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Theaim of this paper is to analyse a mixed finite-element method for computing the vibration modes of

a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are proved for displace-
ments, rotations and shear stresses of the vibration modes, as well as a double order of convergence for
the vibration frequencies. These estimates are essentially independent of the thickness of the rod, which
leads to the conclusion that the method is locking-free. Numerical tests are reported in order to assess the
performance of the method.

Keywords Timoshenko curved rods; finite-element method; vibration problem.

1. Introduction

It is very well known that standard finite elements applied to models of thin structures, like beams,
rods, plates and shells, are subject to the so-called ‘locking’ phenomenon. This means that they produce
very unsatisfactory results when the thickness is small with respect to the other dimensions of the struc-
ture (see, for instanc&abuwska & Surj 1992). From the point of view of the numerical analysis, this
phenomenon usually reveals itself in that thpriori error estimates for these methods depend on the
thickness of the structure in such a way that they degenerate when this parameter becomes small. To
avoid locking, special methods based on reduced integration or mixed formulations have been devised
and are typically used (see, for instanBegzzi & Fortin,1991).

Very likely, the first mathematical piece of work dealing with numerical locking and how to avoid
it is the paper byArnold (1981), where a thorough analysis for the Timoshenko beam bending model
is developed. In that paper, it is proved that locking arises because of the shear terms and a locking-
free method based on a mixed formulation is introduced and analysed. It is also shown that this mixed
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methodis equivalent to the use of a reduced-order scheme for the integration of the shear terms in the
primal formulation.

Subsequently, several methods to avoid locking on different models of arches were developed by
Kikuchi (1982),Loulaet al. (1987),Reddy(1988) andReddy & Volpi (1992). The analysis of the latter
was extended bprunakirinathar & Reddy1993) to Timoshenko rods of rather arbitrary geometry. An
alternative approach to dealing with this same kind of rods was developed and analyShdslle
(1997), where a numerical method based on standard beam finite elements was used.

All the above references deal only with load problems. The literature devoted to the dynamic analy-
sis of rods is less rich. There exist a few papers introducing finite-element methods and assessing their
performance by means of numerical experiments Kaamiet al., 1990;Litewka & Rakowskj 2001
and references therein). Papers dealing with the numerical analysis of the eigenvalue problems arisin
from the computation of the vibration modes for thin structures are much less frequent; among them
we mentionDuran et al. (1999,2003), where MITC methods for computing bending vibration modes
of plates were analysed. One reason for this is that the extension of mathematical results from load to
vibration problems is not quite straightforward for mixed meth@sfi et al. (1998,2000) showed that
eigenvalue problems for mixed formulations show peculiar features that make them substantially dif- 2
ferent from the same methods applied to the corresponding source problems. In particular, they showedg
that the standard inf-sup and ellipticity in the kernel conditions, which ensure convergence for the mixed 3z
formulation of source problems, are not enough to attain the same goal in the corresponding eigenvaluel
problem.

In this paper, we analyse a mixed finite-element method to compute the vibration modes of an elas-
tic curved rod. For the stiffness terms, we follow the approach proposdédunakirinathar & Reddy
(1993) for the load problem. We settle the corresponding spectral problem by including the mass terms
arising from displacement and rotational inertia in the model, as propodéaramiet al. (1990). Our
assumptions on the rods are slightly weaker than those in these references. On the one hand, we d§
not assume that the Frenet basis associated with the line of cross-section centroids is a set of pring
cipal axes. On the other hand, we allow for nonconstant geometric and physical coefficients, varying &
smoothly along the rod. We prove that the resulting method yields an optimal order approximation of <
displacements, rotations and shear stresses of the vibration modes, as well as a double order of con
vergence for the vibration frequencies. Under mild assumptions, we also prove that the error estimatesy
do not degenerate as the thickness becomes small, which allows us to conclude that the method i
locking-free.

The outline of the paper is as follows. In Sectidnwe recall the basic geometric and physical
assumptions to settle the vibration problem for a Timoshenko rod of arbitrary geometry. The result-
ing spectral problem is shown to be well posed. Its eigenvalues and eigenfunctions are proved to«©
converge to the corresponding ones of the limit problem as the thickness of the rod goes to zero, §
which corresponds to a Bernoulli-like rod model. A finite-element discretization with piecewise poly-
nomials of arbitrary degree is introduced and analysed in Se@tigdptimal orders of convergence
are proved for the eigenfunctions and the corresponding shear stresses. Finally, a double order of
convergence is proved for the eigenvalues and, hence, for the vibration frequencies. All these
error estimates are proved to be independent of the thickness of the rod, which allows us to con-
clude that the method is locking-free. In Sectibnwe report several numerical tests, which allow
an assessment of the performance of the lowest degree method. The experiments include different
geometries and even boundary conditions not covered by the theoretical analysis. All the tests show
optimal orders of convergence for all the variables. They also show that the method is completely
locking-free.
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2. The vibration problem for an elastic rod of arbitrary geometry

A curved rod in undeformed reference state is described by means of a smooth 3D curve, the ‘line
of centroids’, which passes through the centroids of cross-sections of the rod. These cross-sections
are initially plane and normal to the line of centroids. The curve is parameterized by its arc length
s el :=]0, L], L being the total length of the curve.

We recall some basic concepts and definitions; for further detail\sgakirinathar & Reddy
(1993), for instance. We use standard notation for Sobolev spaces and norms.

The basis in which the equations are formulated is the ‘Frenet basis’ consisting atnd b,
which are the tangential, normal and binormal vectors of the curve, respectively. These vectors change
smoothly from point to point and form an orthogonal basi&dfat each point.

Let Sdenote a cross-section of the rod. We denoté&hy ) the coordinates in the coordinate system
{n, b} of the plane containin® (see Figl).

The geometric properties of the cross-section are determined by the following parameters (recall
that the first moments of aref, #7dn d¢ and [g¢dy d¢, vanish, because the centre of coordinates is the
centroid ofS):

e areaofS A:= [qdydg;
e second moments of area with respect to the axis := fsgzdn d¢, andb, Iy := Jg n?dndc;
e polar moment of areal := [q(#? + ¢?)dnds = In + lp;
o lnp:= [gncdnds.
These parameters are not necessarily constant, but they are assumed to vary smoothly along the rod.

For a nondegenerate rod,is bounded above and below far from zero. Consequently, the same happens
for the area moments,, Ip andJ.

