUNIFORMLY ELLIPTIC

OPERATORS AND FRACTIONAL DIFFUSION

LONG CHEN, RICARDO H. NOCHETTO, ENRIQUE OTÁROLA,
AND ABNER J. SALGADO

Abstract. We develop and analyze multilevel methods for nonuniformly el-
liptic operators whose ellipticity holds in a weighted Sobolev space with an
A2–Muckenhoupt weight. Using the so-called Xu-Zikatanov (XZ) identity,
we derive a nearly uniform convergence result under the assumption that the

underlying mesh is quasi-uniform. As an application we also consider the so-
called α-harmonic extension to localize fractional powers of elliptic operators.
Motivated by the scheme proposed by the second, third and fourth authors, we
present a multilevel method with line smoothers and obtain a nearly uniform
convergence result on anisotropic meshes. Numerical experiments illustrate
the performance of our method.

1. Introduction

In this work we are interested in the development and analysis of efficient and
fast solvers for equations that arise from finite element discretizations of elliptic
boundary value problems with the most general class of coefficients that allow for
a regularity theory [30]. As an application, we consider the equations that appear
in the discretization of the fractional Laplacian based on the scheme proposed and
analyzed in [44].

Fractional and nonlocal operators can be found in a number of applications
such as biophysics [15], finance [19, 56], turbulence [22], image processing [31, 32],
materials science [3], optimization [27], porous media flow [25], peridynamics [26,
46], nonlocal continuum field theories [28] and others. From this it is evident
that the particular type of operator appearing in applications can vary widely and
that a unified analysis of their discretizations might be well beyond our reach. A
more modest, but nevertheless quite ambitious, goal is to develop an analysis and
approximation of a model operator that is representative of a particular class. This
is the purpose of our recent research program, in which we deal with an important
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nonlocal operator: fractional powers of the Dirichlet Laplace operator (−Δ)s, with
s ∈ (0, 1), which for convenience we will simply call the fractional Laplacian.

In previous work [44] we proposed a discretization technique for this operator
and provided an a priori error analysis for it. In this paper, we shall be interested in
fast multilevel methods for the approximate solution of the discrete problems that
arise from the discretization of the fractional Laplacian. In other words, we shall
be concerned with efficient solution techniques for discretizations of the following
problem. Let Ω be an open and bounded subset of Rn (n ≥ 1), with boundary ∂Ω.
Given s ∈ (0, 1) and a smooth enough function f , find u such that

(1.1) (−Δ)su = f, in Ω, u = 0, on ∂Ω.

The fractional Laplacian is a nonlocal operator (see [16,17,42]), which is one of
the main difficulties in studying and solving problem (1.1). To localize it, Caffarelli
and Silvestre showed in [17] that any power of the fractional Laplacian in Rn can
be determined as a Dirichlet-to-Neumann operator via an extension problem on
the upper half-space Rn+1

+ . For a bounded domain Ω, this result has been adapted
in [18, 50], thus obtaining an extension problem which is now posed on the semi-
infinite cylinder C = Ω × (0,∞). This extension is the following mixed boundary
value problem:

(1.2) div (yα∇U ) = 0, in C, U = 0, on ∂LC,
∂U

∂να
= dsf, on Ω× {0},

where ∂LC = ∂Ω× [0,∞) denotes the lateral boundary of C, and

(1.3)
∂U

∂να
= − lim

y→0+
yα∂yU

is the the so-called conormal exterior derivative of U with ν being the unit outer
normal to C at Ω× {0}. The parameter α is defined as

(1.4) α = 1− 2s ∈ (−1, 1).

Finally, ds is a positive normalization constant which depends only on s; see [17]
for details. We will call y the extended variable and the dimension n + 1 in Rn+1

+

the extended dimension of problem (1.2).
The following simple strategy to find the solution of (1.1) has been proposed

and analyzed in [44]: given a sufficiently smooth function f we solve (1.2), thus
obtaining a function U = U (x′, y), and set u : x′ ∈ Ω �→ u(x′) = U (x′, 0) ∈ R to
obtain the solution of (1.1).

For an overview of the existing numerical techniques used to solve problems
involving fractional diffusion such as the matrix transference technique and the
contour integral method, we refer to [44]. In addition to [44], the recent work
of Bonito and Pasciak [6] discretizes fractional powers of elliptic operators via the
integral formulation for self-adjoint operators discussed, for instance, in [5, Chapter
10.4].

The main advantage of the algorithm proposed in [44] is that we are solving the
local problem (1.2) instead of dealing with the nonlocal operator (−Δ)s of problem
(1.1). However, this comes at the expense of incorporating one more dimension
into the problem, thus raising the question of how computationally efficient this
approach is. A quest for the answer motivates the study of multilevel methods,
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MULTILEVEL METHODS 3

since it is known that they are the most efficient techniques for the solution of dis-
cretizations of partial differential equations; see [12, 13, 37, 53]. Multigrid methods
for equations of the type (1.2), however, are not very well understood.

The purpose of this work is twofold and hinges on the multilevel framework
developed in [8, 9, 53] and the Xu-Zikatanov identity [55]. First, we show nearly
uniform convergence of a multilevel method for a class of general nonuniformly
elliptic equations of the form

−div(A(x)∇u) = f in Ω, u = 0 on ∂Ω,

where the matrix A is elliptic in the following sense:

ω(x)|ξ|2 � ξᵀA(x)ξ � ω(x)|ξ|2,

for all ξ and almost every x. Here the relation a � b indicates that a ≤ Cb,
with a constant C and ω belongs to the so-called Muckenhoupt class A2; see Def-
inition 2.1 for details. The multilevel meshes are quasi-uniform and point-wise
smoothers (e.g., Gauss-Seidel smoother) are used. Second, we derive an almost
uniform convergence of a multilevel method for the local problem that arises from
our PDE approach to the fractional Laplacian (1.2) on anisotropic meshes [44,45].
For the fractional Laplacian, [44] shows that a quasi-uniform mesh cannot yield
quasi-optimal error estimates and, consequently, the mesh in the extended dimen-
sion must be graded towards the bottom of the cylinder, thus becoming anisotropic.
We apply line smoothers over vertical lines in the extended domain and prove that
the corresponding multigrid V-cycle converges nearly uniformly. For both problems
under consideration, by nearly uniformly we mean that the contraction factor of
our multigrid methods depends on the number of levels and thus logarithmically
on the problem size. With this level of generality, this seems unavoidable without
further assumptions.

At this point we feel compelled to emphasize that although our results are not
optimal, we consider the largest possible class of weights. Moreover:

• Muckenhoupt weights are the largest class of weights for which there is a well-
established regularity theory for elliptic PDEs [30].

• The Muckenhoupt condition is not only sufficient but also necessary for the conti-
nuity of the Hardy-Littlewood maximal function and singular integral operators
of Calderón-Zygmund type [41, 43]. This is fundamental not only in the afore-
mentioned regularity theory but also in the study of the structural properties of
the underlying weighted function spaces.

• Nonuniformly elliptic or weighted problems have been considered in the literature
before. For instance, [11] proves optimal convergence for a nonuniformly elliptic
equation. However, [11] hinges on a collection of rather ad hoc assumptions (two
dimensions, particular geometry, specific properties of the weight ω), and there
is no hint as to how to develop a general theory. In contrast, our results rely
solely on membership of ω in the class A2 and are valid in any dimension.

• A related work is [36], where the authors show a uniform norm equivalence for
a multilevel space decomposition under the assumption that the weight belongs
to the smaller class A1. Their results and techniques, however, do not apply to
our setting since, simply put, an A1-weight is “almost bounded”, which is too
restrictive; see Remark 2.2 for details. We make no regularity assumption on the
weight ω and show that our estimates solely depend on the A2-constant C2,ω.
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• In light of the previous two observations, our multilevel theory presents the most
general framework where point smoothing (such as Gauss-Seidel) could work.

We propose an algorithm with complexity O(Mn+1 logM) for computing a
nearly optimal approximation of the fractional Laplacian problem (1.1) in Ω ⊂ Rn,
where M denotes the number of degrees of freedom in each direction. Notice that
using the intrinsic integral formulation of the fractional Laplacian [16, 17], a dis-
cretization would result in a dense matrix with O(M2n). Special techniques such as
fast multipole methods [35], the H-matrix methods [39] or wavelet methods [40,49]
might be applied to reduce the complexity of storage and manipulation of the dense
matrix as well as the complexity of solvers.

