
FINITE ELEMENT APPROXIMATION FOR A CONVECTIVE
BRINKMAN–FORCHHEIMER PROBLEM COUPLED WITH A HEAT

EQUATION∗
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1. Introduction. Let Ω ⊂ Rd, with d ∈ {2, 3}, be an open and bounded domain
with Lipschitz boundary ∂Ω. In this work, we continue our research program focused
on the analysis and approximation of fluid flow models coupled with a heat equation.
In particular, we are now interested in developing finite element methods for the
temperature distribution of a fluid modeled by a convection–diffusion equation coupled
with the convective Brinkman–Forchheimer equations. This model can be described
by the following nonlinear system of partial differential equations (PDEs):

(1)

{
−div(ν(T )∇u) + (u · ∇)u + u + |u|s−2u +∇p = f in Ω, div u = 0 in Ω,

−div(κ(T )∇T ) + u · ∇T = g in Ω,

supplemented with the Dirichlet boundary conditions u = 0 and T = 0 on ∂Ω. The
data of the model are the external density force f , the external heat source g, the
viscosity coefficient ν, and the thermal diffusivity coefficient κ. We note that ν(·) and
κ(·) are coefficients that can depend nonlinearly on the temperature. The parameter
s is chosen so that s ∈ [3, 4]. The unknowns of the system are the velocity field u, the
pressure p, and the temperature T of the fluid.

The analysis and discretization of various incompressible, non-isothermal flows
have become increasingly important for a variety of research areas in science and
technology. This is due to the numerous applications in industry, e.g., in the design
of heat exchangers and chemical reactors, cooling processes, and polymer processing,
to name but a few. For advances in the numerical approximation of non-isothermal
flows governed by the Navier Stokes equations and a suitable temperature equation,
as well as for the so-called Boussinesq problem and its generalizations, we refer the
interested reader to [2, 3, 7, 8, 19, 21, 28, 37, 54, 65]. In this context, we also mention
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the works [4, 17, 18, 32, 33, 42] for similar results when the Navier–Stokes equations
are replaced by the Darcy equations. Finally, we refer the reader to [5, 31, 62, 68]
for the analysis of finite element schemes for the coupling of a heat equation with the
so-called Darcy–Forchheimer equations.

Now that we have briefly explained the importance of non-isothermal flows and
mentioned some applications, we would like to turn our attention to the so-called con-
vective Brinkman–Forchheimer model. In the following, we will divide the discussion
into two parts:
• The Darcy–Forchheimer equations: As stated in [45], Darcy’s law, namely

u = −K∇p/µ, is a linear relation that describes the creep flow of Newtonian flu-
ids in porous media. It is supported by years of experimental data and has numerous
applications in engineering. However, based on flow experiments in sand packs, Forch-
heimer realized that Darcy’s law was not adequate for moderate Reynolds numbers.
He found that the relationship between the pressure gradient and the Darcy velocity
was nonlinear and that this nonlinearity appeared to be quadratic for a variety of
experimental data [39]; see [45, page 162] and [72, Section 6, page 55]. This modifica-
tion of the Darcy equations is usually referred to as the Darcy–Forchheimer equations
and has been studied in detail in several papers. We refer the reader to the following
non-exhaustive list of references [9, 36, 45, 55, 60]. As mentioned in [16], Forchheimer
also noted in his 1901 publication that some data sets could not be described by the
quadratic correction. Therefore, he suggested adding a cubic term to describe the
behavior of the observed flow in these cases. He also postulated that the Darcy’s
law correction could allow a polynomial expression in u, e.g., u + |u|u + |u|2u and
u + |u|s−2u; see [53, page 59], [38, §2.3], and [64, page 12]. In practice, the exponent
s takes the value 3 and 4 in several applications; see [15, 38, 40, 52, 56, 58, 63, 71] for
the case s = 4. As mentioned in [63, page 133], the use of the fractional value s = 7/2
is also considered in the literature. For these reasons, we consider the parameter
s ∈ [3, 4] in our work.
• The convective Brinkman–Forchheimer equations: The inclusion of −∆u and

the convective term (u·∇)u in the Darcy–Forchheimer equations leads to the so-called
convective Brinkman–Forchheimer model (1). Assuming a two-dimensional station-
ary, isotropic, incompressible, homogeneous flow through a fluid-saturated porous
medium, this system was derived by the authors of [70] as the governing momentum
equation based on local volume averaging and matched asymptotic expansion; see
also [49]. Further justifications for the inclusion of the so-called Brinkman and con-
vective terms in (1) were later presented in [69]. We refer the interested reader to
[6, 27, 47, 51, 71] for further insights, analysis, and applications of this model.

Our problem (1) is related to the coupling of the Brinkman–Forchheimer equations
and the so-called double-diffusion equations. There are several articles in the literature
on the analysis and discretization of this coupling; see, e.g., [50, 61, 26, 25, 24]. With
the exception of the recently published work [24], all the previously cited papers
consider the case s = 3. On the other hand, the models considered in [26, 25, 24]
couple the concentration variable in the forcing term of the momentum equations of
the Brinkman–Forchheimer system as f(φ) for physical reasons other than ours. In
contrast, in our work we follow the approach considered in [12, 17, 33, 30], which
takes up the physical considerations presented in [48, 57], and considers viscosity and
thermal diffusion coefficients, which may depend nonlinearly on the temperature T .

As far as we know, this is the first paper dealing with the analysis and numer-
ical approximation of the nonlinear coupled problem (1) in its present form. Since
the problem involves several sources of nonlinearity, the analysis and discretization
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are anything but trivial. In the following, we list what we consider to be the most
important contributions of our work:
• Existence and uniqueness of solutions: We introduce a concept of weak solution

for the nonlinear problem (1) and show the existence of solutions without restriction
on the data; the latter is derived using Galerkin’s method and Brouwer’s fixed point
theorem. Moreover, we obtain a global uniqueness result when the solution is slightly
smoother, and the data is suitably restricted.
• Finite element approximation: We propose a finite element discretization for

the system (1) based on the following two classical inf-sup stable pairs: the Taylor–
Hood element and the mini element. We approximate the temperature variable of the
fluid with continuous piecewise linear/quadratic finite elements. As in the continuous
case, we show the existence of solutions without restriction on the data and global
uniqueness when the solution is slightly smoother, and the data is suitably restricted.
We also show the existence of a subsequence of discrete solutions that converge to a
solution of the continuous problem (1). This result holds without assumptions on the
data and solutions beyond what is required to obtain well-posedness.
• A priori error estimates: We derive a quasi-best approximation result for the

proposed numerical method. In doing so, we assume suitable smallness conditions
and regularity assumptions for the solution. Under the moderate assumption that
(u, p, T ) ∈ H3(Ω)×H2(Ω)×H3(Ω), we obtain optimal error estimates in a standard
energy norm for the approximation with the Taylor–Hood element. For the approxi-
mation with the mini element, we obtain optimal error estimates in such a standard
energy norm assuming that (u, p, T ) ∈ H2(Ω)×H1(Ω)×H2(Ω).
• An iterative scheme: We propose an iterative method for solving the proposed

nonlinear finite element discretization and show its convergence under suitable small-
ness conditions and regularity assumptions on the solution.
• Numerical simulations: We computationally investigate the effects of the Forch-

heimer exponent s in the so-called heated lid-driven cavity flow problem and show
how this parameter affects the velocity and pressure of the fluid and, in particular,
the position of the counter-rotating vortices that occur in the cavity.

The structure of our manuscript is outlined below. In section 2, we establish the
notation and the preliminary material. In section 3, we present a weak formulation for
the system (1) and show the existence of solutions without restrictions on the data and
uniqueness under suitable smallness conditions on the data. In section 4, we develop
a finite element scheme, investigate its convergence properties, and derive a priori
error estimates to control the error in the approximation of the velocity, pressure, and
temperature variables. We conclude in section 5 with a series of numerical experiments
that illustrate and go beyond the theory.

2. Notation and preliminary remarks. We begin this section by establishing
the notation and the framework within which we will work.

2.1. Notation. We use the standard notation for Lebesgue and Sobolev spaces.
The spaces of vector-valued functions and the vector-valued functions themselves are
denoted by bold letters. In particular, we set V(Ω) := {v ∈ H1

0(Ω) : div v = 0}.
If X and Z are Banach function spaces, we write X ↪→ Z to denote that X is

continuously embedded in Z. We denote by Z ′ and ‖ · ‖Z the dual and the norm of
Z, respectively. We denote by 〈·, ·〉Z′,Z′ the duality paring between Z ′ and Z; if the
underlying spaces are clear from the context, we simply write 〈·, ·〉. Given p ∈ (1,∞),
we denote by p′ ∈ (1,∞) its Hölder conjugate, i.e., p′ is such that 1/p+1/p′ = 1. The
relation a . b means that a ≤ Cb, where C is a constant that does not depend on a,
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b, or the discretization parameters. The value of C can change each time it occurs. If
the specific value of a constant is important, we give it a name. For example, in our
work we use C4↪→2 to denote the best constant in the embedding H1

0 (Ω) ↪→ L4(Ω). To
simplify the notation, we also use C4↪→2 in the vectorial case H1

0(Ω) ↪→ L4(Ω).

2.2. A convective Brinkman–Forchheimer problem. In this section, we
investigate existence and uniqueness results for the following weak formulation of
a convective Brinkman–Forchheimer problem: Given an external density force f ∈
H−1(Ω), find a velocity-pressure pair (u, p) ∈ H1

0(Ω)× L2
0(Ω) such that

(2)

ˆ
Ω

(
ν∇u · ∇v + (u · ∇)u · v + u · v + |u|s−2u · v − pdiv v

)
dx = 〈f ,v〉,ˆ

Ω

qdiv udx = 0,

for all v ∈ H1
0(Ω) and q ∈ L2

0(Ω), respectively. The function ν belongs to C0,1(R),
and it is assumed to be strictly positive and bounded. Namely, we assume that there
are positive constants ν− and ν+ such that 0 < ν− ≤ ν(r) ≤ ν+ for every r ∈ R. We
denote by Lν the Lipschitz constant of the function ν.