REMARK 2.1 For any planar se$, there exists an orthogonal coordinate system, named the ‘set of
principal axes’, such thdt,, vanishes when computed in these coordinates. For particularly symmetric
geometries ofS, for instance when the cross-section of the rod is a circle or a sgiygreanishes in
any orthogonal coordinate system. However, in general, there is no reasomffioib to be principal

FIG. 1. Cross-section. Coordinate system.
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axes, so that,p doesnot necessarily vanish. In any case, it is straightforward to prove that the matrix:
In —Inp
—lnb b

Vector fields defined on the line of centroids will be always written in the Frenet basis:

is always positive definite.

Vv=o1t+ov2n+o3b, withoy,vo,v3:1 — R.

We emphasize thaty, v» andos arenot the components aofin a fixed basis ofR3, but in the Frenet
basis(t, n, b}, which changes from point to point of the curve.
Sincet, n andb are smooth functions of the arc-length paramsteve have

V = 0jt+ vpn + o5b + o1t + van + v3b'.
If we denote
V=01t + v5n + ogb, (2.1)

then,by using the ‘Frenet-Serret formulas’ (see, for instaAcanakirinathar & Reddy1993), we have

0 x5 0
V=v+TIl, with I's):=|—-«x) 0 (5],
0 —z(5) O

wherex and r are the curvature and the torsion of the rod, which are also smooth functians of
Thereforey = v1t 4+ von + v3b € HY(1)2 if and only ify; € L2(1) andw; € L2(l),i = 1,2,3.

Sincewe will confine our attention to elastic rods clamped at both ends, we proceedamiakiri-
nathar & Reddy(1993) and consider

¥ ={veL?2()®: ve L%()®andv(0) = v(L) = 0},

endaved with its natural norm

L 1/2
IV == [ /0 (V[ + IVIZ)dS} ;

namely ¥ is the space of vector fields defined on the line of centroids such that their components in the
Frenet basis are inl).

We will systematically use in what follows the total derivative= v + I"'v. Sincet, n andb are
assumed to be smooth functiofis,||o is a norm on¥” equivalent td|-||1 (seeArunakirinathar& Reddy,
1993, Theorem 3.1). This is the reason why we defidtgthenorm of #. However, the total derivative
V' shouldbe distinguished from the vectdof derivatives of the components wfn the Frenet basis, as
defined by (2.1).

The kinematic hypotheses of Timoshenko are used for the problem formulation. The deformation
of the rod is described by the displacement of the line of centroids, R3, and the rotation of the
cross-section®] € R3. The physical properties of the rod are determined by the elastic and the shear
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moduli E and G, respectively, the shear correcting factigsandk, andthe volumetric density, all
of them strictly positive coefficients. These coefficients are not necessarily constant; they are allowed to
vary along the rod, but they are also assumed to be smooth functions of the arcslength

We consider the problem of computing the free vibration modes of an elastic rod clamped at both
ends. The variational formulation of this problem consists in finding nontriviagd) € # .= ¥ x ¥
andw > 0 such that

L L L L
/ EQ’ . y/ds+/ DW -6 xt) - (V—wx t)dS:wz(/ pAU-VdS+/ pJ6 - y/ds)
0 0 0 0
V(V, '/I) € W’ (22)
wherew is the vibration frequency andand@ are the amplitudes of the displacements and the rotations,

respectively (seBaramiet al.,1990). The coefficient®, E andJ are 3x 3 matrices, which in the Frenet
basis are written as follows:

EA 0 0 GJ 0 0 J 0 0
Di=] 0 KkGA 0 , E=]0 El, —Elnp and J:=10 In —=lp]
0 0 koGA 0 —Eln Elp 0 —lmp Iy

In Karamiet al. (1990), as in most references (Arunakirinathar & Red§93; Chapelle, 1997, for
instance), the Frenet basis is assumed to be a set of principal axes, k@ thad and the above three
matrices are diagonal. We do not make this assumption in this paper.

REMARK 2.2 The above vibration problem can be formally obtained from the 3D linear elasticity
equations as follows: according to the Timoshenko hypotheses, the admissible displacements at each
pointyn + ¢b € S(see Fig.l) are of the fornu 4+ 8 x (yn + ¢b), with u, 8, n andb being functions

of the arc-length coordinate Test and trial displacements of this form are taken in the variational
formulation of the linear elasticity equations for the vibration problem of the 3D rod. By integrating
over the cross-sections and multiplying the shear terms by correcting fagtarslky, one arrives at
problem (2.2).

It is well known that standard finite-element methods applied to equations2iRg re subject to
‘numerical locking’: they lead to unacceptably poor results for very thin structures, unless the mesh size
is excessively small. This phenomenon is due to the different scales with respect to the thickness of the
rod of the two terms on the left-hand side of this equation. An adequate framework for the mathematical
analysis of locking is obtained by rescaling the equations in order to obtain a family of problems with a
well-posed limit as the thickness becomes infinitely small.

With this purpose, we introduce the following nondimensional parameter, characteristic of the thick-
ness of the rod:

If we define
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problem(2.2) can be equivalently written as follows: find nontriviel 8) € # and/ € R such that

L L L L
/ E0/~y/’ds+d—12/ ﬁ(u/—Gxt)-(\/—th)dS:i(/ Ku~vds+d2/ ijyds),
0 0 0 0

Viv,w)e¥.
(2.3)

The values of interest cofare obV|ous ly bounded above S0 we restrict our attentidngd0, dmax].
Thecoefficients of the matrice®, E andJ, as well asA, are assumed to be functionssofhich do not
vary with d. This corresponds to considering a family of problems where the size of the cross-sections
are uniformly scaled by at all point of the line of centroids, while their shapes as well as the geometry
of the curve and the material properties remain fixed.

REMARK 2.3 MatricesD, E andJ are positive definite for a € I, the last two because of Remazil.
Moreover, since all the coefficients are continuous functions, dhe eigenvalues of each of these
matrices are uniformly bounded below away from zero fosadll.

REMARK 2.4 The eigenvalues$ of problem (2.3) are strictly positive because of the symmetry and the
positiveness of the bilinear forms on its left- and right-hand sides. The positiveness of the latter is a
straightforward consequence of RemarR, whereas that of the former follows from the ellipticity of

this bilinear form in# . This can be proved by using Rem&I8 again and proceeding as in the proof

of Lemma 3.4 (a) fromArunakirinathar & Reddy1993), where the same result appears for particular
constant coefficients (see al€hapelle, 1997, Proposition 1).

