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Abstract. In this paper we analyze the numerical approximation of an active vibration control
problem of a Timoshenko beam. In order to avoid locking, we focus on the finite element method used
to compute the beam vibration, to minimize it. Optimal order error estimates are obtained for the
control variable, which is the amplitude of secondary forces modeled as Dirac’s delta distributions.
These estimates are valid with constants that do not depend on the thickness of the beam. In order
to assess the performance of the method, numerical tests are reported.
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1. Introduction. In recent years a large amount of work on the active control
of the flexible structures vibrations has been done. The concrete engineering prob-
lems that motivate this study come from very different fields: aerospace, structures,
meteorology, nanotechnology, etc. An overview can be found in the book of Fuller,
Elliot, and Nelson [13]. A typical engineering problem in which this area is applied is
to reduce the acoustic noise produced by the vibrating thin structures.

It is well-known that standard finite element methods applied to models of thin
structures—Ilike beams, rods, and plates—are subject to the so-called locking phe-
nomenon (see the book of Chapelle and Bathe [7]). This means that they produce
very unsatisfactory results when the thickness is small with respect to the other di-
mensions of the structure. From the point of view of the numerical analysis, this
phenomenon usually reveals itself in that the a priori error estimates for these meth-
ods depend on the thickness of the structure in such a way that they degenerate when
this parameter becomes small. To avoid locking, special methods based on reduced
integration or mixed formulations have been devised and are typically used; among
them we mention [9, 10], where methods for computing free vibration of plates were
analyzed.

The first mathematical piece of work dealing with numerical locking and how to
avoid it is the paper by Arnold [3], in which he proves that locking arises because of
the shear term, and proposes and analyzes a locking-free method based on a mixed
formulation. Recently, this proposed method has been used and analyzed when it
is applied to the problem of free vibrations of a general curved rod (see [15]), which
covers the Timoshenko beam case.

On the other hand, the problem of active vibration control (AVC) can be set in the
framework of mathematical theory of optimal control as stated in the book of Lions
[17]; by the way, this corresponds to a minimization problem governed by an elliptic
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partial differential equation. The numerical analysis of this kind of problem is an area
of active research, beginning with the classical work of Falk [12] (see [2, 16, 19, 20],
and references therein).

In this paper we study the numerical approximation of two problems of AVC
applied to a Timoshenko beam. The goal of these problems is the reduction of the
vibration in the two sensors considered: pointwise and distributed. The control vari-
able is given by the real amplitudes of the secondary forces, which are modeled by
Dirac’s deltas. In this way, the problems consist of choosing the optimal real ampli-
tudes of these secondary forces. Since our interest is the numerical analysis, we study
a locking free finite element method for the Timoshenko equations in the frequency
domain, then we study the approximations of the optimal control for two problems
of active vibration control and, finally, optimal error estimates are obtained for the
control variables.

There are many works on the analysis of control problems of Timoshenko equa-
tions; see, for example, Macchelli and Melchiorri [18] and Xu and Yung [23], and
references therein. Despite this, to the best of the author’s knowledge, this problem
has not yet been analyzed from the numerical analysis point of view.

The outline of this paper is as follows. In section 2 we introduce the physical
problems and pose them in the framework of optimal control theory. In section 3 we
analyze the Timoshenko equations in the frequency domain (state equations). We
prove existence and uniqueness of the solution for general terms in the Sobolev space
H~!. Using the results presented in [15], we obtain estimates that do not degenerate
with the thickness of the beam. It includes, in addition, local W2:> a priori estimates
for the state equations with source terms in L2. In section 4 we introduce a locking-
free finite element method to approximate the state equations. We prove L? and
pointwise error estimates, with constants that do not depend on the thickness. In
section 5 we state an optimal control problem to determine the optimal amplitudes of
the actuator and show that it is well-posed. We approximate it by using the locking-
free finite element method introduced in the previous section, and prove an optimal
order error estimate for the approximate optimal control problem. In the last section,
we report some numerical experiments which confirm our theoretical assertions. In
all sections, C' denotes a strictly positive constant, not necessarily the same at each
occurrence, but always independent of the thickness ¢t and of the mesh-size h.

2. Mathematical model. The optimal control problem. Let us consider
an elastic beam of thickness ¢ € (0, 1], with reference configuration I x (—t/2,t/2),
where I := (0, L) with L the length of the beam. The deformation of the beam in
the frequency domain is described by means of the Timoshenko model in terms of the
rotations amplitude 6 of its midplane and the transverse displacement amplitude w
(see [22]). Assuming that the beam is clamped, its deformation is the solution of the
following problem:

Find (w, #) such that

R 2w do
—pAd*w(x) — kAG <ﬁ - %) = f(x) ze€l
2 w
21) —pl?6(x) — Efg—mz — kAG (% - 9) = g(x) z€l,
w(0) = w(L) =6(0) = 6(L) = 0,

where @ is the angular frequency, the coefficients p, E, and I, that will be assumed
constants, represent the mass density, the Young modulus, and the inertia moment,
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respectively. The coefficient k is a correction factor usually taken as 5/6; A and G
represent the sectional area of the beam and elasticity modulus of shear. The term f
represents a point or distributed force and g the bending moment.

These equations will be called state equations and play an important role in the
control problems described below.

In our case, the term source f will be the sum of a pointwise or distributed external
force, denoted by f., and a control force split as a linear combination of N Dirac’s

delta measures supported at given points, y1,y2,...,yn € I with real amplitudes
u1,...,uy to be determined, i.e.,

N
(2.2) f="fe+> wbd,, withu;€R, i=1,... N

i=1

Now, we introduce the control problems that concern us, for the mathematical
optimal control framework we use the notation and the context introduced in [4]. For
the sake of simplicity, we describe the two kinds of sensors, punctual and distributed,
separately.