With the exception of Is :=
´

Ω
|u|s−2u · vdx, all terms in system (2) are trivially

well-defined in our space setting. A bound for Is can be derived as follows:

(3) |Is| ≤ ‖u‖s−2
Lτ(s−2)(Ω)

‖u‖Lµ(Ω)‖v‖Lµ(Ω), τ−1 + 2µ−1 = 1,

where we have used Hölder’s inequality. We now apply the standard Sobolev embed-
dings from [1, Theorem 4.12, Cases B and C] to conclude that H1

0(Ω) ↪→ Lι(Ω) for
ι <∞ when d = 2 and ι ≤ 6 when d = 3. We can, therefore, set τ = q for some q > 1
in two dimensions and τ = 3/2 in three dimensions. It follows that s− 2 ∈ [1, 2] and
therefore that τ(s− 2) ≤ 2τ ≤ 3. From this, we can derive the estimate

(4) |Is| . ‖∇u‖s−1
L2(Ω)‖∇v‖L2(Ω),

by again using the Sobolev embedding H1
0(Ω) ↪→ Lι(Ω).

Remark 1 (boundedness of Is). Let us first note that the bound (4) is not the only
way to control the term Is. Our bound exploits the maximum Lι(Ω)-regularity of a
function in H1

0 (Ω) and implies that the estimate (4) is also valid for larger values of
the parameter s. Nevertheless, in our work, we consider s ∈ [3, 4] due to the physical
considerations discussed in the introduction.

2.2.1. Existence. To present existence and uniqueness results for system (2),
we introduce the bilinear forms aL : [H1

0(Ω)]2 → R and b : H1
0(Ω)× L2

0(Ω)→ R by

aL(u,v) :=

ˆ
Ω

(ν∇u · ∇v + u · v)dx, b(v, q) := −
ˆ

Ω

qdiv vdx,

respectively. We also introduce forms associated with the nonlinear terms (u · ∇)u
and |u|s−2u in (2). Namely, we define aN : [H1

0(Ω)]3 → R and aF : [H1
0(Ω)]3 → R by

aN (u; w,v) :=

ˆ
Ω

(u · ∇)w · vdx, aF (u; w,v) :=

ˆ
Ω

|u|s−2w · vdx,

respectively. The form aN satisfies the following properties [67, Chapter II, Lemma
1.3], [44, Chapter IV, Lemma 2.2]: Let u ∈ V(Ω) and v,w ∈ H1

0(Ω). Then, we have

aN (u; v,w) + aN (u; w,v) = 0, aN (u; v,v) = 0.(5)
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Moreover, aN is well-defined and continuous on [H1
0(Ω)]3: There is CN > 0 such that

|aN (u; v,w)| ≤ CN‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω);(6)

see [67, Chapter II, Lemma 1.1] and [41, Lemma IX.1.1]. As a final ingredient, we
introduce a : [H1

0(Ω)]3 → R by a(u; u,v) := aL(u,v) + aN (u; u,v) + aF (u; u,v).
Having introduced all these ingredients, we can rewrite the weak formulation (2)

as follows: Find (u, p) ∈ H1
0(Ω)× L2

0(Ω) such that

(7) a(u; u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ H1
0(Ω), b(u, q) = 0 ∀q ∈ L2

0(Ω).

We note that, due to the Rham’s theorem [35, Theorem B.73], problem (7) is equiv-
alent to the following reduced formulation: Find u ∈ V(Ω) such that

a(u; u,v) = 〈f ,v〉 ∀v ∈ V(Ω).(8)

An essential ingredient in the proof of [35, Theorem B.73] is the fact that the diver-
gence operator is surjective from H1

0(Ω) to L2
0(Ω). This implies that there exists a

positive constant β such that [44, Chapter I, Section 5.1], [35, Corollary B.71]

(9) sup
v∈H1

0(Ω)

(q,div v)L2(Ω)

‖∇v‖L2(Ω)
≥ β‖q‖L2(Ω) ∀q ∈ L2

0(Ω).

Given f ∈ H−1(Ω), we define

(10) Λ(f) := 1 + ν+ν
−1
− + CNν−2

− ‖f‖H−1(Ω) + C2
2↪→2ν

−1
− + Css↪→2ν

1−s
− ‖f‖s−2

H−1(Ω),

where CN is as in (6) and C2↪→2 and Cs↪→2 denote the best constants in the Sobolev
embeddings H1

0(Ω) ↪→ L2(Ω) and H1
0(Ω) ↪→ Ls(Ω), respectively.

We now present an existence result without restrictions on the data.

Theorem 2 (existence and stability bound). There exists at least one solution
(u, p) ∈ H1

0(Ω)× L2
0(Ω) for problem (7). Moreover, (u, p) satisfies the bound

‖∇u‖L2(Ω) ≤ ν−1
− ‖f‖H−1(Ω),(11)

‖p‖L2(Ω) ≤ β−1Λ(f)‖f‖H−1(Ω),(12)

where β corresponds to the constant in (9).

Proof. The proof of this result can be found in [23, Theorem 2]. For the sake of
brevity, we omit the details.

2.2.2. Uniqueness. In this section, we provide a uniqueness result for problem
(7) under a suitable smallness condition.

Theorem 3 (uniqueness for small data). In the framework of Theorem 2, if
f ∈ H−1(Ω) is sufficiently small or ν sufficiently large such that

ν−2
− CN‖f‖H−1(Ω) < 1,(13)

where CN is as in (6), then there is a unique (u, p) ∈ H1
0(Ω)× L2

0(Ω) that solves (7).

Proof. The proof of this result follows standard arguments. The interested reader
is referred to [23, Theorem 3] for a proof.
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2.3. A nonlinear heat equation. We now examine existence and uniqueness
results for a nonlinear heat equation with convection. For this purpose, we consider
g ∈ H−1(Ω) and a thermal diffusion coefficient κ ∈ C0,1(R) that satisfies 0 < κ− ≤
κ(r) ≤ κ+ for each r ∈ R, where κ+ ≥ κ− > 0. We denote by Lκ the Lipschitz
constant of κ. A weak formulation for the nonlinear heat equation is as follows:

(14) T ∈ H1
0 (Ω) :

ˆ
Ω

(κ(T )∇T · ∇S + (v · ∇T )S) dx = 〈g, S〉 ∀S ∈ H1
0 (Ω),

where v ∈ V(Ω). As an instrumental ingredient to perform an analysis, we introduce
the map A : H1

0 (Ω)→ H−1(Ω), which is defined by

〈A(T ), S〉 :=

ˆ
Ω

(κ(T )∇T · ∇S + (v · ∇T )S) dx ∀T, S ∈ H1
0 (Ω).(15)

The existence of solutions to problem (14) is as follows.

Theorem 4 (existence). There exists at least one solution T ∈ H1
0 (Ω) to (14).

Proof. The proof of this result can be found in [23, Theorem 4]. For the sake of
brevity, we omit the details.

Global uniqueness can be obtained when the solution is slightly smoother and the
datum is suitably restricted.

Theorem 5 (uniqueness for small data). Let us assume that (14) has a solution
T1 ∈W 1,3(Ω) ∩H1

0 (Ω) such that

(16) κ−1
− LκC6↪→2‖∇T1‖L3(Ω) < 1.

Then problem (14) has no other solution T2 in H1
0 (Ω). Here, C6↪→2 is the best constant

in the Sobolev embedding H1
0 (Ω) ↪→ L6(Ω) and Lκ is the Lipschitz constant of κ.

Proof. The proof of this result follows standard arguments. The interested reader
is referred to [23, Theorem 5] for a proof.

Remark 6 (d = 2). If d = 2, the assumption on T1 in (16) can be improved to
LκCσ↪→2‖∇T1‖Lt(Ω)/κ− < 1 for some t > 2, where σ satisfies 1/σ + 1/t = 1/2. This
is achieved by exploiting the fact that H1

0 (Ω) ↪→ Lι(Ω) for ι <∞ in two dimensions.

3. The coupled problem. The main goal of this section is to show the existence
of suitable weak solutions for the coupled problem (1) and to derive a uniqueness result
under suitable assumptions. In a first step, we introduce the assumptions under which
we will work and introduce the concept of a weak solution.

3.1. Main assumptions. Inspired by the results in the previous sections, we
consider the following assumptions on the viscosity and diffusion coefficients.
• Viscosity: The viscosity ν ∈ C0,1(R) is a function that is strictly positive and

bounded: there exist positive constants ν− and ν+ such that

(17) ν− ≤ ν(r) ≤ ν+ ∀r ∈ R.

• Diffusivity: The thermal coefficient κ ∈ C0,1(R) is a strictly positive and
bounded function: there exists positive constant κ− and κ+ such that

(18) κ− ≤ κ(r) ≤ κ+ ∀r ∈ R.

• Lipschitz constants: We denote by Lν and Lκ the Lipschitz constants associated
to the functions ν and κ, respectively.
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3.2. Weak solution. We use the following notion of weak solution for (1).

Definition 7 (weak solution). Let f ∈ H−1(Ω) and let g ∈ H−1(Ω). We say
that (u, p, T ) ∈ H1

0(Ω)× L2
0(Ω)×H1

0 (Ω) is a weak solution to (1) if

(19)

ˆ
Ω

(
ν(T )∇u · ∇v + (u · ∇)u · v + u · v + |u|s−2u · v − pdiv v

)
dx = 〈f ,v〉,ˆ

Ω

qdiv u dx = 0,

ˆ
Ω

(κ(T )∇T · ∇S + (u · ∇T )S) dx = 〈g, S〉,

for all (v, q, S) ∈ H1
0(Ω)× L2

0(Ω)×H1
0 (Ω). The parameter s belongs to [3, 4].

It is important to note that, given the assumptions imposed on the problem data, all
terms in system (19) are well-defined.

3.3. Existence of solutions. We are now in a position to establish an existence
result for problem (19). To simplify our presentation, we use the following notation:

∀(v, S) ∈ H1
0(Ω)×H1

0 (Ω) : ‖(v, S)‖H1
0(Ω)×H1

0 (Ω) :=
[
‖∇v‖2L2(Ω) + ‖∇S‖2L2(Ω)

] 1
2

,

∀(f , g) ∈ H−1(Ω)×H−1(Ω) : ‖(f , g)‖H−1(Ω)×H−1(Ω) :=
[
‖f‖2H−1(Ω) +‖g‖2H−1(Ω)

] 1
2

.