We introduce the scaled shear strgss= d—lzﬁ(u’ — 6 x t) torewrite problem 2.3) as follows:
E6', y') + v,V — w x ) = A[(Au,v) + d*(T8, y)] V(Vv,y) e ¥, (2.4)
1 /
y = @D(u —0 x1t), (2.5)

where(-, -) denoteghe L2(1)2 innerproduct.
To analyse this problem, we introduce the operator
T: L2 x L2(1)% — L2(1)3 x L2(1)3,
definedby T (f, ¢) := (u, 8), where(u, 8) € # is the solution of the associated load problem
E6 y)+ .V -y xt) = ALV +d?Tg,y) V(V.p)e¥, (2.6)
y = d—lzﬁ(u/ —0 xt). (2.7)
Taking into account tha®(7) can be equivalently written as follows:
U —-60xtq—d’Dly,q)=0 vge 2:=L%1°3

we note that the load problem falls with in the framework of the mixed formulations considered in
Brezzi & Fortin (1991). In this reference, the results frolnnold (1981) are extended to cover this
kind of problem. In particular, according ®rezzi & Fortin (1991, Theorem 11.1.2), to prove the well
posedness it is enough to verify the classical properties of mixed problems:
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(i) ellipticity in the kernel3« > 0 such that
Ey', v") = aVIE+ lwlD ¥V, p) e #o,

where# o ={(v,y)e# : V—-wyxt=0Iinl};
(ii) inf-sup condition3 g > 0 such that

(qr\/_WXt)

> flallo Vge 2.
0.0)£v,p)ew IVIL+ 1yl

Property(i) has been proved iArunakirinathar & Reddy(1993, Lemma 3.6) foE being the identity
matrix. The extension t positive definite uniformly irs is quite straightforward. Property (ii) has been
proved inArunakirinathar & Reddy(1993, Lemma 3.7). An alternative, simpler proof of an equivalent
inf—sup condition appears @hapelle(1997, Proposition 2).

Therefore, according tBrezzi & Fortin (1991, Theorem I1.1.2), problen2 6)—(2.7) has a unique
solution(u, 8, y) € # x 2 and this solution satisfies

lullz + 118111 + ll7 llo < C(lflo + d?lBllo). (2.8)

Hereand what followsC denotes a strictly positive constant, not necessarily the same at each occur-
rence, but always independentdénd of the mesh size, which will be introduced in Sectio8.

Because of the estimate above and the compact embeddihg<+s L2(l), the operatofl is com-
pact. Moreover, by substitutin@ (7) into £.6), from the symmetry of the resulting bilinear forms, it is
immediate to show thak is self-adjoint with respect to the ‘weighted?(l)® x L2(1)2 innerproduct in
the right-hand side of2(6). Therefore, apart from = 0, the spectrum of consists of a sequence of
finite-multiplicity real eigenvalues converging to zero, all with ascent one.

Note that is a nonzero eigenvalue of problem (2.3) if and only if= 1/1 is a nonzero eigenvalue
of T, with the same multiplicity and corresponding eigenfunctions. Recall that these eigenvalues are
strictly positive (cf. Remarl2.4).

Next, we definely by means of the limit problem o£(6)-(2.7) asl — 0:

To: L2(1)% x L2()3 — L2(1)3 x L2())3,
whereTo(f, ¢) := (Ug, Bo) € # is such that there existsy € 2 satisfying:
EOy, v+ (o, V —w xt) = (Af,V) V(V,p)e¥, (2.9)
Up— 0o x t=0. (2.10)

Theabove-mentioned existence and uniqueness results cover this problem as well.

Our next goal is to prove thdt converges tdp asd goesto zero. With this purpose, we will use the
following a priori estimates for the solutions of problens®&)—(2.7) and (2.9)—(2.10), whose proof is
based on the same arguments as those used to prove Proposit@napiellg1997): iff, ¢ € HK=2(1)3,

k > 2,then

Iullk + 101k + 117 llk—1 < C(Il f llk—2 + d?[|@llk—2), (2.11)
luollk + l1€ollk + 17 ollk=1 < CII f[lk—2. (2.12)

In the following lemma and thereaftdlr| ; denoteshe natural product norm i’ = ¥ x ¥.
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LEMMA 2.5 There exists a consta@t > 0, independent ad, such that

I(T = To)(f, $)ll1 < Cd(|fllo +dlidllo) VF, ¢ € L2(1)5.

Proof. Givenf, ¢ € L2(1)3, let (u, 8) := T (f, ¢) and(ug, 80) := To(f, ¢). Subtracting (2.9) from (2.6)
and (2.10) from2.7), we have

EO - 00, ¥)+ @ —y0,V -y x) =d*Tg,y) VV.p)e¥, (2.13)
y = d—lzﬁ(u’ —uh— (0 — o) x t). (2.14)
Takingy = 0 — 6p andv = u — ug, we obtain
(E@O' —0p).0' — 0p) = d*(Tg. (0 — 60)) —d*(y — 0. 7).

Using the ellipticity of the bilinear form on the left-hand side, Cauchy—Schwarz inequality, (2.11) and
(2.12), we have

16 — 60115 < Cd?Bl0ll0 — Bollo + Cd*(ly o+ 7 ollo) 17 llo

< Cd?|¢l0ll@ — Bollo + Cd2(|| f llo + d?gllo) I  llo,
whence
160 — Boll1 < Cd([I f llo + dli@llo)- (2.15)
Onthe other hand, observe that froth14)
U —uy=d’Dly + (0 —00) xt.
Hence,using @.8) and Poincdr inequality, we obtain

lu = uoll1 < Cd?(| f o + dli@llo) + 18 — Bollo,

whichtogether with (2.15) allow us to end the proof. O

As a consequence of this lemmik,converges in norm tdy asd goesto zero. Therefore, stan-
dard properties of separation of isolated parts of the spectrum (see, for indtance] 995) yield the
following result.

LEMMA 2.6 Let 4o > 0 be an eigenvalue ofp of multiplicity m. Let D be any disc in the com-
plex plane centered atp and containing no other element of the spectrumTef Then, ford small
enough,D contains exactlyn eigenvalues off (repeated according to their respective multiplicities).
Consequently, each eigenvalug > 0 of Ty is a limit of eigenvalueg: of T, asd goes to zero.

Moreover, for any compact subgetof the complex plane not intersecting the spectrurgothere
existsdk > 0such that for ald < dk, K doesnot intersect the spectrum of, either.
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3. Finite-element discretization

Two different finite-element discretizations of the load problem for Timoshenko curved rods have been
analysed irArunakirinathar & Reddy(1993) andChapelle(1997). The two methods differ in the vari-
ables being discretized: the components of vector fieldsthe Frenet basisii, v2 andos, are dis-
cretized by piecewise polynomial continuous functions in the former, whereas the discretized variable
is the vector fieldv = v1t + v2n + v3b in the latter. We follow the approach froArunakirinathar &
Reddy(1993).

Consider a family{ %} of partitions of the interval I:

Ih: 0= <s1<--- <=L,

with mesh size

.....

