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a b s t r a c t

In this paper we analyze a locking-free numerical scheme for the LQR control of a
Timoshenko beam. We consider a non-conforming finite element discretization of the
system dynamics and a control law constant in the spatial dimension. To solve the LQR
problem we seek a feedback control which depends on the solution of an algebraic Riccati
equation. An optimal error estimate for the feedback operator is proved in the framework
of the approximation theory for control of infinite dimensional systems. This estimate is
valid with constants that do not depend on the thickness of the beam, which leads to
the conclusion that the method is locking-free. In order to assess the performance of the
method, numerical tests are reported and discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns the numerical approximation of an optimal control problem and stability properties of flexible
beam structures. The concrete engineering problems that motivate this study come from very different fields: aerospace,
structures, meteorology, nanotechnology, etc. An overview can be found in the books [1,2], and references therein. To
establish efficient numerical methods for solving this problem, it is necessary to perform a complete study of both the
control problem and the beam structure model.

The structural behavior of beams has been studied using a variety of approaches. The most commonly used model for
thick beams is the Timoshenko model (see [3]), which includes the effect of shear. Recently in [4], it has been concluded
that the Timoshenko model is remarkably accurate in comparison with other theories of beams: the Euler–Bernoulli model
and a two-dimensional elasticity model. However, it is well-known that standard finite element methods applied to this
model produce very unsatisfactory results when the thickness of the beam is small with respect to the other dimension
of the structure; this fact is known as the locking phenomenon (see the book of Chapelle and Bathe [5]). To avoid locking,
special methods based on reduced integration or mixed formulations have been devised and are typically used. The first
mathematical work dealing with numerical locking and how to avoid it is the paper in [6], in which it has been proved
that locking arises because of the shear term, and a locking-free method based on a mixed formulation has been proposed
and analyzed. Recently, this proposed method has been used and analyzed in application to the problem of the numerical
approximation of an active vibration control of a Timoshenko beam (see [7,8]).

On the other hand, for our optimal control problem, we consider a quadratic cost functional and a control law defined
by means of a feedback operator acting over the system states. The so-called LQR (linear–quadratic regulator) problem
constitutes a cornerstone of modern linear control theory. It was studied originally in a finite dimensional context and also
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became a subject of interest in the framework of control theory for partial differential equations (see [9,10]), which are
related to several applications (see [11,1,12–14], for instance).

In general terms, to find the solution of our optimal control problem over infinite dimensional systems we need to
perform two main tasks: first, we need to approximate the system dynamics using a locking-free finite element method
(see [6]) and after that, we need to solve a finite dimensional algebraic Riccati equation associated with the solution of an
LQR problem.We remark that the LQR control strategy for the Timoshenko equations has been studied and computationally
implemented (see [13,14]) but, to the best of the author’s knowledge, the mathematical analysis and computational
validation of the optimal convergence rates for this control problem cannot be found in the literature. Indeed, we obtain
convergence and error estimates that do not depend on the thickness of the beam and, consequently, the well-known
numerical locking phenomenon is avoided in the approximation of the control and the state variables.

The goal of the problem considered is to compensate the vibrations arising from a set of initial conditions. To achieve this
purpose, we seek a control signal represented in a feedback form using the state variables. By following the abstract theory
stated in [15], a series of assumptions connected with stability and consistency properties of the approximated solution
of the Timoshenko problem must be proved in order to obtain an optimal convergence rate for the control problem. Such
a result is stated as an optimal convergence rate for the feedback operator of the LQR problem, and such convergence is
analyzed under the functional gain framework developed in [16,10,17,13], among others.

The outline of this paper is as follows. In Section 2 we state the abstract optimal control problem and the conditions
needed in order to prove existence and uniqueness of the exact solution. In Section 3 we deal with approximation issues:
we state the approximated control problem and we prove the conditions that ensure convergence rates of optimal order.
In Section 4 we present complete numerical results that allow us to validate the stabilization and the convergence rates
obtained.

