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Abstract The aim of this work is to obtain optimal-order error estimates for the
LQR (Linear-quadratic regulator) problem in a strongly damped 1-D wave equation.
We consider a finite element discretization of the system dynamics and a control law
constant in the spatial dimension, which is studied in both point and distributed case.
To solve the LQR problem, we seek a feedback control which depends on the solution
of an algebraic Riccati equation. Optimal error estimates are proved in the framework
of the approximation theory for control of infinite-dimensional systems. Finally, nu-
merical results are presented to illustrate that the optimal rates of convergence are
achieved.

Keywords Optimal control · Feedback control · Wave equation · Convergence
rates · Finite element method

1 Introduction

In this paper we are concerned with the numerical approximation of an optimal
control problem in a strongly damped equation. We consider a quadratic cost func-
tional and a control law defined by means of a feedback operator acting over the
system states. The so-called LQR (Linear-quadratic regulator) problem constitutes
a cornerstone of the modern linear control theory. Studied originally in a finite-
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dimensional context, the LQR problem became also a subject of interest in the frame-
work of control theory for partial differential equations (see [2, 12]), which are related
to several applications, including the control of parabolic systems like the heat equa-
tion (see [5]), the active control of noise (see [6, 17]), and the active control of flexible
structures (see [11, 13, 18]), among others.

In general terms, finding a solution of an optimal control problems over infinite-
dimensional systems involves two main tasks: approximation of the system dynamics
by means of classical schemes like the finite element method, and resolution of an
optimization problem. Depending upon the problem and control requirements, these
tasks can be performed in two different ways, discretizing and then optimizing or vice
versa. Examples of the approach “optimize then discretize” can be studied in [3]. In
particular, our work can be classified in the strategy “discretize then optimize” (see
[1, 14]), as we first approximate the system dynamics using the finite element method
and then solving a finite dimensional algebraic Riccati equation associated with the
solution of the LQR problem. This last issue, the solution of large-scale algebraic
Riccati equations arising in optimal controls problems after spatial discretization, has
been extensively studied (see [4, 16]), providing reliable methods, which can be used
under suitable conditions.

The aim of this work is to obtain optimal-order error estimates under the theory
developed in [14] related to the approximation theory of optimal control problem of
evolutionary systems over an infinite time interval. We consider the strongly damped
wave equation representing the vibration of a string as the state equation, the vertical
displacements and velocity as the state variables, and two kinds of controls: point and
distributed. The goal of the problem is to compensate the vibrations arising of a set
of initial conditions. In order to achieve this, we seek for a control signal represented
in a feedback form from the state variables. By following the abstract theory stated in
[14], a series of assumptions must be proved in order to obtain optimal convergence
rates for the system output and control variables. These assumptions are connected
with to stability and consistency properties of the approximated problems. The con-
vergence rates relies on approximation properties of the control-free dynamics and
the degree of unboundedness of the control operator.

There are many works in the control problem of the wave equation (see [10, 19]).
Moreover, the LQR control strategy for second-order evolutionary systems has been
studied and computationally implemented (see [12, 18]). Despite this, to the best
of the authors knowledge, the mathematical analysis and computational validation
of the optimal convergence rates for this control problem has not yet been per-
formed.

The outline of this paper is as follows. In Sect. 2 we state the abstract optimal
control problem and the conditions needed in order to prove existence and uniqueness
of the exact solution for both cases. In Sect. 3 we deal with approximation issues:
we state the approximated control problem for and prove the conditions that ensure
optimal-order convergence rates. In Sect. 4 we present numerical results that validate
the stabilization and the convergence rates obtained previously.



