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Theaim of this paper is to analyse a mixed finite-element method for computing the vibration modes of
a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are proved for displace-
ments, rotations and shear stresses of the vibration modes, as well as a double order of convergence for
the vibration frequencies. These estimates are essentially independent of the thickness of the rod, which
leads to the conclusion that the method is locking-free. Numerical tests are reported in order to assess the
performance of the method.
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1. Introduction

It is very well known that standard finite elements applied to models of thin structures, like beams,
rods, plates and shells, are subject to the so-called ‘locking’ phenomenon. This means that they produce
very unsatisfactory results when the thickness is small with respect to the other dimensions of the struc-
ture (see, for instance,Babǔska & Suri, 1992). From the point of view of the numerical analysis, this
phenomenon usually reveals itself in that thea priori error estimates for these methods depend on the
thickness of the structure in such a way that they degenerate when this parameter becomes small. To
avoid locking, special methods based on reduced integration or mixed formulations have been devised
and are typically used (see, for instance,Brezzi & Fortin,1991).

Very likely, the first mathematical piece of work dealing with numerical locking and how to avoid
it is the paper byArnold (1981), where a thorough analysis for the Timoshenko beam bending model
is developed. In that paper, it is proved that locking arises because of the shear terms and a locking-
free method based on a mixed formulation is introduced and analysed. It is also shown that this mixed

†Email: erwin.hernandez@usm.cl
‡Email: enrique.otarola@usm.cl
§Correspondingauthor. Email: rodolfo@ing-mat.udec.cl
¶Email: fsanhuez@ing-mat.udec.cl

c© Theauthor 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 at U
niversity of M

aryland on D
ecem

ber 9, 2013
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/
http://imajna.oxfordjournals.org/


VIBRATION MODES OF A TIMOSHENKO CURVED ROD 181

methodis equivalent to the use of a reduced-order scheme for the integration of the shear terms in the
primal formulation.

Subsequently, several methods to avoid locking on different models of arches were developed by
Kikuchi (1982),Loulaet al.(1987),Reddy(1988) andReddy & Volpi (1992). The analysis of the latter
was extended byArunakirinathar & Reddy(1993) to Timoshenko rods of rather arbitrary geometry. An
alternative approach to dealing with this same kind of rods was developed and analysed byChapelle
(1997), where a numerical method based on standard beam finite elements was used.

All the above references deal only with load problems. The literature devoted to the dynamic analy-
sis of rods is less rich. There exist a few papers introducing finite-element methods and assessing their
performance by means of numerical experiments (seeKaramiet al.,1990;Litewka & Rakowski, 2001
and references therein). Papers dealing with the numerical analysis of the eigenvalue problems arising
from the computation of the vibration modes for thin structures are much less frequent; among them
we mentionDuránet al. (1999,2003), where MITC methods for computing bending vibration modes
of plates were analysed. One reason for this is that the extension of mathematical results from load to
vibration problems is not quite straightforward for mixed methods.Boffi et al.(1998,2000) showed that
eigenvalue problems for mixed formulations show peculiar features that make them substantially dif-
ferent from the same methods applied to the corresponding source problems. In particular, they showed
that the standard inf–sup and ellipticity in the kernel conditions, which ensure convergence for the mixed
formulation of source problems, are not enough to attain the same goal in the corresponding eigenvalue
problem.

In this paper, we analyse a mixed finite-element method to compute the vibration modes of an elas-
tic curved rod. For the stiffness terms, we follow the approach proposed byArunakirinathar & Reddy
(1993) for the load problem. We settle the corresponding spectral problem by including the mass terms
arising from displacement and rotational inertia in the model, as proposed inKaramiet al. (1990). Our
assumptions on the rods are slightly weaker than those in these references. On the one hand, we do
not assume that the Frenet basis associated with the line of cross-section centroids is a set of prin-
cipal axes. On the other hand, we allow for nonconstant geometric and physical coefficients, varying
smoothly along the rod. We prove that the resulting method yields an optimal order approximation of
displacements, rotations and shear stresses of the vibration modes, as well as a double order of con-
vergence for the vibration frequencies. Under mild assumptions, we also prove that the error estimates
do not degenerate as the thickness becomes small, which allows us to conclude that the method is
locking-free.

The outline of the paper is as follows. In Section2, we recall the basic geometric and physical
assumptions to settle the vibration problem for a Timoshenko rod of arbitrary geometry. The result-
ing spectral problem is shown to be well posed. Its eigenvalues and eigenfunctions are proved to
converge to the corresponding ones of the limit problem as the thickness of the rod goes to zero,
which corresponds to a Bernoulli-like rod model. A finite-element discretization with piecewise poly-
nomials of arbitrary degree is introduced and analysed in Section3. Optimal orders of convergence
are proved for the eigenfunctions and the corresponding shear stresses. Finally, a double order of
convergence is proved for the eigenvalues and, hence, for the vibration frequencies. All these
error estimates are proved to be independent of the thickness of the rod, which allows us to con-
clude that the method is locking-free. In Section4, we report several numerical tests, which allow
an assessment of the performance of the lowest degree method. The experiments include different
geometries and even boundary conditions not covered by the theoretical analysis. All the tests show
optimal orders of convergence for all the variables. They also show that the method is completely
locking-free.
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182 E. HERNÁNDEZ ET AL.

2. The vibration problem for an elastic rod of arbitrary geometry

A curved rod in undeformed reference state is described by means of a smooth 3D curve, the ‘line
of centroids’, which passes through the centroids of cross-sections of the rod. These cross-sections
are initially plane and normal to the line of centroids. The curve is parameterized by its arc length
s ∈ I := [0, L], L being the total length of the curve.

We recall some basic concepts and definitions; for further details seeArunakirinathar & Reddy
(1993), for instance. We use standard notation for Sobolev spaces and norms.

The basis in which the equations are formulated is the ‘Frenet basis’ consisting oft, n and b,
which are the tangential, normal and binormal vectors of the curve, respectively. These vectors change
smoothly from point to point and form an orthogonal basis ofR3 at each point.

Let Sdenote a cross-section of the rod. We denote by(η, ζ ) the coordinates in the coordinate system
{n, b} of the plane containingS (see Fig.1).

The geometric properties of the cross-section are determined by the following parameters (recall
that the first moments of area,

∫
Sηdηdζ and

∫
Sζdηdζ, vanish, because the centre of coordinates is the

centroid ofS):

• area ofS: A :=
∫

S dηdζ;

• second moments of area with respect to the axisn, In :=
∫

Sζ
2dηdζ, andb, Ib :=

∫
Sη

2dηdζ;

• polar moment of area:J :=
∫

S(η
2 + ζ 2)dηdζ = In + Ib;

• Inb :=
∫

Sηζdηdζ.

These parameters are not necessarily constant, but they are assumed to vary smoothly along the rod.
For a nondegenerate rod,A is bounded above and below far from zero. Consequently, the same happens
for the area moments,In, Ib andJ.

REMARK 2.1 For any planar setS, there exists an orthogonal coordinate system, named the ‘set of
principal axes’, such thatInb vanishes when computed in these coordinates. For particularly symmetric
geometries ofS, for instance when the cross-section of the rod is a circle or a square,Inb vanishes in
any orthogonal coordinate system. However, in general, there is no reason forn andb to be principal

FIG. 1. Cross-section. Coordinate system.
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VIBRATION MODES OF A TIMOSHENKO CURVED ROD 183

axes, so thatInb doesnot necessarily vanish. In any case, it is straightforward to prove that the matrix:
(

In −Inb

−Inb Ib

)

is always positive definite.

Vector fields defined on the line of centroids will be always written in the Frenet basis:

v = v1t + v2n + v3b, with v1, v2, v3: I −→ R.

We emphasize thatv1, v2 andv3 arenot the components ofv in a fixed basis ofR3, but in the Frenet
basis{t, n, b}, which changes from point to point of the curve.

Sincet, n andb are smooth functions of the arc-length parameters, we have

v′ = v′
1t + v′

2n + v′
3b + v1t′ + v2n′ + v3b′.

