FINITE ELEMENT APPROXIMATION FOR A CONVECTIVE
BRINKMAN-FORCHHEIMER PROBLEM COUPLED WITH A HEAT
EQUATION*
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Abstract. We investigate a convective Brinkman—Forchheimer problem coupled with a heat
equation. The investigated model considers thermal diffusion and viscosity depending on the tem-
perature. We prove the existence of a solution without restriction on the data and uniqueness when
the solution is slightly smoother and the data is suitably restricted. We also propose a finite element
discretization scheme for the considered model and derive convergence results and a priori error
estimates. Finally, we illustrate the theory with numerical examples.
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1. Introduction. Let Q C R?, with d € {2, 3}, be an open and bounded domain
with Lipschitz boundary 0€2. In this work, we continue our research program focused
on the analysis and approximation of fluid flow models coupled with a heat equation.
In particular, we are now interested in developing finite element methods for the
temperature distribution of a fluid modeled by a convection—diffusion equation coupled
with the convective Brinkman—Forchheimer equations. This model can be described
by the following nonlinear system of partial differential equations (PDEs):

) —div(w(T)Vu) + (u-V)u+u+ [uff ?u+Vp=finQ, divu=0inQ,
S —div(k(T)VT) +u- VT =gin Q,

supplemented with the Dirichlet boundary conditions u = 0 and T' = 0 on 9. The
data of the model are the external density force f, the external heat source g, the
viscosity coefficient v, and the thermal diffusivity coefficient k. We note that v(-) and
k(+) are coefficients that can depend nonlinearly on the temperature. The parameter
s is chosen so that s € [3,4]. The unknowns of the system are the velocity field u, the
pressure p, and the temperature T' of the fluid.

The analysis and discretization of various incompressible, non-isothermal flows
have become increasingly important for a variety of research areas in science and
technology. This is due to the numerous applications in industry, e.g., in the design
of heat exchangers and chemical reactors, cooling processes, and polymer processing,
to name but a few. For advances in the numerical approximation of non-isothermal
flows governed by the Navier Stokes equations and a suitable temperature equation,
as well as for the so-called Boussinesq problem and its generalizations, we refer the
interested reader to [2, 3, 7, 8, 19, 21, 28, 37, 54, 65]. In this context, we also mention
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the works [4, 17, 18, 32, 33, 42] for similar results when the Navier—Stokes equations
are replaced by the Darcy equations. Finally, we refer the reader to [5, 31, 62, 68]
for the analysis of finite element schemes for the coupling of a heat equation with the
so-called Darcy—Forchheimer equations.

Now that we have briefly explained the importance of non-isothermal flows and
mentioned some applications, we would like to turn our attention to the so-called con-
vective Brinkman—Forchheimer model. In the following, we will divide the discussion
into two parts:

e The Darcy—Forchheimer equations: As stated in [45], Darcy’s law, namely
u = —KVp/u, is a linear relation that describes the creep flow of Newtonian flu-
ids in porous media. It is supported by years of experimental data and has numerous
applications in engineering. However, based on flow experiments in sand packs, Forch-
heimer realized that Darcy’s law was not adequate for moderate Reynolds numbers.
He found that the relationship between the pressure gradient and the Darcy velocity
was nonlinear and that this nonlinearity appeared to be quadratic for a variety of
experimental data [39]; see [45, page 162] and [72, Section 6, page 55]. This modifica-
tion of the Darcy equations is usually referred to as the Darcy—Forchheimer equations
and has been studied in detail in several papers. We refer the reader to the following
non-exhaustive list of references [9, 36, 45, 55, 60]. As mentioned in [16], Forchheimer
also noted in his 1901 publication that some data sets could not be described by the
quadratic correction. Therefore, he suggested adding a cubic term to describe the
behavior of the observed flow in these cases. He also postulated that the Darcy’s
law correction could allow a polynomial expression in u, e.g., u + [uju + |ul?u and
u + |ul*~2u; see [53, page 59], [38, §2.3], and [64, page 12]. In practice, the exponent
s takes the value 3 and 4 in several applications; see [15, 38, 40, 52, 56, 58, 63, 71] for
the case s = 4. As mentioned in [63, page 133], the use of the fractional value s = 7/2
is also considered in the literature. For these reasons, we consider the parameter
s € [3,4] in our work.

e The convective Brinkman—Forchheimer equations: The inclusion of —Au and
the convective term (u-V)u in the Darcy-Forchheimer equations leads to the so-called
convective Brinkman—Forchheimer model (1). Assuming a two-dimensional station-
ary, isotropic, incompressible, homogeneous flow through a fluid-saturated porous
medium, this system was derived by the authors of [70] as the governing momentum
equation based on local volume averaging and matched asymptotic expansion; see
also [49]. Further justifications for the inclusion of the so-called Brinkman and con-
vective terms in (1) were later presented in [69]. We refer the interested reader to
[6, 27, 47, 51, 71] for further insights, analysis, and applications of this model.

Our problem (1) is related to the coupling of the Brinkman—Forchheimer equations
and the so-called double-diffusion equations. There are several articles in the literature
on the analysis and discretization of this coupling; see, e.g., [50, 61, 26, 25, 24]. With
the exception of the recently published work [24], all the previously cited papers
consider the case s = 3. On the other hand, the models considered in [26, 25, 24]
couple the concentration variable in the forcing term of the momentum equations of
the Brinkman-Forchheimer system as f(¢) for physical reasons other than ours. In
contrast, in our work we follow the approach considered in [12, 17, 33, 30], which
takes up the physical considerations presented in [48, 57|, and considers viscosity and
thermal diffusion coefficients, which may depend nonlinearly on the temperature 7.

As far as we know, this is the first paper dealing with the analysis and numer-
ical approximation of the nonlinear coupled problem (1) in its present form. Since
the problem involves several sources of nonlinearity, the analysis and discretization
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are anything but trivial. In the following, we list what we consider to be the most
important contributions of our work:

e Existence and uniqueness of solutions: We introduce a concept of weak solution
for the nonlinear problem (1) and show the existence of solutions without restriction
on the data; the latter is derived using Galerkin’s method and Brouwer’s fixed point
theorem. Moreover, we obtain a global uniqueness result when the solution is slightly
smoother, and the data is suitably restricted.

o Finite element approximation: We propose a finite element discretization for
the system (1) based on the following two classical inf-sup stable pairs: the Taylor—
Hood element and the mini element. We approximate the temperature variable of the
fluid with continuous piecewise linear/quadratic finite elements. As in the continuous
case, we show the existence of solutions without restriction on the data and global
uniqueness when the solution is slightly smoother, and the data is suitably restricted.
We also show the existence of a subsequence of discrete solutions that converge to a
solution of the continuous problem (1). This result holds without assumptions on the
data and solutions beyond what is required to obtain well-posedness.

e A priori error estimates: We derive a quasi-best approximation result for the
proposed numerical method. In doing so, we assume suitable smallness conditions
and regularity assumptions for the solution. Under the moderate assumption that
(u,p,T) € H3(Q) x H?(Q) x H3(£2), we obtain optimal error estimates in a standard
energy norm for the approximation with the Taylor—Hood element. For the approxi-
mation with the mini element, we obtain optimal error estimates in such a standard
energy norm assuming that (u,p,7) € H2(Q) x H}(Q) x H(Q).

o An iterative scheme: We propose an iterative method for solving the proposed
nonlinear finite element discretization and show its convergence under suitable small-
ness conditions and regularity assumptions on the solution.

o Numerical simulations: We computationally investigate the effects of the Forch-
heimer exponent s in the so-called heated lid-driven cavity flow problem and show
how this parameter affects the velocity and pressure of the fluid and, in particular,
the position of the counter-rotating vortices that occur in the cavity.

The structure of our manuscript is outlined below. In section 2, we establish the
notation and the preliminary material. In section 3, we present a weak formulation for
the system (1) and show the existence of solutions without restrictions on the data and
uniqueness under suitable smallness conditions on the data. In section 4, we develop
a finite element scheme, investigate its convergence properties, and derive a priori
error estimates to control the error in the approximation of the velocity, pressure, and
temperature variables. We conclude in section 5 with a series of numerical experiments
that illustrate and go beyond the theory.

2. Notation and preliminary remarks. We begin this section by establishing
the notation and the framework within which we will work.

2.1. Notation. We use the standard notation for Lebesgue and Sobolev spaces.
The spaces of vector-valued functions and the vector-valued functions themselves are
denoted by bold letters. In particular, we set V(Q) := {v € H}(Q) : div v = 0}.