The outline of this paper is as follows. In Section 2, we introduce the notation
and functional framework we shall work with. Section 3 contains the salient results
about the finite element approximation of nonuniformly elliptic equations including
the fractional Laplacian on anisotropic meshes. Here we also collect the relevant
properties of a quasi-interpolant which are crucial to obtaining the convergence
analysis of our multilevel methods. In Section 4, we recall the theory of subspace
corrections [53] and the Xu-Zikatanov identity [55]. We present multigrid algo-
rithms for nonuniformly elliptic equations discretized on quasi-uniform meshes in
Section 5 and prove their nearly uniform convergence. We adapt the algorithms and
analysis of Section 5 to the fractional Laplacian discretized on anisotropic meshes
in Section 6. This requires a line smoother along the extended direction. Finally,
to illustrate the performance of our methods and the sharpness of our results, we
present a series of numerical experiments in Section 7.

2. Notation and preliminaries

2.1. Notation. Throughout this work, Ω is an open, bounded and connected sub-
set of Rn, with n ≥ 1. The boundary of Ω is denoted by ∂Ω. Unless specified
otherwise, we will assume that ∂Ω is Lipschitz. We define the semi-infinite cylinder
by C = Ω× (0,∞), and its lateral boundary by ∂LC = ∂Ω × [0,∞). Given Y > 0,
we define the truncated cylinder by CY = Ω× (0, Y ) and ∂LCY accordingly.

Throughout our discussion, when dealing with elements defined in Rn+1, we shall
need to distinguish the extended dimension. A vector x ∈ Rn+1 is denoted by

x = (x1, . . . , xn, xn+1) = (x′, xn+1) = (x′, y),

with xi ∈ R for i = 1, . . . , n+ 1, x′ ∈ Rn and y ∈ R. The upper half-space in Rn+1

will be denoted by

Rn+1
+ = {x = (x′, y) : x′ ∈ Rn, y ∈ R, y > 0} .

The relation a � b indicates that a ≤ Cb, with a constant C that does not
depend on a, b and the important multilevel discretization parameters J and hJ

(see Section 4 for their definitions), but it might depend on s and Ω. The value of
C might change at each occurrence.

If X and Y are topological vector spaces, we write X ↪→ Y to denote that X is
continuously embedded in Y . We denote by X ′ the dual of X. If X is normed, we
denote by ‖ · ‖X its norm.

2.2. Weighted Sobolev spaces. In the Caffarelli-Silvestre extension (1.2), the
parameter α = 1− 2s ∈ (−1, 1). Consequently, the weight yα is degenerate (α > 0)
or singular (α < 0), thereby making problem (1.2) nonuniformly elliptic. The
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natural space for problem (1.2) is no longer the standard space H1 but rather
the weighted Sobolev space H1(yα, C), where the weight |y|α belongs to the so-
called Muckenhoupt class A2(R

n+1); see [30, 43, 51]. For completeness, we recall
the definition of Muckenhoupt classes.

Definition 2.1 (Muckenhoupt class Ap). Let n ≥ 1 and ω ∈ L1
loc(R

n) be such that
ω(x) > 0 for a.e. x ∈ Rn. We say that ω ∈ Ap(R

n), 1 < p < ∞, if there exists a
positive constant Cp,ω such that

(2.1) sup
B

(
1

|B|

∫
B

ω dx

)(
1

|B|

∫
B

ω1/(1−p) dx

)p−1

= Cp,ω < ∞,

where the supremum is taken over all balls B in Rn and |B| denotes the Lebesgue
measure of B. In addition, we define

A∞(Rn) =
⋃
p>1

Ap(R
n) and A1(R

n) =
⋂
p>1

Ap(R
n).

If ω belongs to the Muckenhoupt class Ap(R
n), we say that ω is an Ap-weight,

and we call the constant Cp,ω in (2.1) the Ap-constant of ω.

Remark 2.2 (Characterization of the A1-class). A useful characterization of the
A1-Muckenhoupt class is given in [47]: ω ∈ A1(R

n) if and only if

(2.2) sup
B

‖ω−1‖L∞(B)

|B|

∫
B

ω dx = C1,ω < ∞.

Since α ∈ (−1, 1), it is immediate that |y|α ∈ A2(R
n+1) but |y|α /∈ A1(R

n+1).
From the Ap-condition and Hölder’s inequality it follows that an Ap-weight sat-

isfies the so-called strong doubling property, which is essential in the analysis of the
multigrid methods introduced in §4. The proof of this property is standard; see
[51, Proposition 1.2.7] or [45, Proposition 2.2] for more details.

Proposition 2.1 (Strong doubling property). Let ω ∈ Ap(R
n) with 1 < p < ∞

and let E ⊂ Rn be a measurable subset of a ball B ⊂ RN . Then

(2.3) ω(B) ≤ Cp,ω

(
|B|
|E|

)p

ω(E).

For an Ap-weight we define weighted Lp spaces as follows.

Definition 2.3 (Weighted Lebesgue spaces). Let ω ∈ Ap(R
n), and let D ⊂ Rn be

an open and bounded domain. For 1 < p < ∞, we define the weighted Lebesgue
space Lp(ω,D) as the set of measurable functions u on D for which

‖u‖Lp(ω,D) =

(∫
D

|u|pω dx

)1/p

< ∞.

Based on the fact that Lp(ω,D) ↪→ L1
loc(D) (cf. [45, Proposition 2.3]), it makes

sense to talk about weak derivatives of functions in Lp(ω,D). We define weighted
Sobolev spaces as follows.

Definition 2.4 (Weighted Sobolev spaces). Let D ⊂ Rn be an open and bounded
domain, ω ∈ Ap(R

n) with 1 < p < ∞ and m ∈ N. The weighted Sobolev space
Wm

p (ω,D) is the space of functions u ∈ Lp(ω,D) such that for any multiindex κ
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with |κ| ≤ m, the weak derivatives Dκu ∈ Lp(ω,D). We endow Wm
p (ω,D) with

the following seminorm and norm:

|u|Wm
p (ω,D) =

⎛
⎝ ∑

|κ|=m

‖Dκu‖pLp(ω,D)

⎞
⎠

1/p

, ‖u‖Wm
p (ω,D) =

⎛
⎝∑

j≤m

|u|p
W j

p (ω,D)

⎞
⎠

1/p

,

respectively. We also define
◦
Wm

p (ω,D) as the closure of C∞
0 (D) in Wm

p (ω,D).

Owing to the fact that ω ∈ Ap, most of the properties of classical Sobolev spaces
have a weighted counterpart; see [30, 33, 51]. In particular we have the following
result (cf. [51, Proposition 2.1.2, Corollary 2.1.6] and [33, Theorem 1]).

Proposition 2.2 (Properties of weighted Sobolev spaces). Let D ⊂ Rn be an open
and bounded domain, 1 < p < ∞, ω ∈ Ap(R

n) and m ∈ N. The spaces

Wm
p (ω,D) and

◦
Wm

p (ω,D)

are complete, and Wm
p (ω,D) ∩ C∞(D) is dense in Wm

p (ω,D).

2.3. The Caffarelli-Silvestre extension problem. Here we explore problem
(1.2); we refer the reader to [16, 17, 44] for details. Since problem (1.2) is posed on
the unbounded domain C, it cannot be directly approximated with finite element-
like techniques. However, as [44, Proposition 3.1] shows, the solution U decays
exponentially in y so that, by truncating the cylinder C to CY and setting a vanishing
Dirichlet boundary condition on the upper boundary y = Y , we incur only an
exponentially small error in terms of Y [44, Theorem 3.5].

For α = 1− 2s we have |y|α ∈ A2(R
n) and we define

◦
H1

L(y
α, CY ) =

{
v ∈ H1(yα, CY ) : v = 0 on ∂LCY ∪ Ω× {Y }

}
.

