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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We adopt the integral definition of the fractional Laplace operator and analyze an
optimal control problem for a fractional semilinear elliptic partial differential equation (PDE); control
constraints are also considered. We establish the well-posedness of fractional semilinear elliptic PDEs
and analyze regularity properties and suitable finite element discretizations. Within the setting of our
optimal control problem, we derive the existence of optimal solutions as well as first and second order
optimality conditions; regularity estimates for the optimal variables are also analyzed. We devise
a fully discrete scheme that approximates the control variable with piecewise constant functions;
the state and adjoint equations are discretized with continuous piecewise linear finite elements. We
analyze convergence properties of discretizations and derive a priori error estimates.
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1. Introduction. In this work we are interested in the analysis and discretiza-
tion of a distributed optimal control problem for a fractional, semilinear, and elliptic
partial differential equation (PDE). To make matters precise, we let \Omega \subset \BbbR n be an
open and bounded domain in \BbbR n (n \in \{ 2, 3\} ) with Lipschitz boundary \partial \Omega ; additional
regularity requirements on \partial \Omega will be imposed in the course of our regularity and
convergence rate analyses ahead. Let us introduce the cost functional

(1.1) J(u, z) :=

\int 
\Omega 

L(x, u(x))dx+
\alpha 

2

\int 
\Omega 

| z(x)| 2dx,

where L : \Omega \times \BbbR \rightarrow \BbbR denotes a Carath\'eodory function of class C2 with respect to
the second variable and \alpha > 0 corresponds to the so-called regularization parame-
ter. Further assumptions on L will be deferred until section 2.1. In this work, we
shall be concerned with the following PDE-constrained optimization problem: Find
min J(u, z) subject to the fractional, semilinear, and elliptic PDE

(1.2) ( - \Delta )su+ a(\cdot , u) = z in \Omega , u = 0 in \Omega c,

and the control constraints a \leq z(x) \leq b for a.e. x \in \Omega . Here, \Omega c = \BbbR n\setminus \Omega . The control
bounds a, b \in \BbbR are such that a < b. Assumptions on the nonlinear function a will
be deferred until section 2.1. We will refer to the previously defined PDE-constrained
optimization problem as the fractional semilinear optimal control problem.

For smooth functions w : \BbbR n \rightarrow \BbbR , there are several equivalent definitions of the
fractional Laplace operator ( - \Delta )s in \BbbR n [24]. Indeed, ( - \Delta )s can be naturally defined
by means of the following pointwise formula:

(1.3) ( - \Delta )sw(x) = C(n, s) p.v.

\int 
\BbbR n

w(x) - w(y)

| x - y| n+2s
dy, C(n, s) =

22ss\Gamma (s+ n
2 )

\pi n/2\Gamma (1 - s)
,
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where p.v. stands for the Cauchy principal value and C(n, s) is a positive normaliza-
tion constant that depends only on n and s. Equivalently, ( - \Delta )s can be defined via
Fourier transform: \scrF (( - \Delta )sw)(\xi ) = | \xi | 2s\scrF (w)(\xi ). A proof of the equivalence of these
two definitions can be found in [25, section 1.1]. In addition to these two definitions,
several other equivalent definitions of ( - \Delta )s in \BbbR n are available in the literature [24].
Regarding equivalence, the scenario in bounded domains is substantially different. For
functions supported in \=\Omega , we may utilize the integral representation (1.3) to define
( - \Delta )s. This gives rise to the so-called restricted or integral fractional Laplacian. No-
tice that we have materialized a zero Dirichlet condition by restricting the operator to
acting only on functions that are zero outside \Omega . We must immediately mention that
in bounded domains and in addition to the restricted or integral fractional Laplacian
there are, at least, two other nonequivalent definitions of nonlocal operators related to
the fractional Laplacian: the regional fractional Laplacian and the spectral fractional
Laplacian; see [8, section 2] and [22, section 6] for details. In this work, we adopt the
restricted or integral definition of the fractional Laplace operator ( - \Delta )s, which, from
now on, we shall simply refer to as the integral fractional Laplacian.

During the very recent past, there has been considerable progress in the design and
analysis of solution techniques for linear problems involving fractional diffusion. We
refer the interested reader to [9, 14] for a complete overview of the available results and
limitations. In contrast to these advances, the numerical analysis of PDE-constrained
optimization problems involving ( - \Delta )s has been less explored. Restricting ourselves
to problems that consider the spectral definition, we mention [4, 17, 29] within the
linear-quadratic scenario, [5] for optimization with respect to order, [30, 32] for sparse
PDE-constrained optimization, and [31] for bilinear optimal control. We also mention
[7], where the authors analyze, at the continuous level, a semilinear optimal control
problem for the spectral and integral fractional Laplacian. Concerning the integral
fractional Laplacian, it seems that the results are even scarcer; the linear-quadratic
case has been recently analyzed in [15, 20]. We conclude this paragraph by mention-
ing [3, 16] for discretizations of optimal control problems involving suitable nonlocal
operators and [27] for a related fractional optimal control problem.

In addition to this exposition being the first one that studies numerical schemes
for semilinear optimal control problems involving the integral fractional Laplacian, the
analysis itself comes with its own set of difficulties. Overcoming them has required
us to provide several results. Let us briefly detail some of them:

(i) Fractional PDEs: Let s \in (0, 1), n \geq 2, r > n/2s, and z \in Lr(\Omega ). We
show that (1.2) is well-posed for a = a(x, u) being a Carath\'eodory function,
monotone increasing in u, satisfying (3.2) and a(\cdot , 0) \in Lr(\Omega ) (Theorem 3.1).

(ii) Finite element discretizations: We prove convergence of finite element dis-
cretizations on Lipschitz polytopes and obtain error estimates on smooth
domains, the latter under additional assumptions on a and the underlying
forcing term that guarantee the regularity estimates of Theorem 5.1; see
section 5.

(iii) Existence of an optimal control: Assuming that, in addition, L = L(x, u) is
a Carath\'eodory function and a and L satisfy (4.3), we show that our control
problem admits at least a solution; see Theorem 4.1.

(iv) Optimality conditions: Let n \in \{ 2, 3\} and s > n/4. Under additional assump-
tions on a and L, we derive second order necessary and sufficient optimality
conditions with a minimal gap; see section 4.3.

(v) Regularity estimates: Let n \geq 2 and s \in (0, 1). We obtain regularity prop-
erties for optimal variables: \=u, \=p, \=z \in Hs+1/2 - \epsilon (\Omega ), where \epsilon > 0 is arbitrarily
small; see Theorem 4.10.
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(vi) Convergence of discretization and error estimates: Let n \geq 2 and s \in (0, 1).
We prove that global solutions of discrete optimal control problems converge
to a global solution of the continuous one and that strict local continuous
solutions can be approximated by local discrete ones; see Theorems 7.2 and
7.3. When n \in \{ 2, 3\} and s > n/4, we derive error estimates; see Theorem
7.5. To obtain these results we have assumed that solutions to finite element
discretizations of (1.2) are uniformly bounded in L\infty (\Omega ).

Over the last 20 years, several contributions have delineated the numerical analy-
sis of semilinear optimal control problems. Without a doubt, these studies have paved
the way for the achievement of the aforementioned results. In particular, we have fol-
lowed [37], for the analysis of (1.2) and the optimal control problem; [12], for deriving
second order optimality conditions; and [10, 11, 12], for analyzing convergence prop-
erties and deriving error estimates.

The rest of the paper is organized as follows. In section 3, we analyze the frac-
tional state equation (1.2). A complete study of the fractional semilinear optimal
control problem is presented in section 4. In sections 5 and 6, we study finite element
discretizations for (1.2) and the so-called adjoint equation, respectively. Section 7 is
dedicated to the analysis of finite element discretizations for the fractional semilinear
optimal control problem: convergence and error estimates.

2. Notation and preliminaries. Let us begin by presenting the main notation
and assumptions we shall operate under. For n \geq 2, we let \Omega \subset \BbbR n be an open and
bounded domain with Lipschitz boundary \partial \Omega ; we will impose additional assumptions
on n and \partial \Omega when needed. We will denote by \Omega c the complement of \Omega . If \scrX and
\scrY are normed spaces, we write \scrX \lhook \rightarrow \scrY to denote that \scrX is continuously embedded
in \scrY . Let \{ xn\} \infty n=1 be a sequence in \scrX . We will denote by xn \rightarrow x and xn \rightharpoonup x
the strong and weak convergence, respectively, of \{ xn\} \infty n=1 to x. The relation \sansa \lesssim \sansb 
indicates that \sansa \leq C\sansb , with a positive constant C that does not depend on either \sansa ,
\sansb , or the discretization parameters but that might depend on s, n, and \Omega . The value
of C might change at each occurrence.

2.1. Assumptions. We will operate under the following assumptions on a and
L. We must, however, immediately mention that some of the results obtained in this
work are valid under less restrictive requirements; when possible we explicitly mention
the assumptions on a and L that are needed to obtain a particular result.
(A.1) a : \Omega \times \BbbR \rightarrow \BbbR is a Carath\'eodory function of class C2 with respect to the

second variable and a(\cdot , 0) \in Lr(\Omega ) for r > n/2s.
(A.2) \partial a

\partial u (x, u) \geq 0 for a.e. x \in \Omega and for all u \in \BbbR .
(A.3) For all m > 0, there exists a positive constant Cm such that

2\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \partial ia\partial ui (x, u)
\bigm| \bigm| \bigm| \bigm| \leq Cm,

\bigm| \bigm| \bigm| \bigm| \partial 2a\partial u2
(x, v) - \partial 2a

\partial u2
(x,w)

\bigm| \bigm| \bigm| \bigm| \leq Cm| v  - w| 

for a.e. x \in \Omega and u, v, w \in [ - m,m].
(B.1) L : \Omega \times \BbbR \rightarrow \BbbR is a Carath\'eodory function of class C2 with respect to the

second variable and L(\cdot , 0) \in L1(\Omega ).
(B.2) For all m > 0, there exist \psi m, \phi m \in Lr(\Omega ), with r > n/2s, such that\bigm| \bigm| \bigm| \bigm| \partial L\partial u (x, u)

\bigm| \bigm| \bigm| \bigm| \leq \psi m(x),

\bigm| \bigm| \bigm| \bigm| \partial 2L\partial u2
(x, u)

\bigm| \bigm| \bigm| \bigm| \leq \phi m(x)

for a.e. x \in \Omega and u \in [ - m,m].
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The following assumptions are particularly needed to derive regularity estimates:
(C.1) a(\cdot , 0) \in L2(\Omega ) \cap H 1

2 - s - \epsilon (\Omega ) and \partial a
\partial u (\cdot , 0) \in H\beta (\Omega ) for every \beta < 1

2 .

(C.2) For every m > 0 and u \in [ - m,m], \partial L
\partial u (\cdot , u) \in L2(\Omega ) \cap H 1

2 - s - \epsilon (\Omega ).
In (C.1) and (C.2), \epsilon > 0 denotes an arbitrarily small positive constant.

2.2. Function spaces. For any s \geq 0, we define Hs(\BbbR n), the Sobolev space of
order s over \BbbR n, by [36, Definition 15.7]

Hs(\BbbR n) :=
\Bigl\{ 
v \in L2(\BbbR n) : (1 + | \xi | 2)s/2\scrF (v) \in L2(\BbbR n)

\Bigr\} 
.

With the space Hs(\BbbR n) at hand, we define \~Hs(\Omega ) as the closure of C\infty 
0 (\Omega ) in Hs(\BbbR n).

This space can be equivalently characterized by [26, Theorem 3.29]

(2.1) \~Hs(\Omega ) = \{ v| \Omega : v \in Hs(\BbbR n), supp v \subset \Omega \} .

When \partial \Omega is Lipschitz \~Hs(\Omega ) is equivalent to \BbbH s(\Omega ) = [L2(\Omega ), H1
0 (\Omega )]s, the real

interpolation between L2(\Omega ) and H1
0 (\Omega ) for s \in (0, 1) and to Hs(\Omega ) \cap H1

0 (\Omega ) for
s \in (1, 3/2) [26, Theorem 3.33]. We denote by H - s(\Omega ) the dual space of \~Hs(\Omega ) and
by \langle \cdot , \cdot \rangle the duality pair between these two spaces. We define the bilinear form

(2.2) \scrA (v, w) =
C(n, s)

2

\int \int 
\BbbR n\times \BbbR n

(v(x) - v(y))(w(x) - w(y))

| x - y| n+2s
dxdy

and denote by \| \cdot \| s the norm that \scrA (\cdot , \cdot ) induces, which is just a multiple of the
Hs(\BbbR n)-seminorm: \| v\| s =

\sqrt{} 
\scrA (v, v) = \frakC (n, s)| v| Hs(\BbbR n), where \frakC (n, s) =

\sqrt{} 
C(n, s)/2.