We define the following finite-element subspace¥o&nd 2, respectively:
Yh={ve¥: Vilsj_1,5] € P, j=1,...,n, i =123},
2nh={d€ 2 Gilsj_151 € Pr-1,i=1,...,n, 1 =123},

whereo;, i = 1,2, 3, are the components &fin the Frenet basis? arethe spaces of polynomials of
degree lower than or equal keandr > 1.

Let#' := ¥h x ¥n. The following is the discrete vibration problem in mixed form: find nontrivial
(Un, Bnh, ¥ 1) € #'h x 2 andAp € R suchthat

E6h, wi) + (7 s Vi — Wi x D) = Zn[(An, Vi) + d?@0n, w)] Y (h, W) € #n,  (3.1)
(Up = Bh x t,0p) —d* @y, 0)) =0 Yy € 2n. (3.2)
In the same manner as in the continuous case, we introduce the operator
Th: L2()3 x L2(1)% — L2(1)3 x L2(1)3,

definedby Th(f, @) := (un, On), where(un, n, y) € #nh x 2 is the solution of the associated
discrete load problem

(B0, wi) + (P 1o Vi — On x O) = (AF, vn) + A2, wr) ¥ (Vh, W) € #h, (3.3)
(Up —Oh x 1,0y — d?D Yyp,00) =0 Vo € 2h. (3.4)

This problem falls with in the framework of the discrete mixed formulations consider&tenzi
& Fortin (1991, Section 11.2.4). In order to apply the results from this reference, we have to verify the
following classical properties, fdr small enough:

(i) ellipticity in the discrete kerneBa, > 0, independent ofi, such that

Ewh, wh) = a(Val2 + Iwnll?) ¥ (v, wp) € #on (3.5)

where¥ on := {(Vnh, ¥h) € #'h > (Gh,V, — wh x ) =0 Va, € 2n};
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(i) discrete inf-sup conditiod . > 0, independent ofi, such that

(@n, Vi, — wh x D
sup — TN Blgnllo YV € 2h
0,010, wpe?n IValle + lwnllz

Property(i) has been proved ilrunakirinathar & Reddy(1993, Lemma 4.2) fof the identity
matrix andh > 0 sufficiently small. The extension fbpositive definite uniformly irs is quite straight-
forward. Property (ii) has been also provedArunakirinathar & Reddy{1993, Lemma 4.3) by means
of a laborious constructive procedure, which is not fully detailed in this reference. In what follows, we
provide an alternative, simpler proof, based on the arguments us€tidpelle(1997, Lemma 3, Step
(i) for the discrete inf—sup condition arising from another discretization.

With this purpose, we will use the following lemma, which holds true as far as the rod is not a simple
straight beam and whose proof can be foun€lirapelle(1997, Lemma 1).

LeEmMA 3.1 If t(s) is not a constant vector for ale |, then there exists a linear mapping

é: R® — &1, R,

X+— @y,
suchthat, for anyx € R?,
#x(0) = ¢y(L) =0, (3.6)
/0 - $.(5) x t(s)ds = x, 3.7)
ldxllzia r3) < CIXI. (3.8)

Note that the tangent vectdris constant throughout the length of the rod if and only if the rod
is actually a straight beam. The finite-element scheme is perfectly well fitted in this case too (see the
numerical results reported in Sectidril below). However, in such a case, the inf-sup condition in the
following lemma must be proved by adapting the arguments usddriald (1981, p. 414), where a
similar condition has been proved in a 2D simpler framework. For a curved rod, the following result
holds.

LEMMA 3.2 Forh small enough, there exists > 0, independent o, such that

(Ghs Vi, — Wh x D)

> ﬂ* Oh th € 9.
0.0)£0h,wpe?n IVhllz+ lwnll Ionlo

Proof. Givengy, € 2, letv e H1(1)2 bethe solution of the following initial-value problem:

V=v+TIlv=gq, inl,
v(0) = 0.

Sincev(0) = 0, Poincag inequality leads tgv|o < C||V 0. Hence,

IVliL = (VI3 + 1132 < Clignlo. (3.9)
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LetV := 01t + 02n + v3b, with
i (S) == /OSHv{(a)da, 0<s<lL,i=12,3,
wherev; arethe components of in the Frenet basis anid is the L2(l)-orthogonalprojection onto

2h={qeLl?(0) dls_s) € Z-1. =1,...,n}.

Clearlyy] = ITv{ andv;j (0) = 0, so that, from Poinc&rinequality, the boundedness@fand (3.9),
1/2

3
9l < (Znnu ||o) <C(Z||u{||%) < Clidhllo- (3.10)
i=1

Now, for all pointss; of the partition.,, we have

1/2

s~ () = [ U1si(e) = sf(eldo =0,

because the characteristic function of the intervals[D,belongs to2h. Therefore, from Cauchy-
Schwarz inequality, we have, for alle [sj, sj11],

2

CICERICTY UT0{(0) = vj(o)do| < Is—s| / " 10/(0) = v (0)2do
Sj Sj

By integrating on$;j, sj+1] and summing foj =0, ...,n — 1, we obtain

15 — vill3 < ||Hv|—v||o < h2)o]1I3,
whichtogether with (3.9) yield

IV —vllo < h|l¥llo < Chigsllo. (3.11)

On the other hand, sinc& = I7v{ andthe components o, belongto 2y, according to the
definition (2.1) ofv andv, we have

(@, V) = (Gh, V) = (Gh, V) = (@, I'V),
whichtogether with the definition of leads to
(@ V) = (@, V) + (G, 7'0) = (@, V) + (@, T'@ = V) = aplI§ + (@, 7@ = V).
Thus,from (3.11), we obtain
(O, V) = (L= Ch)llgylI3. (3.12)

Accordingto the definitionp; arepiecewiseZ?; continuougunctions vanishing a = 0. However,
in generaly(L) # 0, so thaW ¢ ¥',. Because of this, we resort to Lemr84..
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Letx := —V(L) and¢, beas in Lemm&3.1. From 8.8) and 8.10), we have

I¢xll1 < Cligxllgigre) < CIxI < ClIVIi2 < Clignllo.

Let

w(s) = /Osgbx(a) x t(oc)do, O0<s<L.

Clearly,w(0) = 0 andw = ¢, x t. Hence, from Poinc&rinequality,

Iwliz < ClIwllo < Cligxllo < Clidhllo.

Let ¢L andw' be the vector fields whose components in the Frenet basis are the Lagrange inter-
polants of degree of the respective componentsg@§ andw in the same basis. Standard properties of
the 1D Lagrange interpolant yield

I$klln < Cligylls < Cligpllo and w1 < Clwllx < Cligy o, (3.13)
aswell as
¢x — By llo < Chligyllo < Chligyllo,
W —wyllo < [W —w) flo + I7H W — w)llo < Ch([IVullo + IIWvllo) < Chlla llo.