Proposition 2.2 states that
◦
H1

L(y
α, CY ) is a Hilbert space. We also define

(2.4) Hs(Ω) = [H1
0 (Ω), L

2(Ω)]1−s,

for 0 < s < 1, which is the natural space for the solution u of problem (1.1); let
H−s(Ω) be the dual of Hs(Ω). As [44, Proposition 2.5] shows, the trace operator

◦
H1

L(y
α, CY )  w �→ trΩw ∈ Hs(Ω)

is well defined. We approximate problem (1.2) by: find v ∈
◦
H1

L(y
α, CY ) such that

(2.5)

∫
CY

yα∇v · ∇φ = ds〈f, trΩ φ〉H−s(Ω)×Hs(Ω), ∀φ ∈
◦
H1

L(y
α, CY ),

where 〈·, ·〉H−s(Ω)×Hs(Ω) denotes the duality pairing between Hs(Ω) and H−s(Ω).
Finally, we recall the exponential convergence result [44, Theorem 3.5]:

‖∇(U − v)‖L2(C,yα) � e−
√
λ1Y /4‖f‖H−s(Ω),

where λ1 denotes the first eigenvalue of the Dirichlet Laplace operator and Y is the
truncation parameter.
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3. Finite element discretization

of nonuniformly elliptic equations

Let Ω be an open and bounded subset of Rn (n ≥ 1) with boundary ∂Ω and
let f ∈ L2(ω−1,Ω). We now focus on a finite element method for the following
nonuniformly elliptic boundary value problem: find u ∈ H1

0 (ω,Ω) that solves

(3.1) −div(A(x)∇u) = f in Ω, u = 0 on ∂Ω,

where A : Ω → Rn×n, A = Aᵀ and satisfies the nonuniform ellipticity condition:

(3.2) ω(x)|ξ|2 � ξᵀA(x)ξ � ω(x)|ξ|2, ∀ξ ∈ Rn, a.e. x ∈ Ω.

The function ω belongs to the Muckenhoupt class A2, which is defined by (2.1).
Examples of nonuniformly elliptic equations are the harmonic extension problem re-
lated with the fractional Laplace operator [16,17], elliptic PDEs in an axisymmetric
three dimensional domain with axisymmetric data [4, 34], and equations modeling
the motion of particles in a central potential field in quantum mechanics [2].

Nonuniformly elliptic equations of the type (3.1)-(3.2) have been studied in [30].
Given f ∈ L2(ω−1,Ω), there exists a unique solution u ∈ H1

0 (ω,Ω) [30, Theorem
2.2]. Notice that by taking the weight ω to be yα we see that the underlying
differential operator in (2.5) is a particular instance of −div(A(x)∇u) in (3.1).

We define the bilinear form

(3.3) a(u, v) =

∫
Ω

A∇u · ∇v dx,

which is clearly continuous and coercive in H1
0 (ω,Ω). Then, a weak formulation of

problem (3.1) reads: find u ∈ H1
0 (ω,Ω) such that

(3.4) a(u, v) =

∫
Ω

fv dx, ∀v ∈ H1
0 (ω,Ω).

3.1. Finite element approximation on quasi-uniform meshes. To avoid tech-
nical difficulties, we assume Ω to be a polyhedral domain. Let T = {T} be a mesh
of Ω into elements T (simplices or cubes) such that

Ω̄ =
⋃

T∈T

T, |Ω| =
∑
T∈T

|T |.

The partition T is assumed to be conforming or compatible. We denote by T a
collection of conforming meshes. We say that T is shape regular if there exists a
constant σ > 1 such that, for all T ∈ T, we have

(3.5) max {σT : T ∈ T } ≤ σ,

where σT := hT /ρT is the shape coefficient of T . For simplicial elements, hT =
diam(T ) and ρT is the diameter of the largest sphere inscribed in T [14, 24]. For
the definition of hT and ρT in the case of n-rectangles, we refer to [24].

We assume that the collection of meshes T is conforming and satisfies the reg-
ularity assumption (3.5), which says that the element shape does not degenerate
with refinement. A refinement method generating meshes satisfying the shape reg-
ular condition (3.5) will be called isotropic refinement. A particular instance of an
isotropic refinement is the so-called quasi-uniform refinement. We recall that T is
quasi-uniform if it is shape regular and for all T ∈ T we have

max {hT : T ∈ T } � min {hT : T ∈ T } ,
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where the hidden constant is independent of T . In this case, all the elements on
the same refinement level are of comparable size. We define hT = maxT∈T hT .

Given a mesh T ∈ T, we define the finite element space of continuous piecewise
polynomials of degree one:

(3.6) V(T ) =
{
W ∈ C0(Ω̄) : W |T ∈ P(T ) ∀T ∈ T , W |∂Ω = 0

}
,

where for a simplicial element T , P(T ) corresponds to the space of polynomials
of total degree at most one, i.e., P1(T ), and for n-rectangles, P(T ) stands for the
space of polynomials of degree at most one in each variable, i.e., Q1(T ).

The finite element approximation of u, solution of problem (3.1), is defined as
the unique discrete function UT ∈ V(T ) satisfying

(3.7) a(UT ,W ) =

∫
Ω

fW dx, ∀W ∈ V(T ).

3.2. Quasi-interpolation operator. Let us recall the main properties of the
quasi-interpolation operator ΠT introduced and analyzed in [45]. This operator
is based on local averages over stars, and then it is well defined for functions in
Lp(ω,Ω). We summarize its construction and its approximation properties as fol-
lows; see [45] for details.

Given a mesh T ∈ T and T ∈ T , we denote by N (T ) the set of nodes of T . We

set N (T ) :=
⋃

T∈T N (T ) and
◦

N (T ) := N (T ) ∩ Ω. Then, any discrete function

W ∈ V(T ) is characterized by its nodal values on the set
◦

N (T ). Moreover, the

functions φv ∈ V(T ), v ∈ ◦
N (T ), such that φv(w) = δvw for all w ∈ N (T ) are the

canonical basis of V(T ), and W =
∑

v∈ ◦
N (T )

W (v)φv.

Given a vertex v ∈ N (T ), we define the star or patch around v as Sv =
⋃

T�v T,
and for T ∈ T we define its patch as ST =

⋃
v∈T Sv. For each vertex v ∈ N (T ),

we define hv = min{hT : v ∈ T}.
Let ψ ∈ C∞(Rn) be such that

∫
ψ = 1 and supp ψ ⊂ B, where B denotes the

ball in Rn of radius r centered at zero with r ≤ 1/σ, with σ defined by (3.5). For

v ∈ ◦
N (T ), we define the rescaled smooth function

ψv(x) =
1

hn
v

ψ

(
v− x

hv

)
.

Given a smooth function v, we denote by P 1v(x, z) the Taylor polynomial of
degree one of the function v in the variable z about the point x, i.e.,

P 1v(x, z) = v(x) +∇v(x) · (z − x).

Then, given v ∈ ◦
N (T ) and a function v ∈ W 1

p (ω,Ω), we define the corresponding
averaged Taylor polynomial of first degree of v about the vertex v as

(3.8) Q1
vv(z) =

∫
P 1v(x, z)ψv(x) dx.

Since supp ψv ⊂ Sv, the integral appearing in (3.8) can be written over Sv. More-
over, integration by parts shows that Q1

v is well defined for functions in L1(Ω);
see [5, Proposition 4.1.12]. Consequently, [44, Proposition 2.3] implies that Q1

v is
also well defined for functions in Lp(ω,Ω) with ω ∈ Ap(R

n).
Given ω ∈ Ap(R

n) and v ∈ Lp(ω,Ω), we define the quasi-interpolant ΠT v as
the unique function ΠT v ∈ V(T ) that satisfies ΠT v(v) = Q1

v(v) if v ∈ N (T ),
and ΠT v(v) = 0 if v ∈ N (T ) ∩ ∂Ω, i.e., ΠT v(v) =

∑
v∈ ◦

N (T )
Q1

v(v)φv. For this
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operator, [45, Section 5] proves stability and interpolation error estimates in the
weighted Lp-norm and W 1

p -seminorm. We recall these results for completeness.

Proposition 3.1 (Weighted stability and local error estimate I). Let T ∈ T ,
ω ∈ Ap(R

n) and v ∈ Lp(ω, ST ). Then, we have the following local stability bound:

(3.9) ‖ΠT v‖Lp(ω,T ) � ‖v‖Lp(ω,ST ).

If, in addition, v ∈ W 1
p (ω, ST ), then we have the local interpolation error estimate

(3.10) ‖v −ΠT v‖Lp(ω,T ) � hv‖∇v‖Lp(ω,ST ).

The hidden constants in both inequalities depend only on Cp,ω, ψ and σ.