We will repeatedly use the following continuous embedding: Hs(\Omega ) \lhook \rightarrow Lq(\Omega ) for
1 \leq q \leq 2n/(n  - 2s) [2, Theorem 7.34]; observe that n > 2s. If q < 2n/(n  - 2s) the
embedding Hs(\Omega ) \lhook \rightarrow Lq(\Omega ) is compact [2, Theorem 6.3].

3. The state equation. Let f \in H - s(\Omega ) be a forcing term. In this section, we
analyze the following fractional, semilinear, and elliptic PDE:

(3.1) \scrA (u, v) + \langle a(\cdot , u), v\rangle = \langle f, v\rangle \forall v \in \~Hs(\Omega ).

Here, a = a(x, u) : \Omega \times \BbbR \rightarrow \BbbR denotes a Carath\'eodory function that is monotone
increasing in u. In addition, we assume that, for every m > 0, there exists

(3.2) \varphi m \in Lt(\Omega ) : | a(x, u)| \leq | \varphi m(x)| a.e. x \in \Omega , u \in [ - m,m], t = 2n/(n+ 2s).

We present the following existence and uniqueness result.

Theorem 3.1 (well-posedness of fractional and semilinear PDEs). Let n \geq 2,
s \in (0, 1), and r > n/2s. Let \Omega \subset \BbbR n be an open and bounded domain with Lipschitz
boundary. If f \in Lr(\Omega ), a satisfies (3.2), and a(\cdot , 0) \in Lr(\Omega ), then problem (3.1)
admits a unique solution u \in \~Hs(\Omega ) \cap L\infty (\Omega ). In addition, we have the estimate

(3.3) | u| Hs(\BbbR n) + \| u\| L\infty (\Omega ) \lesssim \| f  - a(\cdot , 0)\| Lr(\Omega )

with a hidden constant that is independent of u, a, and f .

Proof. We proceed in four steps.
Step 1. Let us assume, for the moment, that, in addition, there exists \varphi \in Lt(\Omega )

such that | a(x, u)| \leq | \varphi (x)| for a.e. x \in \Omega and u \in \BbbR and that a(\cdot , 0) = 0. Define the
mapping

\frakA : \~Hs(\Omega ) \rightarrow H - s(\Omega ) : \langle \frakA u, v\rangle = \scrA (u, v) + \langle a(\cdot , u), v\rangle \forall v \in \~Hs(\Omega ).
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Since \scrA is bilinear, continuous, and coercive on \~Hs(\Omega ) \times \~Hs(\Omega ) and a = a(x, u) is
globally bounded and monotone increasing in u, it is immediate that \frakA is well-defined,
monotone, and coercive. In addition, since a = a(x, u) is continuous in u for a.e. x \in \Omega ,
dominated convergence yields the hemicontinuity of \frakA . Existence and uniqueness of
u \in \~Hs(\Omega ) follows from the main theorem on monotone operators [40, Theorem 26.A],
[35, Theorem 2.18]. Set v = u (3.1) to obtain | u| Hs(\BbbR n) \lesssim \| f\| H - s(\Omega ).

Step 2. Define, for k > 0, vk by vk(x) = u(x) - k if u(x) \geq k, vk(x) = 0 if | u(x)| <
k, and vk(x) = u(x) + k if u(x) \leq  - k. We also define the set

\Omega (k) := \{ x \in \Omega : | u(x)| \geq k\} .

Since a = a(x, u) is monotone increasing in u and a(\cdot , 0) = 0, we have \langle a(\cdot , u), vk\rangle =\int 
\Omega 
a(x, u(x))vk(x)dx \geq 0. This yields \scrA (u, vk) \leq \langle f, vk\rangle . The relations and in-

equalities (2.22)--(2.30) in [6] reveal that \scrA (vk, vk) \leq \scrA (u, vk). We can thus obtain
\| vk\| 2s = \scrA (vk, vk) \leq \langle f, vk\rangle . Define q := 2n/(n - 2s). Thus, for t < 2n/(n - 2s),

\| vk\| 2Lq(\Omega ) \lesssim | vk| 2Hs(\BbbR n) \lesssim \| vk\| Lq(\Omega )| \Omega (k)| 
1
t \| f\| Lr(\Omega ), q - 1 + r - 1 + t - 1 = 1.

On the other hand, \| vk\| qLq(\Omega ) =
\int 
\Omega (k)

| vk(x)| qdx =
\int 
\Omega (k)

| | u(x)|  - k| qdx. Let h > k,

then \Omega (h) \subset \Omega (k) and
\int 
\Omega (k)

| | u(x)|  - k| qdx \geq (h - k)q| \Omega (h)| . Consequently,

(h - k)| \Omega (h)| 1q \leq \| vk\| Lq(\Omega ) \lesssim (| \Omega (k)| 1q ) q
t \| f\| Lr(\Omega ).

Since q/t > 1, an application of [23, Lemma B.1] yields the existence of h > 0 such
that | \Omega (h)| = 0, which implies that u \in L\infty (\Omega ) and \| u\| L\infty (\Omega ) \lesssim \| f\| Lr(\Omega ).

Step 3. We relax the assumption of Step 1. Define, for k > 0, ak by ak(x, u) =
a(x, k) if u > k, ak(x, u) = a(x, u) if | u| \leq k, and ak(x, u) = a(x, - k) if u <  - k.
In view of (3.2), there exists \varphi k \in Lt(\Omega ) such that, for a.e. x \in \Omega and u \in \BbbR ,
| ak(x, u)| \leq | \varphi k(x)| . We thus invoke the arguments of the previous steps to guarantee
the existence of a unique solution u to problem (3.1) with a replaced by ak. In
addition, we have | u| Hs(\BbbR n) + \| u\| L\infty (\Omega ) \leq c\| f\| Lr(\Omega ) with c > 0 being independent of
ak and thus of k. Choose k > c\| f\| Lr(\Omega ) so that ak(x, u(x)) = a(x, u(x)) for a.e. x \in \Omega .
Consequently, u solves (3.1). Uniqueness of solutions follows from the monotonicity
of a.

Step 4. We remove the condition a(\cdot , 0) = 0 by replacing a(\cdot , u) by a(\cdot , u)  - 
a(\cdot , 0).

4. The optimal control problem. In this section, we analyze the following
weak version of the fractional semilinear optimal control problem: Find

(4.1) min\{ J(u, z) : (u, z) \in \~Hs(\Omega )\times \BbbZ ad\} 

subject to the fractional, semilinear, and elliptic state equation

(4.2) \scrA (u, v) + (a(\cdot , u), v)L2(\Omega ) = (z, v)L2(\Omega ) \forall v \in \~Hs(\Omega ).

Here, \BbbZ ad := \{ v \in L2(\Omega ) : a \leq v(x) \leq b a.e. x \in \Omega \} and a, b \in \BbbR are such that a < b.
Let r > n/2s and a = a(x, u) : \Omega \times \BbbR \rightarrow \BbbR be a monotone increasing in u

Carath\'eodory function satisfying (3.2) and a(\cdot , 0) \in Lr(\Omega ). Within this setting, The-
orem 3.1 guarantees the existence of a unique solution u to problem (4.2). We thus
introduce the control to state map \scrS : Lr(\Omega ) \rightarrow \~Hs(\Omega ) \cap L\infty (\Omega ) which, given a con-
trol z, associates to it the unique state u that solves (4.2). With \scrS at hand, we also
introduce the reduced cost functional j : \BbbZ ad \rightarrow \BbbR by the relation j(z) = J(\scrS z, z).
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4.1. Existence of optimal controls. The existence of an optimal state-control
pair (\=u, \=z) is as follows.

Theorem 4.1 (existence of an optimal pair). Let n \geq 2, s \in (0, 1) and r > n/2s.
Let a = a(x, u) : \Omega \times \BbbR \rightarrow \BbbR be a Carath\'eodory function that is monotone increasing
in u. Let L = L(x, u) : \Omega \times \BbbR \rightarrow \BbbR be a Carath\'eodory function. Assume that, for
every m > 0, there exist \varphi m \in Lr(\Omega ) with r > n/2s and \psi m \in L1(\Omega ) such that

(4.3) | a(x, u)| \leq \varphi m(x), | L(x, u)| \leq \psi m(x), a.e. x \in \Omega , u \in [ - m,m].

Thus, (4.1)--(4.2) admits at least one solution (\=u, \=z) \in \~Hs(\Omega ) \cap L\infty (\Omega )\times \BbbZ ad.

Proof. Let \{ (uk, zk)\} \infty k=1 be a minimizing sequence, i.e., for k \in \BbbN , zk \in \BbbZ ad and

uk = \scrS zk \in \~Hs(\Omega ) are such that J(uk, zk) \rightarrow j := inf\{ J(\scrS z, z) : z \in \BbbZ ad\} as k \uparrow \infty .
Since \BbbZ ad is bounded in L\infty (\Omega ), there exists a nonrelabeled subsequence \{ zk\} \infty k=1 such
that zk \rightharpoonup 

\ast \=z in L\infty (\Omega ) as k \uparrow \infty . On the other hand, since, for every k \in \BbbN , zk \in \BbbZ ad,
Theorem 3.1 yields the existence of m > 0 such that | uk(x)| \leq m for a.e. x \in \Omega and
k \in \BbbN . This implies that \{ a(\cdot , uk)\} \infty k=1 is bounded in Lr(\Omega ). We can thus conclude

the existence of a nonrelabeled subsequence \{ uk\} \infty k=1 such that uk \rightharpoonup \=u in \~Hs(\Omega ) and
uk \rightarrow \=u in L2(\Omega ) as k \uparrow \infty ; \=u is the natural candidate for the desired optimal state.

We now observe that, for k \in \BbbN , uk \in \~Hs(\Omega ) \cap L\infty (\Omega ) solves

(4.4) \scrA (uk, v) + \langle a(\cdot , uk), v\rangle = \langle zk, v\rangle \forall v \in \~Hs(\Omega ).

Since there exists M > 0 such that | uk(x)| \leq M for a.e. x \in \Omega and k \in \BbbN and the set
\frakM := \{ v \in Lr(\Omega ) : | v(x)| \leq M a.e. x \in \Omega \} is weakly sequentially closed, we conclude
that \=u \in \frakM . We can thus invoke (4.3) and the Lebesgue dominated convergence
theorem to obtain \| a(\cdot , \=u)  - a(\cdot , uk)\| Lr(\Omega ) \rightarrow 0 as k \uparrow \infty . In view of the previous
convergence results, passing to the limit in (4.4) yields \=u = \scrS \=z.

On the other hand, the map L2(\Omega ) \ni v \mapsto \rightarrow \| v\| 2L2(\Omega ) \in \BbbR is continuous and convex;
it is thus weakly lower continuous. Consequently,

j = lim
k\uparrow \infty 

J(uk, zk) =

\int 
\Omega 

L(x, \=u(x))dx+ lim inf
k\uparrow \infty 

\alpha 

2
\| zk\| 2L2(\Omega ) \geq J(\=u, \=z).

The Lebesgue dominated convergence theorem combined with (4.3) and the fact that
uk \rightarrow \=u in L2(\Omega ), as k \uparrow 0, yield

\bigm| \bigm| \int 
\Omega 
[L(x, \=u(x)) - L(x, uk(x))]dx

\bigm| \bigm| \rightarrow 0 as k \uparrow 0.

Remark 4.1 (assumptions on a). To obtain the result of Theorem 4.1 we have
assumed (4.3). Observe that (3.2) can be guaranteed because n/2s > 2n/(n+ 2s).

4.2. First order necessary optimality conditions. In this section, we ana-
lyze differentiability properties for the control to state map \scrS and derive first order
necessary optimality conditions. Since the optimal control problem (4.1)--(4.2) is not
convex, we analyze optimality conditions in the context of local solutions.

We begin by precisely introducing the concept of local minimum. Let q \in [1,\infty )
and \epsilon > 0. We denote by B\epsilon (\=z) the closed ball in Lq(\Omega ) of radius \epsilon centered at \=z.

Definition 4.2 (local minimum). Let q \in [1,\infty ). We say that \=z \in \BbbZ ad is a local
minimum, or locally optimal, in Lq(\Omega ) for (4.1)--(4.2) if there exists \epsilon > 0 such that
j(\=z) \leq j(z) for every z \in B\epsilon (\=z) \cap \BbbZ ad.

Remark 4.2 (local optimality in L2(\Omega ) =\Rightarrow local optimality in Lq(\Omega )). Since
\BbbZ ad is bounded in L\infty (\Omega ), it can be proved that if \=z \in \BbbZ ad is a (strict) local minimum
in L2(\Omega ), then \=z \in \BbbZ ad is a (strict) local minimum in Lq(\Omega ) [12, section 5].
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In what follows, we will operate in L2(\Omega ) regarding local optimally.