If X and Z are Banach function spaces, we write X < Z to denote that X is
continuously embedded in Z. We denote by Z’ and || - ||z the dual and the norm of
Z, respectively. We denote by (-, )z z/ the duality paring between Z’ and Z; if the
underlying spaces are clear from the context, we simply write (-, ). Given p € (1, 00),
we denote by p/ € (1, 00) its Holder conjugate, i.e., p/ is such that 1/p+1/pr = 1. The
relation a < b means that a < Cb, where C' is a constant that does not depend on a,
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b, or the discretization parameters. The value of C' can change each time it occurs. If
the specific value of a constant is important, we give it a name. For example, in our
work we use C4s2 to denote the best constant in the embedding H{ () < L*(Q). To
simplify the notation, we also use C4c2 in the vectorial case H}(2) — L*(Q).

2.2. A convective Brinkman—Forchheimer problem. In this section, we
investigate existence and uniqueness results for the following weak formulation of
a convective Brinkman—Forchheimer problem: Given an external density force f €
H1(Q), find a velocity-pressure pair (u, p) € H§(Q2) x L3(2) such that

/(I/Vu~Vv+(u-V)u~v—|—u~v—|—|u|5_2u~v—pdivv)d:r = (f,v),
2 e

/qdiv udez = 0,
Q

for all v € H}(2) and q € L3(), respectively. The function v belongs to C%(R),
and it is assumed to be strictly positive and bounded. Namely, we assume that there
are positive constants v_ and v such that 0 < v_ < v(r) <wvy for every r € R. We
denote by £, the Lipschitz constant of the function v.

With the exception of Iy := [, [u|*"?u - vdz, all terms in system (2) are trivially
well-defined in our space setting. A bound for I; can be derived as follows:

(3) L < 52 o Ml VIl y: 7t 420t =1,

where we have used Holder’s inequality. We now apply the standard Sobolev embed-
dings from [1, Theorem 4.12, Cases B and C] to conclude that H}(Q) < L*(2) for
t < oo when d =2 and ¢ < 6 when d = 3. We can, therefore, set 7 = ¢ for some g > 1
in two dimensions and 7 = 3/2 in three dimensions. It follows that s — 2 € [1,2] and
therefore that 7(s — 2) < 27 < 3. From this, we can derive the estimate

(4) L] S IVulliz i) IVViiee @),

by again using the Sobolev embedding H}(2) < L*(Q).

Remark 1 (boundedness of I,). Let us first note that the bound (4) is not the only
way to control the term I,. Our bound exploits the maximum L*(§2)-regularity of a
function in H} () and implies that the estimate (4) is also valid for larger values of
the parameter s. Nevertheless, in our work, we consider s € [3,4] due to the physical
considerations discussed in the introduction.

2.2.1. Existence. To present existence and uniqueness results for system (2),
we introduce the bilinear forms ay, : [H3(2)]> — R and b: H{(Q) x L3(Q) — R by
ar(u,v) := / (vVu-Vv+u-v)de, b(v,q) := —/ qdivvdez,
Q Q

respectively. We also introduce forms associated with the nonlinear terms (u - V)u
and [u*"2u in (2). Namely, we define ay : [H}(2)]®> = R and ar : [H{(2)]® — R by

ay(u;w,v) = /

(u-V)w - vdz, ap(u;w,v) = / lu*2w - vdz,
Q Q

respectively. The form ay satisfies the following properties [67, Chapter II, Lemma
1.3], [44, Chapter IV, Lemma 2.2]: Let u € V(Q) and v,w € H}(2). Then, we have

(5) aN(u;va) +CLN(11;W,V) = 07 CLN(II;V,V) =0.



A CONVECTIVE BRINKMAN-FORCHHEIMER MODEL AND A HEAT EQUATION 5

Moreover, ay is well-defined and continuous on [H{(£2)]3: There is Cy > 0 such that
(6) lan (0; v, w)| < Cn||VullLzo) | VV]iLz )| VW2 )

see [67, Chapter II, Lemma 1.1] and [41, Lemma IX.1.1]. As a final ingredient, we
introduce a : [H{(Q)]? = R by a(u;u,v) :=ar(u,v) + ax(u;u,v) + ap(u;u,v).

Having introduced all these ingredients, we can rewrite the weak formulation (2)
as follows: Find (u, p) € H}(Q2) x L2(Q) such that

(1) a(wu,v)+b(v,p) = (f,v) Vv eH(Q), b(u,q) =0 Vqe Li(Q).

We note that, due to the Rham’s theorem [35, Theorem B.73|, problem (7) is equiv-
alent to the following reduced formulation: Find u € V() such that

(8) a(u;u,v) =(f,v) YveV(Q).

An essential ingredient in the proof of [35, Theorem B.73] is the fact that the diver-
gence operator is surjective from H}(2) to LZ(Q). This implies that there exists a
positive constant 8 such that [44, Chapter I, Section 5.1], [35, Corollary B.71]

,di 2
9) Sup (q,div v), ()

> Bllallzz)  VYa € L(€).
veri) Vvl “ 0

Given f € H1(9), we define
(10)  A(E) = 14+ vev™" + Cav 2|11 (o) + Copar™ + Coms g 552

where Cy is as in (6) and Coyo and Cs—yo denote the best constants in the Sobolev
embeddings H}(Q) — L2(Q2) and H}(Q) — L*(Q), respectively.
We now present an existence result without restrictions on the data.

THEOREM 2 (existence and stability bound). There exists at least one solution
(u,p) € H{(Q) x L&(Q) for problem (7). Moreover, (u,p) satisfies the bound

(11) IVullrzi0) < v 1flla-1 @),
(12) lIpllz2(0) < ﬁilA(f)”fHH—l(Q)v

where 3 corresponds to the constant in (9).

Proof. The proof of this result can be found in [23, Theorem 2]. For the sake of
brevity, we omit the details. ]

2.2.2. Uniqueness. In this section, we provide a uniqueness result for problem
(7) under a suitable smallness condition.

THEOREM 3 (uniqueness for small data). In the framework of Theorem 2, if
f e H1(Q) is sufficiently small or v sufficiently large such that
(13) v2Cn|Ifla- ) < 1,

where Cn is as in (6), then there is a unique (u,p) € HY(Q) x L3(Q) that solves (7).

Proof. The proof of this result follows standard arguments. The interested reader
is referred to [23, Theorem 3] for a proof. d
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2.3. A nonlinear heat equation. We now examine existence and uniqueness
results for a nmonlinear heat equation with convection. For this purpose, we consider
g € H71(Q) and a thermal diffusion coefficient x € C%!(R) that satisfies 0 < xk_ <
k(r) < k4 for each r € R, where k1 > k_ > 0. We denote by L, the Lipschitz
constant of k. A weak formulation for the nonlinear heat equation is as follows:

(14) T e Hi(Q): / (k(T)VT -VS + (v-VT)S)dx = {g,S) VS € H}(Q),
Q

where v € V(). As an instrumental ingredient to perform an analysis, we introduce
the map A : H(2) — H~1(Q), which is defined by

(15)  (A(T),S) ::/Q(R(T)VT-VS—i-(V-VT)S)dx VT, S € HA(Q).

The existence of solutions to problem (14) is as follows.
THEOREM 4 (existence). There erxists at least one solution T € H () to (14).

Proof. The proof of this result can be found in [23, Theorem 4]. For the sake of
brevity, we omit the details. 0

Global uniqueness can be obtained when the solution is slightly smoother and the
datum is suitably restricted.

THEOREM 5 (uniqueness for small data). Let us assume that (14) has a solution
Ty € WH3(Q) N HE(Q) such that

(16) KL Comsa || VT [|L3 ) < 1.

Then problem (14) has no other solution Ty in H}(Q). Here, Coso is the best constant
in the Sobolev embedding H}(Q) < L5(Q) and L, is the Lipschitz constant of k.

Proof. The proof of this result follows standard arguments. The interested reader
is referred to [23, Theorem 5] for a proof. O

Remark 6 (d = 2). If d = 2, the assumption on 7} in (16) can be improved to
LCocs||VTh||Lt()/k— < 1 for some t > 2, where o satisfies 1/0 4+ 1/t = 1/2. This
is achieved by exploiting the fact that H}(Q) < L*(2) for ¢« < oo in two dimensions.

3. The coupled problem. The main goal of this section is to show the existence
of suitable weak solutions for the coupled problem (1) and to derive a uniqueness result
under suitable assumptions. In a first step, we introduce the assumptions under which
we will work and introduce the concept of a weak solution.