Thelatter holds becausié = (W — I'w) = (¢, x ty — (I"w) and,consequentiyjlo < C(lgll1 +
lw|l1). Therefore,

(G (W) — @ x D] = (G, W — W)) + (G, (b — dL) x DI < ChllgplIZ. (3.14)

Finally, letv, :==V+w andyy, := ¢\. Because 0f%.6) and 8.7), both belong t&#,. From (3.10)
and (3.13), we have

[IVallz + llwnllz < Clignllo,
whereadrom (3.12) and 8.14),
(Ghs Vh = ¥ x ) > (L= Ch)llgy13. (3.15)

Thelast two inequalities allow us to conclude the lemma. O
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REMARK 3.3 The proof of the inf-sup condition in the previous lemma néetisbe sufficiently small,

in order to have +Ch > 0in (3.15). A similar condition is assumed in the prooffofinakirinathar &
Reddy(1993, Lemma 4.3) an@hapelle(1997, Lemma 3). The same assumption is madirimakiri-

nathar & Reddy(1993, Lemma 4.2) as well, to prove the ellipticity in the discrete kernel prop&i&y. (
Because of thish will be assumed to be small enough in all the following theorems. However, this
hypothesis seems to be a technicality. In fact, we have not observed a need for this assumption in any of
the numerical experiments reported in Sectdrelow.

Now we are in a position to prove th@ is well defined and converges Toash — 0.
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THEOREM 3.4 For sufficiently smalh > 0, problem (3.3)—(3.4) has a unique soluti@m, én, y1,) €
W x 2. This solution satisfies

lunll + 18111+ Il llo < (I lo + d?li@llo), (3.16)

whereC > 0is independent ofi andd.
Let(u,8,y) € # x 2 be the solution of problen2(6)—(2.7). Iff, ¢ € H*"1(1)3, 1 < k <r, then

lu—unll1+ 118 = Onlls + Iy — 7 nllo < ChE(I fllk—1 4+ d?||Bllk—1), (3.17)
lu — unllo + 118 — Bnllo < CA*FL(If k=1 + d?llk-1), (3.18)
with C > 0independent ofi andd.

Proof. By virtue of (3.5) and Lemm&.2, the well-posedness of problet3)—(3.4) as well as the error
estimate 8.17) are consequences of Proposition 11.2.11 fBnezzi & Fortin(1991). On the other hand,
(3.18) is obtained by adapting to our case the duality argument used to prove TheorenChépeile
(1997). O

By adding (3.3) and (3.4), from the symmetry of the resulting bilinear forms, it is immediate to show
that T is self-adjoint with respect to the weighted() 2 x L2(1)® innerproduct in the right-hand side of
(3.3). Therefore, apart fromy = 0, the spectrum ol consistof a finite number of finite-multiplicity
real eigenvalues with ascent one.

Once more, the spectrum of the operatgris related with the eigenvalues of the spectral prob-
lem (3.1)—(3.2):4, is a nonzero eigenvalue of this problem if and onlyif := 1/, is a nonzero
eigenvalue ofTy,, with the same multiplicity and corresponding eigenfunctions. These eigenvalues are
strictly positive. Indeed, by taking, = un, y,, = @n andq,, = y i, in problem (3.1)—(3.2), by subtract-
ing the second equation from the first one, we have

(8}, 0}) +d> D1y, h) o
(Aun, un) + d2(J8n, 6r)

Moreover, the eigenvalues cannot vanish. In fact, according to the expression abovek sindd
are positive definite (see Rema2k3), \n = 0 would imply y, = 0. Then, (3.2) would imply that
(un, @n) € # on and,henceuy andé@y, would vanish too because of (3.5).

Our aim is to use the spectral theory for compact operators Babpeska & Osborn,1991, for
instance) to prove convergence of the eigenvalues and eigenfunctignswfards those of . However,
some further considerations will be needed to show that the error estimates do not deteriorate as
becomes small. With this purpose, we will use the following result:

I(T = Th)(f, §)ll1 < Ch(lI fllo + d?li¢llo), (3.19)

which follows from (3.17) withk = 1. As a consequence of this estimalg,cornverges in norm tar
ash goes to zero. Hence, standard results of spectral approximation (see for instocE95) show
that if x is an eigenvalue of with multiplicity m, then exactlym elgenvalues;l(l) ...,yﬂm of T
(repeatediccording to their respective multiplicities) converge:to

The estimate above can be improved when the source term is an eigenfunciorof T. Indeed,
in such a case, the same arguments used to p&¢é)(allow us to show that, for ak > 2 andd

sufficiently small, we have

lull + 181l + Il7 lk-1 < C(llullo + d?[6]]0), (3.20)

Ah =
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with C dependingon k and on the eigenvalue df associated witl{u, ). Note that, in principle, the
constantC should depend also ah because the eigenvalue does so. However, according to L&mema
for d sufficiently small we can chooge independent ofl. Hence, from 8.17)—(3.18) withk = r, we
obtain

(T = Th)(u, )l < ChUlI(u, B) 11, (3.21)
1T = Th) (U, B)llo < Ch™*1i(u, 8) 0. (3.22)

Hereand hereafter-||o denoteshe standard product norm irfll)® x L2(1)3.
We remind zaders of the definition of the ‘gap’ or symmetric distafRdeetweerclosed subspaces
& andZ of # innorm|-|lx, k =0, 1:

WY, Z) = maxi (¥, Z), (%, ¥))},

with
K@, %)= sup | _inf (V=T p—p)lk|.
v,w)e? | CyeZ
(v, p)llk=1

For the sake of simplicity, we state our results for eigenvaludsadnverging to a simple eigenvalue

of Toasd — 0 (atthe end of this section, we will discuss this assumption). The following theorem yields

d-independent error estimates for the approximate eigenvalues and eigenfunctions.

THEOREM 3.5 Let x4 be an eigenvalue of converging to a simple eigenvalyg) of Tp asd tends
to zero. Letun bethe eigenvalue of}, that converges tq: ash tends to zero. Le& and &'y, be the
corresponding eigenspaces. Then,dandh small enough

o1&, &n) < Ch', (3.23)
%0(&, &) < Ch' e, (3.24)
|l — unl < CH', (3.25)

with C > 0independent ofl andh.