Theorem 4.3 (differentiability properties of \scrS ). Let n \geq 2, s \in (0, 1), and
r > n/2s. Assume that (A.1), (A.2), and (A.3) hold. Then, the control to state
map \scrS : Lr(\Omega ) \rightarrow \~Hs(\Omega ) \cap L\infty (\Omega ) is of class C2. In addition, if z, w \in Lr(\Omega ), then
\phi = \scrS \prime (z)w \in \~Hs(\Omega ) \cap L\infty (\Omega ) corresponds to the unique solution to the problem

(4.5) \scrA (\phi , v) +

\biggl( 
\partial a

\partial u
(\cdot , u)\phi , v

\biggr) 
L2(\Omega )

= (w, v)L2(\Omega ) \forall v \in \~Hs(\Omega ),

where u = \scrS z. If w1, w2 \in Lr(\Omega ), then \psi = \scrS \prime \prime (z)(w1, w2) \in \~Hs(\Omega ) \cap L\infty (\Omega )
corresponds to the unique solution to

(4.6) \scrA (\psi , v) +

\biggl( 
\partial a

\partial u
(\cdot , u)\psi , v

\biggr) 
L2(\Omega )

=  - 
\biggl( 
\partial 2a

\partial u2
(\cdot , u)\phi w1\phi w2 , v

\biggr) 
L2(\Omega )

\forall v \in \~Hs(\Omega ),

where u = \scrS z and \phi wi = \scrS \prime (z)wi, with i \in \{ 1, 2\} .
Proof. The first order Fr\'echet differentiability of \scrS from Lr(\Omega ) into \~Hs(\Omega ) \cap 

L\infty (\Omega ) follows from a slight modification of the proof of [37, Theorem 4.17] that
basically entails to replace H1(\Omega ) by \~Hs(\Omega ) and C(\=\Omega ) by L\infty (\Omega ). These arguments
also show that \phi = \scrS \prime (z)w \in \~Hs(\Omega ) \cap L\infty (\Omega ) corresponds to the unique solution to
(4.5); since w \in Lr(\Omega ) and \partial a

\partial u (x, u) \geq 0 for a.e. x \in \Omega and all u \in \BbbR , problem (4.5)
is well-posed.

The second order Fr\'echet differentiability of \scrS can be obtained by utilizing the
implicit function theorem [37, Theorem 4.24]. Let us introduce the linear map

R : Lr(\Omega ) \rightarrow \~Hs(\Omega ) \cap L\infty (\Omega ) : f \mapsto \rightarrow u, \scrA (u, v) = \langle f, v\rangle \forall v \in \~Hs(\Omega ).

Define \frakF : [ \~Hs(\Omega ) \cap L\infty (\Omega )] \times Lr(\Omega ) \rightarrow \~Hs(\Omega ) \cap L\infty (\Omega ) by \frakF (u, z) := u  - R(z  - 
a(\cdot , u)). We first observe that \frakF is of class C2. Second, \frakF (\scrS z, z) = 0. Third, since
\partial \frakF /\partial u(u, z)v = v+R\partial a/\partial u(\cdot , u)v, it can be deduced that the linear map \partial \frakF /\partial u(u, z)
is invertible from \~Hs(\Omega ) \cap L\infty (\Omega ) into itself. The implicit function theorem thus
implies that \scrS is of class C2. The fact that \psi solves (4.6) follows from differentiating
the relation \frakF (\scrS z, z) = 0; see [37, Theorem 4.24(ii)] for details.

The following result is standard: If \=z \in \BbbZ ad denotes a locally optimal control for
problem (4.1)--(4.2), then j\prime (\=z)(z - \=z) \geq 0 for all z \in \BbbZ ad [37, Lemma 4.18]. To explore
this inequality, we define the adjoint state p \in \~Hs(\Omega ) \cap L\infty (\Omega ) as the solution to

(4.7) \scrA (v, p) +

\biggl( 
\partial a

\partial u
(\cdot , u)p, v

\biggr) 
L2(\Omega )

=

\biggl( 
\partial L

\partial u
(\cdot , u), v

\biggr) 
L2(\Omega )

\forall v \in \~Hs(\Omega ).

Assumption (A.2) guarantees that \partial a/\partial u(x, u) \geq 0 for a.e. x \in \Omega and for all u \in \BbbR .
Assumption (B.2) yields \partial L/\partial u(\cdot , u) \in Lr(\Omega ) for r > n/2s. The existence of a unique
solution p \in \~Hs(\Omega ) \cap L\infty (\Omega ) to problem (4.7) is thus immediate.

We present first order necessary optimality conditions for problem (4.1)--(4.2).

Theorem 4.4 (first order necessary optimality conditions). Let n \geq 2, s \in (0, 1),
and r > n/2s. Assume that (A.1)--(A.3) and (B.1)--(B.2) hold. Then, every locally
optimal control \=z \in \BbbZ ad satisfies the variational inequality

(4.8) (\=p+ \alpha \=z, z  - \=z)L2(\Omega ) \geq 0 \forall z \in \BbbZ ad,

where \=p \in \~Hs(\Omega ) \cap L\infty (\Omega ) denotes the solution to (4.7) with u replaced by \=u = \scrS \=z.
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Proof. Define \ell : L\infty (\Omega ) \rightarrow \BbbR by \ell (u) =
\int 
\Omega 
L(x, u(x))dx, and observe that (B.1)--

(B.2) yield the Fr\'echet differentiability of \ell on L\infty (\Omega ). Since \scrS is differentiable as a
map from Lr(\Omega ) into Hs(\Omega )\cap L\infty (\Omega ), we thus deduce the Fr\'echet differentiability of
j as a map from L\sigma (\Omega ) to \BbbR , where \sigma = max\{ n/2s, 2\} , upon noticing that L2(\Omega ) \ni 
z \mapsto \rightarrow \| z\| 2L2(\Omega ) \in \BbbR is also differentiable. Basic computations thus reveal

(4.9) j\prime (\=z)h =

\int 
\Omega 

\biggl( 
\partial L

\partial u
(x,\scrS \=z(x))\scrS \prime (\=z)h(x) + \alpha \=z(x)h(x)

\biggr) 
dx, h \in L\sigma (\Omega ).

Set h = z - \=z \in \BbbZ ad and define \chi = \scrS \prime (\=z)h. Setting v = \chi in problem (4.7) and v = \=p
in the problem that \chi solves allow us to obtain (z  - \=z, \=p)L2(\Omega ) = (\partial L\partial u (\cdot , \=u), \chi )L2(\Omega ).
Replace this identity into (4.9) to obtain (4.8). This concludes the proof.

Define \Pi [a,b] : L1(\Omega ) \rightarrow \BbbZ ad by \Pi [a,b](v) := min\{ b,max\{ v, a\} \} a.e. in \Omega . We
present the following projection formula: If \=z \in \BbbZ ad denotes a locally optimal control
for problem (4.1)--(4.2), then [37, section 4.6]

(4.10) \=z(x) := \Pi [a,b]( - \alpha  - 1\=p(x)) a.e. x \in \Omega .

Since \=p \in \~Hs(\Omega ) \cap L\infty (\Omega ) and s \in (0, 1), it is immediate that \=z \in Hs(\Omega ) \cap L\infty (\Omega );
further regularity properties for \=z are obtained in Theorem 4.10 below.

4.3. Second order optimality conditions. In Theorem 4.4 we derived a first
order necessary optimality condition. Since our optimal control problem is not convex,
sufficiency requires the use of second order optimality conditions. The purpose of this
section is thus to derive second order necessary and sufficient optimality conditions.
To accomplish this task, we begin by introducing some preliminary concepts. Let
\=z \in \BbbZ ad satisfy (4.8). Define \=p := \=p+ \alpha \=z. Observe that (4.8) immediately yields

(4.11) \=p(x)

\left\{     
= 0 a.e. x \in \Omega if a < \=z < b,

\geq 0 a.e. x \in \Omega if \=z = a,

\leq 0 a.e. x \in \Omega if \=z = b.

Define the cone of critial directions C\=z := \{ v \in L2(\Omega ) : (4.12) holds and \=p(x) \not =
0 =\Rightarrow v(x) = 0\} , where condition (4.12) reads as follows:

(4.12) v(x) \geq 0 a.e. x \in \Omega if \=z(x) = a, v(x) \leq 0 a.e. x \in \Omega if \=z(x) = b.

The following result is instrumental.

Proposition 4.5 (j is of class C2). Let n \geq 2, s \in (0, 1), r > n/2s, and
\sigma = max\{ 2, n/2s\} . Assume that (A.1)--(A.3) and (B.1)--(B.2) hold. Then the reduced
cost j : L\sigma (\Omega ) \rightarrow \BbbR is of class C2. In addition, for z, w1, w2 \in L\sigma (\Omega ), we have

(4.13) j\prime \prime (z)(w1, w2) =

\int 
\Omega 

\biggl( 
\partial 2L

\partial u2
(x, u)\phi w1

\phi w2
+ \alpha w1w2  - p

\partial 2a

\partial u2
(x, u)\phi w1

\phi w2

\biggr) 
dx,

where u = \scrS z, p solves (4.7) and \phi wi
= \scrS \prime (z)wi with i \in \{ 1, 2\} .

Proof. The fact that j is first order differentiable follows from Theorem 4.4. The-
orem 4.3 guarantees that \scrS is second order Fr\'echet differentiable as a map from Lr(\Omega )
into \~Hs(\Omega )\cap L\infty (\Omega ). In view of (B.1)--(B.2), the map u \mapsto \rightarrow \ell (u) :=

\int 
\Omega 
L(x, u(x))dx is

second order Fr\'echet differentiable as well as a map from L\infty (\Omega ) to \BbbR . The chain rule
allows us to conclude that j \in C2. The identity (4.13) follows from the arguments
elaborated in [37, section 4.10].
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We are now in position to formulate second order necessary optimality conditions.

Theorem 4.6 (second order necessary optimality conditions). Let n \in \{ 2, 3\} 
and s > n/4. If \=z \in \BbbZ ad denotes a locally minimum for problem (4.1)--(4.2), then

(4.14) j\prime \prime (\=z)v2 \geq 0 \forall v \in C\=z,

where C\=z := \{ v \in L2(\Omega ) : (4.12) holds and \=p(x) \not = 0 =\Rightarrow v(x) = 0\} .
Proof. Let v \in C\=z. Define, for every k \in \BbbN and for a.e. x \in \Omega , the function

vk(x) :=

\Biggl\{ 
0 if x : a < \=z(x) < a+ 1

k , b - 1
k < \=z(x) < b,

\Pi [ - k,k](v(x)) otherwise.

Since v \in C\=z, we deduce that vk \in C\=z. In addition, | vk(x)| \leq | v(x)| and vk(x) \rightarrow v(x)
for a.e. x \in \Omega as k \uparrow \infty ; therefore vk \rightarrow v in L2(\Omega ). Now, since \=z + \rho vk \in \BbbZ ad for
\rho \in (0, k - 2] and \=z is locally optimal for j, we arrive, for \rho sufficiently small, at

(4.15) 0 \leq 1

\rho 
[j(\=z + \rho vk) - j(\=z)] = j\prime (\=z)vk +

\rho 

2
j\prime \prime (\=z + \theta k\rho vk)v

2
k, \theta k \in (0, 1).

Observe that (4.9) and vk \in C\=z reveal that j\prime (\=z)vk =
\int 
\Omega 
\=p(x)vk(x)dx = 0. We thus

divide by \rho in (4.15), utilize (4.13), and let \rho \downarrow 0 to obtain j\prime \prime (\=z)v2k \geq 0. Let k \uparrow \infty 
and invoke (4.13), again, and \| vk  - v\| L2(\Omega ) \rightarrow 0 to conclude.

We now provide a sufficient second order optimality condition with a minimal
gap with respect to the necessary one derived in Theorem 4.6.

Theorem 4.7 (second order sufficient optimality conditions). Let n \in \{ 2, 3\} and
s > n/4. Let \=u \in \~Hs(\Omega ), \=p \in \~Hs(\Omega ), and \=z \in \BbbZ ad satisfy the first order optimality
conditions (4.2), (4.7), and (4.8). If

(4.16) j\prime \prime (\=z)v2 > 0 \forall v \in C\=z \setminus \{ 0\} ,

then there exist \kappa > 0 and \mu > 0 such that

(4.17) j(z) \geq j(\=z) +
\kappa 

2
\| z  - \=z\| 2L2(\Omega )

for every z \in \BbbZ ad such that \| \=z  - z\| L2(\Omega ) \leq \mu .

Proof. We proceed by contradiction and assume that for every k \in \BbbN there exists
an element zk \in \BbbZ ad such that

(4.18) \| \=z  - zk\| L2(\Omega ) <
1

k
, j(zk) < j(\=z) +

1

2k
\| \=z  - zk\| 2L2(\Omega ).