Theorem 8 (existence of solutions). Let d ∈ {2, 3}, and let Ω ⊂ Rd be an open
and bounded domain with Lipschitz boundary ∂Ω. Let ν and κ in C0,1(R) be such that
inequalities (17) and (18) hold. If f ∈ H−1(Ω) and g ∈ H−1(Ω), then problem (19)
has at least one solution (u, p, T ) ∈ H1

0(Ω)× L2
0(Ω)×H1

0 (Ω). Moreover, we have

‖∇u‖L2(Ω) ≤ ν−1
− ‖f‖H−1(Ω), ‖p‖L2(Ω) ≤ β−1Λ(f)‖f‖H−1(Ω),(20)

‖∇T‖L2(Ω) ≤ κ−1
− ‖g‖H−1(Ω),(21)

where Λ is defined in (10).

Proof. We adapt the proof of Theorem 2.2 in [2] to our case and divide the proof
into several steps.

Step 1. A mapping Φ: Let u,v ∈ V(Ω), and let T, S ∈ H1
0 (Ω) be arbitrary.

To simplify the notation, we define the variables U := (u, T ) and V := (v, S). We
introduce the mapping Φ from the space V(Ω)×H1

0 (Ω) into its dual space as

(22) 〈Φ(U),V〉 :=

ˆ
Ω

(
ν(T )∇u · ∇v + (u · ∇)u · v + u · v + |u|s−2u · v

)
dx

+

ˆ
Ω

(κ(T )∇T · ∇S + (u · ∇T )S) dx− 〈f ,v〉 − 〈g, S〉.

As a consequence of H1
0(Ω) ↪→ Lι(Ω), which holds for ι < ∞ when d = 2 and ι ≤ 6

when d = 3, suitable Hölder inequalities, the bounds (4) and (6), and the properties
that ν and κ satisfy, we can deduce that Φ is continuous on V(Ω)×H1

0 (Ω).
If, on the other hand, we replace U by V in (22) and use that aN (v; v,v) = 0,

aF (v; v,v) = (|v|s−2, |v|2)L2(Ω) ≥ 0, and
´

Ω
(v · ∇S)Sdx = 0, together with the

properties (17) and (18), we conclude that

〈Φ(V),V〉 ≥ min {ν−, κ−} ‖(v, S)‖2H1
0(Ω)×H1

0 (Ω)

− ‖(f , g)‖H−1(Ω)×H−1(Ω)‖(v, S)‖H1
0(Ω)×H1

0 (Ω).
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From this, we can conclude that 〈Φ(V),V〉 ≥ 0 for all V ∈ V(Ω)×H1
0 (Ω) such that

‖(v, S)‖H1
0(Ω)×H1

0 (Ω) = min{ν−, κ−}−1‖(f , g)‖H−1(Ω)×H−1(Ω) =: δ.
Step 2. Galerkin approximation [59, Theorem 2.6]: Since V(Ω) is separable, we

can take a sequence {Vk}k∈N of finite-dimensional subspaces of V(Ω) such that

(23) ∀k ∈ N : Vk ⊂ Vk+1 ⊂ V(Ω), ∪{Vk : k ∈ N} is dense in V(Ω).

We can also take a sequence {Wk}k∈N of finite-dimensional subspaces of H1
0 (Ω) so that

the properties in (23) hold by replacing Vk and V(Ω) by Wk and H1
0 (Ω), respectively.

Then, we define a Galerkin approximation Uk = (uk, Tk) ∈ Vk ×Wk by the identity

〈Φ(Uk),Vk〉 = 0 ∀Vk ∈ Vk ×Wk.

As shown in step 1 on a continuous level, Φ is a continuous from Vk × Wk into
Vk × Wk and satisfies the property 〈Φ(Vk),Vk〉 ≥ 0 for all Vk ∈ Vk × Wk such
that ‖(vk, Sk)‖H1

0(Ω)×H1
0 (Ω) = min{ν−, κ−}−1‖(f , g)‖H−1(Ω)×H−1(Ω) = δ. Applying a

consequence of Brouwer’s classical fixed-point theorem [44, Chapter IV, Corollary
1.1], we deduce the existence of a solution Uk such that

(24) 〈Φ(Uk),Vk〉 = 0 ∀Vk ∈ Vk ×Wk, ‖(uk, Tk)‖H1
0(Ω)×H1

0 (Ω) ≤ δ.

Step 3. Limite passage: Since the sequences {uk}k∈N and {Tk}k∈N are uniformly
bounded in H1

0(Ω) and H1
0 (Ω), respectively, we deduce the existence of nonrelabeled

subsequences such that uk ⇀ u and Tk ⇀ T in H1
0(Ω) and H1

0 (Ω), respectively, as
k ↑ ∞. The compact embedding of [1, Theorem 6.3, Part I] guarantees that uk → u
in Lq(Ω) and Tk → T in Lq(Ω) as k ↑ ∞ for q < ∞ in two dimensions and q < 6 in
three dimensions. Note that by construction, for every ` ≤ k we have that

(25) Uk = (uk, Tk) ∈ Vk ×Wk : 〈Φ(Uk),V`〉 = 0 ∀V` ∈ V` ×W`.

Let us now prove that the limit point (u, T ) solves (19). To do so, we note that:
(i)
´

Ω
ν(Tk)∇uk · ∇vdx→

´
Ω
ν(T )∇u · ∇vdx as k ↑ ∞ for v ∈ V(Ω): It follows

from the strong convergence of {Tk}k∈N to T in L2(Ω) and the Lipschitz continuity of
ν that ν(Tk)∇v→ ν(T )∇v almost everywhere in Ω as k ↑ ∞. Since ν is bounded, the
Lebesgue dominated convergence theorem shows that ν(Tk)∇v → ν(T )∇v in L2(Ω)
as k ↑ ∞. As a result,

´
Ω
ν(Tk)∇uk · ∇vdx→

´
Ω
ν(T )∇u · ∇vdx as k ↑ ∞.

(ii) aN (uk; uk,v) → aN (u; u,v) as k ↑ ∞ for v ∈ V(Ω): The proof of this
convergence result can be found in the proof of [44, Chapter IV, Theorem 2.1].

(iii) aF (uk; uk,v) → aF (u; u,v) as k ↑ ∞ for v ∈ V(Ω): We begin with an
application of [29, estimate (5.3.33)] or [46, Lemma 5.3] and obtain

(26)

∣∣∣∣ˆ
Ω

(|uk|s−2uk − |u|s−2u) · vdx

∣∣∣∣ . ˆ
Ω

|uk − u|(|uk|+ |u|)s−2|v|dx

≤ ‖uk − u‖Lµ(Ω)‖|uk|+ |u|‖s−2
Lτ(s−2)(Ω)

‖v‖Lµ(Ω) ≤ Λs,τ‖uk − u‖Lµ(Ω)‖v‖Lµ(Ω),

where 2µ−1 + τ−1 = 1 and Λs,τ = Λs,τ (u) is such that

(27) ‖|uk|+ |u|‖s−2
Lτ(s−2)(Ω)

≤ Cs−2
τ(s−2)↪→2

[
M+ ‖∇u‖L2(Ω)

]s−2
=: Λs,τ (u).

Here, Cτ(s−2)↪→2 is the best constant in the Sobolev embedding H1
0(Ω) ↪→ Lτ(s−2)(Ω)

and M is such that ‖∇uk‖L2(Ω) ≤ M for every k ∈ N. The constant τ is such that
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τ = q for some q > 1 in two dimensions, and τ > 3/2 is arbitrarily close to 3/2 in
three dimensions. We again invoke the compact embedding of [1, Theorem 6.3, Part
I] which guarantees that uk → u in Lq(Ω) as k ↑ ∞ for q <∞ in two dimensions and
q < 6 in three dimensions to conclude that uk → u in Lµ(Ω) as k ↑ ∞. As a result,
we have obtained that aF (uk; uk,v)→ aF (u; u,v) as k ↑ ∞.

(iv)
´

Ω
κ(Tk)∇Tk · ∇Sdx →

´
Ω
κ(T )∇T · ∇Sdx as k ↑ ∞ for S ∈ H1

0 (Ω): This
convergence result follows from arguments similar to those used in item (i).

The results obtained in (i)–(iv) allow us to conclude that 〈Φ(U),V`〉 = 0 for all
V` ∈ V` ×W` and by density that 〈Φ(U),V〉 = 0 for all V ∈ V(Ω)×H1

0 (Ω). We can
therefore conclude that (u, T ) satisfies the second and third equations in (19) and

〈H,v〉 :=

ˆ
Ω

(
ν(T )∇u · ∇v + (u · ∇)u · v + u · v + |u|s−2u · v

)
dx− 〈f ,v〉 = 0,

for all v ∈ V(Ω).
Step 4. The pressure: The functional H is linear and continuous on H1

0(Ω) and is
zero on the space V(Ω). Consequently, by virtue of de Rhams theorem [35, Theorem
B.73], there exists p ∈ L2

0(Ω) such that 〈H,v〉 = 〈∇p,v〉 for v ∈ H1
0(Ω). We have

thus proved the existence of a solution (u, p, T ).
Step 5. Stability bounds: Let (u, p, T ) ∈ H1

0(Ω) × L2
0(Ω) × H1

0 (Ω) be a solution
of problem (19). If we use v = u as the test function in the first equation of problem
(19), we immediately obtain the bound

ν−‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) + ‖u‖sLs(Ω) ≤ ‖f‖H−1(Ω)‖∇u‖L2(Ω),

where we have used that aN (u; u,u) = 0 because u ∈ V(Ω). This bound shows
that ν−‖∇u‖L2(Ω) ≤ ‖f‖H−1(Ω). The stability bound for the temperature variable in
(21) follows similar arguments. The estimate for the pressure follows from the inf-sup
condition (9). This concludes the proof.

3.4. Uniqueness of solutions. Without regularity assumptions on the solu-
tion, the derivation of uniqueness of solutions for the nonlinear system (19) appears
problematic. Let us show the uniqueness of solutions under suitable assumptions.