Punctual sensors. The problem of AVC consists of reducing the vibration in M
given points, called punctual sensors. In order to state this problem mathematically,
we make the following choices:

(A.1) the state of the system is given by the transversal displacement w(z) of the
beam;
(A.2) the control variable w is the vector of reals amplitudes of actuators,

u=(U1,...,un) e RV,

which define the source term f in the problem (2.1) by means of (2.2);
(A.3) the set of admissible controls is a convex, not empty, closed set Uyq C RY;
(A.4) the model of the system that relates the control variable with the state is the
Timoshenko problem, i.e., problem (2.1);
(A.5) the observation z is the set of displacement values at M sensors located at
given points py,...,pym €1,

z(u) == (w(u,p1),...,w(u,py)) € RM,

where, for u € RY, w(u, ) denotes the solution of problem (2.1) with f given
by (2.2);

(A.6) the cost function to be minimized depends on the observation and eventually
on the cost of the control itself, namely,

1 v
(23) J(w) =3 =) — zal3 + 3 Jul?,

where, v > 0 denotes a weighting factor that represents the cost of the control,
I - ||2 is the Euclidian norm in RY or RM, and z4 denotes the desired state,
which in our case will be z4 = 0.
Thus, the optimal control problem will be the following:
Find u°? € U,y such that
24 J(u?) = inf J(u).
(2.49) (w?) = inf J(w)
Distributed sensor. The problem of AVC consists of reducing the vibration
along the beam, or on a segment of it, namely (a1,a2), with 0 < a1 < as < L.
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To write this problem mathematically, we make the same choices as the problem
above, but changing (A.5) and (A.6), in fact, we have that
(A.5) the observation y is the transverse displacement on (a1, a2), i.e., y(u,z) =
w(u, x)l(a17a2)'
(A.6) the cost function to be minimized in this problem is

1 2 v 2
(2.5) J(u) = 3 ly(w) = Yall 1,100 T 5 ully,

where y, denotes the desired state, which in our case is y; = 0.

The optimal control problem of distributed sensor is written as follows:

Find u°? € U,q such that

2.6 °P) = inf .
(26) T(”) = inf T(w)

In both optimal control problems, any solution u°? of the minimization problem
will be called an optimal control. Notice that this optimal control depends directly
on the amplitude of the transverse displacement w(z) of a Timoshenko beam. For
this reason, the mathematical analysis of the problem (2.1) will be considered in what
follows.

3. State equations. In this section we prove existence and uniqueness of solu-
tion of the state equations considering an adequate framework for the mathematical
analysis of numerical locking that appears when standard finite element methods are
applied to the beam equation (2.1). Additional regularity of the solution is also in-
cluded, it will be used to study the optimal control problems in the following sections.

3.1. A locking-free scheme. From now on, we assume square transversal sec-
tion of the beam, with physical parameters I = t4/12, A = 2, and G = E/2(1 + v),
where 7 denotes the Poisson ratio. By considering f,g € H=*(I) and v, 3 € Hi(I), as
test functions, using integration by parts, and considering the boundary conditions,
we obtain the following variational formulation associated to the problem (2.1):

Find (wy,0;) € H}(I)? such that

E [ df,dp K dwy dv 2 /
) dr dxdx—i— t2/1<da: 9,5) (dx 5) dr — w; thvdx
o 12

2
_wtﬁ/lotﬁd$:<f,v>+:f_2<g,ﬂ> V(U’ﬂ)eHol(I)Q’

where (-,-) denotes the dual parity between the spaces H}(I) and H}(I), w? =
pw? /t? is the rescaled angular frequency, and x = Ek/2(1+ 7). Note that, according
to [7], the transversal and shear load have been adequately rescaled.

We denote by a,; the bilinear continuous form in H}(I)? that appears in the
left-hand side of (3.1):

_E db; dp K dw; dv
cor (un 0, 0.9) = 35 [ e pto 5 [ (G —0) (- ) o
2
(3.2) —wf/wtvdx —wtz% /Gtﬁdx (wy, 0r), (v, B) € Hy(I)%.
I I

This bilinear form is not positive definite, for this reason the Laz—Milgram lemma
cannot be applied to obtain existence and uniqueness of solution of the variational
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problem (3.1). However, it is clear that problem (3.1) has a unique solution if w? is
not a eigenvalue of the following homogeneous problem:
Find (wt, 0;) € H}(I)? such that

(3.3) aut (W, 04), (v, 8)) =0 V(v,B) € Hy(I)%.

This eigenvalue problem has been recently analyzed in [15], as a particular case
of a more general problem, and it is proved that the spectrum consists of a sequence
of finite multiplicity real eigenvalues converging to infinite.

On the other hand, it is easy to prove than for a fixed ¢ the bilinear form a..
satisfies the following Garding inequality:

(3.4) awt ((we, 02), (we, 00)) + Col| (we, 0) | 72xy2 > @l (we, )71 1)

for all pair (w¢,0;) € H}(I)?, with positive constants C,, and « such that C, >
w? and o = max(E/12,C,,C/t?). Thus, according to Theorem 6.5.15 in [14] (3.3)
satisfies Fredholm’s alternative; i.e., uniqueness of solution of the problem (3.1) implies
existence of solution giving the following result.