Define \rho k := \| zk  - \=z\| L2(\Omega ) and vk := \rho  - 1
k (zk  - \=z). Notice that there exists a nonrela-

beled subsequence \{ vk\} \infty k=1 \subset L2(\Omega ) such that vk \rightharpoonup v in L2(\Omega ) as k \uparrow \infty .
We now proceed on the basis of three steps.
Step 1. We prove that v \in C\=z. Since the set of elements satisfying (4.12) is closed

and convex in L2(\Omega ) and, for every k \in \BbbN , vk belongs to this set, we deduce that v
satisfies (4.12). It suffices to prove that \=p(x) \not = 0 implies v(x) = 0. In view of (4.8),
we deduce that

\int 
\Omega 
\=p(x)v(x)dx \geq 0 because

\int 
\Omega 
\=p(x)vk(x)dx = \rho  - 1

k

\int 
\Omega 
\=p(x)(zk(x)  - 

\=z(x))dx \geq 0. On the other hand, observe that (4.18) and the mean value theorem
reveal that

j(zk) - j(\=z) = j\prime (\=z + \theta k(zk  - \=z))(zk  - \=z) <
1

2k
\| \=z  - zk\| 2L2(\Omega ) =

\rho 2k
2k
, \theta k \in (0, 1).
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Divide by \rho k and let k \uparrow \infty to arrive at j\prime (\=z+\theta k(zk - \=z))vk < (2k) - 1\rho k \rightarrow 0 as k \uparrow \infty .
Define \^zk := \=z + \theta k(zk  - \=z). Since s > n/4 and \^zk \rightarrow \=z in L2(\Omega ), as k \uparrow \infty , we have

\^uk := \scrS (\^zk) \rightarrow \scrS (\=z) = \=u in \~Hs(\Omega ) \cap L\infty (\Omega ),
\partial L

\partial u
(\cdot , \^uk) \rightarrow 

\partial L

\partial u
(\cdot , \=u) in Lr(\Omega ),

upon invoking (B.2). Consequently, \^pk \rightarrow \=p in \~Hs(\Omega ) \cap L\infty (\Omega ) as k \uparrow \infty . Here, \^pk
denotes the solution to (4.7) with u replaced by \^uk. Thus,\int 

\Omega 

\=p(x)v(x)dx = lim
k\uparrow \infty 

\int 
\Omega 

[\^pk(x) + \alpha \^zk(x)] vk(x)dx = lim
k\uparrow \infty 

j\prime (\=z + \theta k(zk  - \=z))vk \leq 0.

We have thus deduced that
\int 
\Omega 
\=p(x)v(x)dx =

\int 
\Omega 
| \=p(x)v(x)| dx = 0. Consequently,

\=p(x) \not = 0 implies v(x) = 0 for a.e. x \in \Omega . This proves that v \in C\=z.
Step 2. We prove that v = 0. We begin with an application of Taylor's theorem

and write

j(zk) = j(\=z) + \rho kj
\prime (\=z)vk +

\rho 2k
2
j\prime \prime (\^zk)v

2
k, \theta k \in (0, 1),

where \^zk = \=z + \theta k(zk  - \=z) and \rho kvk = zk  - \=z. Now, j\prime (\=z)vk \geq 0 and (4.18) yield

\rho 2k
2
j\prime \prime (\^zk)v

2
k \leq j(zk) - j(\=z) <

1

2k
\| \=z  - zk\| 2L2(\Omega ).

This implies that j\prime \prime (\^zk)v2k < k - 1. Consequently, j\prime \prime (\^zk)v2k < k - 1 \rightarrow 0 as k \uparrow \infty .
We now prove that j\prime \prime (\=z)v2 \leq lim infk j

\prime \prime (\^zk)v2k. We begin by noticing that

j\prime \prime (\^zk)v
2
k =

\int 
\Omega 

\biggl( 
\partial 2L

\partial u2
(x, \^uk)\phi 

2
vk

 - \^pk
\partial 2a

\partial u2
(x, \^uk)\phi 

2
vk

+ \alpha v2k

\biggr) 
dx.

As k \uparrow \infty , \^zk \rightarrow \=z and vk \rightharpoonup v in L2(\Omega ). We thus have \^uk \rightarrow \=u and \^pk \rightarrow \=p in
\~Hs(\Omega ) \cap L\infty (\Omega ) and \phi vk \rightharpoonup \phi v in \~Hs(\Omega ); the latter implies that \phi vk \rightarrow \phi v in Lq(\Omega ),
as k \uparrow \infty , for q < 2n/(n - 2s). Invoke (B.2) to obtain\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

\biggl( 
\partial 2L

\partial u2
(x, \^uk)\phi 

2
vk

 - \partial 2L

\partial u2
(x, \=u)\phi 2v

\biggr) 
dx

\bigm| \bigm| \bigm| \bigm| \leq \| \phi vk\| 2Lq(\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| \partial 2L\partial u2
(\cdot , \^uk) - 

\partial 2L

\partial u2
(\cdot , \=u)

\bigm\| \bigm\| \bigm\| \bigm\| 
Lr(\Omega )

+ \| \phi m\| Lr(\Omega )\| \phi v + \phi vk
\| Lq(\Omega )\| \phi v  - \phi vk\| Lq(\Omega ) \rightarrow 0, k \uparrow \infty .

On the other hand, invoke (A.2) to derive\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\biggl( 
\=p
\partial 2a

\partial u2
(x, \=u)\phi 2v  - \^pk

\partial 2a

\partial u2
(x, \^uk)\phi 

2
vk

\biggr) 
dx

\bigm| \bigm| \bigm| \bigm| \leq Cm\| \phi v\| 2Lq(\Omega )\| \=p - \^pk\| Lr(\Omega )

+Cm\| \^pk\| Lr(\Omega )

\Bigl( 
\| \=u - \^uk\| L\infty (\Omega )\| \phi v\| 2Lq(\Omega ) + \| \phi v + \phi vk

\| Lq(\Omega )\| \phi v  - \phi vk\| Lq(\Omega )

\Bigr) 
\rightarrow 0

as k \uparrow \infty . Finally, observe that \| v\| 2L2(\Omega ) \leq lim infk\uparrow \infty \| vk\| 2L2(\Omega ) because \| \cdot \| 2L2(\Omega ) is

weakly lower semicontinuous. We thus conclude that j\prime \prime (\=z)v2 \leq lim infk\uparrow \infty j\prime \prime (\^zk)v2k.
Finally, since lim infk\uparrow \infty j\prime \prime (\^zk)v2k \leq 0 and v \in C\=z, (4.16) implies that v = 0.
Step 3. Since v = 0, we have that \phi vk \rightarrow 0 in Lq(\Omega ), for q < 2n/(n  - 2s), as

k \uparrow \infty . Consequently, from the identity

\alpha = \alpha \| vk\| 2L2(\Omega ) = j\prime \prime (\^zk)v
2
k  - 

\int 
\Omega 

\biggl( 
\partial 2L

\partial u2
(x, \^uk)\phi 

2
vk

 - \^pk
\partial 2a

\partial u2
(x, \^uk)\phi 

2
vk

\biggr) 
dx

and the fact that lim infk\uparrow \infty j\prime \prime (\^zk)v2k \leq 0, we conclude that \alpha \leq 0. This contradicts
the fact that \alpha > 0 and concludes the proof.
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Define, for \tau > 0,

(4.19) C\tau 
\=z := \{ v \in L2(\Omega ) : (4.12) holds and | \=p(x)| > \tau =\Rightarrow v(x) = 0\} .

Theorem 4.8 (equivalent optimality conditions). Let n \in \{ 2, 3\} and s > n/4.
Let \=u \in \~Hs(\Omega ), \=p \in \~Hs(\Omega ), and \=z \in \BbbZ ad satisfy the first order optimality conditions
(4.2), (4.7), and (4.8). Thus, (4.16) is equivalent to

(4.20) \exists \mu , \tau > 0 : j\prime \prime (\=z)v2 \geq \mu \| v\| 2L2(\Omega ) \forall v \in C\tau 
\=z ,

where C\tau 
\=z is defined in (4.19).

Proof. Since C\=z \subset C\tau 
\=z , we immediately conclude that (4.20) implies (4.16). To

prove that (4.16) implies (4.20) we proceed by contradiction. Assume that, for \tau > 0,

\exists v\tau \in C\tau 
\=z : j\prime \prime (\=z)v2\tau < \tau \| v\tau \| 2L2(\Omega ).

Define w\tau := \| v\tau \|  - 1
L2(\Omega )v\tau . Note that, up to a nonrelabeled subsequence if necessary,

(4.21) w\tau \in C\tau 
\=z , \| w\tau \| L2(\Omega ) = 1, j\prime \prime (\=z)w2

\tau < \tau , w\tau \rightharpoonup w in L2(\Omega ).

We prove that w \in C\=z. Since the set of elements satisfying (4.12) is weakly closed
in L2(\Omega ), we conclude that w satisfies (4.12) as well. On the other hand,\int 

\Omega 

\=p(x)w(x)dx = lim
\tau \downarrow 0

\int 
\Omega 

\=p(x)w\tau (x)dx = lim
\tau \downarrow 0

\int 
| \=p(x)| \leq \tau 

\=p(x)w\tau (x)dx \leq lim
\tau \downarrow 0

\tau 
\sqrt{} 

| \Omega | = 0,

where we have used that \=p \in L2(\Omega ), w\tau \rightharpoonup w in L2(\Omega ), w\tau \in C\tau 
\=z , and \| w\tau \| L2(\Omega ) = 1.

As a result,
\int 
\Omega 
| p(x)w(x)| dx =

\int 
\Omega 
p(x)w(x)dx = 0. This implies that if | p(x)| \not = 0,

then w(x) = 0 for a.e. x \in \Omega . We can thus conclude that w \in C\=z.
We now prove that w = 0. Since w \in C\=z, (4.16) implies that either w = 0

or j\prime \prime (\=z)w2 > 0. On the other hand, the arguments elaborated in Step 2 of the
proof of Theorem 4.7 in conjunction with (4.21) yield j\prime \prime (\=z)w2 \leq lim inf\tau \downarrow 0 j\prime \prime (\=z)w2

\tau \leq 
lim sup\tau \downarrow 0 j

\prime \prime (\=z)w2
\tau \leq 0. Consequently, w = 0 and lim\tau \downarrow 0 j\prime \prime (\=z)w2

\tau = 0.
Finally, since w = 0 and w\tau \rightharpoonup 0 in L2(\Omega ) as \tau \downarrow 0, we have that \phi w\tau \rightarrow 0 in

Lq(\Omega ), as \tau \downarrow 0, for q < 2n/(n - 2s). Thus, \alpha = \alpha \| w\tau \| 2L2(\Omega ) \leq lim inf\tau \downarrow 0 j\prime \prime (\=z)w2
\tau = 0,

which is a contradiction. This concludes the proof.

4.4. Regularity estimates. In this section, we derive regularity estimates for
the optimal control variables. To accomplish this task, the following regularity result
for the linear case a \equiv 0 will be of importance.

Proposition 4.9 (Sobolev regularity on smooth domains). Let n \geq 1, s \in (0, 1),
and \Omega be a domain such that \partial \Omega \in C\infty . Let \sansu be the solution to ( - \Delta )s\sansu = \sansf in
\Omega and \sansu = 0 in \Omega c. If \sansf \in Ht(\Omega ) for some t \geq  - s, then \sansu \in Hs+\vargamma (\Omega ), where
\vargamma = min\{ s+ t, 1/2 - \epsilon \} and \epsilon > 0 is arbitrarily small. In addition, we have

(4.22) \| \sansu \| Hs+\vargamma (\Omega ) \lesssim \| \sansf \| Ht(\Omega ),

where the hidden constant depends on \Omega , n, s, and \vargamma .

Proof. See [21, 38].

Observe that smoothness of \sansf does not ensure that the solution to ( - \Delta )s\sansu = \sansf in
\Omega and \sansu = 0 in \Omega c is any smoother than \cap \{ Hs+1/2 - \epsilon (\Omega ) : \epsilon > 0\} .

To present regularity estimates, we will assume that, in addition to (A.1)--(A.3)
and (B.1)--(B.2), the nonlinear functions a and L satisfy (C.1)--(C.2).
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Theorem 4.10 (regularity estimates: s \in (0, 1)). Let n \geq 2 and s \in (0, 1). If
\Omega is such that \partial \Omega \in C\infty , then \=u, \=p, \=z \in Hs+1/2 - \epsilon (\Omega ), where \epsilon denotes an arbitrarily
small positive constant.

Proof. Since \=z \in \BbbZ ad and a(\cdot , 0) \in L2(\Omega ), we apply Proposition 4.9 with t = 0 to
obtain \=u \in Hs+\nu (\Omega ), where \nu = min\{ s, 1/2 - \epsilon \} and \epsilon > 0 is arbitrarily small and

(4.23) \| \=u\| Hs+\nu (\Omega ) \lesssim \| \=z  - a(\cdot , \=u)\| L2(\Omega ) \lesssim \| \=z\| L2(\Omega ) + \| a(\cdot , 0)\| L2(\Omega ),

upon utilizing that a is locally Lipschitz in the second variable and \| \=u\| s \lesssim \| \=z\| H - s(\Omega ).
We now obtain a first regularity estimate for \=p. To accomplish this task, we invoke
Proposition 4.9 to obtain \=p \in Hs+\iota (\Omega ), where \iota = min\{ s+ \lambda , 12  - \epsilon \} , \lambda = min\{ 0, 12  - 
s - \epsilon \} and \epsilon > 0 is arbitrarily small. In addition, we have the following estimate:

\| \=p\| Hs+\iota (\Omega ) \lesssim 

\bigm\| \bigm\| \bigm\| \bigm\| \partial a\partial u (\cdot , \=u)\=p
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial L\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H

1
2
 - s - \epsilon (\Omega )

(4.24)

\lesssim \| \=p\| L\infty (\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| \partial a\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial L\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H

1
2
 - s - \epsilon (\Omega )

.