3.1. Main assumptions. Inspired by the results in the previous sections, we
consider the following assumptions on the viscosity and diffusion coefficients.

e Viscosity: The viscosity v € C%1(R) is a function that is strictly positive and
bounded: there exist positive constants v_ and v, such that

(17) vo<u(r)<vy VreR.

e Diffusivity: The thermal coefficient x € C%(R) is a strictly positive and
bounded function: there exists positive constant x_ and x4 such that

(18) ko <k(r)<ky VYrekR

e Lipschitz constants: We denote by £, and L,; the Lipschitz constants associated
to the functions v and k, respectively.
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3.2. Weak solution. We use the following notion of weak solution for (1).

DEFINITION 7 (weak solution). Let f € H™Y(Q) and let g € H=1(Q). We say
that (u,p,T) € H(Q) x L3(2) x HY(Q) is a weak solution to (1) if

/ (V(T)Vu-Vv+ (u-Vu-v+u-v+uf ?u-v—pdivv)de = (f,v),
(19) ¢

/ gqdivudz =0, / (k(T)VT -VS + (u-VT)S)dz = (g, 5),
Q Q

for all (v,q,S) € HY(Q) x LE(Q) x HZ (). The parameter s belongs to [3,4].
It is important to note that, given the assumptions imposed on the problem data, all

terms in system (19) are well-defined.

3.3. Existence of solutions. We are now in a position to establish an existence
result for problem (19). To simplify our presentation, we use the following notation:

V(v,5) € HY(@) x B () (v, Dlleryeyme) = [IVVIEe() + IVSIEey]

_ _ 2
V(f,g) eH 1(9) x H 1(Q> S g)”Hfl(Q)fol(Q) = {Hf”%rl(ﬂ) +||9||§171(Q)} :

THEOREM 8 (existence of solutions). Let d € {2,3}, and let Q@ C R? be an open
and bounded domain with Lipschitz boundary 0. Let v and x in C%(R) be such that
inequalities (17) and (18) hold. If f € H™1(Q) and g € H~Y(Q), then problem (19)
has at least one solution (u,p,T) € H}(Q) x L3(Q) x HE(Q). Moreover, we have

(20) IVullLz) < v Iflla-r @), IIpllzz@) < 87 AE)|flla-10),
(21) VT L2y < 6219l -1

where A is defined in (10).

Proof. We adapt the proof of Theorem 2.2 in [2] to our case and divide the proof
into several steps.

Step 1. A mapping ®: Let u,v € V(Q), and let T, S € H(Q) be arbitrary.
To simplify the notation, we define the variables U := (u,T) and V := (v,S). We
introduce the mapping ® from the space V() x H}(Q) into its dual space as

(22) (2U),V) = /Q (V(T)Vu-Vv+ (u-Vu-v+u-v+|uf?u-v)de
—|—/ (k(T)VT -VS+ (u-VT)S)dz — (f,v) — (g, 5).
Q

As a consequence of H}(Q2) < L*(£2), which holds for ¢ < oo when d = 2 and ¢ < 6
when d = 3, suitable Holder inequalities, the bounds (4) and (6), and the properties
that v and & satisfy, we can deduce that ® is continuous on V() x H}(Q).

If, on the other hand, we replace U by V in (22) and use that ay(v;v,v) = 0,
ap(viv,v) = ([v[*" 3 [v]*) 2@ > 0, and [,(v - VS)Sdz = 0, together with the
properties (17) and (18), we conclude that

<<I>(V),V> 2 min {va'%*} H(VvS)H?—I})(Q)xHé(Q)

— 1€, Dlla-1@)x -1 (Vs )1 () x 112 (2) -
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From this, we can conclude that (®(V), V) > 0 for all ¥V € V() x H}(2) such that
(v, S) ez () x 3 (@) = min{v—, 5} (£, 9l ()< -1 () =2 0-

Step 2. Galerkin approximation [59, Theorem 2.6]: Since V() is separable, we
can take a sequence {Vy}ren of finite-dimensional subspaces of V() such that

(23) VkeN: Vi CVip CV(Q), U{Vg:keN}isdense in V().

We can also take a sequence {W}, }ren of finite-dimensional subspaces of H} () so that
the properties in (23) hold by replacing Vi and V(2) by Wy, and H}(Q), respectively.
Then, we define a Galerkin approximation Uy = (ug, Tx) € Vi X Wy, by the identity

(PUR), Vi) =0 VYV, € V) x Wy.

As shown in step 1 on a continuous level, ® is a continuous from Vi x W into
Vi x Wy and satisfies the property (®(Vi), Vi) > 0 for all Vi € Vi x Wy such
that [|(vi, Sk)llm1 Q)< a1 (@) = min{v_, k_}~ YI(E, @) la-1)xm-1(2) = 0. Applying a
consequence of Brouwer’s classical fixed-point theorem [44, Chapter IV, Corollary
1.1], we deduce the existence of a solution Uy, such that

(24) (@UE), Vi) =0 ¥V, € Vi x Wy, [ (ks Th) 12 () x 12 (00) < 6.

Step 3. Limite passage: Since the sequences {uy }ren and {7 }ren are uniformly
bounded in H{(2) and H}(Q), respectively, we deduce the existence of nonrelabeled
subsequences such that uy — u and Ty — 7T in H}(2) and H}(Q), respectively, as
k 1 0o. The compact embedding of [1, Theorem 6.3, Part I] guarantees that uy — u
in LY(Q) and T, — T in L1(Q) as k 1 oo for ¢ < oo in two dimensions and ¢ < 6 in
three dimensions. Note that by construction, for every ¢ < k we have that

(25) U = (ug, T) € Vi x W o (D(UE), Vi) =0 YV, €V, x W,

Let us now prove that the limit point (u,T) solves (19). To do so, we note that:
(1) [ov(Tk)Vuy, - Vvde — [ v(T)Vu-Vvdz as kT oo for v e V(Q) It follows

from the strong convergence of {Tk}keN to T in L?(9) and the Lipschitz continuity of
v that v(T})Vv — v(T)Vv almost everywhere in ) as k T oco. Since v is bounded, the
Lebesgue dominated convergence theorem shows that v(T,)Vv — v(T)Vv in L?(Q)
as k1 co. As a result, [, v(Tx)Vuy - Vvde — [, v(T)Vu- Vvdz as k 1 oo.

(i) an(up;ug,v) — aN(u u,v) as k T oo for v.€ V(Q): The proof of this
convergence result can be found in the proof of [44, Chapter IV, Theorem 2.1].

(i) ap(ug;ug,v) = arp(u;u,v) as k 1+ oo for v.€ V(Q): We begin with an
application of [29, estimate (5.3.33)] or [46, Lemma 5.3] and obtain

(26) ‘/ (|uk|s_2uk — |u|5_2u) -vdz
Q

S [ o=l + ful)* 2 vlde
Q

< [k — uf|pe o) | uk] + |u|||i?<2572>(9)||vl Le(@) < Asrlluk — ullne ) [viiLe @)
where 247! + 771 =1 and A, = A -(u) is such that
s )
@27) sl + 3720 ) < CHgycn IM A IVUllLe @] = Asr ().

Here, C;(s_2)—s2 is the best constant in the Sobolev embedding H(2) — L™(=2(Q)
and M is such that ||[Vug|r2q) < M for every k € N. The constant 7 is such that
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7 = ¢ for some ¢ > 1 in two dimensions, and 7 > 3/2 is arbitrarily close to 3/2 in
three dimensions. We again invoke the compact embedding of [1, Theorem 6.3, Part
I] which guarantees that u, — u in L?(2) as k 1 oo for ¢ < oo in two dimensions and
g < 6 in three dimensions to conclude that uy — u in L#(Q) as k T co. As a result,
we have obtained that ap(ug;ug,v) = arp(u;u,v) as k 1 oo.

(iv) [o6(Te)VTy - VSdz — [ k(T)VT - VSdz as k T oo for S € Hy(Q): This
convergence result follows from arguments similar to those used in item (i).

The results obtained in (i)—(iv) allow us to conclude that (®(U),V,) = 0 for all
V, € V; x W, and by density that (@), V) =0 for all V € V(Q) x H}(22). We can
therefore conclude that (u,T’) satisfies the second and third equations in (19) and

(H,v) = /Q (V(T)Vu-Vv+ (u-Viu-v+u-v+[uf?u-v)de— (f,v) =0,

for all v.e V(Q).