Proof. The estimates are direct consequences of (3.21)—(3.22) and Theorems 7.1 and B2fuska
& Osborn(1991), in all cases witl depending on the constants Bi1Z1)—(3.22) and on the inverse of
the distance fromu to the rest of the spectrum @f. Now using Lemm&.6, we see that fod small
enough, this distance is bounded below in terms of the distanceio the rest of the spectrum of
To, which obviously depends neither dmor onh. This allows us to conclude the proof. O
This theorem yields optimal-order error estimates for the approximate eigenfunctions injpfpyms
and |-]lo. In fact, the theorem implies that the eigenfunctignséd) of T and (up, @) of Ty, corre-
sponding to the eigenvalugsand up, respectively, can be chosen normalized|iffx, k = 0,1, and
so that

lu—unlls+ 116 —Bhnlla<Ch"  (k=1), (3.26)

lu—unllo+ 18 —Bnlo < Ch*! (k=0), (3.27)
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which are the optimal orders for the finite elements used. Instead, the order of the error eqUkkke (
is not optimal. To improve this result, we will have to study first the convergence of the shear stresses of
the vibration modes.

LEMMA 3.6 Let 4 and un beas in TheorenB.5. Let(u, 8, y) be a solution of problem2(4)—(2.5)
with 2 = % and (up, @, y1,) asolution of problem 3.1)—(3.2) withi, = #—1h such that|(u, 8)|l1 =
[I(un, @n)|l1 = 1 and (3.26) holds true. Then, fdrandh small enough

ly —ynllo<Ch',
with C > 0independent ofl andh.
Proof. From 3.1) and 2.4), we have, for alivy, ¥},) € #'n,
(7 = 7> Vo — wh x ) = A[(AU = Un), Vi) + d*T(©6 — On), w)]
+ (4 = ) [(Aun, vi) + d*(T6n, wp)] — EE@ - 67). wh)

< Ch"(Ivallz + llwnlly),

wherewe have used3(25) and (3.26) for the last inequality. Note that the constadepends on the
eigenvaluel, but not ond or h, for d small enough (Lemma.6). Using this estimate, we have, for all
¥ € 2y andfor all (vn, wy) € #'n,

T =70V —¥h XD <@ =7,V — wn x )+ Ch (vnllz + lwnll).
Thereforefrom Lemma3.2we have, for aly € 2y,
@ —7nV,—whxt)

Bell¥ = 7hllo < sup <C([7 —yllo+h").
©.0£0hwpe?n IVl + llwhlla

Hence,if we choosey as the 12(1)3-projectionof y onto 2y, the theorem follows from the triangular
inequality, standard error estimates of the projection and (3.20). a

Now we are in a position to prove an optimal order of convergence for the approximate eigenval-
ues by adapting to our problem a standard argument for variationally posed eigenvalue problems (see
Babwska & Osborn1991, Lemma 9.1, for instance).

THEOREM 3.7 Let A = % and/, = ﬂih with z and u, asin Theorem3.5. Then, ford andh small
enough

|2 — Znl < Ch?%, (3.28)
with C > 0 independent ofl andh.

Proof. Let o7y and %4 denotethe symmetric and continuous bilinear forms define#®inx 2 as
A(U,0,7). (V. y. Q) 1= B0 y) + 7.V —y x ) + (U —8 x t.g) —d* D'y, q),
B4((U.0.7). (v, v, 0)) = (Au,v) + d*(T6, y).

Using this notation, problemg @)—(2.5) and3.1)—(3.2) are, respectively, written as follows:
A3 ((U,0,y), (V. y,q) =21%4(U,0,7),(V,y,q) V(,y)e¥ Vqge 2Z;

4((Un, Oh, ¥ n)> (Vh, Wh, Oh)) = A0 Ba((Un, Oh, Y 1)> (Vh, Who On)) ¥ (Vh, wh) € #'h VO, € 2h.
Considereigenfunctions satisfyingy(u, 8)||1 = I|(un, @n)ll1 = 1 and 3.26).
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Fromthe symmetry of the bilinear forms, straightforward computations lead to
(A4 = An)%4((un, Oh, ¥ ), (Un, Oh, Y 1))
=A%4((U—Un,0 —6h,y —yp), (U—Un, 0 —6h,y —¥n))
— dg((U—Un, @ —6Oh,y —yn), (U—Un,0 —6On,y —yp)).

By using @.16) withf = 1,up and¢ = 1n6n, we have
Ba((Un, Oh, 7). (Un, On, ¥ 1)) = C(lunli§ + d?[0n(17) > 2(||uh||§ +16nl1d) =
h

Hence from the continuity of the bilinear forms, we obtain

|4 = Znl < C(llu — Unll1 + 118 = Bnll1 + Ily — 7 nllo)?,

with C dependingn 1 and/p, but neither ord nor onh, for d andh sufficiently small (Lemma&.6and
(3.25)). Thus, 8.26) and Lemma&.6 allow us to conclude the proof. O

The last two theorems have been settled for eigenvalu@saainverging to simple eigenvalues of
To asd — 0. A multiple eigenvalue offy usuallyarises because of symmetries in the geometry of the
rod; in such a case, the eigenvaluelo€onverging to it has the same multiplicity. The proofs of these
theorems extend trivially to cover this case.

Instead, ifTp hada multiple eigenvalue not due to symmetry reasons, it could split into different
eigenvalues of . In this case, the proofs of the theorems above do not provide estimates independent
of the thickness. In fact, the constants therein might in principle blow up as the distance between the
eigenvalues becomes smaller.

However, by combining Lemm2.5and (3.19) we have

I(Th = To)(f, @)l < Cd + h) (Il f o+ d?lIgllo)  Vf, ¢ € L2()°.

This estimate can be used to prove spectral convergend@adh both converge to zero. In fact, jfg

is an eigenvalue ofp with multiplicity m, then there exist exactin elgenvaluew(l) e, #gm) of Th
(repeatedhccording to their respective multiplicities) convergingdgasd andh goto zero (see again
Kato, 1995). Let&o bethe eigenspace offp correspondingo o andlet & bethe direct sum of the

eigenspaces O, correspondlngo,u(l) cees ,uh ™ Then, by proceeding as in the proof of Theor&:s,
we obtain

01(&0, &n) < C(d +hN),
50 ((5’0, é’h) <Cd+ hr+l).

Moreover, the arguments in the proofs of Lem@&and Theoren3.7 can be easily adapted to take into
account some additionﬂ(dz) terms,leading to similar results. In particular, the following estimate

holds true forig = and/l(” (l,)'

lio— 2P <Ccd?+h?), j=1,...,m
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4. Numerical results

We report in this section the results of some numerical tests computed with a MATLAB code imple-
menting the finite-element method described above. We have used the lowest possible erder:
namely, piecewise linear continuous elements for the displacemgiaisdthe rotation®, andpiece-
wise constant discontinuous elements for the shear strggses

We have computed the vibration modes with lowest frequengies- /2, for straight, circular and
helical rods, with different sections, thickness and boundary conditions. To help identify the different
modes, we report 2D plots of the computed components of displacements and rotations in the Frenet
basis, as well as the 3D deformed rods. For the latter, we have used MODULEF to create an auxiliary
hexahedral mesh of the actual 3D rod and the displacements at each node of this auxiliary mesh have
been computed fromy, andéy, asdescribed in Remark.2. The resulting deformed rods have also been
plotted with MODULEF.