THEOREM 3.1. Let w; € R such that w? ¢ S, where S denotes the spectrum
of problem (3.3), t € (0,1], and f,g € HY(I). Then, problem (3.1) has existence
and uniqueness of solution (w¢,0;) € HE(I)?, and, moreover, the following estimate
holds:

(3.5) l(we, 0) || g rye < Ce (I L1y + Mgl - x) -

Proof. Note that, we only need to prove (3.5). Let us denote by (-, -); a weighting
interior product in L*(I)? defined by ((u,v), (w, 2)); := (u, w) 21y +2/12- (v, 2) L2(1).-
Consider the operator A,; defined by

<Awt(wt7 975)7 (Uvﬁ»t = Qut ((wt7 et)ﬂ (’U, ﬁ)) V(U,ﬁ) € H(% (1)2'

Clearly, the operator A, is linear, continuous, and bijective, and then, using the open
mapping theorem, A,; has a linear and continuous inverse, i.e.,

H(wt, 0t)||H1(I)2 < Ot”(fv g)”H*l(I)’

where, clearly, the constant C; depends on « in (3.4). O

The analysis done so far is valid only for ¢ fixed, i.e., it is not uniformly valid in
t. In this context, in [3] it is shown that standard finite elements methods applied to
the load problem associated to the static Timoshenko beam are subject to the locking
phenomenon, this means that they produce unsatisfactory results for very thin beams;
this effect is caused by the shear stress term. The same phenomenon occurs in our
case, where a dynamic Timoshenko beam is considered, because the shear effect is
also present in our model. In fact, according to [21], because the bilinear form a.
satisfies the Garding inequality (3.4), if we consider standard finite element methods
to solve (3.1), we obtain existence and uniqueness of the discrete solution (wp, 0:n)
only for h < C/t? and the following poor estimation holds:

C
| (we, 0¢) — (Wi, Oen) || 21y < t_2h2|‘(wta9t)||H2(I)2'

To avoid the numerical-locking in the static case, Arnold [3] introduces and an-
alyzes a locking-free method based on a mixed formulation of the problem, and also
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proves that this mixed method is equivalent to using a reduced-order scheme for the
integration of the shear term in the primal formulation. These ideas have been ex-
tended to the vibration modes of a Timoshenko curved rod with arbitrary geometry
in [15].

We will use a mixed formulation to obtain a locking-free scheme that applies to
our dynamic problem. In order to achieve this purpose, it is necessary to obtain a
stability condition with a constant that does not degenerate when the thickness t goes
to zero. For this reason, we introduce the operator

T, : H1(I)2 — H(I)?,

defined by T:(f, g) := (w?, 8%), where (w?, #?) is solution of the following load problem
associated with the Timoshenko equations in static case, written in mixed form:
Find (w', 0%,~%) € H}(I)? x L*(I) such that

E [dotdp dv B £2 L

t
/ <% — 0t> ndx vy € L3(I).
I

According to [15], as a particular case, this problem has a unique solution (w?, §*,~%) €
H}(I)? x L?(I) and there holds

'
— / v*ndx
K J1

(3.6) lw Nz @y + 110 ey + 1V 2y < C (1@ + Ellgllm-1q)) -

Now, using the operator T3 we can rewrite problem (3.1) in the following equiva-
lent form:
Find (w, 0;) € H}(I) such that

(3.7) (wr, 0r) — Wi Te(we, 0;) = Ty(f, 9)-

This new form to write our state equations is essential to obtain the desired
condition for stability with a constant that does not degenerate when t goes to zero,
which is obtained in the following theorem.

THEOREM 3.2. Let w; € R such that w? ¢ S, and f,g € H-*(I). Then, problem
(3.1) has a unique solution (wy,0;) € HE(I)? that satisfies

l(we, 0) |l g1 oy < C (1l + Ellgllar—r ) -
Moreover, if f,g € L?(1)?, the solution belongs to H*(I)?> N H}(1)?, and there holds
1w, 0| g2 ryz < C (I1F 22y + gl z2qy) -

Proof. Due to w? ¢ S, according to [15], T; (I — w?T}) is bounded and bijective,
then from (3.7) we have the following estimation:

1,
[[(we, 00)]] g ()2 < EHTt NI = WP T) (we, 00) | - (e

where ¢ denotes the positive constant in the open mapping theorem. Thus, the theo-
rem follows from the fact that ¢ depends on the operator’s norm T; (I — w?T;) and,
as a consequence of (3.6), || 7,7} < C.

Finally, the additional regularity is obtained in a similar way to Proposition 3 in
[6]. O
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3.2. Local W2 a priori estimates. In this section we obtain L™ estimates
for the second derivatives of the solution of problem (2.1), in the cases that f and g
belong to L?(I). These estimates will be used to obtain a part of the main result of
this paper in section 5: optimal error estimates for the optimal control problem with
punctual sensors.

Considering the external source f as Dirac’s delta concentrated in y € I and
g = 0, problem (2.1) is written as follows:

Find (w¥,0Y) such that

2wy dev
_ ~2,0Y 7 _
pAD WY (x) — kAG( s d;v) 0y, wx €l
(3.8) 2y d29“ Y B
0 D) - ) ) = o,

where the first equation should be understood in the distributional sense.

Let (¢Y, ¢Y) be the fundamental solution of the dynamic Timoshenko equations
written in the frequency domain, by considering f = d, and g = 0. Such a solution
is explicitly known in the work [1, section 3.1.2], but we only need to recall that it
satisfies ¢¥(z), o¥(z) € CO(I), ¢¥(x), p¥(x) € C®(R\{y}). Moreover, let d > 0 be such
that I(y) := {z € R : [z —y| < d} CC I, then [|¢Y|| gr2m1ay)) and [[0Y]] g2 m\re(y))
remains bounded with constants that only depend on d (see [1] for further details).

Now, solution of (3.8) can be split in the following way:

(w”,0) = (¢*|1, ¥*[1) + (¢¥, "),

where (¢¥,7nY) denotes the solution of

—pALACY (x kAG<d2<y dny> = 0, z€l,
(3.9) —pl&*n (z) — (di—ny> = 0, z€l

¢¥(0) = —¢y( ), (0) = —¢¥(0),

¢U(L) = —¢¥(L), ( ) =—¢Y(L).

It is easy to see that, by standard argument on nonhomogeneous Dirichlet problems
and using Theorem 3.1, there exists a unique solution (¢¥,nY) of (3.9) and satisfies

(3.10) (¢ )| 2@z < C.
Hence, we obtain

[0 g2 (e )y < N0Vl m2@ae )y + 1€V 120y < C,

3.11
(8.11) 0 ractaeon < Nl Loairoaoion + 9]l o0, < C.

These estimates will be used in the proof of the following theorem.