In view of (4.10), [28, Theorem 1] yields \=z \in Hs+\iota (\Omega ) with a similar estimate.
We now consider three cases.
Case 1: s \in ( 12 , 1). Observe that \nu = \iota = 1

2  - \epsilon . Thus, \=u, \=p, \=z \in Hs+ 1
2 - \epsilon (\Omega ) for

\epsilon > 0 being arbitrarily small. In addition, the estimates (4.23) and (4.24) yield

\| \=u\| 
Hs+1

2
 - \epsilon (\Omega )

+ \| \=p\| 
Hs+1

2
 - \epsilon (\Omega )

+ \| \=z\| 
Hs+1

2
 - \epsilon (\Omega )

\lesssim \| \=p\| L\infty (\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| \partial a\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

+ \| \=z\| L2(\Omega ) +

\bigm\| \bigm\| \bigm\| \bigm\| \partial L\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H

1
2
 - s - \epsilon (\Omega )

+ \| a(\cdot , 0)\| L2(\Omega ) =: \frakB .

Case 2: s = 1
2 . The proof follows similar arguments. For brevity, we skip the

details.
Case 3: s \in (0, 12 ). Here, \nu = \iota = s. Thus, \=u, \=p \in H2s(\Omega ). In view of (4.10),

a nonlinear interpolation result based on [23, Theorem A.1] and [36, Lemma 28.1]
yields \=z \in H2s(\Omega ). In addition, we have the estimate

\| \=u\| H2s(\Omega ) + \| \=p\| H2s(\Omega ) + \| \=z\| H2s(\Omega ) \lesssim \frakB .

In what follows, we proceed on the basis of a bootstrap argument as in [4, 15].
Case 3.1: s \in [ 14 ,

1
2 ). Invoke Proposition 4.9 with t = 1/2  - s  - \epsilon to obtain

\=u \in Hs+1/2 - \epsilon (\Omega ), where \epsilon > 0 is arbitrarily small, and the estimate

\| \=u\| 
Hs+1

2
 - \epsilon (\Omega )

\lesssim \| \=z\| 
H

1
2
 - s - \epsilon (\Omega )

+ \| a(\cdot , \=u) - a(\cdot , 0)\| 
H

1
2
 - s - \epsilon (\Omega )

+ \| a(\cdot , 0)\| 
H

1
2
 - s - \epsilon (\Omega )

\lesssim \| \=z\| H2s(\Omega ) + \| \=u\| H2s(\Omega ) + \| a(\cdot , 0)\| 
H

1
2
 - s - \epsilon (\Omega )

\lesssim \frakB + \| a(\cdot , 0)\| 
H

1
2
 - s - \epsilon (\Omega )

.

Observe that 2s > 1
2  - s - \epsilon for \epsilon > 0 being arbitrarily small. On the other hand, in

view of assumption (C.1), we have that \partial a
\partial u (\cdot , \=u) \in Hs(\Omega ). Since \=p \in Hs(\Omega ), it thus

follows that \partial a
\partial u (\cdot , \=u)\=p \in Hs(\Omega ). In fact, notice that, for x, y \in \Omega , we have the estimate\bigm| \bigm| \bigm| \bigm| \partial a\partial u (x, \=u(x))\=p(x) - \partial a

\partial u
(y, \=u(y))\=p(y)

\bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \partial a\partial u (x, \=u(x))
\bigm| \bigm| \bigm| \bigm| | \=p(x) - \=p(y)| + | \=p(y)| 

\bigm| \bigm| \bigm| \bigm| \partial a\partial u (x, \=u(x)) - \partial a

\partial u
(y, \=u(y))

\bigm| \bigm| \bigm| \bigm| .
The definition of | \cdot | Hs(\Omega ) implies | \partial a\partial u (\cdot , \=u)\=p| Hs(\Omega ) \lesssim | \=p| Hs(\Omega )+\| \=p\| L\infty (\Omega )| \partial a\partial u (\cdot , \=u)| Hs(\Omega ),
upon utilizing (A.3). We thus invoke Proposition 4.9 with t = 1/2 - s - \epsilon to obtain
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\| \=p\| 
H

s+1
2
 - \epsilon 

(\Omega )
\lesssim \| \=p\| Hs(\Omega ) + \| \=p\| L\infty (\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| \partial a\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
Hs(\Omega )

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial L\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H

1
2
 - s - \epsilon 

(\Omega )

.

A nonlinear interpolation argument yields \=z \in Hs+ 1
2 - \epsilon (\Omega ) with a similar estimate.

Case 3.2: s \in [ 16 ,
1
4 ). Proposition 4.9 with t = 1/2 - s - \epsilon yields \=u \in Hs+1/2 - \epsilon (\Omega )

for \epsilon > 0 being arbitrarily small. On the other hand, (C.1) guarantees that \partial a
\partial u (\cdot , \=u) \in 

H2s(\Omega ). Since \=p \in H2s(\Omega ), we conclude that \partial a
\partial u (\cdot , \=u)\=p \in H2s(\Omega ). Observe that

2s > 1
2  - s - \epsilon , and invoke Proposition 4.9 with t = 1/2 - s - \epsilon to obtain the estimate

\| \=p\| 
H

s+1
2
 - \epsilon 

(\Omega )
\lesssim \| \=p\| H2s(\Omega ) + \| \=p\| L\infty (\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| \partial a\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H2s(\Omega )

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial L\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H

1
2
 - s - \epsilon 

(\Omega )

.

This implies that \=z \in Hs+ 1
2 - \epsilon (\Omega ) with a similar estimate; \epsilon > 0 is arbitrarily small.

Case 3.3: s \in (0, 16 ). Invoke Proposition 4.9 with t = 2s to obtain \=u \in H4s(\Omega )
and

\| \=u\| H4s(\Omega ) \lesssim \| \=z\| H2s(\Omega ) + \| \=u\| H2s(\Omega ) + \| a(\cdot , 0)\| 
H

1
2
 - s - \epsilon 

(\Omega )
\lesssim \frakB + \| a(\cdot , 0)\| 

H
1
2
 - s - \epsilon 

(\Omega )
.

On the other hand, \partial a
\partial u (\cdot , \=u) \in H3s(\Omega ). Since \=p \in H2s(\Omega ), we can thus conclude that

\partial a
\partial u (\cdot , \=u)\=p \in H2s(\Omega ). Invoke Proposition 4.9 with t = 2s to obtain

\| \=p\| H4s(\Omega ) \lesssim \| \=p\| H2s(\Omega ) + \| \=p\| L\infty (\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| \partial a\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H2s(\Omega )

+

\bigm\| \bigm\| \bigm\| \bigm\| \partial L\partial u (\cdot , \=u)
\bigm\| \bigm\| \bigm\| \bigm\| 
H

1
2
 - s - \epsilon (\Omega )

=: \frakC .

A nonlinear interpolation argument yields \=z \in H4s(\Omega ) with a similar estimate.
Case 3.3.1: s \in [ 1

10 ,
1
6 ). Observe that 4s > 1

2  - s  - \epsilon for \epsilon > 0 being arbitrarily

small. Invoke Proposition 4.9 with t = 1
2  - s - \epsilon to obtain \=u \in Hs+ 1

2 - \epsilon (\Omega ) with

\| \=u\| 
Hs+1

2
 - \epsilon (\Omega )

\lesssim \| \=z\| H4s(\Omega ) + \| \=u\| H4s(\Omega ) + \| a(\cdot , 0)\| 
H

1
2
 - s - \epsilon (\Omega )

\lesssim \frakC + \| a(\cdot , 0)\| 
H

1
2
 - s - \epsilon (\Omega )

.

Invoke Proposition 4.9 again to deduce that \=p, \=z \in Hs+ 1
2 - \epsilon (\Omega ).

Case 3.3.2: s \in (0, 1
10 ). Invoke Proposition 4.9 with t = 4s to obtain \=u \in H6s(\Omega ).

Since \=p, \partial a\partial u (\cdot , \=u) \in H4s(\Omega ), an application of Proposition 4.9 yields \=p, \=z \in H6s(\Omega ).
Case 3.3.2.1: s \in [ 1

14 ,
1
10 ). Observe that 6s > 1

2  - s - \epsilon for \epsilon > 0 being arbitrarily

small. Invoke Proposition 4.9 with t = 1
2  - s - \epsilon to obtain \=u, \=p, \=z \in Hs+ 1

2 - \epsilon (\Omega ).
Case 3.3.2.2: s \in (0, 1

14 ). Invoke Proposition 4.9 with t = 6s to obtain \=u \in 
H8s(\Omega ). Since \=p, \partial a\partial u (\cdot , \=u) \in H6s(\Omega ), Proposition 4.9 also yields \=p, \=z \in H8s(\Omega ).

From this procedure we note that, at every step, there is a regularity gain. Conse-
quently, after a finite number of steps, which is proportional to s - 1, we can conclude
that the desired regularity results hold. This concludes the proof.

5. Finite element approximation of fractional semilinear PDEs. In this
section, we analyze the convergence properties of suitable finite element discretiza-
tions and derive, when possible, a priori error estimates. For analyzing convergence
properties, it will be sufficient to assume that \Omega is an open and bounded Lipschitz
polytope. However, additional assumptions on \Omega will be imposed for deriving error
estimates: \Omega is smooth and convex, convexity being assumed for simplicity. Since
in this case \Omega cannot be meshed exactly, we consider curved simplices to discretize
\Omega \setminus \Omega h; \Omega h being a suitable polytopal domain that approximates \Omega .

For the sake of brevity, we restrict the presentation to open and bounded domains
\Omega \subset \BbbR n (n \geq 2) such that \partial \Omega \in C2; for Lipschitz polytopes the presentation is simpler
(see Remark 5.1). We follow [33, section 5.2] and consider a family of open, bounded,
and convex polytopal domains \{ \Omega h\} h>0, based on a family of quasi-uniform partitions
made of closed simplices \{ Th\} h>0, that approximate \Omega in the following sense:
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(5.1) \scrN h \subset \=\Omega h, \scrN h \cap \partial \Omega h \subset \partial \Omega , | \Omega \setminus \Omega h| \lesssim h2.

Here, h = maxT\in Th
hT denotes the mesh-size of the quasi-uniform partition Th =

\{ T\} , where hT = diam(T ), and \scrN h corresponds to the set of all nodes of the mesh
Th. We shall also assume that \Omega is convex so that \Omega h \subset \Omega for every h > 0.

Given a mesh Th, we define the finite element space of continuous piecewise
polynomials of degree one as

(5.2) \BbbV h =
\bigl\{ 
vh \in C0(\Omega ) : vh| T \in \BbbP 1(T ) \forall T \in Th, vh = 0 on \Omega \setminus \Omega h

\bigr\} 
.

Note that discrete functions are trivially extended by zero to \Omega c and that we enforce
a classical homogeneous Dirichlet boundary condition at the degrees of freedom that
are located at the boundary of \Omega h.

Remark 5.1 (polytopes). If \Omega is a Lipschitz polytope the previous construction is
not necessary: \Omega = \Omega h and \BbbV h = \{ vh \in C0(\Omega ) : vh| T \in \BbbP 1(T ) \forall T \in Th\} .

5.1. The discrete problem. We introduce the following finite element approx-
imation of problem (3.1): Find \sansu h \in \BbbV h such that

(5.3) \scrA (\sansu h, vh) +

\int 
\Omega h

a(x, \sansu h(x))vh(x)dx =

\int 
\Omega h

f(x)vh(x)dx \forall vh \in \BbbV h.

Let r > n/2s and f \in Lr(\Omega ). Let a = a(x, u) : \Omega \times \BbbR \rightarrow \BbbR be a Carath\'eodory
function that is monotone increasing in u. Assume, in addition, that a satisfies (3.2)
and a(\cdot , 0) \in Lr(\Omega ). Within this setting, Theorem 3.1 guarantees that the continuous
problem (3.1) admits a unique solution u \in \~Hs(\Omega )\cap L\infty (\Omega ) satisfying (3.3). Since \scrA 
is coercive and a is monotone increasing in u, an application of Brouwer's fixed point
theorem [39, Proposition 2.6] yields the existence of a unique solution for (5.3); see
also the proof of [40, Theorem 26.A]. In addition, \| \sansu h\| s \lesssim \| f\| H - s(\Omega ) for every h > 0.

5.2. Regularity estimates. Before deriving error estimates, understanding of
regularity estimates for the solution of (3.1) is of fundamental importance.