Step 4. The pressure: The functional # is linear and continuous on H} () and is
zero on the space V(Q). Consequently, by virtue of de Rhams theorem [35, Theorem
B.73], there exists p € L3(2) such that (H,v) = (Vp,v) for v € H}(Q). We have
thus proved the existence of a solution (u, p,T).

Step 5. Stability bounds: Let (u,p,T) € H} () x L3(Q) x HE(Q) be a solution
of problem (19). If we use v = u as the test function in the first equation of problem
(19), we immediately obtain the bound

v_||Vulfzq) + allfzq) + i@ < Ifla-1@)lVull: @),

where we have used that ay(u;u,u) = 0 because u € V(). This bound shows
that v_||[Vu|L2q) < [If|l-1(q). The stability bound for the temperature variable in
(21) follows similar arguments. The estimate for the pressure follows from the inf-sup
condition (9). This concludes the proof. |

3.4. Uniqueness of solutions. Without regularity assumptions on the solu-
tion, the derivation of uniqueness of solutions for the nonlinear system (19) appears
problematic. Let us show the uniqueness of solutions under suitable assumptions.

THEOREM 9 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 3 and assume that problem (19) has a solution (uy,p1,T1) € WH3(Q) N
H}(Q) x LE(Q) x WE3(Q) N HE(Q) such that

C L,Cs32C3 - Vu

(28) CN g2 ) + 2022 1ellgll -1 @)l Vai s @) <1
(28 V_Kk_ (IQ_ - an6‘—>2HVT1HL3(Q))

(29) EKCGHQHVT:[”LS(Q) < K_—.

Then, (19) has no other solution (uz, p2,To) € HE(Q) x L3(2) x HY(Q). Here, Co—s2
and Cycsa denote the best constants in the embedding H} () < L5(Q) and H () —
L4(Q), respectively, and L,, and L, are the Lipschitz constants of v and r, respectively.

Proof. Let (ug, p2,T2) be another solution of the coupled problem (19). Define
u:=u; —up € H{(Q), p:=p1 —p2 € L3(Q), and T := T} — T», € H}(Q). A simple
calculation shows that T verifies the following identity for every S € H}(Q):

(30) /QH(TQ)VTVdeJr/

(ul'VTlflh'VTg)Sdl':/(K(Tg)fﬁ(Tl))VTl'VSdQE.
Q

Q
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We now set S =T and use that [, (uy - VT')Tdz = 0 because uy € V(Q) to obtain
/ (1) VT Pdie +/ (u-VTy) Tdz = /(H(TQ) — (T1))VT, - VTdz.
Q Q Q

We use the assumptions on k presented in §3.1, suitable Holder’s inequalities, the
bound || VT ||L2() < &7 9|l -1 (), and standard Sobolev embeddings to obtain

(31) H—HVTHiz(Q) < kZ'CislIVullLe @) 9l m-1(@) IV T ILz ()

+ L Cosa VT [lLs @) IVT (120 -
This estimate leads directly to the following bound:

-1 _
(32)  IVTllLze) < (k= = LuCosa VT2 ) K2 CisalVullrz)llgl a-1(0)-

We now apply arguments similar to those we used for (30) and obtain

(33) /Q (V(Tg)Vu~Vv+(u1 -Vup-v—(uz-Viug-v+u-v

+ ug*%uy v — ug* 2y ~v)dz = /(V(TQ) —v(T1))Vuy - Vvdzx
Q
for all v.e V(Q). To control the term [[Vu||g2 (), we set v = u in (33), invoke [34,
Chapter I, Lemma 4.4], and apply the estimates (6) and (11) to conclude that
v_[[Vulfzq) < v2'Cn | Vulliz o lIfla-1 @

+ L,Cs2 HVT||L2(Q) ||Vu1 ||L3(Q) ||vu||L2(Q).

Replacing (32) into the previous bound we obtain

c L,Css2C3 - \Y
IVl (_;;anmm_ 520 o910 u1||Ls<m> 0

V_K_ (H_ - £5C6;>2||VT1||L3(Q))

which, in view of (28), immediately shows that u = 0 and therefore u; = up. We
now substitute u = 0 in (31) and use assumption (29) to obtain that T'= 0. Finally,
using the inf-sup condition (9), we arrive at p = 0. This concludes the proof. d

Since different Sobolev embedding results hold in two dimensions, it is possible to
improve the regularity assumptions under which it is possible to obtain uniqueness.

THEOREM 10 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 2 and assume that problem (19) has a solution (uy,p1,T1) € WhH2He(Q) N
H{(Q) x LE(Q) x Wh2H(Q) N HY(Q) for some € > 0 such that

c L£,C.C3 -1y || Vu E

(34) O n iy + SoCeCEallllar @ IVt ey
V- V_Kk_— (Ii_ - ‘CHCE||VT1HL2+5(Q))

(35) EHCEHVTIHLQ‘FE(Q) < K_.

Then, problem (19) has no other solution (uz, p2,T2) € H(Q)x LE(Q) x HL(Q). Here,
C. and Cyso denote the best constants in H} (Q) < L*+9)/5(Q) and H(Q) — L4(Q),
respectively, and L, and L, are the Lipschitz constants of v and k, respectively.
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4. Finite element approximation. In this section, we propose and analyze
a finite element scheme to approximate solutions of the nonlinear coupled problem
(19). As far as the analysis is concerned, we study the convergence properties of the
discretization scheme and derive a priori error bounds. To this end, we first introduce
some notions and basic ingredients [20, 22, 29, 35].

4.1. Notation and basic components. From now on we assume that  is
a Lipschitz polytope so that it can be exactly triangulated. Let J;, = {K} be a
conforming partition of 2 into closed simplices K of size hx = diam(K). Here,
h = max{hgx : K € J,}. We denote by T = {J},}1~0 a collection of conforming
meshes .7}, which are refinements of an initial mesh .75. We assume that the collection
T satisfies the so-called shape regularity condition.

4.2. Finite element spaces. Let .7, be a mesh in T. To approximate the
velocity field u and the pressure p of the fluid, we consider a pair (X, M},) of finite
element spaces satisfying a uniform discrete inf-sup condition: There exists a constant
B > 0 independent of h such that

fQ qn div Vhd:E B < 0.

(36) inf  sup >
aneMn v, ex, [IVVallizo) lanllrzq)

We will look in particular at the following pairs, which are significant in the literature:
(1) The lowest order Taylor-Hood element introduced in [66] for d = 2; see also [44,
Chapter II, Section 4.2], [35, Section 4.2.5], [20, Section 8.8.2]: In this case,

(37) X;, = {v, € C(Q) : vi|x € [P2(K)]* VK € Z,} NHL(Q),
(38) My, ={qn € L3 NC(Q) : qu|x € P1(K) VK € F,}.

(2) The mini element introduced in [13] for d = 2; see also [44, Chapter II, Section
4.1], [35, Section 4.2.4], [20, Section 8.4.2]: In this scenario,

(39) Xp, = {vi, € C(Q) : vi|x € [W(K)]¢ VK € F,} nH(Q),

(40) My, = {qn € L) NC(Q) : qu|x € P1(K) VK € F,},
where W(K) := P (K) @ B(K), and B(K) denotes the space spanned by a local
bubble function.

A proof of the inf-sup condition (36) for the mini element can be found in [35,
Lemma 4.20]. Provided that the mesh .7}, contains at least three triangles in two
dimensions and that each tetrahedron has at least one internal vertex in three di-
mensions, a proof of (36) for the Taylor-Hood element can be found in [20, Theorem
8.8.1] and [20, Theorem 8.8.2], respectively.

To approximate the temperature variable of the fluid, we consider the space

(41) Yy, i= {8, € C(Q) : Syl € Pe(K) VK € F,} N Hy(Q),

where v = 1 if the mini element is used to approximate (u,p), or v = 2 if we approxi-
mate (u, p) with the Taylor-Hood element.

The finite element spaces X, and Y} satisfy the following basic approximation
properties: For all v € H}(Q) and S € H}(Q2), we have

(12) Jim (V;g;h V(v - mnmm) 0. Jim (S;ggh Iv(s - Sh>||Lz<Q>) 0.
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We also have the existence of interpolation operators ITj, : H(Q) — X, and IIj, :
HY(Q) — Yy, so that, for every v € H}(Q) and S € H{ (), we have

(43) flLiLI%)HV(V—HhV)HIQ(Q) — 0, AIL%”V(S_HhS)HIﬂ(Q) — 0.