Theorem 9 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 3 and assume that problem (19) has a solution (u1, p1, T1) ∈ W1,3(Ω) ∩
H1

0(Ω)× L2
0(Ω)×W 1,3(Ω) ∩H1

0 (Ω) such that

CN
ν2
−
‖f‖H−1(Ω) +

LνC6↪→2C2
4↪→2‖g‖H−1(Ω)‖∇u1‖L3(Ω)

ν−κ−
(
κ− − LκC6↪→2‖∇T1‖L3(Ω)

) < 1,(28)

LκC6↪→2‖∇T1‖L3(Ω) < κ−.(29)

Then, (19) has no other solution (u2, p2, T2) ∈ H1
0(Ω)×L2

0(Ω)×H1
0 (Ω). Here, C6↪→2

and C4↪→2 denote the best constants in the embedding H1
0 (Ω) ↪→ L6(Ω) and H1

0(Ω) ↪→
L4(Ω), respectively, and Lν and Lκ are the Lipschitz constants of ν and κ, respectively.

Proof. Let (u2, p2, T2) be another solution of the coupled problem (19). Define
u := u1 − u2 ∈ H1

0(Ω), p := p1 − p2 ∈ L2
0(Ω), and T := T1 − T2 ∈ H1

0 (Ω). A simple
calculation shows that T verifies the following identity for every S ∈ H1

0 (Ω):

(30)

ˆ
Ω

κ(T2)∇T ·∇Sdx+

ˆ
Ω

(u1·∇T1−u2·∇T2)Sdx =

ˆ
Ω

(κ(T2)−κ(T1))∇T1·∇Sdx.
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We now set S = T and use that
´

Ω
(u2 · ∇T )Tdx = 0 because u2 ∈ V(Ω) to obtain

ˆ
Ω

κ(T2)|∇T |2dx+

ˆ
Ω

(u · ∇T1)Tdx =

ˆ
Ω

(κ(T2)− κ(T1))∇T1 · ∇Tdx.

We use the assumptions on κ presented in §3.1, suitable Hölder’s inequalities, the
bound ‖∇T1‖L2(Ω) ≤ κ−1

− ‖g‖H−1(Ω), and standard Sobolev embeddings to obtain

(31) κ−‖∇T‖2L2(Ω) ≤ κ
−1
− C2

4↪→2‖∇u‖L2(Ω)‖g‖H−1(Ω)‖∇T‖L2(Ω)

+ LκC6↪→2‖∇T1‖L3(Ω)‖∇T‖2L2(Ω).

This estimate leads directly to the following bound:

(32) ‖∇T‖L2(Ω) ≤
(
κ− − LκC6↪→2‖∇T1‖L3(Ω)

)−1
κ−1
− C2

4↪→2‖∇u‖L2(Ω)‖g‖H−1(Ω).

We now apply arguments similar to those we used for (30) and obtain

(33)

ˆ
Ω

(
ν(T2)∇u · ∇v + (u1 · ∇)u1 · v − (u2 · ∇)u2 · v + u · v

+ |u1|s−2u1 · v − |u2|s−2u2 · v
)

dx =

ˆ
Ω

(ν(T2)− ν(T1))∇u1 · ∇vdx

for all v ∈ V(Ω). To control the term ‖∇u‖L2(Ω), we set v = u in (33), invoke [34,
Chapter I, Lemma 4.4], and apply the estimates (6) and (11) to conclude that

ν−‖∇u‖2L2(Ω) ≤ ν
−1
− CN‖∇u‖2L2(Ω)‖f‖H−1(Ω)

+ LνC6↪→2‖∇T‖L2(Ω)‖∇u1‖L3(Ω)‖∇u‖L2(Ω).

Replacing (32) into the previous bound we obtain

‖∇u‖2L2(Ω)

(
1− CN

ν2
−
‖f‖H−1(Ω) −

LνC6↪→2C2
4↪→2‖g‖H−1(Ω)‖∇u1‖L3(Ω)

ν−κ−
(
κ− − LκC6↪→2‖∇T1‖L3(Ω)

) ) ≤ 0,

which, in view of (28), immediately shows that u = 0 and therefore u1 = u2. We
now substitute u = 0 in (31) and use assumption (29) to obtain that T = 0. Finally,
using the inf-sup condition (9), we arrive at p = 0. This concludes the proof.

Since different Sobolev embedding results hold in two dimensions, it is possible to
improve the regularity assumptions under which it is possible to obtain uniqueness.

Theorem 10 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 2 and assume that problem (19) has a solution (u1, p1, T1) ∈ W1,2+ε(Ω) ∩
H1

0(Ω)× L2
0(Ω)×W 1,2+ε(Ω) ∩H1

0 (Ω) for some ε > 0 such that

CN
ν2
−
‖f‖H−1(Ω) +

LνCεC2
4↪→2‖g‖H−1(Ω)‖∇u1‖L2+ε(Ω)

ν−κ−
(
κ− − LκCε‖∇T1‖L2+ε(Ω)

) < 1,(34)

LκCε‖∇T1‖L2+ε(Ω) < κ−.(35)

Then, problem (19) has no other solution (u2, p2, T2) ∈ H1
0(Ω)×L2

0(Ω)×H1
0 (Ω). Here,

Cε and C4↪→2 denote the best constants in H1
0 (Ω) ↪→ L2(2+ε)/ε(Ω) and H1

0(Ω) ↪→ L4(Ω),
respectively, and Lν and Lκ are the Lipschitz constants of ν and κ, respectively.
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4. Finite element approximation. In this section, we propose and analyze
a finite element scheme to approximate solutions of the nonlinear coupled problem
(19). As far as the analysis is concerned, we study the convergence properties of the
discretization scheme and derive a priori error bounds. To this end, we first introduce
some notions and basic ingredients [20, 22, 29, 35].

4.1. Notation and basic components. From now on we assume that Ω is
a Lipschitz polytope so that it can be exactly triangulated. Let Th = {K} be a
conforming partition of Ω̄ into closed simplices K of size hK = diam(K). Here,
h := max{hK : K ∈ Th}. We denote by T = {Th}h>0 a collection of conforming
meshes Th, which are refinements of an initial mesh T0. We assume that the collection
T satisfies the so-called shape regularity condition.

4.2. Finite element spaces. Let Th be a mesh in T. To approximate the
velocity field u and the pressure p of the fluid, we consider a pair (Xh,Mh) of finite
element spaces satisfying a uniform discrete inf-sup condition: There exists a constant
β̃ > 0 independent of h such that

(36) inf
qh∈Mh

sup
vh∈Xh

´
Ω
qh div vhdx

‖∇vh‖L2(Ω) ‖qh‖L2(Ω)

> β̃ > 0.

We will look in particular at the following pairs, which are significant in the literature:
(1) The lowest order Taylor–Hood element introduced in [66] for d = 2; see also [44,

Chapter II, Section 4.2], [35, Section 4.2.5], [20, Section 8.8.2]: In this case,

Xh = {vh ∈ C(Ω̄) : vh|K ∈ [P2(K)]
d ∀K ∈ Th} ∩H1

0(Ω),(37)

Mh = {qh ∈ L2
0(Ω) ∩ C(Ω̄) : qh|K ∈ P1(K) ∀K ∈ Th}.(38)

(2) The mini element introduced in [13] for d = 2; see also [44, Chapter II, Section
4.1], [35, Section 4.2.4], [20, Section 8.4.2]: In this scenario,

Xh = {vh ∈ C(Ω̄) : vh|K ∈ [W(K)]d ∀K ∈ Th} ∩H1
0(Ω),(39)

Mh = {qh ∈ L2
0(Ω) ∩ C(Ω̄) : qh|K ∈ P1(K) ∀K ∈ Th},(40)

where W(K) := P1(K) ⊕ B(K), and B(K) denotes the space spanned by a local
bubble function.

A proof of the inf-sup condition (36) for the mini element can be found in [35,
Lemma 4.20]. Provided that the mesh Th contains at least three triangles in two
dimensions and that each tetrahedron has at least one internal vertex in three di-
mensions, a proof of (36) for the Taylor–Hood element can be found in [20, Theorem
8.8.1] and [20, Theorem 8.8.2], respectively.

To approximate the temperature variable of the fluid, we consider the space

(41) Yh :=
{
Sh ∈ C(Ω̄) : Sh|K ∈ Pr(K) ∀K ∈ Th

}
∩H1

0 (Ω),

where r = 1 if the mini element is used to approximate (u, p), or r = 2 if we approxi-
mate (u, p) with the Taylor–Hood element.

The finite element spaces Xh and Yh satisfy the following basic approximation
properties: For all v ∈ H1

0(Ω) and S ∈ H1
0 (Ω), we have

(42) lim
h→0

(
inf

vh∈Xh

‖∇(v − vh)‖L2(Ω)

)
= 0, lim

h→0

(
inf

Sh∈Yh
‖∇(S − Sh)‖L2(Ω)

)
= 0.
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We also have the existence of interpolation operators Πh : H1
0(Ω) → Xh and Πh :

H1
0 (Ω)→ Yh, so that, for every v ∈ H1

0(Ω) and S ∈ H1
0 (Ω), we have

(43) lim
h→0
‖∇(v −Πhv)‖L2(Ω) → 0, lim

h→0
‖∇(S −ΠhS)‖L2(Ω) → 0.

Finally, we introduce the space Vh := {vh ∈ Xh :
´

Ω
qh div vhdx = 0∀qh ∈Mh}.

4.3. The discrete coupled problem. Before presenting a discrete scheme for
the nonlinear problem (19), we introduce some basic ingredients. First, we define

a : Yh ×Xh ×Xh → R, a(Th; uh,vh) :=

ˆ
Ω

(ν(Th)∇uh · ∇vh + uh · vh) dx,

b : Yh × Yh × Yh → R, b(Rh;Th, Sh) :=

ˆ
Ω

κ(Rh)∇Th · ∇Shdx.

Since functions in Vh are generally not divergence-free, we follow [67, Chapter II, §3.2]
and [43, Chapter IV, §3] and introduce a slight variation of the form aN that preserves
the antisymmetry on a discrete level. To be precise, we define aSN : X3

h → R by

aSN (uh; vh,wh) :=
1

2
[aN (uh; vh,wh)− aN (uh; wh,vh)] .(44)

Note that aSN (uh; vh,vh) = 0 for uh,vh ∈ Xh. Similarly, we introduce the form
aST : Xh × Yh × Yh → R by

(45) aST (vh;Th, Sh) :=
1

2

ˆ
Ω

((vh · ∇Th)Sh − (vh · ∇Sh)Th) dx.