2. Problem statement: mathematical foundations

Let us consider an elastic beam of thickness t ∈ (0, 1], with reference configuration I × (−t/2, t/2), where I := (0, L)
with L the length of the beam. The deformation of the beam is described by means of the Timoshenko model in terms of
the rotation amplitude θ of its midplane and the transverse displacement amplitudew (see [3]). Assuming that the beam is
clamped, its deformation is the solution of the following problem:

Find (w, θ) such that

ρA
∂2w

∂τ 2
− kAG


∂2w

∂x2
−
∂θ

∂x


= ū(x, τ ) x ∈ I, τ ≥ 0,

ρI
∂2θ

∂τ 2
− EI

∂2θ

∂x2
− kAG


∂w

∂x
− θ


= 0 x ∈ I, τ ≥ 0,

w(0, τ ) = w(L, τ ) = θ(0, τ ) = θ(L, τ ) = 0 τ ≥ 0,
w(x, 0) = f (x), ẇ(x, 0) = ζ (x) x ∈ I,
θ(x, 0) = g(x), θ̇ (x, 0) = η(x) x ∈ I

(1)

where x represents the spatial coordinate and τ the time. The coefficientsρ, E and I , thatwill be assumed constant, represent
the mass density, the Young modulus and the inertia moment, respectively. The coefficient k is a correction factor usually
taken as 5/6; A and G represent the sectional area of the beam and elasticity modulus of the shear. The external load ū(x, τ )
denotes a distributed control acting over an interval Ic in the following way:

ū(x, τ ) :=


û(τ ) x ∈ Ic,
0 x ∈ I/Ic .

In order to formulate the optimal control problem and state the existence and uniqueness of the solution, we proceed as
in the same framework used in [13] (see also [12], where a mathematical analysis of wave equations has been considered).
First of all, according to the LQR theory presented in [15], we are interested in finding a feedback control law in the form

ū(x, τ ) = −Gȳ(x, τ ), (2)

for the output regulation problem of the vibrations of the Timoshenko beam over an infinite time horizon, where G is a gain
operator obtained from an algebraic Riccati equation and ȳ is the optimal state vector; both will be specified later.

In order to define the optimal control problem we start by writing our equation as a evolutionary system of first order.
We set the operator

A = −


kAG
ρA

∂xx −
kAG
ρA

∂x

kAG
ρI
∂x

EI
ρI
∂xx −

kAG
ρI

 , (3)
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and the state vector

y =

w(x, τ ) θ(x, τ ) ẇ(x, τ ) θ̇(x, τ )


,

where ∂x denotes differentiation with respect to x and (̇) stands for time differentiation. Notice that the domain of this
operator is D(A) =


H2(I) ∩ H1

0 (I)
2.

In this paper,we introduce a damping operatorD which is proportional to the operatorA. In factwe considerD := −αA,
where α > 0 represents the damping factor; such a way to describe the damping effect is known as strong damping, as it
replicates the elastic operator. Other types of damping have been considered in the literature; for example, in Ref. [13],
the author considers the damping operator as αI, where I represents the identity operator. Such a choice guarantees the
existence and uniqueness of the abstract control problem under the theoretical framework shown in [18], as we will see
below.

Then, with this setting and using the classical framework stated in [10], we can formally obtain the following first-order
state space representation for the problem (1):

ẏ(x, τ ) = Ay + Bu,
y(x, 0) = y0,

(4)

with

A =

[
0 I

−A −αA

]
and Bu =

 0
0

Icu(τ )
0

 . (5)

Notice that each equation of (1) has been adequately rescaled and we denote by u =
1
ρA û the rescaled distributed control

variable. In this setting, 0 and I represent the null and the identity matrix in the space of square matrices of size 2, B denotes
the distributed control operator, with the operator Ic : L2(I) → L2(I) defined by (Icv) (x) = χcv(x) for all x ∈ I, where χc
denotes the characteristic function of the subset Ic . We consider the operator B from R onto [D(A∗)]′.