Numerical approximation of the LQR problem

2 Abstract setting of the optimal control problem

We consider the strongly damped wave equation in the interval I = [0,L] with point
and distributed controls acting as external sources; i.e., x(ξ, t) represents a vertical
displacement along a string that satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂2x(ξ, t)

∂t2
− ∂2x(ξ, t)

∂ξ2
− ρ

∂3x(ξ, t)

∂ξ2∂t
= ū(ξ, t), t > 0, ξ ∈ [0,L],

x(0, t) = x(L, t) = 0, t > 0,

x(ξ,0) = f (ξ), xt (ξ,0) = g(ξ), ξ ∈ [0,L],
(1)

where ξ represents the spatial coordinate, t the time and ρ a damping coefficient.
The external load ū(ξ, t) = up(ξ, t) := δ(ξ − ξ0)u(t) denotes the point control in the
point ξ0 ∈ (0,L) and ū(ξ, t) = ud(ξ, t) denotes a distributed control acting over Ic in
the following way:

ud(ξ, t) :=
{

u(t) ξ ∈ Ic

0 ξ ∈ I/Ic.

We are interested in finding feedback control laws in the form

ū(ξ, t) = −Kx(ξ, t), (2)

for the output regulation problem for the vibration of the string over an infinite time
horizon, where K is a gain operator obtained from an algebraic Riccati equation that
will be specified later.

In order to define the optimal control problems we start by writing our equation as
a evolutionary system of first order. We set the operator

A = −∂2(·)
∂x2

, D(A) = H 2(I) ∩ H 1
0 (I),

and the state vector

y = [x(ξ, t) ẋ(ξ, t)]T ,

where here and therein ẋ stands for ∂(·)
∂t

.
With this setting, we formally obtain the following first order state-space repre-

sentation for (1):
{

ẏ(ξ, t) = Ay + Bu,

y(ξ,0) = y0,
(3)

with

A =
[

O I

−A −ρA

]

, Bpup =
[

0
δ(ξ − ξ0)u(t)

]

, Bdud =
[

0
Icu(t)

]

(4)

where B = Bp and B = Bd denote the operators associated with point and distributed
controls respectively, Ic : L2(I) → L2(I) is defined by (Icv)(x) = χcv(x) for all
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x ∈ I and χc is the characteristic function of the subset Ic . We consider both operators
from R onto [D(A∗)]′.

For both control problems, let us consider a state-space Y = H 1(I) × L2(I), such
that D(A) ⊂ Y , a control space U = R and the cost functional

J (y,u) = 1

2

∫ ∞

0

{‖x(ξ, t)‖2
H 1(I) + ‖ẋ(ξ, t)‖2

L2(I) + |u(t)|2}dt. (5)

We state that the control laws are optimal in the sense that they minimize this func-
tional.

Here and therein, for Z a function space, z ∈ L2(Z) stands for a function
z(·, t) ∈ Z and z(ξ, ·) ∈ L2([0,+∞[).

Note that the optimal control problems differs in the choice of the control operators
Bp and Bd in (3).

It follows from the theory presented in Chap. 2 [14], that existence and uniqueness
for the solution of these abstract control problems are guaranteed if:

(H.1) A is the infinitesimal generator of a strongly continuous, analytic semigroup,
denoted by eAt , on Y .

(H.2) Bp and Bd are linear operators, such that A−γpBp ∈ L(U,Y ) and A−γd Bd ∈
L(U,Y ), for some fixed constants γp, γd , respectively, with γp, γd ∈ [0,1).

(H.3) Finite cost condition: For each problem, given y0 ∈ Y , there exists ū ∈
L2(0,∞;U), such that J (ū, ȳ) < ∞.

The condition (H.1) on Y follows from [7], as the damping operator can be iden-
tified with a fractional power α of the elastic operator, with 1/2 ≤ α ≤ 1; our case
holds with α = 1.

On the other hand, is clear that the condition (H.2) holds with γd = 0 for the
distributed control problem. In the case of the point control problem, we first notice
that the domain for the fractional powers of the operator A is given by the formula

D(Aθ) = H 1
0 (I) × H 2θ

0 (I), ∀θ ≤ 1/2.

The same characterization is valid for the adjoint operator. Then, as a consequence

of (A−γpBpu, v)Y = u[A∗−γpv]2(ξ0), and since A∗−γpv ∈ H 1
0 (I) × H

2γp

0 (I), we ob-
tain that

[A∗−γpv]2 ∈ H
2γp

0 (I) ⊂ C(I),

for all γp > 1/4.
Finally, the finite cost condition is always satisfied; in fact, the damping factor

allows to us to always take the control law u ≡ 0 such that J (0, ȳ) < ∞. This is a
direct consequence of the stability condition stated in Theorem 3.B.1, [14].