Note that aST (vh;Sh, Sh) = 0 for vh ∈ Xh and Sh ∈ Yh.
With all these ingredients, we introduce the following discrete approximation of

(19): Given f ∈ H−1(Ω) and g ∈ H−1(Ω), find (uh, ph, Th) ∈ Xh×Mh×Yh such that

(46) a(Th; uh,vh) + aSN (uh; uh,vh) + aF (uh; uh,vh) + b(vh, ph) = 〈f ,vh〉,
b(uh, qh) = 0, b(Th;Th, Sh) + aST (uh;Th, Sh) = 〈g, Sh〉,

for all (vh, qh, Sh) ∈ Xh ×Mh × Yh and s ∈ [3, 4].
In the following we prove that for every h > 0 the discrete problem (46) has a

solution and that the sequence of solutions {(uh, ph, Th)}h>0 is uniformly bounded in
H1

0(Ω)× L2
0(Ω)×H1

0 (Ω).

Theorem 11 (existence of solutions). In the framework of Theorem 8, there is
at least one solution (uh, ph, Th) ∈ Xh ×Mh × Yh for problem (46). Moreover,

‖∇uh‖L2(Ω) ≤ ν−1
− ‖f‖H−1(Ω), ‖ph‖L2(Ω) ≤ β̃−1Λ(f)‖f‖H−1(Ω),(47)

‖∇Th‖L2(Ω) ≤ κ−1
− ‖g‖H−1(Ω),(48)

where Λ is defined in (10).

Proof. As in the proof of Theorem 8, we define a suitable operator Φh from Vh×Yh
into itself. Since aSN (uh; vh,vh) = 0 for uh,vh ∈ Xh and aST (vh;Sh, Sh) = 0
for vh ∈ Xh and Sh ∈ Yh, it can be proved that 〈Φ(Vh),Vh〉 ≥ 0 for any Vh =
(vh, Sh) ∈ Vh × Yh such that ‖(vh, Sh)‖H1

0(Ω)×H1
0 (Ω) = δ. The existence of a solution

(uh, ph, Th) ∈ Xh×Mh×Yh therefore follows directly from [44, Chapter IV, Corollary
1.1] and the discrete inf-sup condition (36). Finally, the discrete stability bounds (47)–
(48) follow from the arguments developed in the proof of Theorem 8 (see step 5).
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As for the continuous case, we can also show the uniqueness of solutions for the
discrete problem (46) under suitable assumptions.

Theorem 12 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 3 and assume that problem (46) has a solution (uh1, ph1, Th1) ∈W1,3(Ω) ∩
Xh ×Mh ×W 1,3(Ω) ∩ Yh such that

CN
ν2
−
‖f‖H−1(Ω) +

LνC6↪→2C2
4↪→2‖g‖H−1(Ω)‖∇uh1‖L3(Ω)

ν−κ−
(
κ− − LκC6↪→2‖∇Th1‖L3(Ω)

) < 1,(49)

LκC6↪→2‖∇Th1‖L3(Ω) < κ−.(50)

Then, (46) has no other solution (uh2, ph2, Th2) ∈ Xh ×Mh × Yh. Here, C6↪→2 and
C4↪→2 denote the best constants in the embedding H1

0 (Ω) ↪→ L6(Ω) and H1
0(Ω) ↪→

L4(Ω), respectively, and Lν and Lκ are the Lipschitz constants of ν and κ, respectively.

Proof. Let (uh2, ph2, Th2) ∈ Xh ×Mh × Yh be another solution to problem (46)
and define uh := uh1 − uh2 ∈ Xh, ph := ph1 − ph2 ∈Mh, and Th := Th1 − Th2 ∈ Yh.
We proceed similarly to the proof of Theorem 9 with special considerations on the
bilinear forms aSN and aST . This concludes the proof.

As in the continuous case, the regularity requirements for the solution in dimen-
sion 2 can be relaxed.

Theorem 13 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 2 and assume that problem (46) has a solution (uh1, ph1, Th1) ∈W1,2+ε(Ω)∩
Xh ×Mh ×W 1,2+ε(Ω) ∩ Yh for some ε > 0 such that

CN
ν2
−
‖f‖H−1(Ω) +

LνCεC2
4↪→2‖g‖H−1(Ω)‖∇uh1‖L2+ε(Ω)

ν−κ−
(
κ− − LκCε‖∇Th1‖L2+ε(Ω)

) < 1,(51)

LκCε‖∇Th1‖L2+ε(Ω) < κ−.(52)

Then, (46) has no other solution (uh2, ph2, Th2) ∈ Xh×Mh×Yh. Here, Cε and C4↪→2

denote the best constants in the embeddings H1
0 (Ω) ↪→ L2(2+ε)/ε(Ω) and H1

0(Ω) ↪→
L4(Ω), respectively, and Lν and Lκ are the Lipschitz constants of ν and κ, respectively.

4.4. Convergence. We present the following convergence result. The most im-
portant feature of this result is that it requires no regularity properties of solutions
other than those required for the well-posedness of the problem, no additional smallness
assumptions, and no further regularity properties of Ω beyond a Lipschitz property.

Theorem 14 (convergence result). In the framework of Theorem 8, let h > 0,
and let (uh, ph, Th) be a solution of the discrete problem (46). Then, there exists a
nonrelabeled subsequence of {(uh, ph, Th)}h>0 such that uh ⇀ u, ph ⇀ p, and Th ⇀ T
in H1

0(Ω), L2
0(Ω), and H1

0 (Ω), respectively, as h→ 0. Moreover, (u, p, T ) solves (19).

Proof. For h > 0, the existence of a discrete solution (uh, ph, Th) ∈ Xh×Mh×Yh
is guaranteed by Theorem 11. We note that, given the stability bounds in Theorem
11, the sequence {(uh, ph, Th)}h>0 is uniformly bounded in H1

0(Ω)× L2
0(Ω)×H1

0 (Ω)
with respect to the discretization parameter h. We can therefore deduce the existence
of a nonrelabeled subsequence {(uh, ph, Th)}h>0 such that

(53) (uh, ph, Th) ⇀ (u, p, T ), h→ 0,

in H1
0(Ω)×L2(Ω)×H1

0 (Ω). In the following, we show that (u, p, T ) ∈ H1
0(Ω)×L2

0(Ω)×
H1

0 (Ω) solves the nonlinear problem (19). To do this, we proceed in several steps.
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Step 1. We show that the pair (u, p) ∈ H1
0(Ω) × L2

0(Ω) solves the first two
equations in (19) with temperature T . To do this, we let v ∈ H1

0(Ω) be arbitrary and
set vh = Πhv ∈ Xh. A simple calculation for the Forchheimer term shows that∣∣∣∣ˆ

Ω

(
|uh|s−2uh · vh − |u|s−2u · v

)
dx

∣∣∣∣ ≤ ∣∣∣∣ˆ
Ω

|uh|s−2uh · (vh − v) dx

∣∣∣∣
+

∣∣∣∣ˆ
Ω

(
|uh|s−2uh − |u|s−2u

)
· vdx

∣∣∣∣ =: Ih + IIh.

Given (??) and the fact that the embedding H1
0(Ω) ↪→ Lι(Ω) is compact for ι < ∞

when d = 2 and ι < 6 when d = 3, we can conclude that IIh → 0 as h → 0. To
analyze the term Ih, we first invoke (4) to obtain∣∣∣∣ˆ

Ω

|uh|s−2uh · (vh − v) dx

∣∣∣∣ . ‖∇(v − vh)‖L2(Ω)‖∇uh‖s−1
L2(Ω).

Since {uh}h>0 is uniformly bounded in H1
0(Ω), a result in (43) allows us to conclude.

In the following, we prove that aSN (uh; uh,vh)→
´

Ω
(u · ∇)u · vdx as h→ 0. To

do so, we use the definition of aSN from (44) and then a property from (5) to obtain∣∣∣∣ˆ
Ω

(u · ∇)u · vdx− aSN (uh; uh,vh)

∣∣∣∣ ≤ 1

2

∣∣∣∣ˆ
Ω

((u · ∇)u · v − (uh · ∇)uh · vh) dx

∣∣∣∣
+

1

2

∣∣∣∣ˆ
Ω

((uh · ∇)vh · uh − (u · ∇)v · u) dx

∣∣∣∣ =: IIIh + IVh.

To control IIIh, we use uh ⇀ u in H1
0(Ω) as k ↑ ∞, the fact that u,v ∈ L4(Ω), the

compact embedding H1
0(Ω) ↪→ Lq(Ω) for q < ∞ when d = 2 and q < 6 when d = 3,

the fact that {uh}h>0 is uniformly bounded in H1
0(Ω), and (43) to obtain

2IIIh ≤
∣∣∣∣ˆ

Ω

(u · ∇) (u− uh) · vdx

∣∣∣∣+

∣∣∣∣ˆ
Ω

((u− uh) · ∇)uh · vdx

∣∣∣∣
+

∣∣∣∣ˆ
Ω

(uh · ∇)uh · (v − vh)dx

∣∣∣∣→ 0, h→ 0.

We apply similar arguments to control the term IVh:

2IVh ≤
∣∣∣∣ˆ

Ω

((u− uh) · ∇) v · udx

∣∣∣∣+

∣∣∣∣ˆ
Ω

(uh · ∇)v · (u− uh)dx

∣∣∣∣
+

∣∣∣∣ˆ
Ω

(uh · ∇)(v − vh) · uhdx

∣∣∣∣→ 0, h→ 0.

The convergence of the linear term is trivial: |
´

Ω
(u ·v−uh ·vh)dx| → 0 as h→ 0.