Proposition 3.2 (Weighted stability and local error estimate II). Let T ∈ T ,
ω ∈ Ap(R

n) and v ∈ W 1
p (ω, ST ). Then, we have the following local stability bound:

(3.11) ‖∇ΠT v‖Lp(ω,T ) � ‖∇v‖Lp(ω,ST ).

If, in addition, v ∈ W 2
p (ω, ST ), then

(3.12) ‖∇(v −ΠT v)‖Lp(ω,T ) � hv‖D2v‖Lp(ω,ST ).

The hidden constants in both inequalities depend only on Cp,ω, ψ and σ.

3.3. Finite element approximation on anisotropic meshes. Let us now focus
our attention on the finite element discretization of problem (2.5). To do so, we
must first study the regularity of its solution U . An error estimate for v, solution
of (2.5), depends on the regularity of U as well [44, §4.1]. The second order
regularity of U is much worse in the extended direction, as the following estimates
from [44, Theorem 2.7] reveal: for β > 2α+ 1,

‖Δx′U ‖L2(yα,C) + ‖∂y∇x′U ‖L2(yα,C) � ‖f‖H1−s(Ω),(3.13)

‖Uyy‖L2(yβ ,C) � ‖f‖L2(Ω).(3.14)

Therefore, graded meshes in the extended variable y play a fundamental role.
Estimates (3.13)–(3.14) motivate the construction of a mesh over CY with cells

of the form T = K × I, where K ⊂ Rn is an element that is isoparametrically
equivalent either to the unit cube [0, 1]n or the unit simplex in Rn and I ⊂ R is an
interval. Let TΩ = {T} be a conforming and shape regular mesh of Ω. To obtain
a global regularity assumption for TY we assume that there is a constant σY such
that if T1 = K1 × I1 and T2 = K2 × I2 ∈ TY have nonempty intersection, then

(3.15) hI1h
−1
I2

≤ σY ,

where hI = |I|. Exploiting the Cartesian structure of the mesh it is possible to
handle anisotropy in the extended variable and obtain estimates of the form

‖v −ΠTY v‖L2(yα,T ) � hv′‖∇x′v‖L2(yα,ST ) + hv′′‖∂yv‖L2(yα,ST ),

‖∂xj
(v −ΠTY v)‖L2(yα,T ) � hv′‖∇x′∂xj

v‖L2(yα,ST ) + hv′′‖∂y∂xj
v‖L2(yα,ST ),

with j = 1, . . . , n+ 1, where hv′ = min{hK : v′ ∈ K}, hv′′ = min{hI : v′′ ∈ I} and
v is the solution of problem (2.5); see [44, §4.2.3 and §4.2.4] for details. However,
since Uyy ≈ y−α−1 as y ≈ 0, we realize that U /∈ H2(yα, C) and the second
estimate is not meaningful for j = n+ 1. In view of the regularity estimate (3.14)
it is necessary to measure the regularity of Uyy with a different weight and thus
compensate with a graded mesh in the extended dimension. This makes anisotropic
estimates essential.
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10 L. CHEN, R. H. NOCHETTO, E. OTÁROLA, AND A. J. SALGADO

To simplify the analysis and implementation of multilevel techniques, we consider
a sequence of nested discretizations constructed as follows: We introduce a sequence
of nested uniform partitions of the unit interval {Tk}, with mesh points ŷl,k, for
l = 0, . . . ,Mk and k = 0, . . . , J . We obtain a family of meshes of the interval [0, Y ]
given by the mesh points

(3.16) yl,k = Y ŷγl,k, l = 0, . . . ,Mk,

where γ > 3/(1− α). Then, for k = 0, . . . , J , we consider a quasi-uniform triangu-
lation TΩ,k of the domain Ω and construct the mesh TY ,k as the tensor product of
TΩ,k and the partition given in (3.16); hence #TY ,k = Mk #TΩ,k. Assuming that

#TΩ,k ≈ Mn
k we have #TY ,k ≈ Mn+1

k . Finally, since TΩ,k is shape regular and

quasi-uniform, hTΩ,k
≈ (#TΩ,k)

−1/n. All these considerations allow us to obtain
the following result [44, Theorem 5.4 and Remark 5.5].

Theorem 3.1 (Error estimate). Denote by VTY ,k
∈ V(TY ,k) the Galerkin approxi-

mation of problem (2.5). Then,

‖∇(U − VTY ,k
)‖L2(yα,C) � | log(#TY ,k)|s(#TY ,k)

−1/(n+1)‖f‖H1−s(Ω),

where Y ≈ log(#TY ,k).

We notice that the anisotropic meshes of the cylinder CY considered above are
semi-structured by construction. They are generated as the tensor product of an
unstructured grid TΩ together with the structured mesh Tk.

Notice that the approximation estimates (3.9)–(3.12) are local and thus valid
under the weak shape regularity condition (3.15). Owing to the tensor product
structure of the mesh, we have the following anisotropic error estimate.

Lemma 3.2 (Weighted L2 anisotropic error estimate). Let v ∈
◦
H1

L(y
α, CY ) be the

solution of problem (2.5). Then, the quasi-interpolation operator ΠTY satisfies the
following error estimate:

‖v −ΠTY v‖L2(yα,CY ) � #T
−1/(n+1)

Y

(
‖∇x′v‖L2(yα,CY ) + ‖∂yv‖L2(yα,CY )

)
.

Proof. This is a direct consequence of the results from [45, §5] together with the
Cartesian structure of the mesh TY . �

A simple application of the mean value theorem yields

(3.17) yl+1,k − yl,k =
Y
Mγ

k

(
(l + 1)γ − lγ

)
≤ γ

Y
Mk

(
l + 1

Mk

)γ−1

≤ γ
Y
Mk

,

for every l = 0, . . . ,Mk − 1, where γ > 3/(1 − α) = 3/(2s) according to (3.16).
In other words, since the mesh size of the quasi-uniform mesh TΩ,k is O(M−1

k ),
the size of the partitions in the extended variable y can be uniformly controlled by
hTΩ,k

for k = 0, . . . , J . However, γ blows up as s ↓ 0.

4. Multilevel space decomposition and multigrid methods

In this section, we present a V-cycle multigrid algorithm based on the method of
subspace corrections [9, 53], and we present the key identity of Xu and Zikatanov
[55] in order to analyze the convergence of the proposed multigrid algorithm.
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4.1. Multilevel decomposition. We follow [7, 8] to present a multilevel decom-
position of the space V(T ). Assume that we have an initial conforming mesh T0

made of simplices or cubes and a nested sequence of discretizations {Tk}Jk=0 where,
for k > 0, Tk is obtained by uniform refinement of Tk−1. We then obtain a nested
sequence, in the sense of trees, of quasi-uniform meshes T0 ≤ T1 ≤ · · · ≤ TJ = T .
Denoting by hk := hTk

the mesh size of the mesh Tk, we have that hk � ρk for some
ρ ∈ (0, 1), and then J � | log hJ |. Let Vk := V(Tk) denote the corresponding finite
element space over Tk defined by (3.6). We thus get a sequence of nested spaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ = V and a macro space decomposition V =
∑J

k=0Vk. Note
the redundant overlapping of the multilevel decomposition above; in particular, the
sum is not direct. We now introduce a space micro-decomposition. We start by
defining N k := N (Tk) = dimVk, i.e., the number of interior vertices of the mesh
Tk. In order to deal with point and line Gauss-Seidel smoothers, we introduce the
following sets of indices: For j = 1, . . . ,Mk we denote by Ik,j a subset of the index
set {1, 2, . . . ,Nk} and assume Ik,j satisfies

Mk⋃
j=1

Ik,j = {1, 2, . . . ,Nk}.

The sets Ik,j may overlap: given 0 < j1, j2 ≤ Mk such that j1 �= j2, we may have
Ik,j1 ∩ Ik,j2 �= ∅. This overlap, however, is finite and independent of J and N k.

Upon denoting the standard nodal basis of Vk by φk,i, i = 1, . . . ,Nk, we define
Vk,j = span{φk,i : i ∈ Ik,j} and we have the space decomposition

(4.1) V =

J∑
k=0

Mk∑
j=1

Vk,j .