In general terms, the feedback control law given in (2) is related to the output by:

y(ξ, t) = eA
ty0, ū(ξ, t) = −B∗
eA
ty0, ∀t ≥ 0,

where A
 = A − BB∗
 is the operator related with the closed-loop dynamics and

 = 
∗ ∈ L(Y ) is the unique nonnegative operator that satisfies the following alge-
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braic Riccati equation (ARE):

(A∗
x,y)Y + (
Ax,y)Y − (B∗
x,B∗
y)U + (x, y)Y = 0,

for all (x, y) ∈ D(A) × D(A), where (·, ·) denotes the inner product over the corre-
sponding space.

3 Approximation results

Once that the abstract setting is given we construct an approximation scheme for the
optimal control problems. Following the structure present in Chap. 4 [14], we start

by selecting a finite-dimensional approximating subspace Vh ⊂ D(A 1
2 ) = H 1

0 (I), to
be a piecewise linear finite element space. For this reason, we consider a family {Th}
of partitions of the interval I:

Th : 0 = s0 < s1 < · · · < sn = L, (6)

with mesh size

h := max
j=1,...,n

(sj − sj−1).

Then, the subspace Vh can be written as follow:

Vh := {
v ∈ H 1

0 (I) : v|[sj−1−sj ] ∈ P1, j = 1, . . . , n
}
. (7)

We let Vh = Vh1 × Vh2, where Vh1 consists of the elements of Vh equipped with
the H 1(I) seminorm and Vh2 consists of the elements of Vh equipped with the L2(I)
norm.

We denote by Ph the orthogonal projection from L2(I) × L2(I) onto Vh by

Ph =
[
πh 0
0 πh

]

(8)

where πh represents the orthogonal projection from L2(I) onto Vh. The subspace Vh

satisfy the approximation property

‖πhx − x‖Hl(I) ≤ Chs−l‖x‖Hs(I), x ∈ Hs(I) ∩ H 1
0 (I), (9)

with 0 ≤ l ≤ s ≤ 2.
Then, we can write the Galerkin approximation of the operator A on Vh as

Ah =
[

O πh

−Ah −ρAh

]

: Vh → Vh (10)

where Ah is the Galerkin approximation of the operator A, i.e., Ah = πhA : Vh → Vh

such that (Ahxh, vh)L2(I) = (Axh, vh)L2(I), xh, vh ∈ Vh. Using the same ideas, we
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can write the approximations Bph of Bp and Bdh of Bd respectively, in (4), by

Bphu := PhBpu =
[

0
Bhu(t)

]

: R → Vh, (Bhu, vh)L2(I) = vh(ξ0)u, (11)

Bdhu := PhBdu =
[

0
πhIcu(t)

]

=
[

0
Icu(t)

]

: R → Vh. (12)

It is easy to verify that the adjoint operators of Ah, Bph and Bdh in (10), (11) and
(12) respectively, are given by:

A∗
h =

[
O −πh

Ah ρAh

]

: Vh → Vh, (13)

B∗
phvh = vh2(ξ0), vh = [vh1 vh2]T , (14)

B∗
dhvh =

[
0

(vh2, χc)L2(I)

]

, vh = [vh1 vh2]T . (15)

Now we seek for an approximated solution (ȳh, ūh) of our optimal control prob-
lems:

inf J (yh,uh) = 1

2

∫ ∞

0

{‖yh(ξ, t)‖2
Y + |uh(t)|2

}
dt

s.t. ẏh = Ahyh + Bhuh,

yh(0) = Phy0.