In all cases, we have computed the lowest vibration frequem@es wg < wg < --- by using
uniform meshes oN elements, with different values df. Also, in all cases we have used the following
physical parameters, which correspond to steel:

e elastic moduliE = 2.1 x 10° kgf/cnm? (1kgf = 980 kg cny's);
e Poissorcoefficienty = 0.3 (G = E/[2(1 + v)]);
e density:p = 7.85x 10~3kg/cn?;

e correctionfactors:k; = ko = 1.

4.1 Test 1: a straight beam

The aim of this first test is to validate the computer code by solving a problem with a known analytical
solution. With this purpose, we have computed the vibration modes of a beam (i.e. a straight rod, which
corresponds ta = = 0). We have taken the beam clamped at both ends, with a total l&éngth

120 cm, and a square cross-section of side lehgth20 cm. Therefore, the nondimensional thickness
parameter is in this cage= 0.068. Figure2 shows the undeformed beam.

To estimate the order of convergence of the method, we have compared the computed vibration
frequencies with the closed form solution giverHoang(1961) for the flexural modes. The analytical
solutions of the torsional and axial modes have been obtained by means of straightforward algebraic
manipulations.

Table 1 shows the lowest vibration frequencies computed on successively refined meshes. It also
includes the computed orders of convergence and the corresponding exact vibration frequgncies
Finally ‘d" and ‘s’ point out if the vibration frequencies correspond to double or simple eigenvalues,
respectively.

Figures3—5show the lowest-frequency vibration modes. Those corresponding to the frequencies
andws3 areflexural modes, whereas that corresponding to the frequencytorsional. For each mode,
the figures show the components in the Frenet basis of the displacemetd,the rotationd, as well
as the deformed beam.

As indicated in Tablel, w1 and w3z correspondo double-multiplicity eigenvalues. The planar vi-
bration modes shown in Figgand5 only involve deformations in the plane spannedtlandn. The
eigenspaces of each of these eigenvalues also contain other planar vibration modes involving deforma-
tions in the plane spanned bgandb. They are not shown because they are exactly the same as those in
Figs3 and5, rotated by 90with respect to the axis
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FIG. 2. Undeformed straight beam.

TABLE 1 Angular vibration frequencies of a straigheam

Mode N =16 N =32 N=64 N =128 Order Wex d/s

w? 403405 400516 399799 399620 200 399561
a)g 832658 831657 831406 831344 200 831322
a)g 981849 965686 961704 960711 201 960380

a)g 1342622 1341007 1340603 1340503 200 1340469
a)g 1710168 1663902 1652557 1649737 201 1648794
a)g 1673353 1665317 1663313 1662813 200 1662647

u o n a n o

4.2 Test 2: a helical rod

The aim of this test is to apply the finite-element method to a more general curved nonplanar rod with

nonvanishing curvature and torsion. We have considered a helix with eight turns, clamped at both ends.

The equation of the helix centroids line parametrized by its arc length is as follows:
S .S _S .
r(s) = (Acosﬁ, Asmﬁ, Cﬁ) ,  withn=+vA2+4C2, 4.1)

the curvature i& = A/n2, the torsionr = C/n? and the length of the eight-turns helixlis= 8 x 2zn.
We have takerA = 100 cm,C = 25/z cm and a square of side lendih= 20 cm as the cross-section of
the rod. Thus, the thickness parameter is in this dase0.0016. Figures shows the undeformed helix.
Since no analytical solution is available for this rod, we have estimated the order of convergence by
means of a least squares fitting of the model

wT ~ wex + Cht.

Table 2 shows the lowest vibration frequencies computed on successively refined meshes. It also in-
cludes the computed orders of convergenead the ‘exact’ vibration frequenciesy, obtained with
this fitting.
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FiG. 4. Straight beam. Vibration mode of frequeney. Displacements and rotations (left). Deformed beam (right).

Figures7—9show the lowest frequency vibration modes. The first one is a typical spring mode, the
second one is an extensional mode and the third one is a kind of ‘phone rope’ vibration mode.

4.3 Test 3: a rod with principal axes not coinciding with the Frenet basis

The aim of this test is to apply the finite-element method to a rod in which the Frenet basis is not a set of
principal axes, so that the off-diagonal term of the inertia mdtixdoes not vanish (see Rem&tk.).

With this purpose, we have considered a semicircular rod clamped at both ends, with radius of the
centroids lineR = 50 cm (curvaturex = 1/R, torsion:z = 0, length:L = z R). The cross-section of

the rod is the parallelogra® shown in Fig.10. In this casel = 0.025.
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FiG. 5. Straight beam. Vibration mode of frequeney. Displacements and rotations (left). Deformed beam (right).

FiG. 6. Undeformed helical rod.

TABLE 2 Angular vibration frequencies of a helicadd

Mode N =1024 N =2048 N =3072 N =4096 Order e
w? 159146 159104 159096 159094 197 159090
a)g 182507 182497 182495 182494 194 182493
a)g 190345 189807 189707 189672 199 189626
a)ﬂ 19.2888 192359 192260 192226 199 192181
a)g 314845 314813 314807 314805 197 314802
h 355888 354752 354540 354466 199 354369
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FiG. 8. Helical rod. Vibration mode of frequenay,. Displacements and rotations (left). Deformed helix (right).

Figurell shows the undeformed rod, seen from two different observation points.

Table 3 shows the lowest vibration frequencies computed on successively refined meshes. It also
includes the computed orders of convergence and the exact vibration frequefci@stained again by

a least squares fitting.
Figures12 and13 show the lowest-frequency vibration modes.

4.4 Test4: afreering

The aim of this test is to assess the performance of the finite-element method applied to rods subject to
boundary conditions different from those used to prove the theoretical results of the previous sections. In
particular, we consider a free ring, namely, a circular rod whose centroids line is a whole circle subject

to periodical boundary conditions.
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FiG. 9. Helical rod. Vibration mode of frequenays. Displacements and rotations (left). Deformed helix (right).
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FiG. 10. Cross-section of the semicircular rod.

-

FIG. 11. Undeformed semicircular rod seen from two observation points.