4.2. Multigrid algorithm. We now describe the multigrid algorithm for the non-
uniformly elliptic problem (3.1). We start by introducing several auxiliary opera-
tors. For k = 0, . . . , J , we define the operator Ak : Vk → Vk by

(Akvk, wk)L2(ω,Ω) = a(vk, wk), ∀vk, wk ∈ Vk,

where the bilinear form a is defined in (3.3). Notice that this operator is symmetric
and positive definite with respect to the weighted L2-inner product. The projection
operator Pk : VJ → Vk in the a-inner product is defined by

(4.2) a(Pkv, wk) = a(v, wk), ∀wk ∈ Vk,

and the weighted L2-projection Qk : VJ → Vk is defined by

(Qkv, wk)L2(ω,Ω) = (v, wk)L2(ω,Ω), wk ∈ Vk.

We define, analogously, the operators Ak,j : Vk,j → Vk,j , Pk,j : Vk → Vk,j and
Qk,j : Vk → Vk,j . The operator Ak,j can be regarded as the restriction of Ak to the
subspace Vk,j , and its matrix representation, which is the sub-matrix of Ak obtained
by deleting the indices i /∈ Ik,j , is symmetric and positive definite. On the other
hand, the operators Pk,j and Qk,j denote the projections with respect to the a- and
the weighted L2-inner products into Vk,j , respectively. We also remark that the
matrix representation of the operator Qk,j is the so-called restriction operator, and
the prolongation operator QT

k,j corresponds to the natural embedding Vk,j ↪→ Vk.
The following property, which is of fundamental importance, will be used frequently:

(4.3) Ak,jPk,j = Qk,jAk.
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12 L. CHEN, R. H. NOCHETTO, E. OTÁROLA, AND A. J. SALGADO

With this notation we define a symmetric V-cycle multigrid method as in [10,
Algorithm 3.1], with m ≥ 1 pre- and post-smoothing steps of the form

v ← v +A−1
k,jQk,j(rk −Akv),

where rk is the residual in Vk and 1 ≤ j ≤ Mk. When m = 1, it is equivalent to
the application of successive subspace corrections (SSC) to the decomposition (4.1)
with exact sub-solvers A−1

k,j so that the V-cycle multigrid method has a smoother

at each level of block Gauss-Seidel type [8,53]. In particular, if we consider a nodal
decomposition Ik,j = {j} we obtain a point-wise Gauss-Seidel smoother. On the
other hand, if the indices in Ik,j are such that the corresponding vertices lie on
a straight line, we obtain the so-called line Gauss-Seidel smoother, which will be
essential to efficiently solve problem (1.2) with anisotropic elements.

4.3. Analysis of the multigrid method. In order to prove the nearly uniform
convergence of the symmetric V-cycle multigrid method without any assumptions,
we rely on the following fundamental identity developed by Xu and Zikatanov [55];
see also [21, 23] for alternative proofs.

Theorem 4.1 (XZ identity). Let V be a Hilbert space with inner product (·, ·)A
and norm ‖ · ‖A. For j = 0, . . . , J let Vj ⊂ V be closed subspaces of V that satisfy

V =
∑J

j=0 Vj. Denote by Pj : V → Vj the orthogonal projection in the a-inner

product onto Vj defined in (4.2). Then, the following identity holds:∥∥∥∥∥∥
J∏

j=0

(I − Pj)

∥∥∥∥∥∥
2

A

= 1− 1

1 + c0
,

where

(4.4) c0 = sup
‖ν‖A=1

inf∑J
i=0 νi=ν

J∑
i=0

∥∥∥∥∥∥Pi

J∑
j=i+1

νj

∥∥∥∥∥∥
2

A

.

The XZ identity given by Theorem 4.1, the properties of the interpolation opera-
tor ΠT defined in §3.2, the stability of the nodal decomposition stated in Lemma 5.1
below, and the weighted inverse inequality proved in Lemma 5.2 below will allow us
to obtain nearly uniform convergence of the symmetric V-cycle without resorting
to any regularity assumptions on the solution (see [7, 8, 10, 53] for details) or the
weight ω.

5. Analysis of multigrid methods on quasi-uniform grids

In this section we consider the V-cycle multigrid method applied to solve the
weighted discrete problem (3.7) on quasi-uniform meshes. We consider standard
point-wise Gauss-Seidel smoothers and prove convergence with a nearly optimal rate
up to a factor J � | log hJ |. Our main contribution is the extension of the standard
multigrid analysis [12, 13, 37, 53] to include weights belonging to the Muckenhoupt
class A2(R

N ). An optimal result for weights in the A1(R
N )-class is derived in [36].

Nevertheless, since our main motivation is the fractional Laplacian and the weight
yα ∈ A2(R

N ) \A1(R
N ), we need to consider the larger class A2(R

N ).
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5.1. Stability of the nodal decomposition in the weighted L2-norm. Here
we show that the nodal decomposition is stable in the weighted L2-norm. Equiva-
lently, the mass matrix for this inner product is spectrally equivalent to its diagonal.

Lemma 5.1 (Stability of the nodal decomposition). Let T ∈ T be a quasi-uniform
mesh, and let v ∈ V(T ). Then, we have the following norm equivalence:

(5.1)

N (T )∑
i=1

‖vi‖2L2(ω,Ω) � ‖v‖2L2(ω,Ω) �
N (T )∑
i=1

‖vi‖2L2(ω,Ω),

where v =
∑N (T )

i=1 vi denotes the nodal decomposition for v, and the hidden con-
stants in each inequality above only depend on the dimension n and C2,ω.

Proof. Let T̂ ⊂ Rn be a reference element and {φ̂1, . . . , φ̂N T̂
} be its local shape

functions, where N T̂ is the number of vertices of T̂ . A standard argument shows
that

ĉ1

(∫
T̂

ω̂

) NT̂∑
i=1

V̂ 2
i ≤ ‖v̂‖2L2(ω̂,T̂ ) ≤ ĉ2

(∫
T̂

ω̂

) NT̂∑
i=1

V̂ 2
i ,

where 0 < ĉ1 ≤ ĉ2, v̂ =
∑NT̂

i=1 V̂iφ̂i and ω̂ is a weight; see [29, Lemma 9.7]. Now,

given T ∈ T , we denote by FT : T̂ → T the mapping such that v̂ = v ◦ FT . Since
the A2-class is invariant under isotropic dilations [45, Proposition 2.1], a scaling
argument shows that(∫

T

ω

) NT∑
i=1

V 2
i � ‖v‖2L2(ω,T ) �

(∫
T

ω

) NT∑
i=1

V 2
i .

It remains to show that
∫
T
ω ≈

∫
T
ωφ2

i . The fact that 0 ≤ φi ≤ 1 immediately
yields ∫

T

ωφ2
i ≤

∫
T

ω.

The converse inequality follows from the strong doubling property of ω given in
Proposition 2.1. In fact, setting E = {x ∈ T : φ2

i ≥ 1
2} ⊂ T , we have∫

T

ωφ2
i ≥

∫
E

ωφ2
i ≥ 1

2

∫
E

ω ≥ 1

2C2,ω

(
|E|
|T |

)2 ∫
T

ω.

Finally, notice that the supports of the nodal basis functions {φi}N (T )
i=1 have a finite

overlap which is independent of the refinement level; i.e., for every i = 1, . . . ,N (T ),
the number n(i) = # {j : suppφi ∩ suppφj �= ∅} is uniformly bounded. We arrive
at (5.1) summing over all the elements T ∈ T . �

Let us now show a weighted inverse inequality.

Lemma 5.2 (Weighted inverse inequality). Let T ∈ T be a quasi-uniform mesh,
and let T ∈ T and v ∈ V(T ). Then, we have the following inverse inequality:

(5.2) ‖∇v‖L2(ω,T ) � h−1
T ‖v‖L2(ω,T ).

Proof. Since T is quasi-uniform with mesh size hT , we have |∇φi| � h−1
T and∫

T

ω|∇v|2 � h−2
T

NT∑
i=1

V 2
i

∫
T

ω,
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14 L. CHEN, R. H. NOCHETTO, E. OTÁROLA, AND A. J. SALGADO

where we have used the nodal decomposition of v =
∑NT

i=1 Viφi. As in the proof of
Lemma 5.1, Proposition 2.1 yields∫

T

ω � C2,ω

∫
T

ωφ2
i ,

so that we obtain

∫
T

ω|∇v|2 � C2,ωh
−2
T

NT∑
i=1

V 2
i

∫
T

ωφ2
i � C2,ωh

−2
T

∫
T

ωv2,

where, in the last step, we have used (5.1). This concludes the proof. �

5.2. Convergence analysis. We now present a convergence analysis of the multi-
grid V-cycle applied to solve the weighted discrete problem (3.7) over quasi-uniform
meshes and with standard point-wise Gauss-Seidel smoothers: Mk = Nk and Ik,j =
{j} for j = 1, . . .Nk. The main ingredients are the stability of the nodal decompo-
sition obtained in Lemma 5.1, the weighted inverse inequality of Lemma 5.2, and
the properties of the quasi-interpolant introduced in Section 3. We follow [52, 54].