If we denote

v̇ := v′
1t + v′

2n + v′
3b, (2.1)

then,by using the ‘Frenet–Serret formulas’ (see, for instance,Arunakirinathar & Reddy,1993), we have

v′ = v̇ + Γ tv, with Γ (s) :=






0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0




 ,

whereκ and τ are the curvature and the torsion of the rod, which are also smooth functions ofs.
Therefore,v = v1t + v2n + v3b ∈ H1(I)3 if and only ifvi ∈ L2(I) andv̇i ∈ L2(I), i = 1,2,3.

Sincewe will confine our attention to elastic rods clamped at both ends, we proceed as inArunakiri-
nathar & Reddy(1993) and consider

VVV := {v ∈ L2(I)3 : v̇ ∈ L2(I)3 andv(0)= v(L) = 000},

endowed with its natural norm

‖v‖1 :=
[∫ L

0
(|v|2 + |v̇|2)ds

]1/2

;

namely, VVV is the space of vector fields defined on the line of centroids such that their components in the
Frenet basis are in H10(I).

We will systematically use in what follows the total derivativev′ = v̇ + Γ tv. Sincet, n andb are
assumed to be smooth functions,‖v′‖0 is a norm onVVV equivalent to‖∙‖1 (seeArunakirinathar& Reddy,
1993, Theorem 3.1). This is the reason why we denote‖∙‖1 thenorm ofVVV . However, the total derivative
v′ shouldbe distinguished from the vectorv̇ of derivatives of the components ofv in the Frenet basis, as
defined by (2.1).

The kinematic hypotheses of Timoshenko are used for the problem formulation. The deformation
of the rod is described by the displacement of the line of centroids,u ∈ R3, and the rotation of the
cross-sections,θθθ ∈ R3. The physical properties of the rod are determined by the elastic and the shear

 at U
niversity of M

aryland on D
ecem

ber 9, 2013
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/
http://imajna.oxfordjournals.org/


184 E. HERNÁNDEZ ET AL.

moduli E andG, respectively, the shear correcting factorsk1 andk2 andthe volumetric densityρ, all
of them strictly positive coefficients. These coefficients are not necessarily constant; they are allowed to
vary along the rod, but they are also assumed to be smooth functions of the arc lengths.

We consider the problem of computing the free vibration modes of an elastic rod clamped at both
ends. The variational formulation of this problem consists in finding nontrivial(u, θθθ) ∈ WWW := VVV × VVV
andω > 0 such that

∫ L

0
Eθθθ ′ ∙ ψψψ ′ds+

∫ L

0
D(u′ − θθθ × t) ∙ (v′ − ψψψ × t)ds = ω2

(∫ L

0
ρAu ∙ vds+

∫ L

0
ρJθθθ ∙ ψψψ ds

)

∀ (v,ψψψ) ∈ WWW , (2.2)

whereω is the vibration frequency andu andθθθ are the amplitudes of the displacements and the rotations,
respectively (seeKaramiet al.,1990). The coefficientsD,E andJ are 3×3 matrices, which in the Frenet
basis are written as follows:

D :=






E A 0 0

0 k1GA 0

0 0 k2GA




 , E :=






G J 0 0

0 E In −EInb

0 −EInb EIb




 and J :=






J 0 0

0 In −Inb

0 −Inb Ib




.

In Karami et al. (1990), as in most references (Arunakirinathar & Reddy,1993;Chapelle,1997, for
instance), the Frenet basis is assumed to be a set of principal axes, so thatInb = 0 and the above three
matrices are diagonal. We do not make this assumption in this paper.

REMARK 2.2 The above vibration problem can be formally obtained from the 3D linear elasticity
equations as follows: according to the Timoshenko hypotheses, the admissible displacements at each
point ηn + ζb ∈ S (see Fig.1) are of the formu + θθθ × (ηn + ζb), with u, θθθ , n andb being functions
of the arc-length coordinates. Test and trial displacements of this form are taken in the variational
formulation of the linear elasticity equations for the vibration problem of the 3D rod. By integrating
over the cross-sections and multiplying the shear terms by correcting factorsk1 andk2, one arrives at
problem (2.2).

It is well known that standard finite-element methods applied to equations like (2.2) are subject to
‘numerical locking’: they lead to unacceptably poor results for very thin structures, unless the mesh size
is excessively small. This phenomenon is due to the different scales with respect to the thickness of the
rod of the two terms on the left-hand side of this equation. An adequate framework for the mathematical
analysis of locking is obtained by rescaling the equations in order to obtain a family of problems with a
well-posed limit as the thickness becomes infinitely small.

With this purpose, we introduce the following nondimensional parameter, characteristic of the thick-
ness of the rod:

d2 :=
1

L

∫ L

0

J

AL2
ds.

If we define

λ :=
ω2ρ

d2
, D̂ :=

1

d2
D, Ê :=

1

d4
E, Ĵ :=

1

d4
J and Â :=

A

d2
,
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VIBRATION MODES OF A TIMOSHENKO CURVED ROD 185

problem(2.2) can be equivalently written as follows: find nontrivial(u, θθθ) ∈ WWW andλ ∈ R such that
∫ L

0
Êθθθ ′ ∙ ψψψ ′ds+

1

d2

∫ L

0
D̂(u′ − θθθ × t) ∙ (v′ − ψψψ × t)ds = λ

(∫ L

0
Âu ∙ vds+ d2

∫ L

0
Ĵθθθ ∙ ψψψ ds

)
,

∀ (v,ψψψ) ∈ WWW .
(2.3)

The values of interest ofd are obviously bounded above, so we restrict our attention tod ∈ (0,dmax].
Thecoefficients of the matriceŝD, Ê and Ĵ, as well aŝA, are assumed to be functions ofs which do not
vary with d. This corresponds to considering a family of problems where the size of the cross-sections
are uniformly scaled byd at all point of the line of centroids, while their shapes as well as the geometry
of the curve and the material properties remain fixed.

REMARK 2.3 MatricesD̂, Ê and̂J are positive definite for alls ∈ I, the last two because of Remark2.1.
Moreover, since all the coefficients are continuous functions ofs, the eigenvalues of each of these
matrices are uniformly bounded below away from zero for alls ∈ I.

REMARK 2.4 The eigenvaluesλ of problem (2.3) are strictly positive because of the symmetry and the
positiveness of the bilinear forms on its left- and right-hand sides. The positiveness of the latter is a
straightforward consequence of Remark2.3, whereas that of the former follows from the ellipticity of
this bilinear form inWWW . This can be proved by using Remark2.3again and proceeding as in the proof
of Lemma 3.4 (a) fromArunakirinathar & Reddy(1993), where the same result appears for particular
constant coefficients (see alsoChapelle,1997, Proposition 1).

We introduce the scaled shear stressγγγ := 1
d2 D̂(u

′ − θθθ × t) to rewrite problem (2.3) as follows:

(Êθθθ ′, ψψψ ′)+ (γγγ , v′ − ψψψ × t) = λ[( Âu, v)+ d2(̂Jθθθ, ψψψ)] ∀ (v, ψψψ) ∈ WWW , (2.4)

γγγ =
1

d2
D̂(u′ − θθθ × t), (2.5)

where(∙, ∙) denotesthe L2(I)3 innerproduct.
To analyse this problem, we introduce the operator

T : L2(I)3 × L2(I)3 −→ L2(I)3 × L2(I)3,

definedby T(f, φφφ) := (u, θθθ), where(u, θθθ) ∈ WWW is the solution of the associated load problem

(Êθθθ ′, ψψψ ′)+ (γγγ , v′ − ψψψ × t) = (Âf, v)+ d2(̂Jφφφ,ψψψ) ∀ (v, ψψψ) ∈ WWW , (2.6)

γγγ =
1

d2
D̂(u′ − θθθ × t). (2.7)

Taking into account that (2.7) can be equivalently written as follows:

(u′ − θθθ × t, q)− d2(D̂−1γγγ , q)= 0 ∀ q ∈ QQQ := L2(I)3,

we note that the load problem falls with in the framework of the mixed formulations considered in
Brezzi & Fortin (1991). In this reference, the results fromArnold (1981) are extended to cover this
kind of problem. In particular, according toBrezzi & Fortin (1991, Theorem II.1.2), to prove the well
posedness it is enough to verify the classical properties of mixed problems:
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186 E. HERNÁNDEZ ET AL.