Theorem 5.1 (regularity estimates: s \in (0, 1)). Let n \geq 2, s \in (0, 1), and \Omega 
be a domain such that \partial \Omega \in C\infty . Assume, in addition, that a is locally Lipschitz
with respect to the second variable. If both a(\cdot , 0) and f belong to H1/2 - s - \epsilon (\Omega ) with \epsilon 
arbitrarily small, then u \in Hs+1/2 - \epsilon (\Omega ).

Proof. The proof follows along the same lines as Theorem 4.10. For brevity, we
skip the details.

5.3. Error estimates. We now present error estimates. In doing so, we will
assume, in addition, that there exists \phi \in Lr(\Omega ) with r = n/2s such that

(5.4) | a(x, u) - a(x, v)| \leq | \phi (x)| | u - v| a.e. x \in \Omega , u, v \in \BbbR .

Theorem 5.2 (error estimates). Let n \geq 2, s \in (0, 1), and r > n/2s. Let \Omega be
an open and bounded domain with Lipschitz boundary. Assume that a is as in the
statement of Theorem 3.1. Assume, in addition, that a satisfies (5.4). Let u \in \~Hs(\Omega )
be the solution to (3.1), and let \sansu h \in \BbbV h be its finite element approximation obtained
as the solution to (5.3). Then, we have the quasi-best approximation result

(5.5) \| u - \sansu h\| s \lesssim \| u - vh\| s \forall vh \in \BbbV h.

If, in addition, \Omega is smooth and convex, a is locally Lipschitz with respect to the second
variable, and a(\cdot , 0), f \in H1/2 - s - \epsilon (\Omega ) with \epsilon > 0 arbitrarily small, then

(5.6) \| u - \sansu h\| s \lesssim h
1
2 - \epsilon \| u\| Hs+1/2 - \epsilon (\Omega ).
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If, in addition, (5.4) holds with r = n/s, then

(5.7) \| u - \sansu h\| L2(\Omega ) \lesssim h\vargamma +
1
2 - \epsilon \| u\| Hs+1/2 - \epsilon (\Omega ).

Here, \vargamma = min\{ s, 12  - \epsilon \} with \epsilon > 0 being arbitrarily small. In all three estimates the
hidden constant is independent of u, \sansu h, and h.

Proof. Since a is monotone increasing in the second variable, we obtain

\| u - \sansu h\| 2s = \scrA (u - \sansu h, u - \sansu h) \leq \scrA (u - \sansu h, u - \sansu h) + (a(\cdot , u) - a(\cdot , \sansu h), u - \sansu h)L2(\Omega )

= \scrA (u - \sansu h, u - vh) + (a(\cdot , u) - a(\cdot , \sansu h), u - vh)L2(\Omega ), vh \in \BbbV h

upon utilizing Galerkin orthogonality. Invoke estimate (5.4) and the Sobolev embed-
ding Hs(\Omega ) \lhook \rightarrow Lq(\Omega ) with q \leq 2n/(n - 2s) to obtain (5.5).

Assume now that \Omega is smooth and convex so Theorem 5.1 applies, convexity being
assumed for simplicity. To bound \| u - vh\| s we first invoke [26, Theorem 3.33]:

\| u - vh\| s \lesssim \| u - vh\| Hs(\Omega ) \forall vh \in \BbbV h, s \in (0, 1) \setminus 
\biggl\{ 
1

2

\biggr\} 
.

The second ingredient is the localization of fractional order Sobolev seminorms [18, 19]:

| v| 2Hs(\Omega ) \leq 
\sum 
T

\biggl[ \int 
T

\int 
ST

| v(x) - v(y)| 2
| x - y| n+2s

dydx+
c

sh2sT
\| v\| 2L2(T )

\biggr] 
, s \in (0, 1), c > 0,

for v \in Hs(\Omega ); ST denotes a suitable patch associated to T . We stress that curved
domains/simplices are also handled in [18, 19]. It thus suffices to note that, if T
denotes a boundary curved simplex, the fact that u \in \~Hs(\Omega ) \cap Hs+1/2 - \epsilon (\Omega ) with
\epsilon > 0 arbitrarily small implies

\| u - \sansu h\| L2(T) \leq \| u\| L2(\Omega \setminus \Omega h) \lesssim h2\upsilon \| u\| H\upsilon (\Omega ), \upsilon = min\{ 1, s+ 1/2 - \epsilon \} ,

which follows from interpolating [33, estimate (5.2.18)] and \| v\| L2(\Omega \setminus \Omega h) \leq \| v\| L2(\Omega ).

On the other hand, if v \in \~Hs(\Omega ) \cap Hs+1/2 - \epsilon (\Omega ) with \epsilon > 0 arbitrarily small, then\int 
T

\int 
ST

| v(x) - v(y)| 2
| x - y| n+2s

dydx \leq | v| 2Hs(ST) \lesssim h2(1/2 - \epsilon )\| v\| 2Hs+1/2 - \epsilon (\Omega ).

We thus utilize interpolation error estimates for the Scott--Zhang operator [9, Propo-
sition 3.6] and Theorem 5.1 to arrive at the estimate (5.6); see [9, section 3.2] for
details and the particular treatment of the case s = 1/2.

The error estimate in L2(\Omega ) follows from duality. Define 0 \leq \chi \in Lr(\Omega ) by

\chi (x) =
a(x, u(x)) - a(x, \sansu h(x))

u(x) - \sansu h(x)
if u(x) \not = \sansu h(x), \chi (x) = 0 if u(x) = \sansu h(x).

Let z \in \~Hs(\Omega ) be the solution to \scrA (v, z) + (\chi z, v)L2(\Omega ) = \langle f, v\rangle for all v \in \~Hs(\Omega );
f \in H - s(\Omega ). Let zh be the finite element approximation of z within \BbbV h. Thus,

\langle f, u - \sansu h\rangle = \scrA (u - \sansu h, z) + (\chi z, u - \sansu h)L2(\Omega ) = \scrA (u - \sansu h, z - zh) +\scrA (u - \sansu h, zh)

+ (\chi z, u - \sansu h)L2(\Omega ) = \scrA (u - \sansu h, z - zh) + (a(\cdot , u) - a(\cdot , \sansu h), z - zh)L2(\Omega )

\leq \| u - \sansu h\| s\| z - zh\| s + \| \phi \| Lr(\Omega )\| u - \sansu h\| Lq(\Omega )\| z - zh\| Lq(\Omega ).



16 ENRIQUE OT\'AROLA

Here, q satisfies 2q - 1 + r - 1 = 1, i.e., q = 2n/(n  - 2s). Set f = u  - \sansu h \in L2(\Omega ).
Notice that, since \phi \in Lr(\Omega ) with r = n/s, \chi z belongs to L2(\Omega ). We can thus invoke
Proposition 4.9 with t = 0 to obtain \| z\| Hs+\theta (\Omega ) \lesssim \| u - \sansu h\| L2(\Omega ). Consequently,

\| u - \sansu h\| 2L2(\Omega ) \lesssim \| u - \sansu h\| s\| z - zh\| s \lesssim h
1
2 - \epsilon \| u\| 

Hs+1
2
 - \epsilon (\Omega )

h\vargamma \| u - \sansu h\| L2(\Omega ),

where \vargamma = min\{ s, 1/2 - \epsilon \} and \epsilon > 0 is arbitrarily small. This concludes the proof.

5.4. Convergence properties. Let 1 < p <\infty , and let \{ fh\} h>0 be a sequence
such that fh \in Lp(\Omega h). We will say that fh \rightharpoonup f in Lp(\Omega ) as h \downarrow 0 if f \in Lp(\Omega ) and

(5.8)

\int 
\Omega h

fh(x)v(x)dx\rightarrow 
\int 
\Omega 

f(x)v(x)dx \forall v \in Lq(\Omega ), h \downarrow 0, p - 1 + q - 1 = 1.

If p = \infty , we will say that fh \rightharpoonup 
\ast f in L\infty (\Omega ) if f \in L\infty (\Omega ) and (5.8) holds for every

v \in L1(\Omega ). Observe that, upon considering a suitable extension of fh to \Omega \setminus \Omega h,
fh can be understood as an element of Lp(\Omega ). Since | \Omega \setminus \Omega h| \rightarrow 0 as h \downarrow 0, (5.8)
is equivalent to

\int 
\Omega 

\~fh(x)v(x)dx \rightarrow 
\int 
\Omega 
f(x)v(x)dx, for instance, for \{ \~fh\} h>0 being a

uniformly bounded extension of \{ fh\} h>0 to \Omega or an extension independent of h.

Remark 5.2 (polytopes). If \Omega is a Lipschitz polytope, then (5.8) reduces to the
standard concept of weak convergence in Lp(\Omega ) because \Omega h = \Omega for every h > 0.

Proposition 5.3 (convergence). Let n \geq 2, s \in (0, 1), and r > n/2s. Let \Omega be
an open, bounded, and convex domain such that \partial \Omega \in C2. Assume that a is as in the
statement of Theorem 3.1 and satisfies, in addition, (5.4). Let u \in \~Hs(\Omega ) solve (3.1).
Let uh \in \BbbV h be the solution to (5.3) with f replaced by fh \in Lr(\Omega h). Then,

fh \rightharpoonup f in Lr(\Omega ) =\Rightarrow uh \rightarrow u in Lt(\Omega ), h \downarrow 0, t \leq 2n/(n - 2s).

Here, fh \rightharpoonup f in Lr(\Omega ) is understood in the sense of (5.8).

Proof. We begin with a simple application of the triangle inequality and write

\| u - uh\| Lt(\Omega ) \leq \| u - \sansu h\| Lt(\Omega ) + \| \sansu h  - uh\| Lt(\Omega ), t \leq 2n/(n - 2s),

where \sansu h denotes the solution to (5.3). Since Hs(\Omega ) \lhook \rightarrow Lq(\Omega ) for q \leq 2n/(n  - 2s),
the quasi-best approximation estimate (5.5) yields \| u  - \sansu h\| L\sansq (\Omega ) \lesssim \| u  - vh\| s for
an arbitrary vh \in \BbbV h. A density argument as in [13, Theorem 3.2.3] reveals the
convergence result \| u - \sansu h\| L\sansq (\Omega ) \rightarrow 0 as h \downarrow 0.

To control \| \sansu h  - uh\| Lt(\Omega ) we invoke the problems that \sansu h and uh solve:

\| \sansu h  - uh\| 2s = \scrA (\sansu h  - uh, \sansu h  - uh) = (f  - fh, \sansu h  - uh)L2(\Omega )

 - (a(\cdot , \sansu h) - a(\cdot , uh), \sansu h  - uh)L2(\Omega ) \leq \| f  - fh\| H - s(\Omega )\| \sansu h  - uh\| s.

This immediately yields \| \sansu h  - uh\| Lt(\Omega ) \lesssim \| f  - fh\| H - s(\Omega ). Since fh \rightharpoonup f in Lr(\Omega ) we
can thus obtain that \| \sansu h  - uh\| Lt(\Omega ) \rightarrow 0 as h \downarrow 0. This concludes the proof.

Remark 5.3 (convergence on polytopes). The result of Proposition 5.3 can also be
obtained for Lipschitz polytopes; observe that the involved arguments do not utilize
further regularity beyond what is natural for the problem: u \in \~Hs(\Omega ) \cap L\infty (\Omega ).
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6. Finite element approximation of the adjoint equation. We begin the
section by introducing the following approximation of (4.7): Find qh \in \BbbV h such that

(6.1) \scrA (vh, qh) +

\biggl( 
\partial a

\partial u
(\cdot , u)qh, vh

\biggr) 
L2(\Omega )

=

\biggl( 
\partial L

\partial u
(\cdot , u), vh

\biggr) 
L2(\Omega )

\forall vh \in \BbbV h.

Here, u \in \~Hs(\Omega ) \cap L\infty (\Omega ) denotes the unique solution to (4.2). Observe that as-
sumption (B.2) yields \partial L/\partial u(\cdot , u) \in Lr(\Omega ) for r > n/2s, while assumption (A.2)
guarantees that \partial a/\partial u(x, u) \geq 0 for a.e. x \in \Omega and for all u \in \BbbR . The existence of a
unique discrete solution qh \in \BbbV h to problem (6.1) is thus immediate.

We present the following error estimates.

Theorem 6.1 (error estimate). Let n \geq 2 and s \in (0, 1). Let \Omega be a convex
domain such that \partial \Omega \in C\infty (\Omega ). Assume that (A.1)--(A.3), (B.1)--(B.2), and (C.1)--
(C.2) hold. Let p \in \~Hs(\Omega ) be the solution to (4.7), and let qh \in \BbbV h be its finite
element approximation obtained as the solution to (6.1). Then, we have the error
estimates

(6.2) \| p - qh\| s \lesssim h
1
2 - \epsilon \| p\| 

Hs+1
2
 - \epsilon (\Omega )

, \| p - qh\| L2(\Omega ) \lesssim h\vargamma +
1
2 - \epsilon \| p\| 

Hs+1
2
 - \epsilon (\Omega )

,

where \vargamma = min\{ s, 1/2 - \epsilon \} and \epsilon > 0 is arbitrarily small. In both estimates, the hidden
constant is independent of p, qh, and h.