Since we are interested in reducing the vertical displacement and its velocity, following the theory given in [15], we
consider a state space Y = H1

0 (I)
2
× L2(I)2, such that D(A) ⊂ Y , a control space U = R and a cost functional

J(y, u) =
1
2

∫
∞

0


‖R(w, θ)‖2

Z + |u(τ )|2

dτ , (6)

where the operator R : Y → Z is defined as R(φ, ϕ, ς, ψ) = (φ, ς) and Z := H1
0 (I) × L2(I) is the output space. In the

associated cost functional, the operator R is defined such that we only consider the vertical displacement and its velocity;
this choice is more suitable when devising control strategies oriented to real applications is considered. Notice that, with
this setting, the cost functional (6) can be rewritten as follows:

J(y, u) =
1
2

∫
∞

0


‖w(·, τ )‖2

H1(I) + ‖ẇ(·, τ )‖2
L2(I) + |u(τ )|2


dτ . (7)

The corresponding optimal control problem is:

Minimize J(y, u) over all u ∈ L2(0,∞; R), where yis the solution of (4) due to u. (8)

We state that the control laws are optimal in the sense that they are solutions of the above problem.
Here and herein, for Z a function space, z ∈ L2(Z) stands for a function z(·, t) ∈ Z and z(ξ , ·) ∈ L2([0,+∞[).
The existence and uniqueness for the solution of the abstract control problem (7)–(8) is presented in the next lemma.

Lemma 2.1. For each y0 ∈ H1
0 (I)

2
× L2(I)2, there exists a unique optimal solution (ū, ȳ) of the abstract optimal control

problem (7)–(8) for the dynamics (4).

Proof. Considering the theory presented in Section 2 of [12], we only need to prove the following assumptions.
(H.1) A is the infinitesimal generator of a strongly continuous, analytic semigroup, denoted by eAt , on H1

0 (I)
2
× L2(I)2.

(H.2) B : R → [D(A∗)]′ is a linear operator such that A−γB ∈ L(R,H1
0 (I)

2
× L2(I)2) for a fixed constant γ ∈ [0, 1).

(H.3) R : H1
0 (I)

2
× L2(I)2 → H1

0 (I)× L2(I) is a bounded linear operator.
(H.4) Finite cost condition: Given y0 ∈ H1

0 (I)
2
× L2(I)2, there exists ū ∈ L2(0,∞; R) such that J(ū, ȳ) < ∞.

First, from [18], we have that the damping operator can be identified with a fractional power β of the elastic operator, with
1/2 ≤ β ≤ 1; our case holds with β = 1, and then we obtain that A is the infinitesimal generator of a strongly continuous
analytic semigroup on H1(I)2 × L2(I)2. According to the definition of the operator B, it is clear that B ∈ L(R,D(A∗)), i.e.,
(H.2) is satisfied with γ = 0. Moreover, R lives in L(H1

0 (I)
2
× L2(I)2,H1

0 (I)× L2(I)), i.e., (H.3) is satisfied.
Finally, as a consequence of the stability condition stated in Theorem 3.B.1 of [15], the finite cost condition is satisfied:

the damping factor allows us to always take the control law ū ≡ 0 such that J(0, ȳ) < ∞, where ȳ, which satisfies
Rȳ ∈ L2(0,∞; Z), is the solution to (4) due to ū. �
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It is well-known that the feedback control law given in (2) is related to the output by

ȳ(x, τ ) = eAPτy0, ū(x, τ ) = −GeAPτy0, ∀τ ≥ 0 (9)

where G = B∗P denotes the continuous gain operator, AP = A − BB∗P is the operator related to the closed loop dynamics
and P = P∗

∈ L(Y ) is the unique nonnegative operator that satisfies the following algebraic Riccati equation (ARE):

(A∗Px, y)Y + (PAx, y)Y − (B∗Px, B∗Py)U + (R∗Rx, y)Y = 0, (10)

for all (x, y) ∈ D(A)× D(A), where (·, ·) denotes the inner product over the corresponding space.