THEOREM 3.3. Let Iy and I; be two open subsets of I such that Io,Iy CC I. Let
d > 0 such that dist(Iy,11) > d and dist(1;,01) > d. Then, if f and g € L*(I) satisfy
supp(f), supp(g) C Lo, there exists a constant C, only depending on d, such that the
solution (wy, 0;) of problem (3.1) satisfies

(3.12) [(we, 00) w2 @2 < C (I1f [l 2y + gl 2q) -
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Proof. We adapt the proof of Lemma 3.4 in [4] to our case. Let us consider
subsets of I Iy := {x € I : dist(z,I;) < d/4} and I3 := {z € I : dist(z,I1) < d/2},
that satisfies dist(Io,I3) > d/2 and dist(Is, 0I) > d/2. Moreover, we denote by x a
cut-off real function of class C> with support I such that x|1, = 1 and ||x||w2 )
is bounded.

Given z € Iy, let (w?,6%) be the solution of (3.8) with y replaced by z. By
standard computation (see, for instance, [11]) we have

wi(2) = (0., xwy) = ( —pAd*w* — kAG P C_4" w
t — zy XWt) = P dﬂ?2 dﬂ? » XWt

2
= (w*, —pALxw — RAG TS X we —2kAGd—X% Ay Y
dr dx dx?

<9Z kAG—wt—FkAG %>
33

On the other hand, from the second equation of (3.8) we have

d*6*
_ _ ~20nz _
0—< pl 0 (z) — EI— e kAG( i >7X9t>
d2 dX d6‘t d29t
z ~2

dx

< : KAG X9t+kAG d9t>

By adding the last two equations, considering that (w,8;) is the solution of
problem (3.1) and noting the fact that xf = 0 and xg = 0, we obtain that

wy(2) = / <kAGdX 6, kAGd—th - 2kAGd X CZ?) da
13\12

+/ 0 ( Brdx X, —oprX P kAG—wt) da,
13\12 dx dx dx

where the integral is written on I3\Iz, because supp(x’), supp(x”) C Is\Is.
Since w* is symmetric, because the operator I —w?T} is symmetric, w? (z) = w®(2)
for all z,z € I y # z, we can differentiate the expression above to obtain

d d dx d?x d?y dw;
— = — A AG—= 2kA
d22wt(z) o dx2 (k G= Gt k G wt k Gd R )dx
d?x dx db
—— 0" ( —El-50; — 2B —~—— — kAG—~ dx.
+/13\12 = ( 2t Ir du G U)t) x

Then, using (3.11) and Theorem 3.2, we obtain the following result:

‘—wt < Clidhwam gty (10* i) + 187 zanis))
(ol sy + 18l a75))
< C(Iflz2q@ + gl r2q) -
For the estimation on € we proceed in the same way. O
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4. Numerical approximation of the state equations. In this section we
will study the numerical approximation of the state equations in the case in which
the source term f is a pointwise or distributed external force. We obtain pointwise
error estimates which will be used in the next section to obtain uniform error estimates
of the optimal control problem.

Following [3], we consider a family {7}, } of partitions of the interval I:

T, :0=s9<s1<--+8, =01,
with mesh-size

h:= max (sj—sj-1).

We define the following finite element spaces:
Vi i={veHyX) vl ,s) €P1.j=1,...,n} C Hy),

and

d
Wh ::{é—kc: vth,CE]R}CLZ(I).

Thus, we can write the discrete version of variational problem (3.1) as follows:
Find (wth, oth) S V}% such that

2
(41) Auwth ((wth’ ch)a (Uha ﬁh)) = <f5 Uh> + I_2<ga ﬁh> \V/(Uh, ﬁh) € V}%a

where the bilinear form ap is given by

_ E dOyp, dfBn 2/ 2t2 /
gt ((Wen, Oen), (vn, Br)) = ) o dz dr — wj thhvhda: YiTs 19th5hda:
K dwyp, dvy,
(4.2) +§Aﬂh( e —ch)wh (%—ﬁh) dx

for all (win, 0i), (vn, Bn) € VZ, where 7, denotes the L%-projector onto W,.
As in the continuous case, in order to study existence and uniqueness of the
solution of the problem above, we introduce the discrete operator

Ty H1(I)2 — V3,

defined by Ty, (f,g) == (w},0}), where (w}, 60} ) denotes the solution of the discrete
version of the mixed problem, i.e.,
Find (w},0%,7%) € V2 x W), such that

E [ do% dp + (don t2
) Bt o (T o) e = G+ e,

t? ¢ dw}, t
E/I'yhnhdx = /I(%_Hh) npdx

for all (v, Bn) € V,% and for all n, € Wh, respectively.
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As a consequence of Theorem 3.1 in [15], the operator Ty, is well-defined and
continuous; in fact, the solution of the mixed problem above satisfies

||wZ||H1(I) + HHZHHl(I) + ||72HL2(1) <C (HfHH—l(I) + t2||9|\H—1(1)) .

Now we use the operator T3, to study existence and uniqueness of our discrete
problem (4.1). First, we introduce the following technical result.

LEMMA 4.1. Fort and h small enough it holds that if ps is not an eigenvalue of
the operator T, then neither is an eigenvalue of the operator Tip,.