(i) ellipticity in the kernel:∃α > 0 such that

(Êψψψ ′, ψψψ ′) > α(‖v‖2
1 + ‖ψψψ‖2

1) ∀ (v,ψψψ) ∈ WWW 0,

whereWWW 0 := {(v, ψψψ) ∈ WWW : v′ − ψψψ × t = 0 in I};
(ii) inf–sup condition:∃β > 0 such that

sup
(000,000)6=(v,ψψψ)∈WWW

(q,v′ − ψψψ × t)
‖v‖1 + ‖ψψψ‖1

> β‖q‖0 ∀ q ∈ QQQ.

Property(i) has been proved inArunakirinathar & Reddy(1993, Lemma 3.6) for̂E being the identity
matrix. The extension tôE positive definite uniformly ins is quite straightforward. Property (ii) has been
proved inArunakirinathar & Reddy(1993, Lemma 3.7). An alternative, simpler proof of an equivalent
inf–sup condition appears inChapelle(1997, Proposition 2).

Therefore, according toBrezzi & Fortin (1991, Theorem II.1.2), problem (2.6)–(2.7) has a unique
solution(u, θθθ, γγγ ) ∈ WWW ×QQQ and this solution satisfies

‖u‖1 + ‖θθθ‖1 + ‖γγγ ‖0 6 C(‖f‖0 + d2‖φφφ‖0). (2.8)

Hereand what follows,C denotes a strictly positive constant, not necessarily the same at each occur-
rence, but always independent ofd and of the mesh sizeh, which will be introduced in Section3.

Because of the estimate above and the compact embedding H1(I) ↪→ L2(I), the operatorT is com-
pact. Moreover, by substituting (2.7) into (2.6), from the symmetry of the resulting bilinear forms, it is
immediate to show thatT is self-adjoint with respect to the ‘weighted’ L2(I)3 × L2(I)3 innerproduct in
the right-hand side of (2.6). Therefore, apart fromμ = 0, the spectrum ofT consists of a sequence of
finite-multiplicity real eigenvalues converging to zero, all with ascent one.

Note thatλ is a nonzero eigenvalue of problem (2.3) if and only ifμ := 1/λ is a nonzero eigenvalue
of T , with the same multiplicity and corresponding eigenfunctions. Recall that these eigenvalues are
strictly positive (cf. Remark2.4).

Next, we defineT0 by means of the limit problem of (2.6)–(2.7) asd → 0:

T0: L2(I)3 × L2(I)3 −→ L2(I)3 × L2(I)3,

whereT0(f, φφφ) := (u0, θθθ0) ∈ WWW is such that there existsγγγ 0 ∈ QQQ satisfying:

(Êθθθ ′
0, ψψψ

′)+ (γγγ 0, v
′ − ψψψ × t) = (Âf, v) ∀ (v,ψψψ) ∈ WWW , (2.9)

u′
0 − θθθ0 × t = 000. (2.10)

Theabove-mentioned existence and uniqueness results cover this problem as well.
Our next goal is to prove thatT converges toT0 asd goesto zero. With this purpose, we will use the

following a priori estimates for the solutions of problems (2.6)–(2.7) and (2.9)–(2.10), whose proof is
based on the same arguments as those used to prove Proposition 3 inChapelle(1997): if f, φφφ ∈ Hk−2(I)3,
k > 2, then

‖u‖k + ‖θθθ‖k + ‖γγγ ‖k−1 6 C(‖ f ‖k−2 + d2‖φφφ‖k−2), (2.11)

‖u0‖k + ‖θθθ0‖k + ‖γγγ 0‖k−1 6 C‖ f ‖k−2. (2.12)

In the following lemma and thereafter,‖∙‖1 denotesthe natural product norm inWWW = VVV × VVV .
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VIBRATION MODES OF A TIMOSHENKO CURVED ROD 187

LEMMA 2.5 There exists a constantC > 0, independent ofd, such that

‖(T − T0)( f, φφφ)‖1 6 Cd(‖ f ‖0 + d‖φφφ‖0) ∀ f, φφφ ∈ L2(I)3.

Proof. Givenf, φφφ ∈ L2(I)3, let (u, θθθ) := T(f, φφφ) and(u0, θθθ0) := T0( f, φφφ). Subtracting (2.9) from (2.6)
and (2.10) from (2.7), we have

(Ê(θθθ ′ − θθθ ′
0), ψψψ

′)+ (γγγ − γγγ 0, v
′ − ψψψ × t) = d2(̂Jφφφ,ψψψ) ∀ (v, ψψψ) ∈ WWW , (2.13)

γγγ =
1

d2
D̂(u′ − u′

0 − (θθθ − θθθ0)× t). (2.14)

Takingψψψ = θθθ − θθθ0 andv = u − u0, we obtain

(Ê(θθθ ′ − θθθ ′
0), θθθ

′ − θθθ ′
0) = d2(̂Jφφφ, (θθθ − θθθ0))− d2(γγγ − γγγ 0, γγγ ).

Using the ellipticity of the bilinear form on the left-hand side, Cauchy–Schwarz inequality, (2.11) and
(2.12), we have

‖θθθ − θθθ0‖
2
1 6 Cd2‖φφφ‖0‖θθθ − θθθ0‖0 + Cd2(‖γγγ ‖0 + ‖γγγ 0‖0)‖γγγ ‖0

6 Cd2‖φφφ‖0‖θθθ − θθθ0‖0 + Cd2(‖ f ‖0 + d2‖φφφ‖0)‖ f ‖0,

whence

‖θθθ − θθθ0‖1 6 Cd(‖ f ‖0 + d‖φφφ‖0). (2.15)

On the other hand, observe that from (2.14)

u′ − u′
0 = d2D̂−1γγγ + (θθθ − θθθ0)× t.

Hence,using (2.8) and Poincaré inequality, we obtain

‖u − u0‖1 6 Cd2(‖ f ‖0 + d‖φφφ‖0)+ ‖θθθ − θθθ0‖0,

which together with (2.15) allow us to end the proof. �
As a consequence of this lemma,T converges in norm toT0 asd goesto zero. Therefore, stan-

dard properties of separation of isolated parts of the spectrum (see, for instance,Kato, 1995) yield the
following result.

LEMMA 2.6 Let μ0 > 0 be an eigenvalue ofT0 of multiplicity m. Let D be any disc in the com-
plex plane centered atμ0 andcontaining no other element of the spectrum ofT0. Then, ford small
enough,D contains exactlym eigenvalues ofT (repeated according to their respective multiplicities).
Consequently, each eigenvalueμ0 > 0 of T0 is a limit of eigenvaluesμ of T , asd goes to zero.

Moreover, for any compact subsetK of the complex plane not intersecting the spectrum ofT0, there
existsdK > 0 such that for alld < dK , K doesnot intersect the spectrum ofT , either.
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3. Finite-element discretization

Two different finite-element discretizations of the load problem for Timoshenko curved rods have been
analysed inArunakirinathar & Reddy(1993) andChapelle(1997). The two methods differ in the vari-
ables being discretized: the components of vector fieldsv in the Frenet basis,v1, v2 andv3, are dis-
cretized by piecewise polynomial continuous functions in the former, whereas the discretized variable
is the vector fieldv = v1t + v2n + v3b in the latter. We follow the approach fromArunakirinathar &
Reddy(1993).

Consider a family{Th} of partitions of the interval I:

Th : 0 = s0 < s1 < ∙ ∙ ∙ < sn = L ,

with mesh size

h := max
j =1,...,n

(sj − sj −1).

We define the following finite-element subspaces ofVVV andQQQ, respectively:

VVV h := {v ∈ VVV : vi |[sj −1,sj ] ∈ Pr , j = 1, . . . , n, i = 1,2,3},

QQQh := {q ∈ QQQ : qi |[sj −1,sj ] ∈ Pr −1, j = 1, . . . , n, i = 1,2,3},

wherevi , i = 1,2,3, are the components ofv in the Frenet basis,Pk arethe spaces of polynomials of
degree lower than or equal tok andr > 1.