3. A locking-free numerical scheme

The following step is to construct a discretization of the optimal control problem (7)–(8). At this point an efficient solution
of the Timoshenko model is fundamental. In this context, in [6] it is shown that standard finite element methods applied to
the load problem associated with the static Timoshenko beam are subject to the locking phenomenon. This means that they
produce unsatisfactory results for very thin beams; this effect is caused by the shear stress term. To avoid the numerical
locking in the static case, Arnold in [6] introduces and analyzes a locking-free method based on a mixed formulation of the
problem, and also proves that this mixed method is equivalent to using a scheme with reduced order for the integration of
the shear term in the primal formulation.

We follow the structure presented in Chapter 4 of [15]. Then, we start by selecting a finite dimensional approximating
subspace Vh ⊂ H1

0 (I) to be the piecewise linear finite element space. For this reason, we consider a family {Th} of partitions
of the interval I:

Th : 0 = x0 < x1 < · · · < xn = L, (11)

with mesh size

h := max
j=1,...,n


xj − xj−1


.

The subspace Vh can be written as follows:

Vh :=

v ∈ H1

0 (I) : v|[xj−1−xj] ∈ P1, j = 1, . . . , n


⊂ H1
0 (I). (12)

Let Vh1 consist of the elements of Vh and be equipped with the H1(I) seminorm and let Vh2 consist of the elements of
Vh, equipped with the L2(I) norm. We set Vh = V2

h1 × V2
h2.

Moreover, to define a locking-free scheme for the approximation of the Timoshenko equation, we also consider the
following discrete space (see [6]):

Wh :=


dv
dx

+ c, v ∈ Vh, c ∈ R


⊂ L2(I). (13)

We denote by Ph the orthogonal projection from L2(I)4 onto Vh, i.e., Ph := πhI4, where I4 denotes the identity matrix in
the squarematrices of size 4, andπh represents the orthogonal projection from L2(I) ontoVh. It is standard that the subspace
Vh satisfies the approximation property

‖πhv − v‖H l(I) ≤ Chs−l
‖v‖Hs(I), v ∈ Hs(I) ∩ H1

0 (I), (14)

with 0 ≤ l ≤ s ≤ 2.
In order to write the Galerkin approximation of the operator A we need to define the following weighted L2(I) × L2(I)

inner product:

⟨(η, ς), (v, β)⟩t = (η, v)+
t2

12
(ς, β). (15)

Then, we can write the Galerkin approximation of the operator A on Vh as follows:

Ah =

[
0 5h

−Ah −αAh

]
: Vh → Vh, (16)

where 5h represents a projection given by

5h =

[
πh 0
0 πh

]
,

and Ah denotes the locking-free approximation of the operator A, which is defined by means of the following bilinear form

⟨Ah(wth, θth), (vh, βh)⟩t =
E

12ρ̂

∫
I

dθth
dx

dβh

dx
dx +

κ

t2ρ̂

∫
I
π0
h


dwth

dx
− θth


π0
h


dvh
dx

− β


dx, (17)

for all (wth, θth), (vh, βh) ∈ V2
h , where π0

h denotes the projection from L2(I) onto Wh.
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Notice that the bilinear form Ah has been obtained by considering a beam with square transverse section with physical
parameters A = t2 and I = t4/12, and G = E/2(1 + ν), where ν denotes the Poisson ratio. Moreover, we have considered
a rescaling in the density of the material, ρ = ρ̂t2. This rescaling is justified by the fact that the method to be used should
remain stable as the thickness becomes small, and a way to obtain it is by considering a rescaling in the density (see the
book of Chapelle and Bathe [5]).