We now show that (ν(Th)∇uh,∇vh)L2(Ω) → (ν(T )∇u,∇v)L2(Ω) as h → 0. To
achieve this, we proceed as follows. First, as in step 3 of the proof of Theorem 8, we
have that ν(Th)∇v → ν(T )∇v in L2(Ω) as h → 0. This and the weak convergence
uh ⇀ u in H1

0(Ω) show that (ν(Th)∇uh,∇v)L2(Ω) → (ν(T )∇u,∇v)L2(Ω) as h →
0. The fact that |(ν(Th)∇uh,∇(v − vh))L2(Ω)| → 0 as h → 0 follows from the
boundedness of ν, the uniform boundedness of {uh}h>0 in H1

0(Ω) and (43).
Since ph ⇀ p in L2(Ω) as h → 0, the fact that {ph}h>0 is uniformly bounded in

L2(Ω), the bound ‖ div w‖L2(Ω) ≤ ‖∇w‖L2(Ω), which holds for every w ∈ H1
0(Ω), and
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a result from (43) lead us to the following conclusions:∣∣∣∣ˆ
Ω

(pdiv v − ph div vh) dx

∣∣∣∣ ≤ ∣∣∣∣ˆ
Ω

(p− ph) div vdx

∣∣∣∣
+ ‖ph‖L2(Ω)‖∇(v − vh)‖L2(Ω) → 0, h→ 0.

Finally, the fact that
´

Ω
qdivu dx = 0 for q ∈ L2

0(Ω) is trivial.
Step 3. We prove that T solves the heat equation in (19). For this purpose, we

let S ∈ H1
0 (Ω) be arbitrary and set Sh = ΠhS ∈ Yh. Next, we write the bound

Ih :=

∣∣∣∣ˆ
Ω

(κ(T )∇T · ∇S − κ (Th)∇Th · ∇Sh) dx

∣∣∣∣
≤
∣∣∣∣ˆ

Ω

(κ(T )∇T − κ(Th)∇Th) · ∇Sdx

∣∣∣∣+

∣∣∣∣ˆ
Ω

κ (Th)∇Th · ∇ (S − Sh) dx

∣∣∣∣ .
The strong convergence κ(Th)∇S → κ(T )∇S in L2(Ω) as h→ 0, the weak convergence
Th ⇀ T in H1

0 (Ω) as h → 0, the boundedness of κ, the uniform boundedness of
{Th}h>0 in H1

0 (Ω), and a result from (43) show that Ih → 0 as h→ 0.
We now prove that aST (uh;Th, Sh)→

´
Ω

(u · ∇T )Sdx as h→ 0. Since div u = 0
and T, S ∈ H1

0 (Ω), a simple calculation shows that∣∣∣∣ˆ
Ω

(u · ∇T )Sdx− aST (uh;Th, Sh)

∣∣∣∣ ≤ 1

2

∣∣∣∣ˆ
Ω

((u · ∇T )S − (uh · ∇Th)Sh) dx

∣∣∣∣
+

1

2

∣∣∣∣ˆ
Ω

((uh · ∇Sh)Th − (u · ∇S)T ) dx

∣∣∣∣ =: Vh + VIh.

To control Vh, we use the strong convergence uh → u in L4(Ω), the weak convergence
Th ⇀ T in H1

0 (Ω) as h → 0, the uniform boundedness of {Th}h>0 and {uh}h>0 in
H1

0 (Ω) and H1
0(Ω), respectively, and (43). These arguments show that

2Vh ≤
∣∣∣∣ˆ

Ω

((u− uh) · ∇T )Sdx

∣∣∣∣+

∣∣∣∣ˆ
Ω

(uh · ∇(T − Th))Sdx

∣∣∣∣
+

∣∣∣∣ˆ
Ω

(uh · ∇Th)(S − Sh)dx

∣∣∣∣→ 0, h→ 0.

We apply similar arguments to control the term VIh:

2VIh ≤
∣∣∣∣ˆ

Ω

((u− uh) · ∇S)Tdx

∣∣∣∣+

∣∣∣∣ˆ
Ω

(uh · ∇(S − Sh))Tdx

∣∣∣∣
+

∣∣∣∣ˆ
Ω

(uh · ∇Sh)(T − Th)dx

∣∣∣∣→ 0, h→ 0.

We have thus proved that T solves the heat equation in (19). With the previous
results, we can conclude that (u, p, T ) solves (19). This concludes the proof.

4.5. A quasi-best approximation result. We derive a quasi-best approxima-
tion result for the finite element approximation (46) of problem (19). For this purpose,
we assume suitable smallness conditions and regularity assumptions for the solution;
see Theorems 15 and 17 below. Since the regularity requirements on the solution in
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two dimensions are weaker, we first derive the error bounds in three dimensions and
write the corresponding error bounds in two dimensions in a separate theorem.

We begin our analysis by introducing the errors eu := u− uh, ep := p− ph, and
eT := T − Th as well as the quantities

M(T ) := κ− − LκC6↪→2‖∇T‖L3(Ω),(54)

N(f , g,u) := ν− − ν−1
− CN‖f‖H−1(Ω) − C2

2↪→2 − C2
µ↪→2Γs,τ (f)−O(g,u),(55)

O(g,u) := (κ−M)−1LνC6↪→2C2
4↪→2‖g‖H−1(Ω)‖∇u‖L3(Ω),(56)

where C6↪→2, C4↪→2, C2↪→2, and Cµ↪→2 are the best constants in H1
0 (Ω) ↪→ L6(Ω),

H1
0(Ω) ↪→ L4(Ω), H1

0(Ω) ↪→ L2(Ω), and H1
0(Ω) ↪→ Lµ(Ω), respectively. The constants

ν−, κ−, Lν , and Lκ are defined in §3.1. CN is the constant in (6). Γs,τ is defined in
(64) below. Finally, µ and τ are such that 2/µ+ 1/τ = 1, where τ = q for some q > 1
in two dimensions and τ = 3/2 (µ = 6) in three dimensions.

We are now ready to state and prove one of the main results of this section.

Theorem 15 (error bound (d = 3)). Let d = 3, and let the assumptions of
Theorems 8 and 12 hold. If M(T ) > 0 and N(f , g,u) > 0, then we have the bound

(57) ‖∇eu‖L2(Ω) + ‖∇eT ‖L2(Ω) + ‖ep‖L2(Ω) . inf
wh∈Vh

‖∇(u−wh)‖L2(Ω)

+ inf
Rh∈Yh

‖∇(T −Rh)‖L2(Ω) + inf
qh∈Mh

‖p− qh‖L2(Ω),

with a hidden constant that is independent of h.

Remark 16. [The assumptions M(T ) > 0 and N(f , g,u) > 0 in three dimensions]
We note that the inequalities M(T ) > 0 and N(f , g,u) > 0 can be rewritten as

C2
2↪→2

ν−
+
C2
µ↪→2Γs,τ (f)

ν−
+
CN
ν2
−
‖f‖H−1(Ω) +

LνC6↪→2C2
4↪→2‖g‖H−1(Ω)‖∇u‖L3(Ω)

ν−κ−
(
κ− − LκC6↪→2‖∇T‖L3(Ω)

) < 1

and LκC6↪→2‖∇T‖L3(Ω) < κ−, respectively. This shows in particular that conditions
(28) and (29), which guarantee the uniqueness of the coupled problem, are fulfilled.

Proof. We divide the proof into four steps.
Step 1. A priori bound for the temperature error: We control ‖∇eT ‖L2(Ω). For

this purpose, we set S = Sh ∈ Yh ⊂ H1
0 (Ω) in the temperature equation of the system

(19) and subtract the third equation of the discrete system (46) from it to obtain

(58)

ˆ
Ω

(κ(T )∇T − κ(Th)∇Th) · ∇Shdx+
1

2

ˆ
Ω

((u · ∇T )− (uh · ∇Th))Shdx

+
1

2

ˆ
Ω

((uh · ∇Sh)Th − (u · ∇Sh)T ) dx = 0 ∀Sh ∈ Yh,

where we have used that u ∈ V(Ω) and the definition of aST given in (45). Now, let
Rh be an arbitrary element in Yh. We rewrite the left-hand side of (58) as follows:

(59)

ˆ
Ω

(κ(T )∇T − κ(Th)∇Th) · ∇Shdx =

ˆ
Ω

(κ(T )− κ(Th))∇T · ∇Shdx

+

ˆ
Ω

κ(Th)∇(T −Rh) · ∇Shdx+

ˆ
Ω

κ(Th)∇(Rh − Th) · ∇Shdx ∀Sh ∈ Yh.



A CONVECTIVE BRINKMAN–FORCHHEIMER MODEL AND A HEAT EQUATION 17

In the next step, we set Sh = Rh − Th and replace (59) in (58) to obtain

(60)

ˆ
Ω

κ(Th)|∇(Rh − Th)|2dx = −
ˆ

Ω

(κ(T )− κ(Th))∇T · ∇(Rh − Th)dx

−
ˆ

Ω

κ(Th)∇(T −Rh) · ∇(Rh − Th)dx− 1

2

ˆ
Ω

u · ∇(T −Rh)(Rh − Th)dx

− 1

2

ˆ
Ω

u · ∇(Rh − Th)(Rh − Th)dx− 1

2

ˆ
Ω

(u− uh) · ∇Th(Rh − Th)dx

− 1

2

ˆ
Ω

(uh − u) · ∇(Rh − Th)Thdx+
1

2

ˆ
Ω

u · ∇(Rh − Th)(T −Rh)dx

+
1

2

ˆ
Ω

u · ∇(Rh − Th)(Rh − Th)dx.

We now use that κ− ≤ κ(r) ≤ κ+ for every r ∈ R, the Lipschitz property of κ,
the Sobolev embeddings H1

0 (Ω) ↪→ L6(Ω) and H1
0(Ω) ↪→ L4(Ω), the continuous and

discrete stability bounds (20)–(21) and (47)–(48), respectively, and the fact that u ∈
V(Ω) to obtain

κ−‖∇(Th −Rh)‖L2(Ω) ≤ LκC6↪→2‖∇T‖L3(Ω)‖∇eT ‖L2(Ω) + κ+‖∇(T −Rh)‖L2(Ω)

+ C2
4↪→2

(
κ−1
− ‖g‖H−1(Ω)‖∇eu‖L2(Ω) + ν−1

− ‖f‖H−1(Ω)‖∇(T −Rh)‖L2(Ω)

)
.

The desired estimate for ‖∇eT ‖L2(Ω) follows from the triangle inequality and the
assumption that M = M(T ) > 0. In fact, we have

(61) ‖∇eT ‖L2(Ω) ≤M−1
(
κ− + κ+ + C2

4↪→2ν
−1
− ‖f‖H−1(Ω)

)
inf

Rh∈Yh
‖∇(T −Rh)‖L2(Ω)

+ (Mκ−)−1C2
4↪→2‖g‖H−1(Ω)‖∇eu‖L2(Ω).