Theorem 5.3 (Convergence of symmetric V-cycle multigrid). The multigrid V-
cycle with point-wise Gauss-Seidel smoother over quasi-uniform meshes is conver-
gent with a contraction rate

δ ≤ 1− 1

1 + CJ
,

where C is independent of the mesh size, and it depends on the weight ω only
through the constant C2,ω defined in (2.1).

Proof. By the XZ identity stated in Theorem 4.1, we only need to estimate

(5.3) c0 = sup
‖v‖

H1
0(ω,Ω)

=1

inf∑J
k=0

∑Nk
i=1vk,i=v

J∑
k=0

Nk∑
i=1

∥∥∥∥∥∥∇
⎛
⎝Pk,i

∑
(l,j)
(k,i)

vl,j

⎞
⎠
∥∥∥∥∥∥
2

L2(ω,Ω)

,

where � stands for the so-called lexicographic ordering, i.e.,

(l, j) � (k, i) ⇔
{
l > k,

l = k and j > i.

We recall that k = 0, . . . , J , j = 1, . . . ,Nk and the operator Pk,i : Vk → Vk,i is
the projection with respect to the bilinear form a. For k = 0, . . . , J we denote by
ΠTk

the quasi-interpolation operator defined in §3.2 over the mesh Tk. Next, we
introduce the telescopic multilevel decomposition

(5.4) v =
J∑

k=0

vk, vk = (ΠTk
−ΠTk−1

)v, ΠT−1
v := 0,

along with the nodal decomposition vk =
∑N k

i=1 vk,i, for each level k. Consequently,
the right hand side of (5.3) can be rewritten by using the telescopic multilevel
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decomposition (5.4) as follows:

Vk,i :=
∑

(l,j)
(k,i)

vl,j =
J∑

l=k+1

Nk∑
j=1

vl,j +

Nk∑
j=i+1

vk,j =
J∑

l=k+1

vl +

Nk∑
j=i+1

vk,j

= v −ΠTk
v +

Nk∑
j=i+1

vk,j ,

because ΠTk
is invariant over Vk. Therefore, we have

‖∇Pk,iVk,i‖2L2(ω,Ω) � ‖∇Pk,i(v −ΠTk
v)‖2L2(ω,Ω) +

∥∥∥∥∥∥∇Pk,i

Nk∑
j=i+1

vk,j

∥∥∥∥∥∥
2

L2(ω,Ω)

� ‖∇(v −ΠTk
v)‖2L2(ω,Dk,i)

+

Nk∑
j=i+1

Dk,i∩Dk,j �=∅

‖∇vk,j‖2L2(ω,Ω),

where Dk,i = suppφk,i. Adding over i = 1, . . . ,Nk and using the finite overlapping
property of the sets Dk,i yield

Nk∑
i=1

Nk∑
j=i+1

Dk,i∩Dk,j �=∅

‖∇vk,j‖2L2(ω,Ω) �
Nk∑
i=1

‖∇vk,i‖2L2(ω,Ω),

whence, the weighted inverse inequality (5.2) gives

Nk∑
i=1

‖∇Pk,iVk,i‖2L2(ω,Ω) � ‖∇(v −ΠTk
v)‖2L2(ω,Ω) +

Nk∑
i=1

h−2
k ‖vk,i‖2L2(ω,Ω).

We resort to (stability of the operator ΠTk
) Proposition 3.2 and (stability of the

micro-decomposition) Lemma 5.1 to arrive at

Nk∑
i=1

‖∇Pk,iVk,i‖2L2(ω,Ω) � ‖∇v‖2L2(ω,Ω) + h−2
k ‖vk‖2L2(ω,Ω).

Since vk = (ΠTk
−ΠTk−1

)v, we utilize the approximation properties of ΠTk
, given

in Proposition 3.1, to deduce

‖vk‖L2(ω,Ω) ≤ ‖v −ΠTk
v‖L2(ω,Ω) + ‖v −ΠTk−1

v‖L2(ω,Ω) � hk‖∇v‖L2(ω,Ω).

This implies
∑Nk

i=1 ‖∇Pk,iVk,i‖2L2(ω,Ω) � ‖∇v‖2L2(ω,Ω), and adding over k from 0 to

J yields c0 � J , which completes the proof. �

6. A multigrid method for the fractional Laplace operator

on tensor product anisotropic meshes

As we explained in §3.3, the regularity estimate (3.14) implies the necessity of
graded meshes in the extended variable y. This allows us to recover an almost-
optimal error estimate for the finite element approximation of problem (1.2) [44,
Theorem 5.4]. In fact, finite elements on quasi-uniform meshes have poor approxi-
mation properties for small values of the parameter s. The isotropic error estimates
of [44, Theorem 5.1] are not optimal, which makes anisotropic estimates essential.
For this reason, in this section we develop a multilevel theory for problem (1.2)
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16 L. CHEN, R. H. NOCHETTO, E. OTÁROLA, AND A. J. SALGADO

having in mind anisotropic partitions in the extended variable y and the multilevel
setting described in Section 4 for the nonuniformly elliptic equation (3.1). We shall
obtain nearly uniform convergence of a V-cycle multilevel method for the problem
(1.2) without any regularity assumptions on the solution or weight. We consider
line Gauss-Seidel smoothers. The analysis is an adaptation of the results presented
in [52] for anisotropic elliptic equations, and it is again based on the XZ identity
[55].

6.1. A multigrid algorithm with line smoothers. The success of multigrid
methods for uniformly elliptic operators is due to the fact that the smoothers are
effective in reducing the nonsmooth (high frequency) components of the error and
the coarse grid corrections are effective in reducing the smooth (low frequency)
components. However, the effectiveness of both strategies depends crucially on
several factors such as the anisotropy of the mesh. A key ingredient in the design
and analysis of a multigrid method on anisotropic meshes is the use of the so-called
line smoothers; see [1, 11, 38, 48].

Intuitively, when solving the α-harmonic extension (1.2) on graded meshes, the
approximation from the coarse grid is dominated by the larger mesh size in the
x′-direction, and thus the coarse grid correction cannot capture the smaller scale in
the y-direction. One possible solution is the use of semi-coarsening, i.e., coarsening
only the y-direction until the mesh sizes in both directions are comparable. Another
solution is the use of line smoothing, i.e., solving sub-problems restricted to one
vertical line. We shall use the latter approach, which is relatively easy to implement
for tensor-product meshes.

Let us describe the decomposition of VJ = V(TYJ
) that we shall use. To do so,

we follow the notation of §4.1. We set Mk to be the number of interior nodes of
TΩ,k and define, for j = 1, . . . ,Mk, the set Ik,j as the collection of indices for the
vertices that lie on the line {v′j} × [0, Y ) at the level k. The decomposition is then
given by (4.1). This decomposition is also stable, which allows us to obtain the
appropriate anisotropic inverse inequalities; see Lemma 6.1 below.

Owing to the nature of the decomposition, the smoother requires the evaluation
of A−1

k,j which corresponds to the action of the operator over a vertical line. This
can be efficiently realized since the corresponding matrix is tri-diagonal.

Lemma 6.1 (Nodal stability and anisotropic inverse inequalities). Let TY be a
tensor product graded grid, which is quasi-uniform in Ω and graded in the extended

variable so that (3.16) holds. If v =
∑MJ

j=1 vj ∈ V(TY ), then

(6.1)

MJ∑
j=1

‖vj‖2L2(yα,CY )
� ‖v‖2L2(yα,CY )

�
MJ∑
j=1

‖vj‖2L2(yα,CY )
.

Moreover, we have the following inverse inequalities:

(6.2) ‖∇x′v‖L2(yα,T ) � h−1
K ‖v‖L2(yα,T ), ‖∂yv‖L2(yα,T ) � h−1

I ‖v‖L2(yα,T ),

where T = K × I is a generic element of TY .