Now, we can proceed to write the approximation of the operator B, defined by the expression (5). In fact

Bhu := PhBu =

 0
0

πhIcu(τ )
0

 =

 0
0

Icu(τ )
0

 : R → Vh. (18)

On the other hand, it is easy to verify that the adjoint operators of Ah and Bh in (16) and (18), respectively, are given by

A∗

h =

[
0 −5h

Ah ρAh

]
: Vh → Vh, (19)

B∗

hvh = (vh3, χc)L2(I), vh =

vh1 vh2 vh3 vh4

T
. (20)

Now, we can formulate the approximated optimal control problem using the finite element scheme defined above. In
fact, we are interested in obtaining a solution (ȳh, ūh) of the following problem:

infJ(yh, uh) =
1
2

∫
∞

0


‖Ryh(·, τ )‖2

Z + |uh(τ )|
2 dτ (21)

s.t. : ẏh = Ahyh + Bhuh (22)
yh(0) = Phy0. (23)

The approximated dynamics ẏh = Ahyh + Bhuh are given, via (16) and (18), by

(ẅth, θ̈th), (vh, βh)


− ⟨Ah(wth, θth), (vh, βh)⟩t

−α

Ah(ẇth, θ̇th), (vh, βh)


t = (Icuh, vh) ∀(vh, βh) ∈ V2

h
(wth(0), vh) = (f , vh), (ẇth(0), vh) = (ζ , vh) ∀vh ∈ Vh,

(θth(0), vh) = (g, vh), (θ̇th(0), vh) = (η, vh) ∀vh ∈ Vh,

(24)

with yh = [ wth θth ẇth θ̇th ], and (·, ·) denoting the inner product in L2(I) or L2(I)2 as appropriate. Then, the optimal
feedback control law for the approximated problem is

ūh(τ ,Phy0) = −Ghe
APh τPhy0, (25)

where Gh = B∗

hPh denotes the approximated gain operator and Ph denotes the unique nonnegative, self-adjoint solution of
the following algebraic Riccati equation (AREh):

(A∗

hPhφh, ϕh)Y + (φh,A∗

hPhϕh)Y − (B∗

hPhφh, B∗

hPhϕh)U + (R∗Rφh, ϕh)Y = 0 ∀(φh, ϕh) ∈ Vh × Vh. (26)

Weproceed to obtain the principal result of this paper, namely, an optimal convergence rate for the linear quadratic regulator
control problem developed above, andmoreover, we are interested in proving that the convergence rate does not depend on
the thickness of the beam, in order to avoid the so-called numerical locking. To achieve this, we follow the abstract framework
of optimal control theory for partial differential equations, as stated in Chapter 4 of [15]. We begin with an auxiliary lemma
that proves the assumptions stated in Theorem 4.1.4.1 in [15], that in this case turns to be:
(A.1) Ah is the infinitesimal generator of a uniformly analytic semigroup on Vh.
(A.2)

‖A−1Ph − A−1
h Ph‖L(H1

0 (I)
2×L2(I)2) ≤ Ch.

(A.3)

|B∗ψh| ≤ C‖ψh‖H1
0 (I)

2×L2(I)2 , ∀ψh ∈ Vh.

(A.4)

|B∗(Ph − I)ψ | ≤ Ch‖ψ‖D(A∗), ∀ψ ∈ D(A∗).

(A.5)

|B∗Phψ | ≤ C‖ψ‖H1
0 (I)

2×L2(I)2 , ∀ψ ∈ L2(I)4.

Note that we have considered, in the same form as in [12], a variation of the second original assumption, which has the
objective of recovering the same convergence rates when the initial conditions are replaced by their projections onto Vh.
Also notice that (A.5) in [15] is omitted because Bh = PhB.
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Lemma 3.1. For the optimal control problem (7)–(8), (A.1)–(A.5) hold.

Proof. The proof of these assumptions is a direct consequence of Lemma 2 in [12]. However, we need to verify that the
estimations (A.2)–(A.5) do not depend on the thickness of the beam.