Proof. According to Lemma 2.6 in [15], for ¢ and h small enough we can guarantee
the separation of isolated parts of the spectrum of 7;. Then, this lemma is a direct
consequence of the spectral approximation of the discrete operator Ty, (see Theorem
3.5 in [15]). O

THEOREM 4.2. Given f,g € H (1) and w? € R such that w? ¢ S, there exists
ho > 0 such that, for all h < hg, problem (4.1) has a unique solution (wen,0).
Moreover, if f,g € L*(I), the following estimates hold:

(4.3) | (we, Or) — (wen, ch)HHl(I)? <Ch (||f||L2(1) + t2”9||L2(I)) )
(4.4) [ (we, ) = (wen, On) | 2@z < CR* (1 f L2 + N9l L2q) -

On the other hand, if f =6, and g = 6, where x,y € I are grid-point, then

(4.5) [ (we, 0¢) — (wen, Oen) | 1 (12 < Ch,
(46) ||(wt, 9,5) - (wth, ch)||L2(I)2 < Ch2

Proof. Analogously to the continuous case, the discrete problem (4.1) can be
written using the operator Ty, in the following manner:

(wtm oth) - thTth(wtha oth) = Tth(f, g)-

Using Lemma 4.1, it is easy to see that w? either belongs to the spectrum of the
operator T3, and, as a consequence of this, we conclude existence and uniqueness
for problem (4.1) for all w; € R such that w? ¢ S. Moreover, by means of the
same arguments shown in the proof of Theorem 3.2, we obtain the following discrete
stability condition:

(4.7) [(wens Ol g1 ryz < C (1 -2y + €19l -1 qxy) -

On the other hand, as in [3], it is easy to show that problem (4.1) is equivalent
to the following mixed problem:
Find (win, Otn, yin) € V,% X Wy, such that

oy, ’

o GO (on, 50 + [ (=0 ) o = (Foon) + 5

dw 2
/< dth — Gth) npdx — —/’ythnhda: = 0
I T K J1

for all (v, Br) € V? and for all n, € Wj, respectively. Here, the bilinear form is
defined by

E [ db:, dbh

t2
(w0 wn. ) = 5 [ G T =t [wnonde — it [Onsde.
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Note that, this problem corresponds to the discretization of the continuous equation
(3.1) written as a mixed problem. Then, (4.3) is a consequence of the second part of
Proposition I1.2.11 from [5], considering the stability condition given in (4.7).

The estimation (4.4) is obtained by adapting the duality argument used in the
proof of Theorem 2 in [6] to our case.

Finally, note that, where 2 and y are grid-point, the solution of problem (4.1)
locally belongs to H?, then (4.5) and (4.6) follow by similar arguments. 0

The following lemmas will be used to obtain an error estimate for |w—wyp|. First,
we introduce the following standard projections of w and 6 over V, (see [8]):

(4.8) (Pwy — wy)', v')Lz(I) =0 YveV,
((Pat — et)laﬁl)Lz(I) =0 Vﬁ € V.

Here and therein v’ stands for dv/dz.

LEMMA 4.3. Given f,g € L*(I) and w} ¢ S. Let (wt,0:) and (wen,0) be the
solution of problems (3.1) and (4.1), respectively. Then, there exists ho > 0 such that,
for all h < hg, the following estimation holds:

[Pwr — winlloo < CR* (|| fllz2q) + £ llgllL2m) -

Proof. By taking (v, 8) = (Pw; —w,0) in (3.1) and, subtracting from (4.1) with
(vn, Bn) = (Pwy — wn, 0), we obtain the error equation

(410) Aot ((’th, Gt), (Pwt — Wth, 0)) — Qwth ((wth; ch)a (Pwt — Wth, 0)) = 0
In order to simplify the notation we will use the following expressions:

§:9t _atha
0 = Wt — Wth,

o = Pwy — wyp.

From (4.10) and the definition of a,; and ax, we obtain

k k
7727 = (0 = mibu, @)+ W (0, 9),
k —/ k —/ 2 —
= t_g(gaa )+ t—2(9th — ThOin,0") + wi (0, 7).

Now, by using the definition of 7, and the Cauchy-Schwarz inequality in L2(I) and
R?, respectively, we obtain

k(o',5") < ksl r2@ |6’ L2y + wit* ol Lz |6 1| 2oy
< Cl(s,0)llL2@ezllo]l mr -

From the definition of the projectors, we can use that (¢’,5’) = (’,5’), and the
Poincare inequality to obtain

(4.11) 15113 @y < Cl(s )l L2l o)-

Finally, the desired estimation follows from the continuous inclusion H!(I) < L>(I)
and Theorem 4.2. O
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LEMMA 4.4. Given f,g € L*(I) such that supp(f), supp(g) CC I and w? ¢ S, let
us denote by (we,0:) the solution of problem (3.1). Given x € I\(supp(f) U supp(g)),
let d > 0 such that dist(x, supp(f) U supp(g)) > d and dist(supp(f) U supp(g),0I) > d.
Then, there exists C, depending on d, and hg > 0 such that, for all h < hg, the
following pointwise error estimate holds:

[(we(x),0:(x)) — (Pwi(x), POy(x))] < Ch* (I fll2@y + gl 2qwy) -

Proof. By considering Iy = {x € I : dist(z, supp(f) Usupp(g)) > d}, because of
Theorem 3.3, we have (wy, 6;) € W2°°(I1)?, then, recalling Lemma 4.3 in [8], we have

[(we, 00) = (Pwe, PO) | oo 1)z < CB2||(wy, 01) [we.oe 1,2,

then the desired result follows using the estimation in Theorem 3.3. d

THEOREM 4.5. Given f,g € L*(I), such that supp(f) CC I and supp(g) CC
I, and w? ¢ S, let us denote by (wt,0;) and (win,0) the solution of problems
(3.1) and (4.1), respectively. Given x € I\(supp(f) U supp(g)), let d > 0 such that
dist(x, supp(f) U supp(g)) > d. Then, there exist C, only depending on d, and hy > 0
such that, for all h < hg, the following estimate holds:

lwe () — win(x)] < CB* (1l 2y + gl 2y) -

Proof. The proof is a direct consequence of the previous lemmas. O

Finally, for the case where the source term is Dirac’s delta, we use standard results
on classical Sobolev inequalities.

THEOREM 4.6. Given f = 6, withx € I, g =0, and w? ¢ S, let us denote by
(wy, 0r) and (wen, On) the solutions of problems (3.1) and (4.1), respectively. Then,
there exist ho > 0 such that, for all h < hg, the following estimate holds:

[ (we, 0:) — (wen, On) || Loo 1)z < Ch.