Finally, we introduce the space V}, := {vj, € X}, : fQ qn divvpde =0Vq, € My}

4.3. The discrete coupled problem. Before presenting a discrete scheme for
the nonlinear problem (19), we introduce some basic ingredients. First, we define

a:Y, x Xh X Xh — R, a(Th; uh,vh) = / (y(Th)Vuh -Vvp, +uy - Vh) dJC,
Q

b: Yh X Yh X Yh — R, b(Rh;Th,Sh) = / K(Rh)VTh . VShdl’
Q
Since functions in V, are generally not divergence-free, we follow [67, Chapter II, §3.2]
and [43, Chapter IV, §3] and introduce a slight variation of the form ay that preserves
the antisymmetry on a discrete level. To be precise, we define agy : X;o’l — R by

1
(44) asn(up; Vi, Wp) == 3 lan (up; Vi, Wi) — an (up; W, va)] .

Note that agy(up;vp,vp) = 0 for up, v, € Xp,. Similarly, we introduce the form
ast : Xp X Yy XYh%Rby

1
(45) aST(vh;Th, Sh) = 5/ ((Vh . VTh)Sh — (Vh . VSh)Th) dx.
Q
Note that asr(va; Sk, Sp) = 0 for v, € Xy, and Sy, € Yj,.
With all these ingredients, we introduce the following discrete approximation of
(19): Given f € H1(Q) and g € H~1(Q), find (un, pn, Th) € Xy X My, x Y}, such that

(46) a(Th;up, va) + asny(up;up, vi) + ap(p;ap, vi) + 0(vy, pr) = (£, vi),
b(up,qn) =0, 0(Th; Th, Sn) + asr(un; Th, Sn) = (g, Sh),

for all (vp,qpn, Sp) € X x M, x Yy, and s € [3,4].

In the following we prove that for every h > 0 the discrete problem (46) has a
solution and that the sequence of solutions {(up, pn, Th) }r>0 is uniformly bounded in
H}(Q) x LE(Q) x HE ().

THEOREM 11 (existence of solutions). In the framework of Theorem 8, there is
at least one solution (up, pp,T) € Xp X My, x Yy, for problem (46). Moreover,

(a0 [Vl < v E s Ipnllza) < AT A
(48)  [IVTillece) < A2 gl o),
where A is defined in (10).

Proof. As in the proof of Theorem 8, we define a suitable operator ®;, from Vj, xY},
into itself. Since agy(up;vp,vp) = 0 for upy, vy, € X;, and agr(vp; S, Sp) = 0
for vi, € Xj, and Sy, € Y}, it can be proved that (®(Vy),Vy) > 0 for any Vy, =
(Vh, Sp) € Vi x Y}, such that [|(vh, Sk)|lm1(0)x a1 @) = J- The existence of a solution
(up, pr, Th) € Xp, x Mp, x Yy, therefore follows directly from [44, Chapter IV, Corollary
1.1] and the discrete inf-sup condition (36). Finally, the discrete stability bounds (47)—
(48) follow from the arguments developed in the proof of Theorem 8 (see step 5). O
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As for the continuous case, we can also show the uniqueness of solutions for the
discrete problem (46) under suitable assumptions.

THEOREM 12 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 3 and assume that problem (46) has a solution (Upy,pni,Thi) € WE3(Q) N
X, x My, x WH3(Q)NY;, such that

C L,C C? - Vu :

(49) %Hfllnfl(m n 62C1s0 19l I(Q)H thLS(Q) <1,
v- V_K_ (KZ_ — ‘CRC(SHQHVTthL%Q))

(50) L:Coes2l|VTh1lLs ) < k-

Then, (46) has no other solution (Wpa, ProsTha) € Xp X My, x Yy, Here, Coya and
Cieso denote the best constants in the embedding Hi(2) — L%(Q) and H(Q) —
L*(Q), respectively, and L,, and L, are the Lipschitz constants of v and r, respectively.

Proof. Let (una,pha, Tho) € Xp X My, X Y, be another solution to problem (46)
and define uy :=up; — upo € Xy, Ph = Phy — Pho € My, and T}, :=Tp1 — Tho € Y.
We proceed similarly to the proof of Theorem 9 with special considerations on the
bilinear forms agy and agr. This concludes the proof. a

As in the continuous case, the regularity requirements for the solution in dimen-
sion 2 can be relaxed.

THEOREM 13 (uniqueness of solutions). Let the assumptions of Theorem 8 hold.
Let d = 2 and assume that problem (46) has a solution (W, pn1,Thi) € WH2HE(Q)N
X, x My, x WEH2T€(Q) NY), for some & > 0 such that

C £,C.C3 - Vu E

(51) ) + === 1ol 1@ [IVan lL2+e @) <1
v- V_K_ (l‘i_ — LKCEHVT}L1||L2+E(Q))

(52) EHC€||VTh1HL2+E(Q) < K_.

Then, (46) has no other solution (Upg, Phy, Tho) € Xp X My, x Yy, Here, C. and Cyeyo
denote the best constants in the embeddings HE(Q) — L?>?+9)/5(Q) and H(Q) —
L4(Q), respectively, and L,, and L,; are the Lipschitz constants of v and k, respectively.

4.4. Convergence. We present the following convergence result. The most im-
portant feature of this result is that it requires no regularity properties of solutions
other than those required for the well-posedness of the problem, no additional smallness
assumptions, and no further reqularity properties of ) beyond a Lipschitz property.

THEOREM 14 (convergence result). In the framework of Theorem 8, let h > 0,
and let (up, pn,Th) be a solution of the discrete problem (46). Then, there exists a
nonrelabeled subsequence of {(up, pn, Th)th>o0 such that uy, — u, pp, — p, and Ty, = T
in H(Q), L3(Q), and H(Q), respectively, as h — 0. Moreover, (u,p,T) solves (19).

Proof. For h > 0, the existence of a discrete solution (up, pr,Th) € Xp X My x Yy,
is guaranteed by Theorem 11. We note that, given the stability bounds in Theorem
11, the sequence {(up, pn, Th)}r>o is uniformly bounded in H(Q) x L3(2) x H(Q)
with respect to the discretization parameter h. We can therefore deduce the existence
of a nonrelabeled subsequence {(uy, pn,Th)}r>0 such that

(53) (uha ph7Th) - (ua paT)v h — 07

in Hj(Q) x L2(2) x H} (). In the following, we show that (u, p, T') € H}(Q) x L3(£2) x
H}(Q) solves the nonlinear problem (19). To do this, we proceed in several steps.
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Step 1. We show that the pair (u,p) € H}(Q) x LZ(Q) solves the first two

equations in (19) with temperature 7. To do this, we let v € H}(Q) be arbitrary and
set vy, = IIv € Xj,. A simple calculation for the Forchheimer term shows that

‘/ (Jup]*up - vi, — [u)*?u-v) da
Q

< ’/ lup|* 2y, - (v, — v) da
Q

Q

Given (?7) and the fact that the embedding H}(Q) < L*(£2) is compact for ¢+ < oo
when d = 2 and + < 6 when d = 3, we can conclude that II;, — 0 as h — 0. To
analyze the term Iy, we first invoke (4) to obtain

SIV(v = Vh)||L2(Q)||VUh||i§(19)-

/ |uh|s_2uh (vp —v)dx
Q

Since {uy, }>0 is uniformly bounded in H}(£2), a result in (43) allows us to conclude.
In the following, we prove that asy (up;up, vi) = [(u-V)u-vdz as h — 0. To
do so, we use the definition of agy from (44) and then a property from (5) to obtain

1
/ (u-V)u-vder —agny(up;up, vy)| < 3 / (u-Vu-v—(up-V)uy - vp)de
Q Q
1
+ 5 / ((uh . V)Vh -uy — (11 . V)V . 11) dz| =: 111, + IV},
Q

To control IIIj,, we use u, — u in H}(Q) as k 1 oo, the fact that u,v € L*(Q), the
compact embedding H}(2) — L4(Q) for ¢ < oo when d = 2 and ¢ < 6 when d = 3,
the fact that {up}nso is uniformly bounded in H}(2), and (43) to obtain

2101, < +

[ V) = w) - vida

[ (=) 9y -vida
+'/Q(uh~V)uh~(VVh)dx — 0, h — 0.

We apply similar arguments to control the term IVy,:

2IVy, < /Q((u—uh)~V)v-udx + /Q(uh-V)v-(u—uh)dx

+

/(uh~V)(v—vh)-uhdx — 0, h — 0.
Q

The convergence of the linear term is trivial: | [, (u-v—uy-vp)dz| = 0ash — 0.