First, we begin with the assumption (A.2). In fact, notice that

A−1
=

[
−αI −A−1

I 0

]
, A−1

h =

[
−ρ5h −A−1

h
5h 0

]
.

Using the definition of the projection Ph, and considering the inner product in H1
0 (I)

2
× L2(I)2,[

x1
x2

]
,

[
y1
y2

]
H1
0 (I)

2×L2(I)2
= (x1, y1)H1(I)2 + (x2, y2)L2(I)2 ,

we obtain the following estimate:

‖(A−1Ph − A−1
h Ph)ψ‖H1

0 (I)
2×L2(I)2 ≤ ‖A−15h(ψ3ψ4)

T
− A−1

h 5h(ψ3ψ4)
T
‖H1(I)2

≤ Ch‖ψ‖L2(I)4 .

The last inequality is obtained using the error estimate given in Theorem 3.1 in [19], as a particular case, and it does not
depend on the thickness of the beam.

Finally, following the proof of Lemma 2 in [12], it is clear that the estimations (A.2)–(A.5), which are related only to the
operator B, do not depend on the thickness parameter. �

Now we can obtain the optimal convergence rates for our optimal control problem. These results are consequences of
the assumptions (A.1)–(A.5) and the theoretical framework developed in [15].

Theorem 3.2. There exists h0 > 0 such that for all h < h0, (AREh) in (26) admits a unique, nonnegative, self-adjoint solution Ph.
Moreover, there exist ω0 > 0 and C > 0 independent of h, τ and t, such that for any ϵ > 0, τ > 0, the following convergence
rate is obtained:

‖G − GhPh‖L(H1
0 (I)

2×L2(I)2) ≤ Ch. (27)

Proof. First, notice that, as a consequence of the compact injection H1
0 (I) ↩→ L2(I), we have that the operators B∗A−∗ and

A−1KR are compact. For the last operator, K ∈ L(Y , Z) denotes the operator involved in the detectability condition stated
in Chapter 4 of [15], which exists as a consequence of the finite cost condition. Then, according to Lemmas 1 and 2, and
using the Theorem 4.1.4.1 from [15], we have the existence of h0 > 0 such that for all h < h0, (ARE)h admits a unique,
nonnegative and self-adjoint solution.

On the other hand, because Bh = PhB, the assumptions (A.7)–(A.9) stated in Chapter 4 in [15] hold; then (27) is obtained
by using the estimation (ii) in Theorem 4.6.2.1 and Corollary 4.6.2.5 in [15] with γ = 0, s = 1 and r0 = r1 = s. However, it is
important to note that the proof of Theorem 4.6.2.1 in [15] follows from Theorem 4.5.4.1 in [15], in which the assumptions
(A.1)–(A.5) proved in Lemma 3.1 are strongly used. This result allow us to guarantee that the constant involved in the
estimation (27) does not depend on the thickness parameter. �

4. Computational implementation and numerical experiments

In this section we perform a computational implementation of the above mentioned problem in order to exhibit the
optimal convergence rates obtained theoretically. Since the mesh size parameter is directly proportional to numbers of
nodes (also with d.o.f.), in this section we adopt the following notation: discrete variables and operators are identified by a
superscript N rather than a subscript h.

We consider a uniform partition of the interval I, Th as in (11), and the finite dimensional space of piecewise linear and
continuous functions over I that vanishes in x = 0 and x = L, i.e. Vh, defined in (12). We seek a solution of (24) assuming a
Galerkin approximation of the form

wN(x, t) =

N−
j=1

wj(t)ϕj(x), θN(x, t) =

N−
j=1

θj(t)ϕj(x),

where {ϕj}
N
j=1 denotes a basis of the discrete space Vh and N = dim(Vh).