The approximating dynamics ẏh = Ahyh + Bhuh are given, via (10)–(12), by

{
(ẍh, vh) − (Ahxh, vh) − ρ(Ahẋh, vh) = (Bhuh, vh) ∀vh ∈ Vh,
(Ahxh, vh) = −(x′

h, v
′
h) ∀vh ∈ Vh,

(xh(0), vh) = (f, vh), (ẋh(0), vh) = (g, vh) ∀vh ∈ Vh,
(16)

with yh = [xh ẋh], and all the interior products are taken in L2(I). The optimal
feedback control law for the approximated problem is

ūh(t, Phy0) = −B∗
h
he

A
h
t Phy0

and 
h is the unique nonnegative, self-adjoint solution of the following algebraic
Riccati equation (AREh):

(A∗
h
hφh, vh)Y + (φh,A

∗
h
hvh)Y − (B∗

h
hφh,B
∗
h
hvh)U + (φh, vh)Y = 0 (17)

∀(φh, vh) ∈ Vh × Vh.
Our goal is to obtain optimal convergence rates in both cases, point and distrib-

uted. To get it, we follow the abstract framework of optimal control theory for par-
tial differential equations, as stated in Chap. 4 of [14]. We will begin with the point
optimal control problem for which we need to prove the assumptions stated in Theo-
rem 4.1.4.1 in [14], that in this case turns to be:
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(A.1P) Ah is the infinitesimal generator of a uniformly analytic semigroup on Vh.

(A.2P)

‖A−1 Ph − A−1
h Ph‖L(H 1

0 (I)×L2(I)) ≤ Ch.

(A.3P)

|B∗
pxh| ≤ Ch−2γp‖xh‖H 1

0 (I)×L2(I), ∀xh ∈ Vh.

(A.4P)

|B∗
p(Ph − I )x| ≤ Ch1−2γp‖x‖D(A∗), ∀x ∈ D(A∗).

(A.5P)

|B∗
p Phx| ≤ C‖(A∗)γpx‖Y , ∀x ∈ D((A∗)γp ).

Note that (A.2P) is a variant from the original assumption that allows us to recover
the same convergence rates, where the initial condition is replaced by his projection
onto Vh. Also notice that (A.5) in [14] is omitted because Bph = PhBp .

Lemma 1 For the point control problem presented, (A.1P)–(A.5P) holds.

Proof Each proof will be given separately.
(A.1P) The fact that Ah is the infinitesimal generator of a uniformly analytic semi-

group on Vh, follows from the application of the arguments presented in [7], with
α = 1, to the finite-dimensional operator Ah.

(A.2P) From definition of Ph, noting that

A−1 =
[−ρI −A−1

I 0

]

, A−1
h =

[−ρπh −A−1
h

πh 0

]

,

and that the interior product in H 1
0 (I) × L2(I) is defined as

([
x1
x2

]

,

[
y1
y2

])

H 1
0 (I)×L2(I)

= (x1, y1)H 1(I) + (x2, y2)L2(I),

we obtain

‖(A−1 Ph − A−1
h Ph)x‖H 1

0 (I)×L2(I) ≤ ‖A−1πhx2 − A−1
h πhx2‖H 1(I)

≤ Ch‖x2‖L2(I)

where the last inequality is obtained using standard finite element approximation (see,
for example [9]).

(A.3P) Because of the Sobolev embedding Hm(I) ↪→ L∞(I) for all m > 1/2 and
a inverse approximation property (see Chap. 3, [9]), we have that
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|B∗
pxh| = |xh2(ξ0)| ≤ C‖xh2‖H 1/2+ε(I)

≤ Ch−1/2−ε‖xh2‖L2(I)

≤ Ch−2γp‖xh‖Y .

The last inequality is justified by the fact that in our case γp > 1/4.
(A.4P) By means of the Sobolev embedding used in the proof of (A.3P) and the

approximation property (9),

|B∗
p(Ph − I )x| = |πhx2(ξ0) − x2(ξ0)|

≤ C‖πhx2 − x2‖H 1/2+ε(I)

≤ Ch1−1/2−ε‖x2‖H 1(I)

≤ Ch1−1/2−ε‖x2‖D(A∗)

≤ Ch1−2γp‖x2‖D(A∗).

(A.5P) Using the same Sobolev embedding,

|B∗Phx| = |xh2(ξ0)| ≤ C‖xh2‖H 1/2+ε(I)

≤ C‖xh‖D((A∗)γp ).