Proof. Notice that, within our setting, Galerkin orthogonality reads as follows:
for every vh \in \BbbV h, we have \scrA (vh, p - qh) + ( \partial a\partial u (\cdot , u)(p - qh), vh)L2(\Omega ) = 0. Thus,

\| p - qh\| 2s = \scrA (p - qh, p) +

\biggl( 
\partial a

\partial u
(\cdot , u)(p - qh), qh

\biggr) 
L2(\Omega )

= \scrA (p - qh, p - vh) +

\biggl( 
\partial a

\partial u
(\cdot , u)(p - qh), qh  - vh

\biggr) 
L2(\Omega )

.

Since \partial a/\partial u(x, u) \geq 0 for a.e. x \in \Omega and u \in \BbbR , we invoke (A.3) and the fact that u \in 
\~Hs(\Omega )\cap L\infty (\Omega ) to obtain \| p - qh\| 2s \leq \| p - qh\| s\| p - vh\| s+Cm\| p - qh\| L2(\Omega )\| p - vh\| L2(\Omega ).
This estimate yields the quasi-best approximation property: \| p - qh\| s \lesssim \| p - vh\| s for
every vh \in \BbbV h. The left-hand-side estimate in (6.2) thus follows from the arguments
developed in the proof of Theorem 5.2. We note that, in view of Proposition 4.9 and
assumptions (C.1) and (C.2), a bootstrap argument, like the one developed in the

proof of Theorem 4.10, reveals that p \in Hs+ 1
2 - \epsilon (\Omega ) for every \epsilon > 0 arbitrarily small.

The right-hand-side estimate in (6.2) follows from a duality argument.

In what follows, we will operate under the assumption that discrete solutions uh
to problem (5.3) are uniformly bounded in L\infty (\Omega ), i.e.,

(6.3) \exists C > 0 : \| uh\| L\infty (\Omega ) \leq C \forall h > 0.

Let uh be the solution to (5.3) with f replaced by zh; zh being an arbitrary
piecewise constant function over Th. Let ph \in \BbbV h be the unique solution to

(6.4) \scrA (vh, ph) +

\biggl( 
\partial a

\partial u
(\cdot , uh)ph, vh

\biggr) 
L2(\Omega )

=

\biggl( 
\partial L

\partial u
(\cdot , uh), vh

\biggr) 
L2(\Omega )

\forall vh \in \BbbV h.

We now derive estimates for the error p  - ph. To accomplish this task, we first
define q as the solution to the following problem: Find q \in \~Hs(\Omega ) such that

(6.5) \scrA (v, q) +

\biggl( 
\partial a

\partial u
(\cdot , uh)q, v

\biggr) 
L2(\Omega )

=

\biggl( 
\partial L

\partial u
(\cdot , uh), v

\biggr) 
L2(\Omega )

\forall v \in \~Hs(\Omega ).



18 ENRIQUE OT\'AROLA

In view of the assumptions on the data and (6.3), problems (6.4) and (6.5) are well-
defined. In particular, we have q \in \~Hs(\Omega ) \cap L\infty (\Omega ). Observe that ph can be seen as
the finite element approximation of q within \BbbV h. Consequently, Theorem 6.1 yields

(6.6) \| q  - ph\| s \lesssim h
1
2 - \epsilon \| q\| 

Hs+1
2
 - \epsilon (\Omega )

, \| q  - ph\| L2(\Omega ) \lesssim h\vargamma +
1
2 - \epsilon \| q\| 

Hs+1
2
 - \epsilon (\Omega )

,

where \vargamma = min\{ s, 1/2  - \epsilon \} and \epsilon is arbitrarily small. Observe that (C.1) and (C.2)

guarantee that q \in Hs+ 1
2 - \epsilon (\Omega ). We also define the variable y to be such that

(6.7) y \in \~Hs(\Omega ) : \scrA (y, v) + \langle a(\cdot , y), v\rangle = \langle zh, v\rangle \forall v \in \~Hs(\Omega ).

Since zh \in L\infty (\Omega ), Theorem 3.1 yields the well-posedness of (6.7) and y \in \~Hs(\Omega ) \cap 
L\infty (\Omega ). On the other hand, since zh \in H

1
2 - \epsilon (\Omega ), for every \epsilon > 0, a bootstrapping

argument and (C.1) allow us to conclude that y \in Hs+ 1
2 - \epsilon (\Omega ) for every \epsilon > 0.

We present the following error estimates.

Theorem 6.2 (error estimates). Let the assumptions of Theorem 6.1 hold. As-
sume, in addition, that \partial L/\partial u is locally Lipschitz with respect to the second variable
and that a satisfies (5.4). Let p \in \~Hs(\Omega ) be the solution to (4.7), and let ph \in \BbbV h be
the solution to (6.4). Then, we have the error estimate

(6.8) \| p - ph\| s \lesssim h
1
2 - \epsilon + \| z  - zh\| L2(\Omega ).

If, in addition, a satisfies (5.4) with r = n/s, we also have the error estimate

(6.9) \| p - ph\| L2(\Omega ) \lesssim h\vargamma +
1
2 - \epsilon + \| z  - zh\| L2(\Omega ),

where \vargamma = min\{ s, 1/2  - \epsilon \} . In both estimates, \epsilon > 0 is arbitrarily small, and the
hidden constant is independent of h.

Proof. We begin with a simple application of the triangle inequality: \| p - ph\| s \leq 
\| p - q\| s + \| q - ph\| s. The control of \| q - ph\| s follows from (6.6). To bound \| p - q\| s,
we first observe that, for every v \in \~Hs(\Omega ), we have

p - q \in \~Hs(\Omega ) : \scrA (v, p - q) +

\biggl( 
\partial a

\partial u
(\cdot , u)(p - q), v

\biggr) 
L2(\Omega )

=

\biggl( \biggl[ 
\partial a

\partial u
(\cdot , uh) - 

\partial a

\partial u
(\cdot , u)

\biggr] 
q, v

\biggr) 
L2(\Omega )

+

\biggl( 
\partial L

\partial u
(\cdot , u) - \partial L

\partial u
(\cdot , uh), v

\biggr) 
L2(\Omega )

.

Since \partial a
\partial u and \partial L

\partial u are locally Lipschitz with respect to the second variable we obtain
\| p - q\| s \lesssim \| u - uh\| L2(\Omega )(1 + \| q\| L\infty (\Omega )). It thus suffices to bound \| u - uh\| L2(\Omega ). To
do this, we write \| u - uh\| L2(\Omega ) \leq \| u - y\| L2(\Omega ) + \| y  - uh\| L2(\Omega ), where y denotes the
solution to (6.7). An application of Theorem 5.2 yields the control of \| y  - uh\| L2(\Omega ).
The control of \| u  - y\| L2(\Omega ) follows from writing the problem that u  - y solves and
utilizing assumptions (A.1)--(A.3): \| u - y\| L2(\Omega ) \lesssim \| z  - zh\| L2(\Omega ). A collection of the
derived estimates yields (6.8). The proof of (6.9) follows similar arguments.

7. Finite element approximation for the optimal control problem. In
this section, we propose a finite element discretization scheme for our control problem.
We analyze convergence properties and derive, when possible, error estimates. To
accomplish this task, we operate within the discrete setting introduced in section 5
and introduce, in addition, the finite element space of piecewise constant functions

(7.1) \BbbZ h =
\bigl\{ 
vh \in L\infty (\Omega h) : vh| T \in \BbbP 0(T ) \forall T \in Th

\bigr\} 
and the space of discrete admissible controls \BbbZ ad,h = \BbbZ ad \cap \BbbZ h.
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7.1. The discrete optimal control problem. We consider the following dis-
crete counterpart of the continuous optimal control problem (4.1)--(4.2): Find

(7.2) min\{ Jh(uh, zh) : (uh, zh) \in \BbbV h \times \BbbZ ad,h\} 

subject to the discrete state equation

(7.3) \scrA (uh, vh) +

\int 
\Omega h

a(x, uh(x))vh(x)dx =

\int 
\Omega h

zh(x)vh(x)dx \forall v \in \BbbV h.

Here, Jh : \BbbV h\times \BbbZ ad,h \ni (uh, zh) \mapsto \rightarrow Jh(uh, zh) :=
\int 
\Omega h
L(x, uh(x))dx+

\alpha 
2 \| zh\| 2L2(\Omega h)

\in \BbbR .
We present the following result.

Theorem 7.1 (optimal pair and optimality system). Let n \geq 2 and s \in (0, 1).
Assume that (A.1)--(A.3) and (B.1)--(B.2) hold. Thus, the discrete optimal control
problem (7.2)--(7.3) admits at least one solution \=zh \in \BbbZ ad,h. In addition, if \=zh denotes
a local minimum for (7.2)--(7.3), then the triple (\=uh, \=ph, \=zh) \in \BbbV h \times \BbbV h \times \BbbZ ad,h, with
\=uh and \=ph being the associated optimal state and adjoint state, respectively, satisfies

\scrA (\=uh, vh) + (a(\cdot , \=uh), vh)L2(\Omega h) = (\=zh, vh)L2(\Omega h) \forall vh \in \BbbV h,(7.4)

\scrA (vh, \=ph) +

\biggl( 
\partial a

\partial u
(\cdot , \=uh)\=ph, vh

\biggr) 
L2(\Omega h)

=

\biggl( 
\partial L

\partial u
(\cdot , \=uh), vh

\biggr) 
L2(\Omega h)

\forall vh \in \BbbV h(7.5)

and the variational inequality

(7.6) (\=ph + \alpha \=zh, zh  - \=zh)L2(\Omega h) \geq 0

for every zh \in \BbbZ ad,h.

Proof. The proof follows from the finite dimensional analogue of the arguments
elaborated in the proof of Theorems 4.1 and 4.4. For brevity, we skip details.

7.2. Convergence of discretizations. We begin with the following conver-
gence result: a sequence \{ \=zh\} h>0 of global solutions of the discrete optimal control
problems (7.2)--(7.3) admits subsequences that converge, as h \downarrow 0, to global solutions
of the continuous optimal control problem (4.1)--(4.2).

Theorem 7.2 (convergence). Let n \geq 2 and s \in (0, 1). Let \Omega be a Lipschitz
polytope satisfying the exterior ball condition. Assume that (A.1)--(A.3) and (B.1)--
(B.2) hold. Assume that a = a(x, u) satisfies, in addition, (5.4) and that L satisfies, in
addition, for all m > 0, the estimate | \partial L\partial u (x, u)| \leq Cm for a.e. x \in \Omega and u \in [ - m,m].
Let \=zh for every h > 0 be a global solution of the discrete optimal control problem.
Then, there exist nonrelabeled subsequences \{ \=zh\} h>0 such that \=zh \rightharpoonup \ast \=z as h \downarrow 0, in
L\infty (\Omega ), with \=z being a global solution of (4.1)--(4.2). In addition, we have

(7.7) \| \=z  - \=zh\| L2(\Omega ) \rightarrow 0, jh(\=zh) \rightarrow j(\=z)

as h \downarrow 0.

Proof. Since \{ \=zh\} h>0 is uniformly bounded in L\infty (\Omega ), we deduce the existence of
a nonrelabeled subsequence \{ \=zh\} h>0 such that \=zh \rightharpoonup 

\ast \=z in L\infty (\Omega ) as h \downarrow 0. In what
follows, we prove that \=z is a global solution of the continuous optimal control problem
and that jh(\=zh) \rightarrow j(\=z) as h \downarrow 0.

Let \~z \in \BbbZ ad be a global solution of (4.1)--(4.2). Define \~p as the solution to
(4.7), with u replaced by \~u := \scrS \~z, and \~zh \in \BbbZ ad,h by \~zh| T :=

\int 
T
\~z(x)dx/| T | for

T \in Th. Observe that, since (A.3) holds and \~p, \partial L/\partial u(\cdot , \~u) \in L\infty (\Omega ), we deduce
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that \partial L/\partial u(\cdot , \~u) - \partial a/\partial u(\cdot , \~u)\~p \in L\infty (\Omega ). In view of the fact that \Omega is Lipschitz and
satisfies the exterior ball condition, we can thus invoke [34, Proposition 1.1] to obtain
that \~p \in Cs(\BbbR n). The projection formula (4.10) thus yields \~z \in Cs(\Omega ). Consequently,
\| \~z  - \~zh\| L\infty (\Omega h) \rightarrow 0 as h \downarrow 0. Invoke that \~z is a global solution of (4.1)--(4.2) and
that \=zh corresponds to a global solution of the discrete control problem to arrive at

j(\~z) \leq j(\=z) \leq lim inf
h\downarrow 0

jh(\=zh) \leq lim sup
h\downarrow 0

jh(\=zh) \leq lim sup
h\downarrow 0

jh(\~zh) = j(\~z).

To obtain the last equality, we used that \| \~z  - \~zh\| L\infty (\Omega h) \rightarrow 0 implies jh(\~zh) \rightarrow j(\~z)
as h \downarrow 0. We have thus proved that \=z is a global solution and jh(\=zh) \rightarrow j(\=z) as h \downarrow 0.