€102 ‘6 Joquiedaq uo puejAre |\ Jo AisiBAluN e /Hlo'sfeulnolploxoeufewi//:dny woly papeojumoq

The radius of the centroids line has been taken agaiR as50 cm (curvaturex = 1/R, torsion:
r = 0, length:L = 2z R) and the cross-section a square of side letgth57z cm. Henced = 0.0204.
Figure14 shows the undeformed ring.

In this case, 0 is an eigenvalue of the continuous and the discrete problems, both with multiplicity 6.
The corresponding eigenspace is in both cases the set of admissible rigid motiong. Jiaslents the
lowest positive vibration frequencies, computed on successively refined meshes. The table also includes
computed orders of convergence and extrapolated exact vibration frequeggiebtained by least
squares fitting. Finally, d and s point out whether the vibration frequencies correspond to double or
simple eigenvalues, respectively.
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TABLE 3 Angular vibration frequencies of a semicirculard

Mode N =32 N=64 N=128 N =256 Order we
a)i‘ 83609 83271 83184 83165 200 83155
wg 144695 143502 143205 143129 201 143107
a)g 306513 302453 301448 301197 201 301116
wQ 318688 316430 315870 315729 201 315685
wg 535950 525203 522564 521910 202 521694
a)g 607241 601177 599662 599280 200 599155
05
0 o ]
—
-0.5 ---Uy
Ug|
. 0 20 40 60 80 100 120 140 160
0.03 =
0.02+ o~ ---e;
0.01r - ~ — 0,
0k e =
~0.01} . iy -7
-0.02 . . ‘ : T P
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FiG. 12. Semicircular rod. Vibration mode of frequensy. Displacements and rotations (left). Deformed rod (right).
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FiG. 13. Semicircular rod. Vibration mode of frequenasy. Displacements and rotations (left). Deformed rod (right).
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FiG. 14. Undeformed ring.

TABLE 4 Angular vibration frequencies of a freing g
Mode N=64 N=128 N =256 N =512 Order Wex d/s §
ol 231012 229490 229112 229015 200 228983 d %
o) 237163 235877 235554 235473 200 235448 d %
o 625536 619563 618079 617706 201 617584 d ;i
of 634558 628895 627489 627138 201 627023 d Fl
ol 724109 724109 724109 724109 — 724109 s gf
wg 953242 953120 953089 953079 200 953079 d g
wf 1024041 1024041 1024041 1024041 — 1024041 s g
a)g 1130506 1114782 1110891 1109920 201 1109598 d §

&

[

It can be seen from Tabkethat the computed fifth and seventh vibration frequencies coincide for
all meshes. The fifth one corresponds to a purely torsional mode: a constant rotation with respect to the
tangential vector. For this modg, is constant ané,, 63 and all the components afvanish (see Figl7
below). On the other hand, the seventh mode corresponds to a constant radial expansion of the whol
ring, for whichu is constant ands, uz and@ vanish. In both cases, the vibration modes can be exactly
represented in the finite-element space for any mesh. This is the reason why the computed results ar
exact, even for the coarser meshes.

Figures15—-17show some of the vibration modes.

SBAIU

=h

® L. P A

4.5 Test 5: assessing the locking-free property of the method

TOZ ‘6 Joquedaq uo p

The aim of this final test is to assess the performance of the finite- element method as the nondimensiona
thickness parametat approaches zero. With this purpose, we have computed the lowest frequency
vibration modes for several rods, all with identical geometrical parameters, excaptvidich takes
different values approaching zero.

We have considered again a helix clamped at both ends. The centroids line is gideh bgpw
with A = 100 cm andC = 100 cm (curvatures = A/n?, torsion:z = C/n?). The length of the helix
has been taken ds = = n, which corresponds to half a turn. The section is a square of side length
chosen so that the parametkwaries from 101 to 104, Figure 18 shows the undeformed helix for
d =0.02.

Tables5 and6 show the lowest computed rescaled eigenvah#e?s:: (a)?)zp/dz (j = 1and 2,
respectively) for different values af and successively refined meshes. According to Ler@rGand

w
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FiG. 15. Free ring. Vibration mode of frequeney. Displacements and rotations (left). Deformed rod (right).
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FiG. 16. Free ring. Vibration mode of frequeney. Displacements and rotations (left). Deformed rod (right).
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FiG. 17. Free ring. Vibration mode of frequeney. Displacements and rotations (left). Deformed rod (right).
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FiG. 18. Undeformed helical rod.

TABLE 5 Lowest rescaled eigenvalulq(ql) x 1078 for helical rods of different
thickness

d N=32 N=64 N=96 N=128 Order e x 107° C

1071 12706 12618 12602 12596 200 12589 6076
1072 20568 20374 20339 20326 201 20310 13034
1073 20702 20506 20470 20457 201 20442 13132
1074 20704 20508 20472 20459 201 20443 13132

TABLE 6 Second lowest rescaled eigenvaﬂﬁ@ x 1076 for helical rods of different
thickness

d N=32 N=64 N=96 N=128 order Aex 107 C

1071 35180 34862 34803 34783 200 34756 2195
1072 138379 135438 134900 134712 202 134475 19208
103 141715 138673 138116 137922 202 137677 19874
1074 141749 138706 138149 137954 202 137709 198%4

Theorem3.7, asd andh go to zero/lf]” should converge to the corresponding rescaled eigenvalues of
the limit problem. This can be clearly observed in both tables. The tables also include the computed
orders of convergenceand the exact rescaled eigenvalug obtained by means of a least squares
fitting of the model

/lﬁj) ~ iex‘f— Cht.
We also include in these tables the fitted value of the con&amh order to show that it does not

deteriorate as the thickness parameter becomes small (indeed, €ealdp converges ad goes to
zero). This confirms that the method is locking-free.
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5. Conclusions

We have analysed the problem of computing the vibration modes and frequencies of a Timoshenko rod
of arbitrary geometry. With this purpose, we have considered a finite-element mixed method of arbitrary
order, based on that proposed by Arunakirinathar and Reddy for the corresponding load problem. The
geometrical assumptions for our analysis are slightly more general; in particular, we have not assumed
that the Frenet basis determined by the centroids line of the rod is a set of principal axes.

We have proved optimal order of convergence for displacements, rotations and shear stresses of
the eigenfunctions, as well as a double order for the vibration frequencies. We have also proved that
the method is locking-free; namely, the convergence does not deteriorate as the thickness of the rod
becomes small.

We have implemented the lowest-order method and reported several numerical experiments, which
allow us to assess the performance and robustness of this approach. In all cases, the theoretically
predicted optimal order of convergenc€(h?) for the vibration frequencies) has been attained. This
happens even in cases of boundary conditions not covered by the theoretical analysis. Moreover, the
experiments show that the method is thoroughly locking-free.
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