The last inequality is a consequence of Theorem 1.1 in [8]: D((A∗)γp ⊂ H 1
0 (I) ×

H 2γp (I) and 2γp = 2(1/4 + ε) > 1/2 + ε. �

Now we state our first main result, which gives optimal convergence rates for the
point control problem.

Theorem 1 There exists h0 > 0 such that for all h < h0 (AREh) in (17), with B = Bp ,
admits a unique, nonnegative, self-adjoint solution 
h. Moreover, there exists ω0 > 0,
such that for any ε > 0, t > 0, the following convergence rates are obtained:

|ūp(·, t) − ūph(·, t)| ≤ C
e−ω0t

t1/2
h1/2−ε‖Phy0‖H 1

0 (I)×L2(I) (18)

‖ȳ(·, t) − ȳh(·, t)‖H 1
0 (I)×L2(I) ≤ C

e−ω0t

t1−ε
h1/2−ε‖Phy0‖H 1

0 (I)×L2(I). (19)

Proof The existence and uniqueness of the solution of the abstract control problem
follows from (H.1)–(H.3). Using Lemma 1 and due to the compactness of the oper-
ator B∗

pA∗−1 : (L2(I))2 −→ R (because the injection of H 1 in L2 is compact), the
existence of h0 that verifies the first part of the result follows directly from Theo-
rem 4.1.4.1 in [4].

On the other hand, since Bph = PhBp , the assumptions (A7)–(A9) in Chap. 4
of [14], are automatically satisfied with r0 = r1 = 1 − 2γp , as (A.3P) and (A.4P) are
valid for 2γp = 1/2 + ε. Then, applying Theorem 4.6.2.2 in [14], we conclude the
estimates (18) and (19). �
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We study the distributed control problem. The assumptions for this case reads as:

(A.1D) Ah is the infinitesimal generator of a uniformly analytic semigroup on Vh.

(A.2D)

‖A−1 Ph − A−1
h Ph‖L(H 1

0 (I)×L2(I)) ≤ Ch.

(A.3D)

|B∗
d xh| ≤ C‖xh‖H 1

0 (I)×L2(I), ∀xh ∈ Vh.

(A.4D)

|B∗
d (Ph − I )x| ≤ Ch‖x‖D(A∗), ∀x ∈ D(A∗).

(A.5D)

|B∗
d Phx| ≤ C‖x‖H 1

0 (I)×L2(I), ∀x ∈ H 1
0 (I) × L2(I).

As in the point problem, (A.5) in [14] is omitted because Bdh = PhBd .

Lemma 2 For the distributed control problem, (A.1D)–(A.5D) holds.

Proof Each proof will be given separately.
(A.1D) Since this property is related to the uniform analyticity of the semigroup

generated by Ah over Vh, the proof is identical to (A.1P).
(A.2D) Since this property is related to an approximation property of the control-

free dynamics A, the proof is identical to (A.2P).
(A.3D) Using Cauchy–Schwarz inequality we have

|B∗xh| =
∫

Ic
|xh2|dξ ≤ |Ic| 1

2 ‖xh2‖L2(Ic) ≤ |Ic| 1
2 ‖xh‖H 1

0 (I)×L2(I).

(A.4D) Using Cauchy–Schwartz inequality and property (9)

|B∗(Ph − I )x| =
∫

Ic
|πhx2 − x2|dξ ≤ |Ic| 1

2 ‖πhx2 − x2‖L2(I) ≤ Ch‖x2‖D(A∗).

(A.5D) Using Cauchy–Schwarz inequality and that πh is a continuous application
over L2(I), there holds

|B∗
d Phx| =

∫

Ic
|xh2|dξ ≤ |Ic| 1

2 ‖xh2‖L2(I) ≤ C‖x‖H 1
0 (I)×L2(I). �

Now we state our second main result, which gives optimal convergence rates for
the distributed control problem.
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Theorem 2 There exists h0 > 0 such that for all h < h0 (AREh) in (17), with B = Bp ,
admits a unique, nonnegative, self-adjoint solution 
h. Moreover, there exists ω0 > 0,
such that for any ε > 0, t > 0, the following convergence rates are obtained:

|ūp(·, t) − ūph(·, t)| ≤ C
e−ω0t

t−ε
h1−ε‖Phy0‖H 1

0 (I)×L2(I)

‖ȳ(·, t) − ȳh(·, t)‖H 1
0 (I)×L2(I) ≤ C

e−ω0t

t1−ε
h1−ε‖Phy0‖H 1

0 (I)×L2(I).