Proof. The nodal stability (6.1) follows along the same lines of Lemma 5.1 upon
realizing that the functions vj = vj(x

′, y) are defined on the vertical lines (v′j , y)
with y ∈ [0, Y ) and the index j corresponds to a nodal decomposition in Ω. Using
that |∇x′φi| � h−1

K and |∂yφi| � h−1
I , we derive (6.2) inspired by Lemma 5.2. �
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MULTILEVEL METHODS 17

We now examine the V-cycle multigrid method applied to the decomposition
(4.1) with exact sub-solvers on Vk,j , i.e., with line smoothers; see [10, §III.12]
and [52]. A key observation in favor of subspaces {Vk,j}Mk

j=1 follows.

Lemma 6.2 (Nodal stability of y-derivatives). Under the same assumptions of
Lemma 6.1 we have

(6.3)

MJ∑
j=1

‖∂yvj‖2L2(yα,CY )
� ‖∂yv‖2L2(yα,CY )

�
MJ∑
j=1

‖∂yvj‖2L2(yα,CY )
.

Proof. We just proceed as in Lemma 5.1 with v replaced by ∂yv =
∑MJ

j=1 ∂yvj . �

Exploiting Theorem 4.1, the properties of the quasi-interpolation operator ΠTk

defined in §3.2, and Lemmas 6.1 and 6.2, we obtain the nearly uniform convergence
of the symmetric V-cycle multigrid method. We follow [52, 54].

Theorem 6.3 (Convergence of multigrid methods with line smoothers). The sym-
metric V-cycle multigrid method with line smoothing converges with a contraction
rate

δ ≤ 1− 1

1 + CJ
,

where C is independent of the number of degrees of freedom. The constant C de-
pends on the weight yα only through the constant C2,yα and on s like C ≈ γ, where
γ is the parameter that defines the graded mesh (3.16).

Proof. We again use the XZ identity (4.1) and modify the arguments in the proof
of Theorem 5.3. We introduce the telescopic multilevel decomposition

(6.4) v =

J∑
k=0

vk, vk = (ΠTY ,k
−ΠTY ,k−1

)v, ΠTY ,−1
v := 0

and the line decomposition vk =
∑Mk

j=1 vk,j . With the same arguments as in the

proof of Theorem 5.3 and denoting Vk,i =
∑

(l,j)
(k,i) vl,j , we arrive at the inequality

(6.5)

Mk∑
i=1

‖∇Pk,iVk,i‖2L2(yα,CY )
� ‖∇(v −ΠTY ,k

v)‖2L2(yα,CY )
+

Mk∑
j=1

‖∇vk,j‖2L2(yα,CY )
,

where we used the finite overlapping property of the sets Ik,j ; see §4.1. It remains
to estimate both terms in (6.5). The stability of the quasi-interpolant ΠTY ,k

stated
in (3.11) ([44, Theorems 4.7 and 4.8] and [45, Lemma 5.1]) yields

(6.6) ‖∇(v −ΠTY ,k
v)‖L2(yα,CY ) � ‖∇v‖L2(yα,CY ).

To estimate the second term in (6.5) we begin by noticing that

(6.7)

Mk∑
j=1

‖∇vk,j‖2L2(yα,CY )
=

Mk∑
j=1

‖∇x′vk,j‖2L2(yα,CY )
+

Mk∑
j=1

‖∂yvk,j‖2L2(yα,CY )
.

The first term is estimated via the first weighted inverse inequality (6.2) and the
stability of the nodal decomposition (6.1), that is,

(6.8)

Mk∑
j=1

‖∇x′vk,j‖2L2(yα,CY )
�

Mk∑
j=1

h′
k
−2‖vk,j‖2L2(yα,CY )

� h′
k
−2‖vk‖2L2(yα,CY )

,
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18 L. CHEN, R. H. NOCHETTO, E. OTÁROLA, AND A. J. SALGADO

where h′
k is the mesh size in the x′ direction at level k. The approximation property

of ΠTY ,k
stated in Lemma 3.2 ([45, Theorem 5.7]) and the definition of vk yield

‖vk‖L2(yα,CY ) ≤ ‖v −ΠTY ,k
v‖L2(yα,CY ) + ‖v −ΠTY ,k−1

v‖L2(yα,CY )

� h′
k‖∇x′v‖L2(yα,CY ) + h′′

k‖∂yv‖L2(yα,CY )

where h′′
k denotes the maximal mesh size in the y direction at level k. Using (3.17)

we see that h′′
k � γh′

k, and replacing the estimate above in (6.8), we obtain

(6.9)

Mk∑
j=1

‖∇x′vk,j‖2L2(yα,CY )
� ‖∇v‖2L2(yα,CY )

,

which bounds the first term in (6.7). To estimate the second term, we resort to
Lemma 6.2, namely

(6.10)

Mk∑
j=1

‖∂yvk,j‖2L2(yα,CY )
� ‖∂yvk‖2L2(yα,CY )

.

Finally, inequalities (6.9) and (6.10) allow us to conclude that

Mk∑
j=1

‖∇vk,j‖2L2(yα,CY )
� ‖∇v‖2L2(yα,CY )

,

which together with (6.6) yields the desired result after summing over k. �

Remark 6.4 (Dependence on s). We point out the use of (3.17), which in turn
implies h′′

k � γh′
k, to derive (6.9). This translates into C ≈ γ in Theorem 6.3 and,

since γ > 3/(1 − α) = 3/(2s), in deterioration of the contraction factor as s ↓ 0.
We explore a remedy in §7.3.

7. Numerical illustrations for fractional diffusion

Here we present numerical experiments to support our theory. We consider

(7.1) n = 1, Ω = (0, 1), u = sin(3πx),
(7.2) n = 2, Ω = (0, 1)2, u = sin(2πx1) sin(2πx2),

and Y = 1. The length Y of the cylinder in the extended direction is fixed, as
discussed in [44], so that it captures the exponential decay of the solution. All of our
algorithms are implemented based on the MATLAB c© software package iFEM [20].

7.1. Multigrid with line smoothers on graded meshes. We partition Ω into a
uniform grid of size hTΩ

, and we construct a graded mesh in the extended direction
using (3.16) with γ = 3/2s+ 0.1 and M = 1/hTΩ

. The points are ordered column-
wise so that the indices associated to vertical lines are easily accessible. Starting
from hTΩ,0 = 0.25 we obtain a sequence of meshes by halving the mesh size of Ω
and applying (3.16) in the extended direction with double number of mesh points.

We assemble the matrix corresponding to the finite element discretization of
(3.7) on each level. The natural embedding V(Tk) → V(Tk+1) for k = 0, . . . , J − 1
gives us the prolongation matrix between two consecutive levels. Notice that the
prolongation in the x′-direction is obtained by standard averaging, while in the
extended direction the weights must be modified to take into account the grading
of the mesh. The restriction matrix is the transpose of the prolongation matrix.
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MULTILEVEL METHODS 19

As discussed in Section 6 we must use vertical line smoothers to attain efficiency.
The tri-diagonal sub-matrix corresponding to one vertical line is inverted exactly
by the built-in direct solver in MATLAB c©. Red-black ordering of the indices in
the x′-direction is used to further improve the efficiency of the line smoothers. We
perform three pre- and post-smoothing steps. Starting from a zero initial guess we
use as exit criterion that the �2-norm of the relative residual is smaller than 10−7.

Tables 1 and 2 show the number of iterations for the implemented multigrid
method for the one and two dimensional problems, respectively. As we see, the
method converges almost uniformly with respect to the number of degrees of free-
dom. Notice that the number of iterations for s = 0.15 is significantly larger than
those for the remaining tested cases. This can be explained by the fact that, as
Theorem 6.3 states, the contraction factor depends on γ ≈ 1/s, and thus we observe
a preasymptotic regime where the number of iterations grows. This is exactly the
case for the one dimensional problem, and we would expect a similar behavior in
the two dimensional case. However, since the extended problem is now in three
dimensions, the size of the problems grows rather quickly, and thus computational
resources were not sufficient to deal with the cases hTΩ

= 1
256 ,

1
512 . In §7.3 we

propose a modification of the graded mesh to address this issue.