We now show that (v(Th)Vun, Vvi)i2) — (v(T)Vu, Vv)r2q) as h — 0. To
achieve this, we proceed as follows. First, as in step 3 of the proof of Theorem 8, we
have that v(T,)Vv — v(T)Vv in L2(Q2) as h — 0. This and the weak convergence
u, — u in H{(Q) show that (v(T})Vus, V)20 = (T)Vu,Vv)L2q) as h —
0. The fact that |(v(Th)Vun,V(V — vi))L2)| — 0 as b — 0 follows from the
boundedness of v, the uniform boundedness of {u}n~o in H{(Q2) and (43).

Since p, — p in L?(Q) as h — 0, the fact that {pj}ro is uniformly bounded in
L?*(€), the bound || div w||12(q) < [[VW]|L2(q), which holds for every w € H{(Q), and
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a result from (43) lead us to the following conclusions:

<

/ (pdivv — pp divvy) dz
Q

/ (p — pn) divvdz
Q
+lprll2 @) IV(v = vi) L2 (@) — 0, h — 0.

Finally, the fact that [, qdivuda = 0 for q € L§(12) is trivial.
Step 3. We prove that T solves the heat equation in (19). For this purpose, we
let S € HE(2) be arbitrary and set Sj, = I1,S € Y},. Next, we write the bound

Iy =

/ (K(T)VT - VS — 5 (Ty) T} - VSy) dz

< +

t/(nﬂﬁVT—wdﬂJVﬂJ-VSdc
Q

/Q/i(Th)VThV(S—Sh)dﬁ .

The strong convergence k(15,)VS — k(T)VS in L2(Q2) as h — 0, the weak convergence
T, — T in H}(Q) as h — 0, the boundedness of x, the uniform boundedness of
{Th}n>o0 in H}(Q), and a result from (43) show that J;, — 0 as h — 0.

We now prove that agr(up; Ty, Sp) = [o(u- VT)Sdz as h — 0. Since divu = 0
and T, S € Hi(Q), a simple calculation shows that

1
< Z
-2

/ (u-VT)Sdx — asr(up; Th, Sn)
Q

/Q (0-VT)S — (up - VT},)Sy) dz

1
+ / ((up, - VSp)Th — (u-VS)T)da| =: Vy + V.
Q

2

To control V},, we use the strong convergence u; — u in L*(£2), the weak convergence
T, — T in H}(Q) as h — 0, the uniform boundedness of {T},}n>0 and {up}s=o in
H}(2) and H}(2), respectively, and (43). These arguments show that

2Vh < +

/ ((u—uy)-VT)Sdx
Q

/ (uh . V(T - Th))Sdl‘
Q

+ — 0, h — 0.

/Q (W, - VTR)(S — Sp)dz

We apply similar arguments to control the term VIj:

2VI, < +

/ ((w—uy)-VS)Tdz
Q

/Q(uh V(S — Sp))Tdz

+ —0, h—0.

/Q(Uh . VSh)(T - Th)dl‘

We have thus proved that T solves the heat equation in (19). With the previous
results, we can conclude that (u, p,T") solves (19). This concludes the proof. 0

4.5. A quasi-best approximation result. We derive a quasi-best approxima-
tion result for the finite element approximation (46) of problem (19). For this purpose,
we assume suitable smallness conditions and regularity assumptions for the solution;
see Theorems 15 and 17 below. Since the regularity requirements on the solution in



16 G. CAMPANA, P. MUNOZ AND E. OTAROLA

two dimensions are weaker, we first derive the error bounds in three dimensions and
write the corresponding error bounds in two dimensions in a separate theorem.

We begin our analysis by introducing the errors e, := u — uy, e, 1= p — pp, and
er :=T — T} as well as the quantities

(54) W(T) =R — £,§C6<_>2HVT||L3(Q),
(55) m(fvga u) =V = VzlcNHfHH’l(Q) - C%HQ - CZ<—>2FS,T(f) - D(gvu)7
(56) O(g. 1) := (K-IM) ™ L,,Co02C5 0 ll9] 10 IVl L3 (0),

where Cos2, Cacs2, Cacsa, and C,eyo are the best constants in Hg(Q) — L°(€),
H}(Q) — L*(Q), HY(Q) — L2(Q), and H(Q2) — L#(Q), respectively. The constants
v_, k_, L, and L, are defined in §3.1. Cy is the constant in (6). I'; - is defined in
(64) below. Finally, p and 7 are such that 2/u+1/7 = 1, where 7 = ¢ for some ¢ > 1
in two dimensions and 7 = 3/2 (u = 6) in three dimensions.

We are now ready to state and prove one of the main results of this section.

THEOREM 15 (error bound (d = 3)). Let d = 3, and let the assumptions of
Theorems 8 and 12 hold. If M(T) > 0 and N(f, g,u) > 0, then we have the bound
(57) [VeullLa) + IVerllLa(@) +llepllz2@) S i [[V(a—wa)lLz)

+ RiIéth, V(T — Rp)|lL2 o) + thélz&h P = dnllz2(0),

with a hidden constant that is independent of h.

Remark 16. [The assumptions M(7") > 0 and N(f, g, u) > 0 in three dimensions]
We note that the inequalities M(7") > 0 and N(f, g, u) > 0 can be rewritten as

C3_,, N Crooler(f)  Cn N L,Cs52C5 o llgll -1 | VullLs o)

+ — [[flla- !
oo [l o)+ —== (ki — LnxComal VT L)

v_ v_

and L,Ce2||VT||L3(0) < k—, respectively. This shows in particular that conditions
(28) and (29), which guarantee the uniqueness of the coupled problem, are fulfilled.

Proof. We divide the proof into four steps.

Step 1. A priori bound for the temperature error: We control ||Ver||p2(q). For
this purpose, we set S = ), € Y}, C H}(Q) in the temperature equation of the system
(19) and subtract the third equation of the discrete system (46) from it to obtain

(58) /Q (K(T)VT — K(T})VT}) - VSpda + % /Q (u-VT) — (uy - VT})) Spda

1
+ 5/ ((up - VS)Th — (0-VS,)T)de =0 VS, €Yy,
Q

where we have used that u € V() and the definition of agr given in (45). Now, let
R}, be an arbitrary element in Y. We rewrite the left-hand side of (58) as follows:

(59) /Q (K(T)VT — K(TW)VT}) - VSpda = /g (R(T) = R{T})) VT - VSyda

+/ K(Th)V(T — Ry,) - VSpdx —|—/ K(Th)V(Ry — Ty) - VSpdx VS, €Y.
Q Q
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In the next step, we set Sy, = Ry, — T}, and replace (59) in (58) to obtain
(60) / W (TW) [V (R — Tp) e = —/ (K(T) — K(Th)) VT - V(R — T)da
Q Q

_ / K(TWV(T — Ry) - V(R — Th)de — % / w- V(T — Ryp)(Rp — Tp)dz
Q Q

1 1
_ f/ w- V(R — Tp)(Rp — Ty)da — 5/ (U —up) - VTh(Ry — Tp)dar
Q Q

1 1
5 / (uh — u) . V(Rh — Th)Thdx + 5 / u - V(Rh - Th)(T — Rh)dl‘
Q Q

1
+ 5/ u- V(R —T)(Rp — Tp)dzx.
Q
We now use that k_ < k(r) < m_ for every r € R, the Lipschitz property of k,
the Sobolev embeddings Hg (Q) — ( ) and H}(Q) < L*(2), the continuous and
discrete stability bounds (20)—(21) and (47)- (48), respectively, and the fact that u €
V() to obtain
K- [|V(Th — Rp)llLz ) < LxCoos2l| VT ||Ls )| VerllLz) + £+ IV(T = Ri)llL2 (o)
+Cico (R gl -1 IVeullLz @) + v IEla-1@ V(T — Ra)llLa@) -

The desired estimate for |[Ver||y2(q) follows from the triangle inequality and the
assumption that 9t = 9M(T) > 0. In fact, we have

(61) [[VerllLe@) <M (ko + ky + Ci v Iflla-1(0)) R,iféfyh V(T — Rp) Lo

+ (Mr_) ' C o llgll -1 o) | VeullLz o)