LetWWW h := VVV h ×VVV h. The following is the discrete vibration problem in mixed form: find nontrivial
(uh, θθθh, γγγ h) ∈ WWW h ×QQQh andλh ∈ R suchthat

(Êθθθ ′
h, ψψψ

′
h)+ (γγγ h, v

′
h − ψψψh × t) = λh[( Âuh, vh)+ d2(̂Jθθθh, ψψψh)] ∀ (vh, ψψψh) ∈ WWW h, (3.1)

(u′
h − θθθh × t, qh)− d2(D̂−1γγγ h, qh) = 0 ∀ qh ∈ QQQh. (3.2)

In the same manner as in the continuous case, we introduce the operator

Th : L2(I)3 × L2(I)3 −→ L2(I)3 × L2(I)3,

definedby Th( f, φφφ) := (uh, θθθh), where(uh, θθθh, γγγ h) ∈ WWW h × QQQh is the solution of the associated
discrete load problem

(Êθθθ ′
h, ψψψ

′
h)+ (γγγ h, v

′
h − θθθh × t) = (Âf, vh)+ d2(̂Jφφφ,ψψψh) ∀ (vh, ψψψh) ∈ WWW h, (3.3)

(u′
h − θθθh × t, qh)− d2(D̂−1γγγ h, qh) = 0 ∀ qh ∈ QQQh. (3.4)

This problem falls with in the framework of the discrete mixed formulations considered inBrezzi
& Fortin (1991, Section II.2.4). In order to apply the results from this reference, we have to verify the
following classical properties, forh small enough:

(i) ellipticity in the discrete kernel:∃α∗ > 0, independent ofh, such that

(Êψψψ ′
h, ψψψ

′
h) > α∗(‖vh‖2

1 + ‖ψψψh‖2
1) ∀ (vh, ψψψh) ∈ WWW 0h, (3.5)

whereWWW 0h := {(vh, ψψψh) ∈ WWW h : (qh, v
′
h − ψψψh × t) = 0 ∀ qh ∈ QQQh};
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(ii) discrete inf–sup condition:∃β∗ > 0, independent ofh, such that

sup
(000,000)6=(vh,ψψψh)∈WWW h

(qh, v
′
h − ψψψh × t)

‖vh‖1 + ‖ψψψh‖1
> β∗‖qh‖0 ∀ qh ∈ QQQh.

Property(i) has been proved inArunakirinathar & Reddy(1993, Lemma 4.2) for̂E the identity
matrix andh > 0 sufficiently small. The extension tôE positive definite uniformly ins is quite straight-
forward. Property (ii) has been also proved inArunakirinathar & Reddy(1993, Lemma 4.3) by means
of a laborious constructive procedure, which is not fully detailed in this reference. In what follows, we
provide an alternative, simpler proof, based on the arguments used byChapelle(1997, Lemma 3, Step
(ii)) for the discrete inf–sup condition arising from another discretization.

With this purpose, we will use the following lemma, which holds true as far as the rod is not a simple
straight beam and whose proof can be found inChapelle(1997, Lemma 1).

LEMMA 3.1 If t(s) is not a constant vector for alls ∈ I, then there exists a linear mapping

φφφ : R3 −→ C 1(I, R3),

x 7−→ φφφx,

suchthat, for anyx ∈ R3,

φφφx(0)= φφφx(L) = 000, (3.6)

∫ L

0
φφφx(s)× t(s)ds = x, (3.7)

‖φφφx‖C 1(I,R3) 6 C|x|. (3.8)

Note that the tangent vectort is constant throughout the length of the rod if and only if the rod
is actually a straight beam. The finite-element scheme is perfectly well fitted in this case too (see the
numerical results reported in Section4.1below). However, in such a case, the inf–sup condition in the
following lemma must be proved by adapting the arguments used inArnold (1981, p. 414), where a
similar condition has been proved in a 2D simpler framework. For a curved rod, the following result
holds.

LEMMA 3.2 For h small enough, there existsβ∗ > 0, independent ofh, such that

sup
(000,000)6=(vh,ψψψh)∈WWW h

(qh, v
′
h − ψψψh × t)

‖vh‖1 + ‖ψψψh‖1
> β∗

∥
∥qh

∥
∥

0 ∀ qh ∈ QQQh.

Proof. Givenqh ∈ QQQh, let v ∈ H1(I)3 bethe solution of the following initial-value problem:
{

v′ ≡ v̇ + Γ tv = qh, in I,

v(0)= 000.

Sincev(0)= 000, Poincaŕe inequality leads to‖v‖0 6 C‖v′‖0. Hence,

‖v‖1 = (‖v‖2
0 + ‖v̇‖2

0)
1/2 6 C‖qh‖0. (3.9)
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190 E. HERNÁNDEZ ET AL.

Let v̂ := v̂1t + v̂2n + v̂3b, with

v̂i (s) :=
∫ s

0
Πv′

i (σ )dσ, 06 s6 L , i = 1,2,3,

wherevi arethe components ofv in the Frenet basis andΠ is the L2(I)-orthogonalprojection onto

Qh := {q ∈ L2(I) : q|[sj −1,sj ] ∈ Pr −1, j = 1, . . . , n}.

Clearly v̂′
i = Πv′

i andv̂i (0)= 0, so that, from Poincaré inequality, the boundedness ofΠ and (3.9),

‖̂v‖1 6 C

(
3∑

i =1

‖Πv′
i ‖

2
0

)1/2

6 C

(
3∑

i =1

‖v′
i ‖

2
0

)1/2

6 C‖qh‖0. (3.10)

Now, for all pointssj of the partitionTh, we have

v̂i (sj )− vi (sj ) =
∫ sj

0
[Πv′

i (σ )− v′
i (σ )]dσ = 0,

because the characteristic function of the interval [0,sj ] belongs toQh. Therefore, from Cauchy–
Schwarz inequality, we have, for alls ∈ [sj , sj +1],

|̂vi (s)− vi (s)|
2 =

∣
∣
∣
∣
∣

∫ s

sj

[Πv′
i (σ )− v′

i (σ )]dσ

∣
∣
∣
∣
∣

2

6 |s − sj |
∫ sj +1

sj

|Πv′
i (σ )− v′

i (σ )|
2dσ.

By integrating on [sj , sj +1] and summing forj = 0, . . . ,n − 1, we obtain

‖̂vi − vi ‖
2
0 6

h2

2
‖Πv′

i − v′
i ‖

2
0 6 h2‖v′

i ‖
2
0,

which together with (3.9) yield

‖̂v − v‖0 6 h‖v̇‖0 6 Ch‖qh‖0. (3.11)

On the other hand, sincêv′
i = Πv′

i and the components ofqh belongto Qh, according to the
definition (2.1) ofv̇ and ˙̂v, we have

(qh, ˙̂v)= (qh, v̇)= (qh, v
′)− (qh, Γ

tv),

which together with the definition ofv leads to

(qh, v̂
′) = (qh, ˙̂v)+ (qh, Γ

t̂v)= (qh, v
′)+ (qh, Γ

t(̂v − v))= ‖qh‖2
0 + (qh, Γ

t(̂v − v)).

Thus,from (3.11), we obtain

(qh, v̂
′) > (1 − Ch)‖qh‖2

0. (3.12)

Accordingto the definition,̂vi arepiecewisePr continuousfunctions vanishing ats = 0. However,
in general,̂v(L) 6= 000, so that̂v /∈ VVV h. Because of this, we resort to Lemma3.1.
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Let x := −̂v(L) andφφφx beas in Lemma3.1. From (3.8) and (3.10), we have

‖φφφx‖1 6 C‖φφφx‖C 1(I,R3) 6 C|x| 6 C‖̂v‖1 6 C‖qh‖0.

Let

w(s) :=
∫ s

0
φφφx(σ )× t(σ )dσ, 06 s6 L .

Clearly,w(0)= 000 andw′ = φφφx × t. Hence, from Poincaré inequality,

‖w‖1 6 C‖w′‖0 6 C‖φφφx‖0 6 C‖qh‖0.