Step 2. A priori bound for the pressure error: We start with a simple application
of the triangle inequality and write ‖ep‖L2(Ω) ≤ ‖p − qh‖L2(Ω) + ‖qh − ph‖L2(Ω) for
any qh ∈Mh. It is therefore sufficient to control ‖qh − ph‖L2(Ω). To do this, we first
set v = vh ∈ Xh in the first equation of problem (19) and subtract the first equation
of problem (46) from it to obtain the following identity for any qh ∈Mh:

(62)

ˆ
Ω

(qh − ph) div vhdx =

ˆ
Ω

(qh − p) div vhdx+

ˆ
Ω

(u− uh) · vhdx

+

ˆ
Ω

(ν(T )∇u− ν(Th)∇uh) · ∇vhdx+

ˆ
Ω

(|u|s−2u− |uh|s−2uh) · vhdx

+
1

2

ˆ
Ω

((u · ∇)u− (uh · ∇)uh) · vhdx+
1

2

ˆ
Ω

((uh · ∇)vh · uh − (u · ∇)vh · u) dx

for all vh ∈ Xh. On the other hand, the inf-sup condition (36) yields the existence
of wh ∈ Xh, so that div wh = qh − ph and ‖∇wh‖L2(Ω) ≤ (1/β̃)‖qh − ph‖L2(Ω). We
therefore use (62) with the particular function wh as a test function, use the relations
ν(T )∇u−ν(Th)∇uh = (ν(T )−ν(Th))∇u+ν(Th)∇(u−uh) and (u·∇)u−(uh ·∇)uh =
((u− uh) · ∇)u + (uh · ∇)(u− uh), and use basic estimates to obtain

(63) ‖ep‖L2(Ω) ≤
[
1 +

1

β̃

]
inf

qh∈Mh

‖p− qh‖L2(Ω) +
1

β̃
LνC6↪→2‖∇eT ‖L2(Ω)‖∇u‖L3(Ω)

+
1

β̃

(
C2

2↪→2 + ν+ + 2ν−1
− CN‖f‖H−1(Ω) + C2

µ↪→2Γs,τ (f)
)
‖∇eu‖L2(Ω),
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where we have used (??) and (??) to control the Forchheimer term and obtain

(64)
‖|uh|+ |u|‖s−2

Lτ(s−2)(Ω)
≤ Cs−2

τ(s−2)↪→2

(
‖∇uh‖L2(Ω) + ‖∇u‖L2(Ω)

)s−2

≤ Cs−2
τ(s−2)↪→22s−2ν2−s

− ‖f‖s−2
H−1(Ω) =: Γs,τ (f).

Here, Cτ(s−2)↪→2 is the best constant in H1
0(Ω) ↪→ Lτ(s−2)(Ω), µ = 6, and τ = 3/2.

Step 3. A priori bound for the velocity error: We control ‖∇eu‖L2(Ω). Our
procedure is based on the arguments developed in step 1: We set v = vh ∈ Xh in the
first equation of (19) and subtract the first equation of (46) from it to obtain

(65)

ˆ
Ω

(ν(T )∇u− ν(Th)∇uh) · ∇vhdx+
1

2

ˆ
Ω

[(u · ∇)u− (uh · ∇)uh] · vhdx

+
1

2

ˆ
Ω

[(uh · ∇)vh · uh − (u · ∇)vh · u]dx+

ˆ
Ω

eu · vhdx

+

ˆ
Ω

(|u|s−2u− |uh|s−2uh) · vhdx−
ˆ

Ω

ep div vhdx = 0 ∀vh ∈ Xh.

Let wh ∈ Vh. We rewrite the first term on the left-hand side of (65) as follows:

(66)

ˆ
Ω

(ν(T )∇u− ν(Th)∇uh) · ∇vhdx =

ˆ
Ω

(ν(T )− ν(Th))∇u · ∇vhdx

+

ˆ
Ω

ν(Th)∇(u−wh) · ∇vhdx+

ˆ
Ω

ν(Th)∇(wh − uh) · ∇vhdx.

We now let qh ∈Mh, set vh = uh −wh ∈ Vh, and use (66) to obtain

(67)

ˆ
Ω

ν(Th)|∇(uh −wh)|2dx =

ˆ
Ω

(ν(T )− ν(Th))∇u · ∇(uh −wh)dx

+

ˆ
Ω

ν(Th)∇(u−wh) · ∇(uh −wh)dx+
1

2

ˆ
Ω

[(u · ∇)u− (uh · ∇)uh] · (uh −wh)dx

+
1

2

ˆ
Ω

[(uh · ∇)(uh −wh) · uh − (u · ∇)(uh −wh) · u]dx+

ˆ
Ω

eu · (uh −wh)dx

+

ˆ
Ω

(|u|s−2u− |uh|s−2uh) · (uh −wh)dx−
ˆ

Ω

(p− qh) div(uh −wh)dx.

We now add ± 1
2

´
Ω

(u · ∇)uh · (uh − wh)dx and ± 1
2

´
Ω

(u · ∇)wh · (uh − wh)dx to
rearrange the first difference of the convective terms as follows:

1

2

ˆ
Ω

[(u · ∇)u− (uh · ∇)uh] · (uh −wh)dx =
1

2

ˆ
Ω

(u · ∇)(u−wh) · (uh −wh)dx

+
1

2

ˆ
Ω

(u · ∇)(wh − uh) · (uh −wh)dx+
1

2

ˆ
Ω

((u− uh) · ∇)uh · (uh −wh)dx.

A similar argument can be applied to the second difference of the convective terms
by using the terms ± 1

2

´
Ω

(u · ∇)(uh −wh) ·uhdx and ± 1
2

´
Ω

(u · ∇)(uh −wh) ·whdx:

1

2

ˆ
Ω

[(uh·∇)(uh−wh)·uh−(u·∇)(uh−wh)·u]dx =
1

2

ˆ
Ω

((uh−u)·∇)(uh−wh)·uhdx

+
1

2

ˆ
Ω

(u · ∇)(uh −wh) · (uh −wh)dx+
1

2

ˆ
Ω

(u · ∇)(uh −wh) · (wh − u)dx.
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With these ingredients in hand, we invoke the assumptions of ν presented in §3.1,
standard Sobolev embeddings, the bounds (??) and (64), and the continuous and
discrete stability bounds (20) and (47), respectively, to conclude that

(68) ν−‖∇(uh −wh)‖L2(Ω) ≤ LνC6↪→2‖∇eT ‖L2(Ω)‖∇u‖L3(Ω) + ‖p− qh‖L2(Ω)

+
(
ν+ + ν−1

− CN‖f‖H−1(Ω)

)
‖∇(u−wh)‖L2(Ω)

+
(
C2

2↪→2 + C2
µ↪→2Γs,τ (f) + ν−1

− CN‖f‖H−1(Ω)

)
‖∇eu‖L2(Ω).

With this estimate at hand, we control ‖∇eu‖L2(Ω) in view of the triangle inequality,
the estimates (61) and (68), and the assumption N = N(f , g,u) > 0. In fact, we have

(69) ‖∇eu‖L2(Ω) ≤
1

N
inf

qh∈Mh

‖qh − p‖L2(Ω)

1

N

(
κ− + κ+ + C2

4↪→2ν
−1
− ‖f‖H−1(Ω)

M

)
LνC6↪→2‖∇u‖L3(Ω) inf

Rh∈Yh
‖∇(T −Rh)‖L2(Ω)

+

(
ν− + ν+ + ν−1

− CN‖f‖H−1(Ω)

N

)
inf

wh∈Vh

‖∇(u−wh)‖L2(Ω).

Step 4. The desired estimate (57) results from the combination of the bounds
(61), (63) and (69). This concludes the proof.

Before presenting a bound in two dimensions, we introduce the quantities

(70)

P(T ) := κ− − LκCε‖∇T‖L2+ε(Ω),

Q(f , g,u) := ν− − ν−1
− CN‖f‖H−1(Ω) − C2

2↪→2 − C2
µ↪→2Γs,τ (f)−R(g,u),

R(g,u) := (κ−M)−1LνCεC2
4↪→2‖g‖H−1(Ω)‖∇u‖L2+ε(Ω),

for some ε > 0. Cε corresponds to the best constant in H1
0 (Ω) ↪→ L2(2+ε)/ε(Ω).

Theorem 17 (error bound (d = 2)). Let d = 2, and let the assumptions of
Theorems 8 and 13 hold. If P(T ) > 0 and Q(f , g,u) > 0, then we have the bound

(71) ‖∇eu‖L2(Ω) + ‖∇eT ‖L2(Ω) + ‖ep‖L2(Ω) . inf
wh∈Vh

‖∇(u−wh)‖L2(Ω)

+ inf
Rh∈Yh

‖∇(T −Rh)‖L2(Ω) + inf
qh∈Mh

‖p− qh‖L2(Ω),

with a hidden constant that is independent of h.

Proof. The proof follows from a slight modification of the arguments developed
in the proof of Theorem 15, which essentially consists in using the Sobolev embedding
H1

0 (Ω) ↪→ L2(2+ε)/ε(Ω) instead of H1
0 (Ω) ↪→ L6(Ω). For the sake of brevity, we omit

the details.

4.6. A priori error bounds. As a direct consequence of the best approximation
results of Theorems 15 and 17, approximation theory yields the following convergence
rates for Taylor–Hood and mini element approximation.

Theorem 18 (Taylor–Hood approximation). Let the assumptions of Theorem
15 and 17 hold in three and two dimensions, respectively. If the solution (u, p, T ) to
(19) belongs to H3(Ω) ∩H1

0(Ω)×H2(Ω) ∩ L2
0(Ω)×H3(Ω) ∩H1

0 (Ω), then

‖∇eu‖L2(Ω) + ‖ep‖L2(Ω) + ‖∇eT ‖L2(Ω) . h2
(
‖u‖H3(Ω) + ‖p‖H2(Ω) + ‖T‖H3(Ω)

)
.
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Theorem 19 (mini element approximation). Let the assumptions of Theorem 15
and 17 hold in three and two dimensions, respectively. If the solution (u, p, T ) to (19)
belongs to H2(Ω) ∩H1

0(Ω)×H1(Ω) ∩ L2
0(Ω)×H2(Ω) ∩H1

0 (Ω), then

‖∇eu‖L2(Ω) + ‖ep‖L2(Ω) + ‖∇eT ‖L2(Ω) . h
(
‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖T‖H2(Ω)

)
.