Proof. This result is a consequence of the continuous inclusion H!(I) < L°°(I)
and the estimate (4.5) in Theorem 4.2. O

5. Optimal amplitudes of actuators. Numerical methods. In this section
we obtain locking-free error estimates for the optimal control problems proposed in
section 1: punctual sensors and distributed sensors. In order to obtain such estimates,
we proceed as in the numerical framework used in [4, Chapter 5], and we use the results
obtained in the previous sections.

Due to the linearity of problem (2.1) and keeping in mind that the source term f

is written in terms of the control variable u := (u1,...,un) € RV,
N

(5.1) f=1fe+> widy,  withu;€R, i=1,.. N
i=1

The unique solution (wy, ;) can be written in terms of the control variable as

N
(we, 0;) = (wio, 0r0) + Y _ s (wes, Oi) ,

i=1

where (w;o, B19) is the solution of problem (2.1) without control, considering only the
external force fe, i.e., u = 0in (5.1), and (wy,6¢;) is the solution of problem (2.1)
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with f = J,, and g = 0, i.e., when the system is only excited by the ith actuator with
unit amplitude, excluding the effect of the external force fe.

To prove existence and uniqueness of the optimal control problems (2.4) and
(2.6), we consider transfer functions that correspond to mappings z(u) and y(u)
that establish the relation between control and observation in the respective control
problem.

Distributed sensors:

RY — o),

u y(u)  =wi(u,)|(a;,a)-
Punctual sensors:
rRY —  RM,
u — Z(U) = (wt(uvpl)v"'th(uva))'

Since the transfer functions z(u) and y(u) are affine, it is clear that both first
terms in the cost functions (2.3) and (2.5), respectively, are quadratic. Moreover,
the second terms are strictly convex when v > 0. Therefore, it is clear that the cost
functions are strictly convex if v > 0, or well if v > 0 and the observations are one to
one. Thus, we may conclude that both optimal control problems, distributed sensors,
and punctual sensors have unique solutions under these considerations.

Note that, in the problem of punctual sensors, in the case that the number of
sensors is greater than or equal to the number the actuators (i.e., M > N), the
observations to each single actuator are linearly independent and, therefore, transfer
function is one to one, or the observations are one to one. In the distributed case, the
same follows from the existence and uniqueness of the solution of (2.1).

In order to analyze both optimal control problems simultaneously, we will consider
the following, more general, cost functional:

N 1 v
(52) 30u) = 5 Ip(w) ~ Pl + & .

where, H = RM and p(u) = z(u) in the case of the punctual sensor and, H =
L?(ay,a2) and p(u) = y(u) in the case of the distributed sensor. Thus, considering
p; = 0, the optimal control problems is the following:

Find u°? € U,q such that

o
(5.3) u) = inf J(w).

The global observation p is written in terms of the control variable u € R™ and
the observations pg, py, ..., Py in the following way:

N
p(u) =p,+ > _up,
=1

where, if e; represents the ith element of the canonic basis of RV, we set
Distributed sensors:

(54) Dy = wt0(07x)|(a1,a2)7
(5.5) D; = wti(€i,7)|(ay,a2), 1=1,...,N.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/13 to 129.2.56.205. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

A LOCKING-FREE FEM IN ACTIVE VIBRATION CONTROL 2445
Punctual sensors:
(5.6) Py = (w0 (0,p1), - ., wo(0, par)),
(5.7) p; = (wy(e,p1), .- wei(ei,pav)), i=1,...,N.
Thus, the cost function (5.2) becomes

N 2
N 1 v
Iw) = 5 lpo+ Y|+ Sl

i=1 H

1 N N N
= 5{(1707190)71 +2) wi(pi o)+ Y Y witt ((pyy py)w + vdij) }

i=1 i=1 j=1

Then, by introducing the matrix P € RN and the vector b € RY, defined by

(P)ij == (pj,p)n. i,j=1,...,N,
(b)’b = (p07pi)'H7 Z':l,...,N7

the optimal control problem (5.3) is equivalent to the following quadratic program-
ming problem:
Find u°? such that

~l o . 1
st = ut 5 L (P 200+ Il .

where (-, -) denotes the standard inner product in RY .

Notice that, observation p involves the solution of a system of partial differen-
tial equations, given by the state equations, which has to be approximated by the
finite element method described and analyzed in the last section. This leads to an
approximate functional that will be considered.

Let wy, be the approximation of the transversal displacement solution of the
discrete problem (4.1), with a load source f defined by (5.1) for a given vector u € RY.

Let us introduce, for ¢ = 0,...,N, the approximate observation p;,; which is
obtained by replacing wy; by wip;, in (5.4)—(5.7). Then, the global observation p;, in
problem (5.3) can be written in the following way:

N

pp(w) == ppo + Z UiPp;-
i=1

Now, let P, € RV*N and by, be defined by

(Ph)ij = (phjaphi)'Hv Za.] = 1, e -,N,
(br)i == (Pno»Pri)r, i=1,...,N.

The approximate cost function can be written as

- 1 v
() = 5 I ) B, + 2

(5.8 =3 { (@uevm ) 2w+ Il
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These definitions lead us to the following discrete optimal control problem:
Find u;” such that

69w = i g (P w42 b + Il

The argument u,”, where the minimum is attained, is expected to be a good
approximation of the optimal control u°?. Adapting the proof of Lemma 5.1 in [4],
we obtain estimates for ||P — Py||2 and ||b — bp||2. Notice that, any norm can be
used because the spaces have finite dimension. The estimates are shown separately,
for each control problem, in the next lemma.

LEMMA 5.1. There exists hg > 0, such that for all h < hq the following estimates
hold:

Punctual sensors:

(5.10) | P — Pyll2 < Ch,
(5.11) |b— byl < Ch.

Distributed sensors:

(5.12) | P — Pyll2 < Ch?,
(5.13) [b = brlla < Ch?