Let φφφI
x andwI be the vector fields whose components in the Frenet basis are the Lagrange inter-

polants of degreer of the respective components ofφφφx andw in the same basis. Standard properties of
the 1D Lagrange interpolant yield

‖φφφI
x‖1 6 C‖φφφx‖1 6 C‖qh‖0 and ‖wI‖1 6 C‖w‖1 6 C‖qh‖0, (3.13)

aswell as

‖φφφx − φφφI
x‖0 6 Ch‖φ̇φφx‖0 6 Ch‖qh‖0,

‖(wI − w)′‖0 6 ‖(wI − w)̇ ‖0 + ‖Γ t(wI − w)‖0 6 Ch(‖ẅ‖0 + ‖ẇ‖0) 6 Ch‖qh‖0.

Thelatter holds becausëw = (w′ − Γ tw)̇ = (φφφx × t)̇− (Γ tw)̇ and,consequently,‖ẅ‖0 6 C(‖φφφx‖1 +
‖w‖1). Therefore,

|(qh, (w
I)′ − φφφI

x × t)| = |(qh, (w
I − w)′)+ (qh, (φφφx − φφφI

x)× t)| 6 Ch‖qh‖
2
0. (3.14)

Finally, let vh := v̂+ wI andψψψh := φφφI
x. Because of (3.6) and (3.7), both belong toWWW h. From (3.10)

and (3.13), we have

‖vh‖1 + ‖ψψψh‖1 6 C‖qh‖0,

whereasfrom (3.12) and (3.14),

(qh, v
′
h − ψψψh × t) > (1 − Ch)‖qh‖2

0. (3.15)

Thelast two inequalities allow us to conclude the lemma. �

REMARK 3.3 The proof of the inf–sup condition in the previous lemma needsh to be sufficiently small,
in order to have 1−Ch> 0 in (3.15). A similar condition is assumed in the proofs ofArunakirinathar &
Reddy(1993, Lemma 4.3) andChapelle(1997, Lemma 3). The same assumption is made inArunakiri-
nathar & Reddy(1993, Lemma 4.2) as well, to prove the ellipticity in the discrete kernel property (3.5).
Because of this,h will be assumed to be small enough in all the following theorems. However, this
hypothesis seems to be a technicality. In fact, we have not observed a need for this assumption in any of
the numerical experiments reported in Section4 below.

Now we are in a position to prove thatTh is well defined and converges toT ash → 0.
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192 E. HERNÁNDEZ ET AL.

THEOREM 3.4 For sufficiently smallh > 0, problem (3.3)–(3.4) has a unique solution(uh, θθθh, γγγ h) ∈
WWW h ×QQQh. This solution satisfies

‖uh‖1 + ‖θθθh‖1 + ‖γγγ h‖0 6 C(‖ f ‖0 + d2‖φφφ‖0), (3.16)

whereC > 0 is independent ofh andd.
Let (u, θθθ, γγγ ) ∈ WWW ×QQQ be the solution of problem (2.6)–(2.7). Iff, φφφ ∈ Hk−1(I)3, 16 k 6 r , then

‖u − uh‖1 + ‖θθθ − θθθh‖1 + ‖γγγ − γγγ h‖0 6 Chk(‖ f ‖k−1 + d2‖φφφ‖k−1), (3.17)

‖u − uh‖0 + ‖θθθ − θθθh‖0 6 Chk+1(‖ f ‖k−1 + d2‖φφφ‖k−1), (3.18)

with C > 0 independent ofh andd.

Proof. By virtue of (3.5) and Lemma3.2, the well-posedness of problem (3.3)–(3.4) as well as the error
estimate (3.17) are consequences of Proposition II.2.11 fromBrezzi & Fortin(1991). On the other hand,
(3.18) is obtained by adapting to our case the duality argument used to prove Theorem 2 fromChapelle
(1997). �

By adding (3.3) and (3.4), from the symmetry of the resulting bilinear forms, it is immediate to show
thatTh is self-adjoint with respect to the weighted L2(I)3×L2(I)3 innerproduct in the right-hand side of
(3.3). Therefore, apart fromμh = 0, the spectrum ofTh consistsof a finite number of finite-multiplicity
real eigenvalues with ascent one.

Once more, the spectrum of the operatorTh is related with the eigenvalues of the spectral prob-
lem (3.1)–(3.2):λh is a nonzero eigenvalue of this problem if and only ifμh := 1/λh is a nonzero
eigenvalue ofTh, with the same multiplicity and corresponding eigenfunctions. These eigenvalues are
strictly positive. Indeed, by takingvh = uh, ψψψh = θθθh andqh = γγγ h in problem (3.1)–(3.2), by subtract-
ing the second equation from the first one, we have

λh =
(Êθθθ ′

h, θθθ
′
h)+ d2(D̂−1γγγ h, γγγ h)

(Âuh, uh)+ d2(̂Jθθθh, θθθh)
> 0.

Moreover, the eigenvalues cannot vanish. In fact, according to the expression above, sinceÊ and D̂
are positive definite (see Remark2.3), λh = 0 would imply γγγ h = 0. Then, (3.2) would imply that
(uh, θθθh) ∈ WWW 0h and,hence,uh andθθθh would vanish too because of (3.5).

Our aim is to use the spectral theory for compact operators (seeBabǔska & Osborn,1991, for
instance) to prove convergence of the eigenvalues and eigenfunctions ofTh towards those ofT . However,
some further considerations will be needed to show that the error estimates do not deteriorate asd
becomes small. With this purpose, we will use the following result:

‖(T − Th)( f, φφφ)‖1 6 Ch(‖ f ‖0 + d2‖φφφ‖0), (3.19)

which follows from (3.17) withk = 1. As a consequence of this estimate,Th converges in norm toT
ash goes to zero. Hence, standard results of spectral approximation (see for instanceKato,1995) show
that if μ is an eigenvalue ofT with multiplicity m, then exactlym eigenvaluesμ(1)h , . . . , μ

(m)
h of Th

(repeatedaccording to their respective multiplicities) converge toμ.
The estimate above can be improved when the source term is an eigenfunction(u, θθθ) of T . Indeed,

in such a case, the same arguments used to prove (2.11) allow us to show that, for allk > 2 andd
sufficiently small, we have

‖u‖k + ‖θθθ‖k + ‖γγγ ‖k−1 6 C(‖u‖0 + d2‖θθθ‖0), (3.20)
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with C dependingon k and on the eigenvalue ofT associated with(u, θθθ). Note that, in principle, the
constantC should depend also ond, because the eigenvalue does so. However, according to Lemma2.6,
for d sufficiently small we can chooseC independent ofd. Hence, from (3.17)–(3.18) withk = r , we
obtain

‖(T − Th)(u, θθθ)‖1 6 Chr ‖(u, θθθ)‖1, (3.21)

‖(T − Th)(u, θθθ)‖0 6 Chr +1‖(u, θθθ)‖0. (3.22)

Hereand hereafter,‖∙‖0 denotesthe standard product norm in L2(I)3 × L2(I)3.
We remind zaders of the definition of the ‘gap’ or symmetric distanceδ̂k betweenclosed subspaces

YYY andZZZ of WWW in norm‖∙‖k, k = 0,1:

δ̂k(YYY ,ZZZ ) := max{δk(YYY ,ZZZ ), δk(ZZZ ,YYY )},

with

δk(YYY ,ZZZ ) := sup
(v,ψψψ)∈YYY

‖(v,ψψψ)‖k=1

[

inf
(̂v,ψ̂ψψ)∈ZZZ

‖(v − v̂,ψψψ − ψ̂ψψ)‖k

]

.

For the sake of simplicity, we state our results for eigenvalues ofT converging to a simple eigenvalue
of T0 asd → 0 (at the end of this section, we will discuss this assumption). The following theorem yields
d-independent error estimates for the approximate eigenvalues and eigenfunctions.

THEOREM 3.5 Let μ be an eigenvalue ofT converging to a simple eigenvalueμ0 of T0 asd tends
to zero. Letμh be the eigenvalue ofTh that converges toμ ash tends to zero. LetEEE andEEE h be the
corresponding eigenspaces. Then, ford andh small enough

δ̂1(EEE ,EEE h) 6 Chr , (3.23)

δ̂0(EEE ,EEE h) 6 Chr +1, (3.24)

|μ− μh| 6 Chr , (3.25)

with C > 0 independent ofd andh.