Table 1. Number of iterations for a multigrid method for the
one dimensional fractional Laplacian using a line smoother in the
extended direction. The mesh in Ω is uniform of size hTΩ

. The
mesh in the extended direction is graded according to (3.16).

hTΩ
DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 289 7 6 5 5
1
32 1,089 13 9 6 6
1
64 4,225 25 10 6 6
1

128 16,641 33 11 6 6
1

256 66,049 37 10 6 6
1

512 263,169 38 10 6 7

Table 2. Number of iterations for a multigrid method for the
two dimensional fractional Laplacian using a line smoother in the
extended direction. The mesh in Ω is uniform of size hTΩ

. The
mesh in the extended direction is graded according to (3.16).

hTΩ
DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 4,913 10 7 6 5
1
32 35,937 19 8 6 6
1
64 274,625 34 9 6 6
1

128 2,146,689 47 9 6 6
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We also tested a point Gauss-Seidel smoother for the one dimensional case Ω =
(0, 1). Except for the trivial case hTΩ

= 1/16, the corresponding V-cycle is not able
to achieve the desired accuracy in 200 iterations.

7.2. Multigrid methods on quasi-uniform meshes. Even though the approx-
imation of the Caffarelli-Silvestre extension of the fractional Laplace operator on
quasi-uniform meshes in the extended direction is suboptimal, let us use this prob-
lem to illustrate the convergence properties of the multilevel method, developed
in Section 5, for general A2 weights. The setting is the same as in §7.1, but we
use quasi-uniform meshes and a point-wise Gauss-Seidel smoother. Tables 3 and
4 show the number of iterations with respect to the number of degrees of freedom
and s. The convergence is almost uniform with respect to the number of unknowns
as well as the parameter s ∈ (0, 1).

Table 3. Number of iterations for a multigrid method with point-
wise Gauss-Seidel smoothers on uniform meshes for the one dimen-
sional fractional Laplacian.

hTΩ
DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 289 12 13 13 14
1
32 1,089 15 15 15 17
1
64 4,225 15 16 16 17
1

128 16,641 15 16 16 18
1

256 66,049 15 15 16 18
1

512 263,169 15 15 16 18

Table 4. Number of iterations for a multigrid method with point-
wise Gauss-Seidel smoothers on uniform meshes for the two dimen-
sional fractional Laplacian.

hTΩ
DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 4,913 13 12 13 15
1
32 35,937 15 15 15 17
1
64 274,625 15 16 16 18
1

128 2,146,689 15 16 16 19

7.3. Modified mesh grading. Examining the proof of Theorem 6.3, we realize
that the critical step (6.9) consists in the application of (3.17), namely h′′

k � γh′
k,

which deteriorates as s becomes small because γ > 3/(1−α) = 3/(2s). Numerically,
this effect can be seen in Tables 1 and 2, where, for instance, the number of iterations
needed for s = 0.15 is significantly larger than those for all the other tested values.
As a result, the contraction rate of Theorem 6.3 becomes 1 − 1/(1 + CγJ). Here
we explore computationally how to overcome this issue. We construct a mesh such
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MULTILEVEL METHODS 21

that the maximum mesh size in the extended direction is uniformly bounded, with
respect to s, by the uniform mesh size in the x′-direction without changing the ratio
of degrees of freedom in Ω and the extended direction by more than a constant.

Let us begin with some heuristics. To control the aspect ratio h′′
k/h

′
k uniformly

on s ∈ (0, 1), we may apply some extra refinements to the largest elements in the
y direction, increasing the number of degrees of freedom of TY just by a constant

factor. We denote by T̃Y the resulting mesh and we notice that V(TY ) ⊂ V(T̃Y ).
Thus, Galerkin orthogonality implies

‖∇(v − VT̃Y
)‖L2(yα,CY ) ≤ ‖∇(v − VTY )‖L2(yα,CY ) � (#TY )

− 1
n+1 ≈ (#T̃Y )

− 1
n+1 .

We build on this idea through a modification of the mapping function below.
Let F : (0, 1) → (0, Y ) be an increasing and differentiable function such that

F (0) = 0 and F (1) = Y . By mapping a uniform grid of (0, 1) via the function
F , we can construct a graded mesh with mesh points given by yl = F (l/M) for
l = 1, . . . ,M : F (ξ) = Y ξγ yields (3.16) and a linear F gives a uniform grid. The
mean value theorem implies

yl+1 − yl =
F ′(cl)

M
≤ 1

M
max

{
|F ′(ξ)| : ξ ∈

[
l

M
,
l + 1

M

]}
,

which shows that the map of (3.16) is not uniformly bounded with respect to s.
For this reason, we instead consider the following construction: Let (ξ	, y	) ∈

(0, 1)2, which we will call the transition point, and define the mapping

F (ξ) = y	Y
(

ξ

ξ	

)γ

, 0 < ξ ≤ ξ	, F (ξ) = Y
(
1− y	
1− ξ	

(ξ − ξ	) + y	

)
, ξ	 < ξ < 1.

Over the interval (0, ξ	) the mapping F defines the same type of graded mesh,
but over (ξ	, 1) it defines a uniform mesh. Let us now choose the transition point
to obtain a bound on the derivative of F . We have

(7.3) F ′(ξ) = γY
y	
ξ	

(
ξ

ξ	

)γ−1

, 0 < ξ ≤ ξ	, F ′(ξ) = Y
1− y	
1− ξ	

, ξ	 < ξ < 1,

so that S := maxξ∈[0,1] |F ′(ξ)| = Y max
{
γ y�

ξ�
, 1−y�

1−ξ�

}
. Given ξ	 we choose y	 to

have γ y�

ξ�
= 1−y�

1−ξ�
, i.e., y	 =

(
1 + γ 1−ξ�

ξ�

)−1
. This yields F ∈ C1([0, 1]) and, more

importantly,

S = γY
y	
ξ	

= Y
γ

ξ	 + (1− ξ	)γ
≤ Y

1

1− ξ	
.

We can now choose ξ	 to gain control of S. For instance, ξ	 = 0.5 gives us that
S ≤ 2Y , and ξ	 = 0.75 gives us that S ≤ 4Y . In the experiments presented below
we choose ξ	 = 0.75. The theory presented in Section 6 still applies.

The modified graded meshes have asymptotically the same distribution of points
near the bottom part of the cylinder, and so they are also capable of capturing the
singular behavior of the solution U . However, near the top part, the aspect ratio
is uniformly controlled by a factor 4. The modified mesh is only applied for γ > 4.
Therefore for s = 0.3, 0.6 and 0.8, no modification is needed in the original mesh.

Upon constructing a mesh with this modification, we can develop a V-cycle
multigrid solver with vertical line smoothers. Comparisons of this approach with
the setting of §7.1 are shown in Tables 5 and 6. From them we can conclude that the
strong anisotropic behavior of the mesh grading (3.16) affects the performance of
the V-cycle multigrid with vertical line smoothers. For the original graded meshes,
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there is a preasymptotic regime where the number of iterations increases faster
than log J . The modification of the mesh proposed in (7.3) allows us to obtain an
almost uniform number of iterations for all problem sizes without sacrificing the
near optimal order of convergence of the method.

Table 5. Comparison of the multilevel solver with vertical line
smoother over two graded meshes for the one dimensional frac-
tional Laplacian, s = 0.15. Legends : The original mesh, given by
(3.16), is denoted by o, whereas the modification proposed in (7.3)
is denoted by m; I – iterations, E – error in the energy norm.

hTΩ
DOFs I(o) I(m) E(o) E(m)

1
16 289 7 7 0.1556 0.1739
1
32 1,089 13 9 0.0828 0.0937
1
64 4,225 25 10 0.0426 0.0485
1

128 16,641 33 10 0.0216 0.0246
1

256 66,049 37 11 0.0109 0.0124
1

512 263,169 38 11 0.0055 0.0062

Table 6. Comparison of the multilevel solver with vertical line
smoother over two graded meshes for the two dimensional frac-
tional Laplacian, s = 0.15. Legends : The original mesh, given by
(3.16), is denoted by o, whereas the modification proposed in (7.3)
is denoted by m; I – iterations, E – error in the energy norm.

hTΩ
DOFs I(o) I(m) E(o) E(m)

1
16 4,913 10 8 0.1070 0.1198
1
32 35,937 19 11 0.0570 0.0646
1
64 274,625 34 12 0.0294 0.0334
1

128 2,146,689 47 13 0.0149 0.0170
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