Proof. We will prove Lemma 5.1 in our general setting. Let us denote by Ap, the
approximation errors between the observation p; and the approximate observation
Ppis © = 0,...,N, ie., Ap, = p,; — p;- Using this notation, the definition of the
matrices P and Py, and the Cauchy—Schwarz inequality in the space H, we obtain

|(P)ij — (Pn)ij| = |(pj, APy + (Apj, pi)w + (Ap;, Ap, )|
< |Ip;llrllAp;lls + [lp;l1# | AP; [+ + | Ap; ||| Ap; [l

analogously,

[(B)i — (bn)il < o llrllAP; 12 + 1P 17| AP [l + | AP 2| Ap; [| 2+

Thus, estimates (5.10) and (5.11) follow from the definition of the observations,
Theorem 4.6 or Theorem 4.5 (depending on the external force) for ¢ = 0, and Theorem
4.6fori=1,...,N. In the same way, estimates (5.12) and (5.13) follow from Theorem
4.2. O

As a consequence of this theorem, we have existence and uniqueness of the solution
of the discrete optimal control problem for A small enough.

COROLLARY 5.2. There exists hg > 0 such that for all h < hg, problem (5.3) has
a unique solution in the case of v > 0 or in the case of v > 0 and p(u) is one to one.

Proof. From the previous theorem, for h small enough, P}, is positive definite,
because it converges to P, which is positive definite. O

Finally, in the next theorem we show the estimates for the approximate error of
the optimal control; the proof is based on Theorem 5.4 in [4].

THEOREM 5.3. Let us assume that v > 0 or v > 0 and p(u) is one to one. If
0 € Ugq, then there exists a positive constant C independent of t and hg such that,
for all h € (0, h),

[u® —w”|| < Ch
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for the punctual sensor problem, and
Ju? — wP | < Ch?

for the distributed sensor problem.
Proof. These results are the consequence of Lemmas 5.1 and 5.3 in [4], adapting
the notations. O

6. Numerical results. In this section we report the results of some numerical
tests computed with a MATLAB code that implements the locking-free finite element
scheme described above. We used a reduced-order scheme for the integration of the
shear term in the primal formulation, such as the scheme proposed in [3], which is
equivalent to the mixed formulation.

We consider representative examples of each control scheme. In order to quantify
the effect of the control we use the following attenuation measure in both cases:

. J(u)
Attenuation (dB) = —10log (J(O)) ,
where J denotes the corresponding functional of each problem.

Punctual sensors. In order to describe this numerical control problem we con-
sider the following choices:

e The domain of the beam is I := (0, 1).
e The physical parameters are:
— elastic moduli: £ =2.1 x10'Pa,
— Poisson coefficient: 7 =0.3,
— correction factor: k= 5/6,
— density: p =7.8 x103Kg/m?,
— 0 =22s"1
The external force is Dirac’s delta localized in x = 0.15.
There is one sensor in x = 0.4.
There is one actuator in z = 0.75.
e The admissible control set is U,q = R and the weighting factor is v = 0.
Note that, as Ugq = R and v = 0, the classical Euler inequality

(Pp 4+ vDu? + by, v —uy)’) >0 Vo € U,

associated with the problem (5.9), is reduced to the following linear systems of equa-
tions:

o
Phuhp = —bh.

In Table 6.1, we report the optimal control computed for different values of the
thickness t and successively refined meshes. It also includes the computed order of
convergence and the corresponding extrapolated optimal control, obtained by means
of a least squares fitting of the model

uy’ R Uy + Cht.

Moreover, in Table 6.1, it can be seen that the order of convergence remains uniformly
optimal with respect to ¢; this confirms that the method is locking-free.

The error, for ¢ = 0.05 and ¢t = 0.005, is shown in Figure 6.1, where it can
be clearly seen that the order of convergence is essentially O(h), as predicted by
theoretical results.
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TABLE 6.1
Optimal controls for a punctual sensor problem (scaled by a factor 1011 ).

¢ h=1/80 h=1/100 h=1/120 &h=1/140 ext. order

0.8 1.6288181  1.6252264  1.6228266  1.6211095 1.6106959  0.99
0.1 2.1995987  2.2139872  2.2236505  2.2305880  2.2735737  0.97
0.05 2.2237015  2.2389812  2.2492472  2.2566195  2.3029090  0.96
0.01 2.2305049  2.2460195  2.2564446  2.2639318  2.3109361 0.96
0.005 2.2269057  2.2422274  2.2525226  2.2599163  2.3063355  0.96
0.0008  2.0188211  2.0238280  2.0271929  2.0296103  2.0447812  0.96

thickness = 0.05 thickness = 0.005
—&—Ch A e—Ch
—8— Relative Error(%) —&— Relative Error(%)
S
s
]
[
=
©
[5)
o
107} iR ]
102 10°
Number of d.o.f Number of d.o.f

F1G. 6.1. Relative error (%) versus number of d.o.f. (log-log scale).

Now, we consider the following choice of parameters: h = 1/100, ¢t = 0.001, and
the first resonance frequency for this configuration, i.e., w = 33s~!. The attenuation
obtained is

Attenuation (dB) = —10log (%) = 481.10.

The absolute value of the displacements with and without control can be seen in
Figure 6.2, which clearly shows the reduction of the vibration at the sensor.

Finally, in Figure 6.3, we report the functionals with and without control as
a function of the frequency, where [0,200] is the chosen frequency range. We can
appreciate a vibration reduction in all frequencies of interest, in fact, the vibration is
reduced by a factor of order 10°.