Proof The proof is essentially the same as in Theorem 1. �

4 Computational implementation and numerical examples

In this section we give a computational solution of the above mentioned problem in
order to exhibit the optimal convergence rates obtained theoretically.

We consider an uniform partition of the interval I, Th as in (6), and the finite-
dimensional space of piecewise linear and continuous functions over I that vanishes
in ξ = 0 and ξ = L, i.e. Vh, defined in (7). We seek a solution of (16) assuming a
Galerkin approximation of the form

xN(ξ, t) =
N∑

j=1

cj (t)ϕj (ξ),

where {ϕj }Nj=1 denotes a basis of Vh and N = dim(Vh).
Now, replacing this expression in (16) we obtain a second-order system of diffe-

rential equations of the form:

MNc̈(t) + DNċ(t) + KNc(t) = BN
0 u(t)

for c(t) = [c1(t), c2(t), . . . , cN(t)], where the mass matrix MN , the damping matrix
DN and the stiffness matrix KN are given by:

MN
ij = [(ϕi, ϕj )L2(I)],

DN
ij = [ρ(ϕ′

i , ϕ
′
j )L2(I)],

KN
ij = [(ϕ′

i , ϕ
′
j )L2(I)].

The actuator influence vectors BN
p and BN

d for both point and distributed cases
respectively, are given by:

BN
pi

= [ϕi(ξ0)], BN
di

= [(ϕi,1)L2(Ic)].
The initial conditions for this second-order problem are obtained taking the

Galerkin approximation of the initial conditions of the continuous problem,

(xN(0), ϕj )L2(I) = (f,ϕj )L2(I),

(ẋN (0), ϕj )L2(I) = (g,ϕj )L2(I).
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Defining the vector state in the same way as we have done in the abstract problem,
i.e. η = [c(t), ċ(t)]T , we formally obtain a classical first-order state-space represen-
tation form for the system dynamics:

η̇ = ANη + BNu, η(0) = η0

where

AN =
[

0 I

−(MN)−1KN −ρ(MN)−1KN

]

and BN changes accordingly the type of control:

BN =
[

0
−(MN)−1BN

p

]

, BN =
[

0
−(MN)−1BN

d

]

for the point and distributed control problem respectively.
As our goal is to compute a solution for our approximated control problem we

must solve now an algebraic Riccati equation for 
N :

AN
N + 
NAN − 
NBN(BN)T 
N + QN = 0

where QN reflects the spatial norm taken in (16),

QN =
[
MN + KN 0

0 MN

]

,

for the point and distributed control problem in H 1
0 (I) × L2(I). Finally, the discrete

control law is given by uh = −(BN)T 
Nη.
We present now numerical experiments which are consistent with the above devel-

oped theoretical framework. We performed our simulations in MatLab, determining
the suboptimal gains with the command lqr, and then advancing in time with a
Runge–Kutta 4th order solver. In absence of an exact solution, all calculations re-
lated to error estimates have been obtained with respect to the approximated system
output and input, yapp and uapp respectively, obtained with 1300 nodes.

We consider two different cases: first we solve a control problem with a point ac-
tuator at ξ = 0.4 and in a second example, a distributed actuator over Ic = [0.4,0.6],
showing stabilization and convergence rates for both the system output and the con-
trol signal at different instants t1 = 0.2, t2 = 0.4 and t3 = 0.6; in both cases the damp-
ing factor ρ is taken equal to 0.005.

4.1 Stabilization

Figures 1 and 2 show stabilization of the state variables in both control problems,
point and distributed respectively.