Proof. The estimates are direct consequences of (3.21)–(3.22) and Theorems 7.1 and 7.2 fromBabǔska
& Osborn(1991), in all cases withC depending on the constants in (3.21)–(3.22) and on the inverse of
the distance fromμ to the rest of the spectrum ofT . Now using Lemma2.6, we see that ford small
enough, this distance is bounded below in terms of the distance fromμ0 to the rest of the spectrum of
T0, which obviously depends neither ond nor onh. This allows us to conclude the proof. �

This theorem yields optimal-order error estimates for the approximate eigenfunctions in norms‖∙‖1
and‖∙‖0. In fact, the theorem implies that the eigenfunctions(u, θθθ) of T and (uh, θθθh) of Th, corre-
sponding to the eigenvaluesμ andμh, respectively, can be chosen normalized in‖∙‖k, k = 0,1, and
so that

‖u − uh‖1 + ‖θθθ − θθθh‖1 6 Chr (k = 1), (3.26)

‖u − uh‖0 + ‖θθθ − θθθh‖0 6 Chr +1 (k = 0), (3.27)
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which are the optimal orders for the finite elements used. Instead, the order of the error estimate (3.25)
is not optimal. To improve this result, we will have to study first the convergence of the shear stresses of
the vibration modes.

LEMMA 3.6 Let μ andμh be as in Theorem3.5. Let (u, θθθ, γγγ ) be a solution of problem (2.4)–(2.5)
with λ = 1

μ , and(uh, θθθh, γγγ h) a solution of problem (3.1)–(3.2) withλh = 1
μh

, such that‖(u, θθθ)‖1 =
‖(uh, θθθh)‖1 = 1 and (3.26) holds true. Then, ford andh small enough

‖γγγ − γγγ h‖0 6 Chr ,

with C > 0 independent ofd andh.

Proof. From (3.1) and (2.4), we have, for all(vh, ψψψh) ∈ WWW h,

(γγγ − γγγ h, v
′
h − ψψψh × t) = λ[( Â(u − uh), vh)+ d2(̂J(θθθ − θθθh), ψψψh)]

+ (λ− λh)[( Âuh, vh)+ d2(̂Jθθθh, ψψψh)] − (Ê(θθθ ′ − θθθ ′
h), ψψψ

′
h)

6 Chr (‖vh‖1 + ‖ψψψh‖1),

wherewe have used (3.25) and (3.26) for the last inequality. Note that the constantC depends on the
eigenvalueλ, but not ond or h, for d small enough (Lemma2.6). Using this estimate, we have, for all
γ̂γγ ∈ QQQh andfor all (vh, ψψψh) ∈ WWW h,

(γ̂γγ − γγγ h, v
′
h − ψψψh × t) 6 (γ̂γγ − γγγ , v′

h − ψψψh × t)+ Chr (‖vh‖1 + ‖ψψψh‖1).

Therefore,from Lemma3.2we have, for all̂γγγ ∈ QQQh,

β∗‖γ̂γγ − γγγ h‖0 6 sup
(000,000)6=(vh,ψψψh)∈WWW h

(γ̂γγ − γγγ h, v
′
h − ψψψh × t)

‖vh‖1 + ‖ψψψh‖1
6 C(‖γ̂γγ − γγγ ‖0 + hr ).

Hence,if we choosêγγγ as the L2(I)3-projectionof γγγ ontoQQQh, the theorem follows from the triangular
inequality, standard error estimates of the projection and (3.20). �

Now we are in a position to prove an optimal order of convergence for the approximate eigenval-
ues by adapting to our problem a standard argument for variationally posed eigenvalue problems (see
Babǔska & Osborn, 1991, Lemma 9.1, for instance).

THEOREM 3.7 Let λ = 1
μ andλh = 1

μh
, with μ andμh asin Theorem3.5. Then, ford andh small

enough

|λ− λh| 6 Ch2r , (3.28)

with C > 0 independent ofd andh.

Proof. LetAd andBd denotethe symmetric and continuous bilinear forms defined inWWW ×QQQ as

Ad((u, θθθ, γγγ ), (v, ψψψ, q)) := (Êθθθ ′, ψψψ ′)+ (γγγ , v′ − ψψψ × t)+ (u′ − θθθ × t, q)− d2(D̂−1γγγ , q),

Bd((u, θθθ, γγγ ), (v, ψψψ, q)) := (Âu, v)+ d2(̂Jθθθ, ψψψ).

Using this notation, problems (2.4)–(2.5) and (3.1)–(3.2) are, respectively, written as follows:

Ad((u, θθθ, γγγ ), (v, ψψψ, q))= λBd((u, θθθ, γγγ ), (v, ψψψ, q)) ∀ (v, ψψψ) ∈ WWW ∀ q ∈ QQQ;

Ad((uh, θθθh, γγγ h), (vh, ψψψh, qh)) = λhBd((uh, θθθh, γγγ h), (vh, ψψψh, qh)) ∀ (vh, ψψψh) ∈ WWW h ∀ qh ∈ QQQh.

Considereigenfunctions satisfying‖(u, θθθ)‖1 = ‖(uh, θθθh)‖1 = 1 and (3.26).
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Fromthe symmetry of the bilinear forms, straightforward computations lead to

(λ− λh)Bd((uh, θθθh, γγγ h), (uh, θθθh, γγγ h))

= λBd((u − uh, θθθ − θθθh, γγγ − γγγ h), (u − uh, θθθ − θθθh, γγγ − γγγ h))

−Ad((u − uh, θθθ − θθθh, γγγ − γγγ h), (u − uh, θθθ − θθθh, γγγ − γγγ h)).

By using (3.16) withf = λhuh andφφφ = λhθθθh, we have

Bd((uh, θθθh, γγγ h), (uh, θθθh, γγγ h)) > C(‖uh‖2
0 + d2‖θθθh‖2

0) >
C

λ2
h

(‖uh‖
2
1 + ‖θθθh‖2

1) =
C

λ2
h

.

Hence,from the continuity of the bilinear forms, we obtain

|λ− λh| 6 C(‖u − uh‖1 + ‖θθθ − θθθh‖1 + ‖γγγ − γγγ h‖0)
2,

with C dependingonλ andλh, but neither ond nor onh, for d andh sufficiently small (Lemma2.6and
(3.25)). Thus, (3.26) and Lemma3.6allow us to conclude the proof. �

The last two theorems have been settled for eigenvalues ofT converging to simple eigenvalues of
T0 asd → 0. A multiple eigenvalue ofT0 usuallyarises because of symmetries in the geometry of the
rod; in such a case, the eigenvalue ofT converging to it has the same multiplicity. The proofs of these
theorems extend trivially to cover this case.

Instead, ifT0 hada multiple eigenvalue not due to symmetry reasons, it could split into different
eigenvalues ofT . In this case, the proofs of the theorems above do not provide estimates independent
of the thickness. In fact, the constants therein might in principle blow up as the distance between the
eigenvalues becomes smaller.

However, by combining Lemma2.5and (3.19) we have

‖(Th − T0)( f, φφφ)‖1 6 C(d + h)(‖ f ‖0 + d2‖φφφ‖0) ∀ f, φφφ ∈ L2(I)3.

This estimate can be used to prove spectral convergence asd andh both converge to zero. In fact, ifμ0

is an eigenvalue ofT0 with multiplicity m, then there exist exactlym eigenvaluesμ(1)h , . . . , μ
(m)
h of Th

(repeatedaccording to their respective multiplicities) converging toμ0 asd andh go to zero (see again
Kato, 1995). LetEEE 0 be the eigenspace ofT0 correspondingto μ0 andlet EEE h be the direct sum of the
eigenspaces ofTh correspondingtoμ(1)h , . . . , μ

(m)
h . Then, by proceeding as in the proof of Theorem3.5,

we obtain

δ̂1(EEE 0,EEE h) 6 C(d + hr ),

δ̂0
(
EEE 0,EEE h

)
6 C(d + hr +1).