Now, we consider a second numerical example, where the objective is to minimize
the vibration in two points of the beam using two actuators. We use the same choices
as the previous example, except the following:

e There are two sensors in x = 0.4 and x = 0.7.
e There are two actuators in z = 0.1 and = = 0.5.
e w=153s""L

In Figure 6.4, we report the absolute value of the displacement with and without

control for ¢ = 0.001 and A = 1/100. In this figure we can see that the displacement
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F1a. 6.2. Reduction of vibration in the used sensor: Absolute values of the displacements with
and without control as functions of a spatial coordinate.
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F1c. 6.3. Cost functionals with and without control for punctual sensor control problem.

in the used sensors are practically zero, in fact,

w(u,0.4) = 9.2646 x 10713,
w(u,0.7) = —2.77712 x 10712,

The attenuation obtained in this case is

Attenuation (dB) = —10log (%) = 443.14.

Notice that the aim of the control design in this case is to reduce the vibration
at the sensors used, i.e., the vertical displacement on the points z = 0.4 and = = 0.7.
However, this kind of control can increase significantly the displacement elsewhere on
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Fic. 6.4. Reduction of vibration in the used sensors: Absolute value of the displacements with
and without control as functions of a spatial coordinate.

TABLE 6.2
Optimal controls for a distributed sensor problem (scaled by a factor 1010 ).

¢ h = 1/80 h=1/100 h=1/120 h=1/140 ext order
0.8  —9.7823054 —9.7817365 —9.7814275 —9.7812412 —9.7807252  2.00
0.1  —8.6262707 —8.6259863 —8.6258316 —8.6257382 —8.6254778  1.99
0.05  —84882370 —8.4881011 —8.4880270 —8.4879822 —8.4878566  1.98
0.01  —8.4649421 —8.4649080 —8.4648802 —8.4648777 —8.4648443  1.92

0.005 —8.5598335  —8.5599232  —8.5599717  —8.5600010  —8.5600815 2.01
0.0008 —6.5088359 —6.3125978 —6.2058951  —6.1415276 —5.9634914  2.00

the beam since the cost functional only includes the above mentioned observations.
In this example, this behavior can be appreciated, approximately, on the interval
[0,0.15]. The effect of local control on structures can be appreciated in other control
designs (see [13, section 6.2]).

Distributed sensors. The problem of AVC arises naturally from engineering
problems; several of them have been reviewed in the book by Fuller, Elliot, and Nelson
[13]. In this book they review a control scheme based on Fourier transform, applied to
the Euler-Bernoulli beam model. While the control scheme proposed in this paper is
different from that and, moreover, the structure is modeled with different equations,
for Timoshenko’s model for small values of the beam thickness we can expect similar
results, because the objective of the control is the same and the shear effect included
in Timoshenko’s equations can be ignored. To formulate this control problem it is
enough to consider one sensor along the beam (a; = 0 and as=1) and the same choices
as the first numerical example (see [13, Chapter 6]).

Similar to the punctual sensor test in Table 6.2, we report the optimal control
computed for different values of ¢ and successively refined meshes. In this table, we
can see how the order of convergence remains uniformly optimal in ¢. In the same way
as above, the extrapolated value is considered as an accurate value of optimal control
and it is used to compute the relative error. These errors are shown in Figure 6.5, for
t = 0.05 and t = 0.005, where it can be clearly seen that the order of convergence is
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F1G. 6.5. Relative error (%) versus number of d.o.f. (log-log scale).
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Fic. 6.6. Reduction of vibration in the used sensor: Displacement with and without control as
a function of a spatial coordinate.

essentially O(h?), as predicted by theoretical results.

Figure 6.6 shows the vibration reduction along the beam, which is the target of
the control. For the following figures, we used h = 1/100, t = 0.001, and the external
frequency as the second resonance frequency for this configuration: w = 93s~!. The
attenuation is given by

. J(u)
Attenuation (dB) = —10log (J(O)) = 79.38.

Figure 6.7 shows the functionals J with and without control. It should be noted
that this is qualitatively the same as what Fuller, Elliot, and Nelson have shown in
their book [13, p. 271]. This allows us to validate our engineering scheme in terms of
this mathematical setting.

Note that a large reduction in the cost function can be achieved in the resonance
frequency of the beam. Nevertheless, between these frequencies our control scheme

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/13 to 129.2.56.205. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2452 ERWIN HERNANDEZ AND ENRIQUE OTAROLA

- = = 20 log(J(0,m)) I
" 20 log(J(u,0)) !

! ! ! !

L L L L L
0 20 40 60 80 100 120 140 160 180 200

Fic. 6.7. Cost functionals with and without control for distributed sensor control problem.
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F1c. 6.8. Cost functionals with and without control for different control designs: one, two, and
three actuators, respectively. The segmented line represents the cost functional without control and
the continuous line represents the cost functional with control.

behavior is inefficient, due to the existence of frequencies where no reduction of vibra-
tion is achieved. For this reason, we implement two new control designs: Both designs
consider the same choices as the numerical example distributed sensor; the first de-
sign added a second actuator in x = 0.5, whereas the second design incorporates two
actuators in x = 0.5 and x = 0.1.

Figure 6.8 shows the functionals with and without control for the distributed
control scheme and for the new designs proposed earlier. This figure shows the per-
formance of the number of actuators with regard to the objective of control: If we
consider two or three actuators, the reduction of vibration can be achieved in all in-
terest frequencies and, clearly, the reduction achieved improves if we consider a higher
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F1G. 6.9. Cost functionals with and without control for different values of the beam thickness.
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Fic. 6.10. Cost functionals with and without control for different values of the beam thickness.

number of actuators.

Figures 6.9 and 6.10 show influence of the thickness of the beam on the reduction
of vibration. These figures show the cost functional with and without control for
different values of the thickness beam: ¢ = 0.0005, ¢ = 0.001, ¢ = 0.005, and ¢ = 0.01.
We can appreciate the stability and robustness of this control design with regard to
the thickness parameter.

Finally, as a conclusion of this section, we note that in order to minimize the
vibration in one point, the punctual control scheme is clearly more effective (see Figure
6.3). However, this scheme has the disadvantage that the associated cost functional
only considers point observations. On the other hand, the functional associated to the
distributed scheme allows us to reduce the vibration in all the beam, or in a sector of
the beam, without considering punctual displacement.
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