Now, replacing this expression in (24) we obtain a second-order system of differential equations of the form

MN c̈(t)+ DN ċ(t)+ KNc(t) = BNu(t)

for c(t) = [w1(t), . . . , wN(t), θ1(t), . . . , θN(t)], where thematricesMN ,DN , and KN denote themass, damping and stiffness
matrices respectively while BN stands for a load vector. It is important to stress that the stiffness matrix KN and, therefore,
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the damping operator DN have been constructed using the reduced integration procedure previously described in order to
avoid the numerical locking.

The initial conditions for this second-order problem are obtained taking the Galerkin approximation of the initial
conditions of the continuous problem, in fact,

(wN(0), ϕj)L2(I) = (f , ϕj)L2(I),

(θN(0), ϕj)L2(I) = (g, ϕj)L2(I),

(ẇN(0), ϕj)L2(I) = (ζ , ϕj)L2(I),

(θ̇N(0), ϕj)L2(I) = (η, ϕj)L2(I).

Defining the vector state in the same way as we have done in the abstract problem, i.e., yN = [c(t), ċ(t)]T , we formally
obtain a classical first-order state space representation form for the system dynamics:

ẏN = ANyN + BNu yN(0) = yN0
where

AN
=

[
0 I

−(MN)−1KN
−α(MN)−1KN

]
and BN

=

[
0

−(MN)−1BN

]
.

By means of the same ansatz we obtain a finite dimensional version of the cost functional:

J(yN , u) =
1
2

∫
∞

0


‖RNyN‖

2
Z + |u(τ )|2


dτ

=
1
2

∫
∞

0


(yN)T (RN)TQNRNyN + u(τ )2


dτ , (28)

where RNyN = [w1(τ ) · · ·wN(τ ), ẇ1(τ ) · · · ẇN(τ )]
T and

QN
=

[
Q N
1 0
0 Q N

2

]
, (29)

with

Q N
1,ij = (φi, φj)L2(I) + (φ′

i , φ
′

j )L2(I), Q N
2,ij = (φi, φj)L2(I). (30)

These finite dimensional operators are inputs in the following algebraic Riccati equation for PN :

ANPN
+ PNAN

− PNBN(BN)TPN
+ (RN)TQNRN

= 0,

and the discrete control law is given by uh = −(BN)TPNyN . Our analysis is focused on the convergence properties of the
feedback gain operator GN

= (BN)TPN . Proceeding in a similar manner to in [13], we write the action of the full gain
operator GN as the action of four separate kernels or functional gains, one for each state of the abstract control problem.
Formally,

uh(t) = −GNy(t) = −(f N1 , w
N)H1(I) − (f N2 , θ

N)H1(I) − (f N3 , ẇ
N)L2(I) − (f N4 , θ̇

N)L2(I) (31)

= −

f N1 f N2 f N3 f N4

 
Q N
1 0 0 0
0 Q N

1 0 0
0 0 Q N

2 0
0 0 0 Q N

2

 yN(τ ), (32)

which leads to an explicit characterization of the functional gains,


f N1 f N2 f N3 f N4


= GN


Q N
1 0 0 0
0 Q N

1 0 0
0 0 Q N

2 0
0 0 0 Q N

2


−1

. (33)

Under such an approach, analyzing the convergence of the abstract gain operator turns out to be equivalent to the problem
of analyzing the convergence of the functional gains over the state space.

We present now numerical experiments performed in MATLAB, which are consistent with the above developed
theoretical framework. After discretizing the system we compute the suboptimal feedback by means of the LQR command
in MATLAB, and finally we recover the functional gains. For dynamic simulations we advance in time with a Runge–Kutta
fourth-order solver.
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Fig. 1. Open and closed loop pole locations for different values of the thickness with N = 100.

In the absence of an exact solution the error estimate of the gain operator is computed relative to the solution obtained
with 500 nodes, i.e.,

errorN = ‖GN
− G500

‖. (34)

In order to describe the numerical control problem we consider the following choices:

• The domain of the beam is I := (0, 1).
• The physical parameters are:

– the elastic moduli: E = 2.1 × 1011 Pa,
– the Poisson coefficient: ν = 0.3,
– the correction factor: k = 5/6,
– the density: ρ = 7.8 × 103 Kg/m3.