Moreover, the arguments in the proofs of Lemma3.6and Theorem3.7can be easily adapted to take into
account some additionalO(d2) terms,leading to similar results. In particular, the following estimate
holds true forλ0 = 1

μ0
andλ( j )

h = 1
μ
( j )
h

:

|λ0 − λ
( j )
h | 6 C(d2 + h2r ), j = 1, . . . ,m.
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196 E. HERNÁNDEZ ET AL.

4. Numerical results

We report in this section the results of some numerical tests computed with a MATLAB code imple-
menting the finite-element method described above. We have used the lowest possible order:r = 1;
namely, piecewise linear continuous elements for the displacementsuh andthe rotationsθθθh andpiece-
wise constant discontinuous elements for the shear stressesγγγ h.

We have computed the vibration modes with lowest frequenciesωh :=
√
λh for straight, circular and

helical rods, with different sections, thickness and boundary conditions. To help identify the different
modes, we report 2D plots of the computed components of displacements and rotations in the Frenet
basis, as well as the 3D deformed rods. For the latter, we have used MODULEF to create an auxiliary
hexahedral mesh of the actual 3D rod and the displacements at each node of this auxiliary mesh have
been computed fromuh andθθθh asdescribed in Remark2.2. The resulting deformed rods have also been
plotted with MODULEF.

In all cases, we have computed the lowest vibration frequenciesωh
1 < ωh

2 < ωh
3 < ∙ ∙ ∙ by using

uniform meshes ofN elements, with different values ofN. Also, in all cases we have used the following
physical parameters, which correspond to steel:

• elastic moduli:E = 2.1 × 106 kgf/cm2 (1kgf = 980 kg cm/s2);

• Poissoncoefficient:ν = 0.3 (G = E/[2(1 + ν)]);

• density:ρ = 7.85× 10−3 kg/cm3;

• correctionfactors:k1 = k2 = 1.

4.1 Test 1: a straight beam

The aim of this first test is to validate the computer code by solving a problem with a known analytical
solution. With this purpose, we have computed the vibration modes of a beam (i.e. a straight rod, which
corresponds toκ = τ = 0). We have taken the beam clamped at both ends, with a total lengthL =
120 cm, and a square cross-section of side lengthb = 20 cm. Therefore, the nondimensional thickness
parameter is in this cased = 0.068. Figure2 shows the undeformed beam.

To estimate the order of convergence of the method, we have compared the computed vibration
frequencies with the closed form solution given inHuang(1961) for the flexural modes. The analytical
solutions of the torsional and axial modes have been obtained by means of straightforward algebraic
manipulations.

Table1 shows the lowest vibration frequencies computed on successively refined meshes. It also
includes the computed orders of convergence and the corresponding exact vibration frequenciesωex.
Finally ‘d’ and ‘s’ point out if the vibration frequencies correspond to double or simple eigenvalues,
respectively.

Figures3–5show the lowest-frequency vibration modes. Those corresponding to the frequenciesω1
andω3 areflexural modes, whereas that corresponding to the frequencyω2 is torsional. For each mode,
the figures show the components in the Frenet basis of the displacements,u, and the rotations,θθθ , as well
as the deformed beam.

As indicated in Table1, ω1 andω3 correspondto double-multiplicity eigenvalues. The planar vi-
bration modes shown in Figs3 and5 only involve deformations in the plane spanned byt andn. The
eigenspaces of each of these eigenvalues also contain other planar vibration modes involving deforma-
tions in the plane spanned byt andb. They are not shown because they are exactly the same as those in
Figs3 and5, rotated by 90◦ with respect to the axist.
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VIBRATION MODES OF A TIMOSHENKO CURVED ROD 197

FIG. 2. Undeformed straight beam.

TABLE 1 Angular vibration frequencies of a straightbeam

Mode N = 16 N = 32 N = 64 N = 128 Order ωex d/s

ωh
1 4034.05 4005.16 3997.99 3996.20 2.00 3995.61 d

ωh
2 8326.58 8316.57 8314.06 8313.44 2.00 8313.22 s

ωh
3 9818.49 9656.86 9617.04 9607.11 2.01 9603.80 d

ωh
4 13426.22 13410.07 13406.03 13405.03 2.00 13404.69 s

ωh
5 17101.68 16639.02 16525.57 16497.37 2.01 16487.94 d

ωh
6 16733.53 16653.17 16633.13 16628.13 2.00 16626.47 s

4.2 Test 2: a helical rod

The aim of this test is to apply the finite-element method to a more general curved nonplanar rod with
nonvanishing curvature and torsion. We have considered a helix with eight turns, clamped at both ends.
The equation of the helix centroids line parametrized by its arc length is as follows:

r(s) =
(

Acos
s

n
, Asin

s

n
,C

s

n

)
, with n =

√
A2 + C2, (4.1)

the curvature isκ = A/n2, the torsionτ = C/n2 and the length of the eight-turns helix isL = 8×2πn.
We have takenA = 100 cm,C = 25/π cm and a square of side lengthb = 20 cm as the cross-section of
the rod. Thus, the thickness parameter is in this cased = 0.0016. Figure6 shows the undeformed helix.

Since no analytical solution is available for this rod, we have estimated the order of convergence by
means of a least squares fitting of the model

ωh
j ≈ ωex + Cht .

Table2 shows the lowest vibration frequencies computed on successively refined meshes. It also in-
cludes the computed orders of convergencet and the ‘exact’ vibration frequenciesωex, obtained with
this fitting.
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198 E. HERNÁNDEZ ET AL.

FIG. 3. Straight beam. Vibration mode of frequencyω1. Displacements and rotations (left). Deformed beam (right).

FIG. 4. Straight beam. Vibration mode of frequencyω2. Displacements and rotations (left). Deformed beam (right).

Figures7–9show the lowest frequency vibration modes. The first one is a typical spring mode, the
second one is an extensional mode and the third one is a kind of ‘phone rope’ vibration mode.

4.3 Test 3: a rod with principal axes not coinciding with the Frenet basis

The aim of this test is to apply the finite-element method to a rod in which the Frenet basis is not a set of
principal axes, so that the off-diagonal term of the inertia matrixInb does not vanish (see Remark2.1).
With this purpose, we have considered a semicircular rod clamped at both ends, with radius of the
centroids lineR = 50 cm (curvature:κ = 1/R, torsion:τ = 0, length:L = πR). The cross-section of
the rod is the parallelogramSshown in Fig.10. In this cased = 0.025.
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VIBRATION MODES OF A TIMOSHENKO CURVED ROD 199

FIG. 5. Straight beam. Vibration mode of frequencyω3. Displacements and rotations (left). Deformed beam (right).

FIG. 6. Undeformed helical rod.

TABLE 2 Angular vibration frequencies of a helical rod

Mode N = 1024 N = 2048 N = 3072 N = 4096 Order ωex

ωh
1 15.9146 15.9104 15.9096 15.9094 1.97 15.9090

ωh
2 18.2507 18.2497 18.2495 18.2494 1.94 18.2493

ωh
3 19.0345 18.9807 18.9707 18.9672 1.99 18.9626

ωh
4 19.2888 19.2359 19.2260 19.2226 1.99 19.2181

ωh
5 31.4845 31.4813 31.4807 31.4805 1.97 31.4802

ωh
6 35.5888 35.4752 35.4540 35.4466 1.99 35.4369
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200 E. HERNÁNDEZ ET AL.

FIG. 7. Helical rod. Vibration mode of frequencyω1. Displacements and rotations (left). Deformed helix (right).

FIG. 8. Helical rod. Vibration mode of frequencyω2. Displacements and rotations (left). Deformed helix (right).

Figure11shows the undeformed rod, seen from two different observation points.
Table3 shows the lowest vibration frequencies computed on successively refined meshes. It also

includes the computed orders of convergence and the exact vibration frequenciesωex, obtained again by
a least squares fitting.

Figures12and13show the lowest-frequency vibration modes.

4.4 Test 4: a free ring

The aim of this test is to assess the performance of the finite-element method applied to rods subject to
boundary conditions different from those used to prove the theoretical results of the previous sections. In
particular, we consider a free ring, namely, a circular rod whose centroids line is a whole circle subject
to periodical boundary conditions.
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VIBRATION MODES OF A TIMOSHENKO CURVED ROD 201

FIG. 9. Helical rod. Vibration mode of frequencyω3. Displacements and rotations (left). Deformed helix (right).