It can be observed, as it was theoretically stated in the finite cost condition, that
due to the damping term, the system is stable; then in absence of control an expo-
nentially bounded decay is observed for both the vertical displacement and velocity.
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Fig. 1 1. Uncontrolled vertical displacement (up-left). 2. Controlled vertical displacement with point con-
trol at ξ = 0.4 (up-right). 3. Uncontrolled vertical velocity (down-left). 4. Controlled vertical velocity with
point control at ξ = 0.4 (down-right)

Fig. 2 1. Uncontrolled vertical displacement (up-left). 2. Controlled vertical displacement with distributed
control along Ic = [0.4, 0.6] (up-right). 3. Uncontrolled vertical velocity (down-left). 4. Controlled vertical
velocity with distributed control along Ic = [0.4, 0.6] (down-right)
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Fig. 3 1. Control signal for the point problem (up). 2. Control signal for the distributed problem (down)

Fig. 4 1. Vertical displacement at t = 0.2 for different numbers of nodes in the point control problem
(left). 2. Vertical velocity at t = 0.2 for different numbers of nodes in the point control problem (right)

This behavior is dramatically accelerated with the presence of a control acting over
the system. However, the speed of the stabilization is directly related with the power
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Fig. 5 Control signal evolution
for different numbers of nodes
for the point control problem

Fig. 6 1. Vertical displacement at t = 0.2 for different numbers of nodes in the distributed control problem
(left). 2. Vertical velocity at t = 0.2 for different numbers of nodes in the distributed control problem (right)

of the control signal (see Fig. 3). This trade-off can be managed introducing weight
factors for the input and output spatial norms present in (5).

4.2 Convergence rates

Basic computational validation for convergence in both problems is shown in Figs.
4–7. It can be seen that, in both point and distributed control problems, convergence
for the states variables at a fixed instant is achieved by augmenting the number of
nodes (see Figs. 4 and 6). Convergence for control signals, in space and consequently
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Fig. 7 Control signal evolution
for different numbers of nodes
for the distributed control
problem

Fig. 8 H 1(I) norms of the error
for vertical displacement x at
different instants (point control
problem)

Fig. 9 L2(I) norms of the error
for the vertical velocity ẋ at
different instants (point control
problem)

in time is also observed in Figs. 5 and 7. Note that, we also include coarse meshes
such that the convergence behaviour can be seen.

Comparison between theoretically predicted and computationally obtained con-
vergence rates can be observed in Figs. 8–13.
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Fig. 10 L2(I) norms of the
error for the input u at different
instants (point control problem)

Fig. 11 H 1(I) norms of the
error for vertical displacement x

at different instants (distributed
control problem)

The vertical displacement x converges with order O(h1/2), which is consistent
with theoretically predicted order O(h1/2−ε) (see Fig. 8). On the other hand, ac-
cording to Fig. 9, the L2(I) norm of the vertical velocity converges faster with an
experimental order similar to O(h). This is not contradictory with Theorem 1, as the
norm of y is taken in H 1(I)×L2(I), the convergence is governed by the slower term,
which in this case turns to be the theoretically predicted order O(h1/2−ε).

In Fig. 10, it can be observed that the control u converges faster than the order
stated in (18); indeed, it converges with the same order than the vertical velocity.
This is caused by the fact that the control is obtained from a feedback of both the
vertical displacement and vertical speed. Due to a scaling issue (see Fig. 1), the con-
tribution for the feedback of the vertical displacement is negligible in comparison
with the vertical speed. Then, even if theoretical derivation of the convergence rate
for the control both contributions are considered in a similar manner, this is not ex-
perimentally observed.

Figures 11–13 show convergence rates for the distributed control problem. By
similar arguments as in [15], the results stated in Theorem 2 can be replaced with
orders O(h|log(h)|), independent of ε. This order is experimentally validated for
both system output and input, which converges slightly faster with order O(h) by the
same explanation than in the point control case.
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Fig. 12 L2(I) norms of the
error for the vertical velocity ẋ

at different instants (distributed
control problem)

Fig. 13 L2(I) norms of the
error for the input u at different
instants (distributed control
problem)
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