• There is a distributed actuator over Ic := (0.4, 0.6).
• The thickness is analyzed from 1e−1 to a minor value of 1e−4.

4.1. Stabilization

Fig. 1 shows closed and open loop poles for different values of t . Open loop pole location is consistent with what should
be expected for slender structure models with a strong damping term (as in [20]). Closed loop poles, independently of
the thickness, exhibit an improvement on the location that will consequently lead to a faster stabilization of the vertical
vibrations.

Figs. 2 and 3 show the stabilization in time at fixed positions, given an initial condition. We show the stabilization of the
vertical displacement and velocity, as required in our minimization problem. Despite the dynamical behavior varying as the
thickness is changed, in both cases it is possible to compute a control law that regulates the states of the system.

4.2. Convergence

So far we have presented a design procedure for computing stabilizing control laws for a Timoshenko beam by means of
a low-order finite element method that involves a reduced integration calculation of the shear term. In such a context, our
main result establishes an optimal convergence rate for the feedback operator, resulting from the optimal control problem
setting. The convergence rate is obtained from a functional gain characterization of the feedback, and the proposed scheme
ensures robustness of the order with respect to the thickness.
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Fig. 2. Dynamical response of the uncontrolled and controlled state variables at x = 0.2 (top) and the control signal (bottom). t = 0.01.

Fig. 3. Dynamical response of the uncontrolled and controlled state variables at x = 0.5 (top) and the control signal (bottom). t = 0.0001.

We assess the performance of the method with several numerical tests, which consist of the calculation of the functional
gains for different numbers of nodes (N), and varying the thickness value t from 0.1 down to 10−4. As can be observed in
Figs. 4 and 5, for fixed values of the thickness (t = 0.01 and t = 10−4), basic convergence of the kernels with respect to the
numbers of nodes is verified, and therefore consistency with the locking-free property of the procedure.
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Fig. 4. Spatial convergence of f N1 (x) (left) and f N3 (x) (right), with t = 0.01.

Fig. 5. Spatial convergence of f N1 (x) (left) and f N3 (x) (right), with t = 0.0001.

Fig. 6. Log–log plot of the error ‖f N1 − f 5001 ‖ versus 1/N for different thickness values.

Furthermore, we perform calculations for the convergence rate of the feedback operator. Figs. 6 and 7 exhibit a
comparison between the theoretical predicted order h and the numerical results. We show the convergence rate for f1 and
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Fig. 7. Log–log plot of the error ‖f N3 − f 5003 ‖ versus 1/N for different thickness values.

f3 in norms H1 and L2 respectively. It can be observed that for f1 the theoretical order h is verified and robustly preserved as
the value of t is decreased. Such behavior represents the locking-free feature of our design strategy. The convergence rate
of the full feedback operator depends on the convergence of all the functional gains separately; this can essentially be split
into two categories, depending on the functional spacewhere they belong, namelyH1 for f1 and f2, L2 for f3 and f4. Therefore,
we also include Fig. 7, showing the convergence rate of f3, which turns out to be faster than expected. Certainly this result
does not represent any contradiction with the theory, and is consistent, as it also preserves the locking-free property of the
finite element approximation. The theoretical results are consequently validated.

5. Concluding remarks

We have developed a locking-free method for the computation of the optimal gain arising from the LQR control problem
of a Timoshenko beam. The proposedmethod consists in an approximation of the system dynamics bymeans of a numerical
procedure which leads to thickness-independent convergence properties. The solution of the LQR problem implies the
solution of an algebraic Riccati equation which receives the dynamics approximated thus as an input and strongly depends
on it, and consequently, generates an optimal gain operator that inherits the independence of the thickness. Computational
simulations validated this approach.
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