FIG. 10. Cross-section of the semicircular rod.

FIG. 11. Undeformed semicircular rod seen from two observation points.

The radius of the centroids line has been taken again asR = 50 cm (curvature:κ = 1/R, torsion:
τ = 0, length:L = 2πR) and the cross-section a square of side lengthb = 5π cm. Hence,d = 0.0204.
Figure14shows the undeformed ring.

In this case, 0 is an eigenvalue of the continuous and the discrete problems, both with multiplicity 6.
The corresponding eigenspace is in both cases the set of admissible rigid motions. Table4 presents the
lowest positive vibration frequencies, computed on successively refined meshes. The table also includes
computed orders of convergence and extrapolated exact vibration frequenciesωex obtained by least
squares fitting. Finally, d and s point out whether the vibration frequencies correspond to double or
simple eigenvalues, respectively.
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202 E. HERNÁNDEZ ET AL.

TABLE 3 Angular vibration frequencies of a semicircular rod

Mode N = 32 N = 64 N = 128 N = 256 Order ωex

ωh
1 836.09 832.71 831.84 831.65 2.00 831.55

ωh
2 1446.95 1435.02 1432.05 1431.29 2.01 1431.07

ωh
3 3065.13 3024.53 3014.48 3011.97 2.01 3011.16

ωh
4 3186.88 3164.30 3158.70 3157.29 2.01 3156.85

ωh
5 5359.50 5252.03 5225.64 5219.10 2.02 5216.94

ωh
6 6072.41 6011.77 5996.62 5992.80 2.00 5991.55

FIG. 12. Semicircular rod. Vibration mode of frequencyω1. Displacements and rotations (left). Deformed rod (right).

FIG. 13. Semicircular rod. Vibration mode of frequencyω2. Displacements and rotations (left). Deformed rod (right).
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VIBRATION MODES OF A TIMOSHENKO CURVED ROD 203

FIG. 14. Undeformed ring.

TABLE 4 Angular vibration frequencies of a freering

Mode N = 64 N = 128 N = 256 N = 512 Order ωex d/s

ωh
1 2310.12 2294.90 2291.12 2290.15 2.00 2289.83 d

ωh
2 2371.63 2358.77 2355.54 2354.73 2.00 2354.48 d

ωh
3 6255.36 6195.63 6180.79 6177.06 2.01 6175.84 d

ωh
4 6345.58 6288.95 6274.89 6271.38 2.01 6270.23 d

ωh
5 7241.09 7241.09 7241.09 7241.09 — 7241.09 s

ωh
6 9532.42 9531.20 9530.89 9530.79 2.00 9530.79 d

ωh
7 10240.41 10240.41 10240.41 10240.41 — 10240.41 s

ωh
8 11305.06 11147.82 11108.91 11099.20 2.01 11095.98 d

It can be seen from Table4 that the computed fifth and seventh vibration frequencies coincide for
all meshes. The fifth one corresponds to a purely torsional mode: a constant rotation with respect to the
tangential vector. For this mode,θ1 is constant andθ2, θ3 and all the components ofu vanish (see Fig.17
below). On the other hand, the seventh mode corresponds to a constant radial expansion of the whole
ring, for whichu2 is constant andu1, u3 andθθθ vanish. In both cases, the vibration modes can be exactly
represented in the finite-element space for any mesh. This is the reason why the computed results are
exact, even for the coarser meshes.

Figures15–17show some of the vibration modes.

4.5 Test 5: assessing the locking-free property of the method

The aim of this final test is to assess the performance of the finite- element method as the nondimensional
thickness parameterd approaches zero. With this purpose, we have computed the lowest frequency
vibration modes for several rods, all with identical geometrical parameters, except ford, which takes
different values approaching zero.

We have considered again a helix clamped at both ends. The centroids line is given by4.1, now
with A = 100 cm andC = 100 cm (curvature:κ = A/n2, torsion:τ = C/n2). The length of the helix
has been taken asL = πn, which corresponds to half a turn. The section is a square of side length
chosen so that the parameterd varies from 10−1 to 10−4. Figure18 shows the undeformed helix for
d = 0.02.

Tables5 and6 show the lowest computed rescaled eigenvaluesλ
( j )
h := (ωh

j )
2ρ/d2 ( j = 1 and 2,

respectively) for different values ofd and successively refined meshes. According to Lemma2.6 and
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204 E. HERNÁNDEZ ET AL.

FIG. 15. Free ring. Vibration mode of frequencyω1. Displacements and rotations (left). Deformed rod (right).

FIG. 16. Free ring. Vibration mode of frequencyω2. Displacements and rotations (left). Deformed rod (right).

FIG. 17. Free ring. Vibration mode of frequencyω5. Displacements and rotations (left). Deformed rod (right).
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FIG. 18. Undeformed helical rod.

TABLE 5 Lowest rescaled eigenvalueλ(1)h × 10−6 for helical rods of different
thickness

d N = 32 N = 64 N = 96 N = 128 Order λex × 10−6 C

10−1 1.2706 1.2618 1.2602 1.2596 2.00 1.2589 60.76
10−2 2.0568 2.0374 2.0339 2.0326 2.01 2.0310 130.34
10−3 2.0702 2.0506 2.0470 2.0457 2.01 2.0442 131.32
10−4 2.0704 2.0508 2.0472 2.0459 2.01 2.0443 131.32

TABLE 6 Second lowest rescaled eigenvalueλ(2)h ×10−6 for helical rods of different
thickness

d N = 32 N = 64 N = 96 N = 128 order λex × 10−6 C

10−1 3.5180 3.4862 3.4803 3.4783 2.00 3.4756 219.5
10−2 13.8379 13.5438 13.4900 13.4712 2.02 13.4475 1920.8
10−3 14.1715 13.8673 13.8116 13.7922 2.02 13.7677 1987.4
10−4 14.1749 13.8706 13.8149 13.7954 2.02 13.7709 1988.4

Theorem3.7, asd andh go to zero,λ( j )
h should converge to the corresponding rescaled eigenvalues of

the limit problem. This can be clearly observed in both tables. The tables also include the computed
orders of convergencet and the exact rescaled eigenvalueλex obtained by means of a least squares
fitting of the model

λ
( j )
h ≈ λex + Cht .

We also include in these tables the fitted value of the constantC, in order to show that it does not
deteriorate as the thickness parameter becomes small (indeed, clearlyC also converges asd goes to
zero). This confirms that the method is locking-free.
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5. Conclusions

We have analysed the problem of computing the vibration modes and frequencies of a Timoshenko rod
of arbitrary geometry. With this purpose, we have considered a finite-element mixed method of arbitrary
order, based on that proposed by Arunakirinathar and Reddy for the corresponding load problem. The
geometrical assumptions for our analysis are slightly more general; in particular, we have not assumed
that the Frenet basis determined by the centroids line of the rod is a set of principal axes.

We have proved optimal order of convergence for displacements, rotations and shear stresses of
the eigenfunctions, as well as a double order for the vibration frequencies. We have also proved that
the method is locking-free; namely, the convergence does not deteriorate as the thickness of the rod
becomes small.

We have implemented the lowest-order method and reported several numerical experiments, which
allow us to assess the performance and robustness of this approach. In all cases, the theoretically
predicted optimal order of convergence (O(h2) for the vibration frequencies) has been attained. This
happens even in cases of boundary conditions not covered by the theoretical analysis. Moreover, the
experiments show that the method is thoroughly locking-free.

Funding

FONDECYT (1070276 to E.H.); USM (12.05.26 to E.H., E.O.); FONDAP in Applied Mathematics to
R.R.; CONICYT to F.S.

REFERENCES

ARNOLD, D. N. (1981) Discretization by finite elements of a model parameter dependent problem.Numer. Math.,
37, 405–421.

ARUNAKIRINATHAR , K. & R EDDY, B. D. (1993) Mixed finite element methods for elastic rods of arbitrary ge-
ometry.Numer. Math., 64, 13–43.
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