Step 2. A priori bound for the pressure error: We start with a simple application
of the triangle inequality and write ||ep||r2(0) < I|p — anllz2() + ldn — Pallz2(q) for
any qp € My. It is therefore sufficient to control [[qn — pn| z2(q). To do this, we first
set v = vy, € X, in the first equation of problem (19) and subtract the first equation
of problem (46) from it to obtain the following identity for any q, € Mp:

(62) / (an — pr) divvyde = / (an, — p) divvpde + / (u—uy) - vpde
Q Q Q

+ [ AT Ta = (@) Fw) - Fvide + [ (a2 ) - vide
Q Q

+ % /Q((u -V)u—(up, - V)uy) - vipde + % /Q ((up - V)i, -wp, = (u- V)vy, -u) dz

for all v, € Xj. On the other hand, the inf-sup condition (36) yields the existence
of wj, € X, so that divwy, = g, — pn and [|[Vwi||L2o) < (1/8)lldn — pallr2(o). We
therefore use (62) with the particular function wy, as a test function, use the relations
v(T)Vu—v(T,)Vuy, = (v(T)—v(Ty))Vu+v(Th)V(u—uy) and (u-V)u—(up-V)u, =
((w—up)-V)u+ (up - V)(u—uy), and use basic estimates to obtain

1 . 1
(63) lleplle) < [1+=| inf [p—anllzz@) + =LuCo2l|Ver|Le(a)|VullLs @)
ﬁ qnEMp ﬁ

= (Ceg + vy + 207 Cn[[fll-1(0) + Choolsr (F) [ Veullzz o),

Q:'—‘
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where we have used (??) and (??) to control the Forchheimer term and obtain

8= s— s—2
el + 572 ) < €20 (IVUA o) + [ Vullie)

5—2 s—2 2—s 5—2 .
< CT(S—Q);)ZQ v_ ||f||H*1(Q) = FS,T(f)'

(64)

Here, Cr(5—2)—2 is the best constant in H}(Q) — L™ 6=2(Q), u =6, and 7 = 3/2.

Step 3. A priori bound for the velocity error: We control [[Vey|p2q). Our
procedure is based on the arguments developed in step 1: We set v = v;, € X}, in the
first equation of (19) and subtract the first equation of (46) from it to obtain

(65) /Q(U(T)Vll —v(Ty)Vuy) - Vvipdzr + %/Q[(u -V)u-—(up - Viug] - vpda

1
—|—§/[(uh-V)vh-uh—(u-V)vh~u]d:1c+/eu~vhda:
Q Q

+ / (Ju*"2u — |uy|*2uy) - vpde — / epdivvydr =0 Vv, € X,,.
Q Q

Let wy, € Vi,. We rewrite the first term on the left-hand side of (65) as follows:
(66) / w(T)Vu —v(T},)Vuy) - Vvpde = / w(T) —v(Th)) Vu- Vvide
Q Q

+ /Q v(Ty)V(u—wy) - Vvpde + /Q v(Ty)V(wy, —uy) - Vvpde.

We now let q5, € My, set vi, = up, — wy, € Vi, and use (66) to obtain
(67) / v(Ty)|V(a, — Wh)|2dx = / W(T) —v(Ty)) Vu- V(u, — wp)dx
Q Q

+ /Q v(Th)V(u—wy) - V(up — wp)do + % /Q[(u -Viu— (up, - V)uy] - (up — wy)dz

1

+§/Q[(uh-V)(uh—wh)~uh—(u-V)(uh—wh)~u]dm—|—/ﬂeu-(uh—wh)dx

+ / (Ju]*?u — [up|*?up) - (up — wp)da — / (p — qn) div(up — wy)dz.
Q Q

We now add +3 [,(u- V)uy - (uy — wp)de and 3 [, (u- V)wy - (0, — wi)dz to
rearrange the first difference of the convective terms as follows:

1 1

3 /Q[(u -Vu-— (up - V)up] - (up, — wp)dz = 3 /Q(u -V)(u—wp) - (up — wp)de

1 1

+ 3 / (u-V)(wp —up) - (up, — wp)dz + 3 / ((w—up) - V)uy - (up, — wy)dz.
Q Q

A similar argument can be applied to the second difference of the convective terms

by using the terms +1 [,(u-V)(u, — wy) - updz and £5 [, (u- V) (u, — wy) - wpda:

%/Q[(uh-V)(uh—wh)-uh—(u-V)(uh—wh)-u]dx: %/Q((uh—u)~V)(uh—wh)-uhdx

+ % /Q(u V) (up —wy) - (u, —wy)dz + %/Q(u V) (up —wy) - (W, —u)dz.
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With these ingredients in hand, we invoke the assumptions of v presented in §3.1,
standard Sobolev embeddings, the bounds (??) and (64), and the continuous and
discrete stability bounds (20) and (47), respectively, to conclude that

(68) v_[[V(un — wh)llL2(0) < LiCos2|Ver|lLz)lVullLa@) + P — anllz2 ()
+ (s + v CnlIE -1 o) V(1 = wh) L2 o)
+ (622%2 + C;2L<—>2FS,T(f) + V:ICNHf”H—l(Q)) Hveu||L2(Q)~

With this estimate at hand, we control || Vey||2(q) in view of the triangle inequality,
the estimates (61) and (68), and the assumption 91 = N(f, g,u) > 0. In fact, we have

1
(69) [[VeullLze) < n qh}g]{;h lan — pllz2(0)

1 <,‘i + ki + Cov |[f][-1(0)

N m > LoCos2|[Vulre(o) inf [[V(T' = Ba)llL2 (o)

inf ||[V(u-— .
w;gvhﬂ (u—wp)llL2 ()

(V +vy £ V—lcN”f”H—l(Q))
+ N

Step 4. The desired estimate (57) results from the combination of the bounds
(61), (63) and (69). This concludes the proof. 0

Before presenting a bound in two dimensions, we introduce the quantities

B(T) ==r- — LKC€HVT||L2+5(Q)>
(70) Q(f,g, u) =rvo = VilCNHfHH’l(Q) - C%<—>2 - CZC—>2FS,T(f) - m(g?u)v
R(g,u) = (k-M) ' L,CCi s gl -1 ()| VullL2+e (),

for some € > 0. C. corresponds to the best constant in H}(Q) — L22+e)/5(Q).

THEOREM 17 (error bound (d = 2)). Let d = 2, and let the assumptions of
Theorems 8 and 13 hold. If B(T) > 0 and Q(f, g, u) > 0, then we have the bound

(T1) [IVeull) + IVerlla ) + llepllzz@ < i [V —wi)lrz (o)

+ it V(T = Bi)llez ) + inf P — anllz2o),

with a hidden constant that is independent of h.

Proof. The proof follows from a slight modification of the arguments developed
in the proof of Theorem 15, which essentially consists in using the Sobolev embedding
HY(Q) — L22+e)/2(Q) instead of H}(Q) — L5(). For the sake of brevity, we omit
the details. O

4.6. A priori error bounds. As a direct consequence of the best approximation
results of Theorems 15 and 17, approximation theory yields the following convergence
rates for Taylor-Hood and mini element approximation.

THEOREM 18 (Taylor-Hood approximation). Let the assumptions of Theorem
15 and 17 hold in three and two dimensions, respectively. If the solution (u,p,T) to
(19) belongs to H3(Q) NH(Q) x H2(2) N L3(Q) x H3(Q) N HE (), then

IVeullL2(o) + llepllz2@) + I VerllLz ) S B° (lullas@) + Iplaz@) + 1T a3 @) -
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THEOREM 19 (mini element approximation). Let the assumptions of Theorem 15
and 17 hold in three and two dimensions, respectively. If the solution (u,p,T) to (19)
belongs to H2(Q) NH(Q) x HL(Q) N LE(Q) x H?(Q) N HE (), then

IVeullLz@) + llepllz) + IVerllLz ) S b (Iallaz) + Ipla @) + 1T m2@)) -

5. Numerical examples. In this section, we present several numerical experi-
ments that illustrate the performance of the developed finite element method. These
examples were performed with a code that we implemented in C++. All matrices were
assembled exactly, and global linear systems were solved with the multifrontal mas-
sively parallel sparse direct solver (MUMPS) [10, 11]. For the visualization of finite
element approximations, we used the open-source application ParaView [14].

Given a mesh %, we approximate the velocity and pressure of the fluid with the
Taylor-Hood element (37)—(38) and the temperature of the fluid with functions in the
space described in (41) with v = 2. We solve the nonlinear system (46) using the fixed-
point strategy described in Algorithm 1. To investigate experimental convergence
rates, we define the total number of degrees of freedom as follows: Ndof := dim(Xp,)+
dim(My) + dim(Y},).