5. Numerical examples. In this section, we present several numerical experi-
ments that illustrate the performance of the developed finite element method. These
examples were performed with a code that we implemented in C++. All matrices were
assembled exactly, and global linear systems were solved with the multifrontal mas-
sively parallel sparse direct solver (MUMPS) [10, 11]. For the visualization of finite
element approximations, we used the open-source application ParaView [14].

Given a mesh Th, we approximate the velocity and pressure of the fluid with the
Taylor–Hood element (37)–(38) and the temperature of the fluid with functions in the
space described in (41) with r = 2. We solve the nonlinear system (46) using the fixed-
point strategy described in Algorithm 1. To investigate experimental convergence
rates, we define the total number of degrees of freedom as follows: Ndof := dim(Xh)+
dim(Mh) + dim(Yh).

Algorithm 1 Fixed-point iteration

Input: Mesh T , initial guess (u0
h, p

0
h, T

0
h ) ∈ Xh×Mh×Yh, f ∈ H−1(Ω), g ∈ H−1(Ω),

s ∈ [3, 4], and tol = 10−6;
1: For i ≥ 0, find (ui+1

h , pi+1
h , T i+1

h ) ∈ Xh ×Mh × Yh such that

a(T ih; ui+1
h ,vh) + aSN (uih; ui+1

h ,vh) + aF (uih; ui+1
h ,vh) + b(vh, p

i+1
h ) = 〈f ,vh〉,

b(ui+1
h , qh) = 0 ∀(vh, qh) ∈ Xh ×Mh.

Then, T i+1
h ∈ Yh is found as the solution of the problem

b(T ih;T i+1
h , Sh) + aST (ui+1

h ;T i+1
h , Sh) = 〈g, Sh〉 ∀Sh ∈ Yh.

2: If |(ui+1
h , pi+1

h , T i+1
h )−(uih, p

i
h, T

i
h)| > tol, set i← i+1 and go to step 1. Otherwise,

return (uh, ph, Th) = (ui+1
h , pi+1

h , T i+1
h ). Here, | · | denotes the Euclidean norm.

Let us now show the convergence of this algorithm. For this purpose, we define
the errors ei+1

uh
:= uh − ui+1

h , ei+1
ph := ph − pi+1

h , ei+1
Th

:= Th − T i+1
h , and

V(f , g) :=

(
1 +
C2

4↪→2‖g‖H−1(Ω)

κ2
−

)(
ν−1
− CN‖f‖H−1(Ω) + 2C2

µ↪→2Γs,τ (f)

ν− − C2
µ↪→2Γs,τ (f)− C2

2↪→2

)
,(72)

T(f , g,uh,Th) :=
LκC6↪→2‖∇Th‖L3(Ω)

κ−
+
LνC6↪→2C2

4↪→2‖g‖H−1(Ω)‖∇uh‖L3(Ω)

κ2
−
(
ν− − C2

µ↪→2Γs,τ (f)− C2
2↪→2

) ,(73)

A(f , g,uh,Th) := T(f , g,uh, Th) +
LνC6↪→2‖∇uh‖L3(Ω)

ν− − C2
µ↪→2Γs,τ (f)− C2

2↪→2

.(74)

We are now ready to present and prove the convergence of our algorithm.

Theorem 20 (convergence of the Algorithm 1). Let d = 3, and let the assump-
tions of Theorems 11, 12 and 15 hold. If Θ := max {V(f , g),A(f , g,uh, Th)} < 1,
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then

lim
i→∞

‖∇eiTh‖L2(Ω) = 0, lim
i→∞

‖∇eiuh‖L2(Ω) = 0, lim
i→∞

‖eiph‖L2(Ω) = 0.

Proof. As a first step, we subtract from the discrete problem (46) the discrete
equations that occur in Algorithm 1. We set vh = ui+1

h − uh and Sh = T i+1
h − Th

into the resulting system and use standard estimates to obtain

(75) W‖∇ei+1
uh
‖L2(Ω) ≤ LνC6↪→2‖∇uh‖L3(Ω)‖∇eiTh‖L2(Ω)

+
(
ν−1
− CN‖f‖H−1(Ω) + 2C2

µ↪→2Γs,τ (f)
)
‖∇eiuh‖L2(Ω),

and

(76) κ−‖∇ei+1
Th
‖L2(Ω) ≤ LκC6↪→2‖∇Th‖L3(Ω)‖∇eiTh‖L2(Ω)

+ C2
4↪→2κ

−1
− ‖g‖H−1(Ω)‖∇ei+1

uh
‖L2(Ω).

Here, W := ν−−C2
µ↪→2Γs,τ (f)−C2

2↪→2. Note that W > 0; see Remark 16. If we replace
the estimate (75) in (76), we obtain

(77) ‖∇ei+1
Th
‖L2(Ω) ≤ T(f , g,uh, Th)‖∇eiTh‖L2(Ω)

+
C2

4↪→2‖g‖H−1(Ω)

κ2
−W

(
ν−1
− CN‖f‖H−1(Ω) + 2C2

µ↪→2Γs,τ (f)
)
‖∇eiuh‖L2(Ω).

If we add the estimates (75) and (77), we finally arrive at

‖∇ei+1
uh
‖L2(Ω)+‖∇ei+1

Th
‖L2(Ω) ≤ A(f , g,uh, Th)‖∇eiTh‖L2(Ω)+V(f , g)‖∇eiuh‖L2(Ω).

Let us now introduce {zi}∞i=0, where zi := ‖∇eiuh‖L2(Ω) + ‖∇eiTh‖L2(Ω) for i ≥ 0.
Since Θ := max {V(f , g),A(f , g,uh, Th)} < 1, we can conclude that zi → 0 as i→∞
because zi ≤ Θiz0 for i ≥ 1. These arguments show that

‖∇eiuh‖L2(Ω) → 0, ‖∇eiTh‖L2(Ω) → 0, i ↑ ∞.

The convergence result ‖eiph‖L2(Ω) → 0 as i ↑ ∞ follows from the inf-sup condition.
This completes the proof.

5.1. Experimental convergence rates. Let Ω = (0, 1)2, κ(T ) = 4 + sin(T ),

ν(T ) = 1+e−T
2

, and s ∈ {3, 3.5, 4}. We note that ν(·) and κ(·) fulfill the assumptions
from Section 3.1. The data f and g are chosen so that the exact solution of (19) is

u(x1, x2) = (−x2
1(x1 − 1)2x2(x2 − 1)(2x2 − 1), x2

2(x2 − 1)2x1(x1 − 1)(2x1 − 1)),

p(x1, x2) = x1x2(1− x1)(1− x2)− 1/36, T (x1, x2) = x2
1x

2
2(1− x1)2(1− x2)2.

In Figure 1, we show the experimental convergence rates for the errors that occur
when approximating the velocity field, pressure, and temperature variables in appro-
priate norms. We observe optimal experimental convergence rates for all errors and
all values of the considered paremeter s and confirm computationally the theoretical
results obtained in Theorem 18.
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Fig. 1. Example 1. Performance of the developed finite element discretization scheme: Taylor–
Hood approximation for the velocity and pressure variables and the space of continuous piecewise
quadratic functions to approximate the temperature variable. We present experimental convergence
rates for the errors that occur when approximating the velocity field, pressure, and temperature
variables in appropriate norms for s = 3.0 (A.1), s = 3.5 (A.2), and s = 4.0 (A.3).

5.2. Heated lid-driven cavity flow problem. The lid-driven cavity flow
problem is probably one of the most studied problems in the field of computational
fluid dynamics. The simplicity of the geometry of the cavity flow simplifies the nu-
merical implementation and also the consideration of different boundary conditions.
Even though the problem looks simple in many respects, the flow in a cavity retains
all the flow physics, with counter-rotating vortices occurring inside of the cavity.

We consider the domain Ω = (0, 1)2, the diffusion coefficient κ(T ) = 4+sin(T ), the
viscosity coefficient ν(T ) = 1/400 + exp(−T 2), and the parameter s ∈ {3.0, 3.5, 4.0}.
The forcing terms are f = (0, 0)ᵀ and g = 0. In this numerical example, we omit the
reaction term u in (19) and investigate the behavior of the solutions of the coupled
problem beyond the theory that we have presented since we use the homogeneous
Neumann and nonhomogeneous Dirichlet boundary conditions described in Figure 2.

u = 0

T = 2

u = 0

T = 20

u = 0, ∂nT = 0

u = (1, 0)ᵀ, ∂nT = 0

Ω

Fig. 2. Boundary conditions for the cavity flow problem in the domain Ω = (0, 1)2.

In Figure 3, we show the streamlines for the velocity field, the contour lines of the
pressure, and the temperature variable. To illustrate the results, we consider a mesh
with 65.536 elements, which corresponds to 33.025 nodes. We note that for each value
of s, a circulation pattern is established within the cavity, driven by the temperature
gradient between the right and left components of the boundary. This temperature
distribution leads to convective flow, which is characteristic of cavity problems where
temperature fluctuations along the side walls contribute to fluid motion. In this
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context, we show how the parameter s affects the velocity and pressure of the fluid and,
in particular, the position of the counter-rotating vortices. In particular, the center of
the main recirculation is located at (0.65234, 0.75782) for s = 3.0, (0.65234, 0.75781)
for s = 3.5, and (0.58398, 0.68164) for s = 4.0. Note also that the same effect occurs
for the secondary recirculation, which is located in the lower right part of the cavity.
Finally, we mention that in all cases, the pressure exhibits a singular behavior in the
upper right and left corners of the cavity.

(C.1) (C.2) (C.3)

(C.4) (C.5) (C.6)

(C.7) (C.8) (C.9)

Fig. 3. Example 2. Streamlines of the velocity field obtained for s = 3.0 (C.1), s = 3.5 (C.2),
and s = 4.0 (C.3), the contour lines of the pressure for s = 3.0 (C.4), s = 3.5 (C.5), and s = 4.0
(C.6), and temperature variable for s = 3.0 (C.7), s = 3.5 (C.8), s = 4.0 (C.9).
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