Algorithm 1 Fixed-point iteration

Input: Mesh 7, initial guess (u), p?,7}) € X, x M x Yy, f €e H1(Q), g € H1(Q),
s € [3,4], and tol = 107%; _

1: For i > 0, find (uzﬂ, p§L+17T;L+1) € Xy, X My, x Y}, such that

a(Th;upt vi) + asn (uf;apt vi) + ap(uf;apt vi) + b(va, pit™) = (£, va),

b(ul;rlvqh) =0 v(Vh7qh) € Xp X Mp,.
Then, T,ﬁ+1 € Y}, is found as the solution of the problem
bo(Th; Tp ', Sn) + asr(uy, Tt S0) = (9, 8h)  VSk € Y.

2: If [(u)t, pﬁfl,T,ffl)—‘(lufl,‘p}‘%,Té)\l> tol, set ¢ <— i+ 1 and go to step 1. Otherwise,
return (up, pp, Tp) = (), i, Ty, Here, | - | denotes the Euclidean norm.

Let us now show the convergence of this algorithm. For this purpose, we define

the exrors € = wn — 7L gt = pa — i e o Ty~ 717, and

C = VO Bl o) + 2C2 0T - (F
(712)  W(f,g) = <1+ 4%”igH (Q))( NIEllE-10) +2Cs ,()>’

v_ — Cﬁ(—mFSJ(f) - Cz2f—>2
L,.C VT, L,C C? —1 v :
(73) g(f7 9, uh7Th) = 6(_>2|| hHLS(Q) + 26‘—>2 4‘_>2|2|g||H «) || u};”Lg(Q) ’
K K2 (1/_ —C2 T . (f) — C2(_>2)

p—2" 8,7

L, Css2|| Vupl|Ls o)
vV— — C}%‘—)QFS»T (f) - C§<—>2 .

(74) m(faga llh,Th) = ‘I(fmgvuhaTh) +

We are now ready to present and prove the convergence of our algorithm.

THEOREM 20 (convergence of the Algorithm 1). Let d = 3, and let the assump-
tions of Theorems 11, 12 and 15 hold. If © := max {W(f,g),A(f,g,un,Th)} < 1,
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then
: i _ : i _ . i _
lim [[Ver, [lz@) =0, lim [[Vey, llLz) =0, lim flep, [|22() = 0.
Proof. As a first step, we subtract from the discrete problem (46) the discrete

equations that occur in Algorithm 1. We set v; = uj' —uy, and S, = T/ — T,
into the resulting system and use standard estimates to obtain

(75)  W(VeL Lz ) < LoCsosal|VunllLs@)lIVer, Iz
+ (V2N Ela-1 (@) + 2Ch 0T - (F)) Vel L2 o),

and

(76) K- |IVeF L) < LeComsalVThllLa o) IVeh, L2
+CiorkZ lgllm-10) I Ves e )-

Here, 2 := v_ —C2. ;' (f) —C3_,,. Note that 20 > 0; see Remark 16. If we replace
the estimate (75) in (76), we obtain

(77) Ve L) < TE, g,un, Tn) | Vel L2 o)

CZ(—QHQHH*(Q)

+ K290

(vZ'Cn (Il () + 2ChcoTs 7 (F)) | Vey, Iz (o) -
If we add the estimates (75) and (77), we finally arrive at

Ve ez o) +IVer; e < AE. g un. Tn)l[ Ve, iz +0(E, 9) [ Vey, [L2(0)-

Let us now introduce {z;}52,, where z; := [|Vel,, [[L2(q) + IVef, lL2q) for i > 0.
Since O := max {U(f, g),A(f, g,up,Tr)} < 1, we can conclude that z; — 0 as i — 0o
because z; < O%z for ¢ > 1. These arguments show that

Ve, llLz@) — 0, [Ver, [tz — 0, it oc.

The convergence result Hef,h ll2(@) — 0 as i T oo follows from the inf-sup condition.

This completes the proof. 0

5.1. Experimental convergence rates. Let Q = (0,1)%, x(T) = 4 + sin(7T),
UT) =14e 7" and s € {3,3.5,4}. We note that v(-) and (-) fulfill the assumptions
from Section 3.1. The data f and g are chosen so that the exact solution of (19) is

u(xy, ) = (=22 (xy — 1)%wa (22 — 1) (229 — 1), 23 (20 — 1)%21 (21 — 1)(227 — 1)),
p(21,29) = x122(1 — 1) (1 — x2) — 1/36, T(x1,22) = 2325(1 — 21)*(1 — 22)2.

In Figure 1, we show the experimental convergence rates for the errors that occur
when approximating the velocity field, pressure, and temperature variables in appro-
priate norms. We observe optimal experimental convergence rates for all errors and
all values of the considered paremeter s and confirm computationally the theoretical
results obtained in Theorem 18.
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—*= || VeullLa() % —*= || Veu|lL2 () —*— || Veu|lL2()

B Jlepl 2y R i & fleglluee 5 [epll (e

-6 |Verla) % -6~ | Verlua) -6~ |[Veram)

~A- Ndof 2 A Ndof 2 A~ Ndof 2

—+ JleallLa) X | —+ JleullLa@ —+ lleullz@)

= JlerllLa) == |zl %= llerll L2

TlL2(@) 4 -10 (@) -10 1
10 ¥ 10 %
102 104 102 10* 102 10*
(A.1) (A.2) (A.3)

Fic. 1. Example 1. Performance of the developed finite element discretization scheme: Taylor—
Hood approximation for the velocity and pressure variables and the space of continuous piecewise
quadratic functions to approzimate the temperature variable. We present experimental convergence
rates for the errors that occur when approrimating the velocity field, pressure, and temperature
variables in appropriate norms for s =3.0 (A.1), s =3.5 (A.2), and s = 4.0 (A.3).

5.2. Heated lid-driven cavity flow problem. The lid-driven cavity flow
problem is probably one of the most studied problems in the field of computational
fluid dynamics. The simplicity of the geometry of the cavity flow simplifies the nu-
merical implementation and also the consideration of different boundary conditions.
Even though the problem looks simple in many respects, the flow in a cavity retains
all the flow physics, with counter-rotating vortices occurring inside of the cavity.

We consider the domain © = (0, 1), the diffusion coefficient x(T") = 4+sin(T), the
viscosity coefficient v(T') = 1/400 + exp(—T?), and the parameter s € {3.0,3.5,4.0}.
The forcing terms are f = (0,0)T and g = 0. In this numerical example, we omit the
reaction term u in (19) and investigate the behavior of the solutions of the coupled
problem beyond the theory that we have presented since we use the homogeneous
Neumann and nonhomogeneous Dirichlet boundary conditions described in Figure 2.

u=(1,0)T, 9,7 =0

u=0,8,T =0
FIG. 2. Boundary conditions for the cavity flow problem in the domain 2 = (0,1)2.

In Figure 3, we show the streamlines for the velocity field, the contour lines of the
pressure, and the temperature variable. To illustrate the results, we consider a mesh
with 65.536 elements, which corresponds to 33.025 nodes. We note that for each value
of s, a circulation pattern is established within the cavity, driven by the temperature
gradient between the right and left components of the boundary. This temperature
distribution leads to convective flow, which is characteristic of cavity problems where
temperature fluctuations along the side walls contribute to fluid motion. In this
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context, we show how the parameter s affects the velocity and pressure of the fluid and,
in particular, the position of the counter-rotating vortices. In particular, the center of
the main recirculation is located at (0.65234,0.75782) for s = 3.0, (0.65234,0.75781)
for s = 3.5, and (0.58398,0.68164) for s = 4.0. Note also that the same effect occurs
for the secondary recirculation, which is located in the lower right part of the cavity.
Finally, we mention that in all cases, the pressure exhibits a singular behavior in the
upper right and left corners of the cavity.

Velocity

(C.2)

(C.4) (C.5) (C.6)

Temperature Temperature Temperature
20 2 0 20

—

2 10 20

: e

2—‘ — g

(C.7) (C.8) (C.9)

Fic. 3. Ezample 2. Streamlines of the velocity field obtained for s = 3.0 (C.1), s =3.5 (C.2),
and s = 4.0 (C.3), the contour lines of the pressure for s = 3.0 (C.4), s = 3.5 (C.5), and s = 4.0
(C.6), and temperature variable for s =3.0 (C.7), s =3.5 (C.8), s =4.0 (C.9).
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