We now prove that \| \=z  - \=zh\| L2(\Omega ) \rightarrow 0 as h \downarrow 0. In view of Proposition 5.3, we
have that \=uh \rightarrow \=u in Lq(\Omega ), for q \leq 2n/(n - 2s), as h \downarrow 0. Consequently,\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

L(x, \=u(x))dx - 
\int 
\Omega h

L(x, \=uh(x))dx

\bigm| \bigm| \bigm| \bigm| \rightarrow 0, h \downarrow 0.

In view of the convergence result jh(\=zh) \rightarrow j(\=z), we can thus obtain

\alpha 

2
\| \=zh\| 2L2(\Omega h)

\rightarrow \alpha 

2
\| \=z\| 2L2(\Omega ), h \downarrow 0.

This and the weak convergence \=zh \rightharpoonup \=z in L2(\Omega ) imply that \=zh \rightarrow \=z in L2(\Omega ) as h \downarrow 0.
This concludes the proof.

We now prove a somehow reciprocal result: every strict local minimum of the
continuous problem (4.1)--(4.2) can be approximated by local minima of the discrete
optimal control problems.

Theorem 7.3 (convergence). Let the assumptions of Theorem 7.2 hold. Let \=z be
a strict local minimum of problem (4.1)--(4.2). Then, there exists a sequence \{ \=zh\} h>0

of local minima of the discrete optimal control problems such that

(7.8) \| \=z  - \=zh\| L2(\Omega ) \rightarrow 0, jh(\=zh) \rightarrow j(\=z)

as h \downarrow 0.

Proof. Since \=z is a strict local minimum for problem (4.1)--(4.2), we deduce the
existence of \epsilon > 0 such that the minimization problem

(7.9) min\{ j(z) : z \in \BbbZ ad and \| \=z  - z\| L2(\Omega ) \leq \epsilon \} 

admits a unique solution \=z \in \BbbZ ad. On the other hand, let us introduce, for h > 0, the
discrete problem

(7.10) min\{ jh(zh) : zh \in \BbbZ ad,h and \| \=z  - zh\| L2(\Omega ) \leq \epsilon \} .

To conclude that problem (7.10) admits at least a solution, we need to verify that
the set where the minimum is sought is nonempty; notice that such a set is compact.
To accomplish this task, we define, as in the proof of Theorem 7.2, \^zh \in \BbbZ ad,h by
\^zh| T :=

\int 
T
\=z(x)dx/| T | for T \in Th. Since \=z \in Cs(\=\Omega ), we have that \| \=z - \^zh\| L\infty (\Omega ) \rightarrow 0

as h \downarrow 0. As a result, if h is sufficiently small, \^zh \in \BbbZ ad,h is such that \| \=z - \^zh\| L2(\Omega ) \leq \epsilon .
We can thus conclude the existence of h \star > 0 such that problem (7.10) admits at least
a solution for h \leq h \star .

Let h \leq h \star , and let \=zh be a global solution to problem (7.10). Since \{ \=zh\} 0<h\leq h \star 

is bounded in L\infty (\Omega ), there exists a subsequence \{ \=zhk
\} \infty k=1 of \{ \=zh\} 0<h\leq h \star 

such that
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\=zhk
\rightharpoonup \ast \~z in L\infty (\Omega ) as k \uparrow \infty . Proceed as in the proof of Theorem 7.2 to obtain that \~z

is a solution to the continuous problem (7.9) and \=zhk
\rightarrow \~z in L2(\Omega ) as k \uparrow \infty . Since

problem (7.9) admits a unique solution, we must have \~z = \=z and \=zh \rightarrow \=z in L2(\Omega ) as
h \downarrow 0. Observe that, for h sufficiently small, the constraint \| \=z  - \=zh\| L2(\Omega ) \leq \epsilon is not
active in problem (7.10). Consequently, \=zh solves the original discrete problem. The
remaining convergence property in (7.8) follows from the arguments elaborated in the
proof of Theorem 7.2. This concludes the proof.

Remark 7.1 (curved domains). The results of Theorems 7.2 and 7.3 can also be
obtained for curved domains. In fact, to prove Theorem 7.2 it suffices to consider a
uniformly bounded extension \{ \~zh\} h>0 \subset L\infty (\Omega ) of \{ zh\} h>0 \subset L\infty (\Omega h). On the other
hand, to adapt the results of Theorem 7.3 to a curved setting, we extend discrete
functions zh \in \BbbZ ad,h, defined over \Omega h, to \Omega by setting zh(x) = \=z(x) for x \in \Omega \setminus \Omega h.

7.3. Error estimates. Let \{ \=zh\} \in \BbbZ ad,h be a sequence of local minima of the
discrete optimal control problems such that \| \=z  - \=zh\| L2(\Omega h) \rightarrow 0 as h \downarrow 0, \=z being a
local solution of the continuous problem (4.1)--(4.2); see Theorems 7.2 and 7.3. The
main goal of this section is to provide an error estimate for \=z - \=zh in L2(\Omega h), namely,

(7.11) \| \=z  - \=zh\| L2(\Omega h) \lesssim h\gamma , \gamma = min

\biggl\{ 
1, s+

1

2
 - \epsilon 

\biggr\} 
\forall h \leq h \star .

Here, \epsilon > 0 is arbitrarily small. In what follows, if necessary, we extend discrete
functions zh \in \BbbZ ad,h, defined over \Omega h, to \Omega by setting zh(x) = \=z(x) for x \in \Omega \setminus \Omega h.

We begin with the following instrumental result.

Theorem 7.4 (instrumental error estimate). Let n \in \{ 2, 3\} and s > n/4. Let
\Omega be a convex domain such that \partial \Omega \in C\infty . Assume that (A.1)--(A.3), (B.1)--(B.2),
and (C.1)--(C.2) hold. Assume, in addition, that (5.4) and (6.3) hold. Let \=z \in \BbbZ ad

satisfies the second order optimality condition (4.16), or equivalently (4.20). Let us
assume that (7.11) is false. Then, there exists h \star > 0 such that

(7.12)
\frakC 

2
\| \=z  - \=zh\| 2L2(\Omega h)

\leq [j\prime (\=zh) - j\prime (\=z)] (\=zh  - \=z)

for every h \leq h \star , where \frakC = min\{ \mu , \alpha \} , \mu is the constant appearing in (4.20), and \alpha 
denotes the regularization parameter.

Proof. Since (7.11) is false, there exist sequences \{ h\ell \} \infty \ell =1 and \{ \=zh\ell 
\} \infty \ell =1 such that

h\ell \downarrow 0 as \ell \uparrow \infty and \| \=z  - \=zh\ell 
\| L2(\Omega h)/h

\gamma 
\ell \rightarrow \infty as h\ell \downarrow 0. In what follows, to simplify

notation we omit the subindex \ell .
Define vh := (\=zh  - \=z)/\| \=zh  - \=z\| L2(\Omega ), and observe that, for every h > 0, we have

\| vh\| L2(\Omega ) = 1. Upon considering a subsequence, if necessary, we can assume that
vh \rightharpoonup v in L2(\Omega ) as h \downarrow 0. Since the set of elements satisfying (4.12) is weakly
closed in L2(\Omega ) and each vh satisfies (4.12), we conclude that v satisfies (4.12) as
well. We now prove that | \=p(x)| > 0 implies v(x) = 0; recall that \=p = \=p + \alpha \=z. Define
\=ph := \=ph + \alpha \=zh. Observe that Proposition 5.3 and the arguments elaborated in the
proof of Theorems 6.1 and 6.2 yield \| \=p - \=ph\| L2(\Omega ) \rightarrow 0 as h \downarrow 0. As a result, we can
thus arrive at\int 

\Omega 

\=p(x)v(x)dx = lim
h\rightarrow 0

\int 
\Omega h

\=ph(x)vh(x)dx

= lim
h\rightarrow 0

1

\| \=zh  - \=z\| L2(\Omega )

\biggl[ \int 
\Omega h

\=ph(x)[(\Pi h\=z(x) - \=z(x)) + (\=zh(x) - \Pi h\=z(x))]dx

\biggr] 
,
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where \Pi h : L2(\Omega ) \rightarrow \BbbZ h denotes the orthogonal projection operator onto piece-
wise constant functions over Th. Since 0 \leq j\prime h(\=zh)(\Pi h\=z  - \=zh) =

\int 
\Omega h

\=ph(x)(\Pi h\=z(x)  - 
\=zh(x))dx, because \Pi h\=z \in \BbbZ ad,h, we have\int 

\Omega 

\=p(x)v(x)dx \leq lim
h\rightarrow 0

1

\| \=zh  - \=z\| L2(\Omega )

\biggl[ \int 
\Omega h

\=ph(x)(\Pi h\=z(x) - \=z(x))dx

\biggr] 
.

Invoke the regularity results for \=z obtained in Theorem 4.10, namely, \=z \in Hs+1/2 - \epsilon (\Omega ),
where \epsilon > 0 is arbitrarily small, standard error estimates for \Pi h, and limh\rightarrow 0 \| \=z  - 
\=zh\| L2(\Omega h)/h

\gamma = \infty to obtain
\int 
\Omega 
\=p(x)v(x)dx \leq 0. In view of (4.12), we can thus

conclude that
\int 
\Omega 
| \=p(x)v(x)| dx = 0 and thus that | \=p(x)| > 0 implies v(x) = 0 for

a.e. x \in \Omega . Consequently, v \in C\=z.
Invoke the mean value theorem to obtain

(7.13) (j\prime (\=zh) - j\prime (\=z)) (\=zh  - \=z) = j\prime \prime (\=z + \theta h(\=zh  - \=z))(\=zh  - \=z)2, \theta h \in (0, 1).

Define \^zh := \=z + \theta h(\=zh  - \=z), u\^zh = u(\^zh) := \scrS \^zh, and p\^zh = p(\^zh) as the solution to
(4.7) with u replaced by u\^zh . Invoke (4.13) to obtain

(7.14)

lim
h\rightarrow 0

j\prime \prime (\^zh)v
2
h = lim

h\rightarrow 0

\int 
\Omega 

\biggl( 
\partial 2L

\partial u2
(x, u\^zh)\phi 

2
vh

 - p\^zh
\partial 2a

\partial u2
(x, u\^zh)\phi 

2
vh

+ \alpha v2h

\biggr) 
dx

= \alpha +

\int 
\Omega 

\biggl( 
\partial 2L

\partial u2
(x, \=u)\phi 2v  - \=p

\partial 2a

\partial u2
(x, \=u)\phi 2v

\biggr) 
dx,

where we have used u\^zh \rightarrow \=u and p\^zh \rightarrow \=p in \~Hs(\Omega )\cap L\infty (\Omega ) and \phi vh \rightharpoonup \phi v in \~Hs(\Omega );
the latter implies that \phi vh \rightarrow \phi v in Lq(\Omega ) as k \uparrow \infty for q < 2n/(n - 2s); see the proof
of Theorem 4.7 for details. Since \=z satisfies (4.16), Theorem 4.8 yields

lim
h\rightarrow 0

j\prime \prime (\^zh)v
2
h = \alpha + j\prime \prime (\=z)v2  - \alpha \| v\| 2L2(\Omega ) \geq \alpha + (\mu  - \alpha )\| v\| 2L2(\Omega ).

Since \| v\| L2(\Omega ) \leq 1, we can thus conclude that limh\rightarrow 0 j
\prime \prime (\^zh)v2h \geq \frakC , where \frakC =

min\{ \mu , \alpha \} . As a result, there exists h \star > 0 such that, for every h \leq h \star , we have
j\prime \prime (\^zh)v2h \geq \frakC /2.

In view of (7.13), we can finally derive (7.12) and conclude the proof.

We now provide an error estimate for the difference \=z  - \=zh in L2(\Omega h).

Theorem 7.5 (error estimate for approximation of a control variable). Let n \in 
\{ 2, 3\} and s > n/4. Let \Omega be a convex domain such that \partial \Omega \in C\infty . Assume that
(A.1)--(A.3), (B.1)--(B.2), and (C.1)--(C.2) hold. Assume, in addition, that (5.4) and
(6.3) hold. Let \=z \in \BbbZ ad satisfies the second order optimality condition (4.16), or
equivalently (4.20). Then, there exist h \star > 0 such that

(7.15) \| \=z  - \=zh\| L2(\Omega h) \lesssim h\gamma , \gamma = min

\biggl\{ 
1, s+

1

2
 - \epsilon 

\biggr\} 
\forall h \leq h \star ,

where \epsilon > 0 is arbitrarily small.

Proof. We proceed by contradiction. Let us assume that (7.15) is false so that
we have at hand the instrumental error estimate of Theorem 7.4.

We begin by observing that j\prime h(\=zh)(zh - \=zh) \geq 0 for every zh \in \BbbZ ad,h and j\prime (\=z)(\=zh - 
\=z) \geq 0. In view of these inequalities, we invoke (7.12) to obtain

(7.16)
\frakC 

2
\| \=z  - \=zh\| 2L2(\Omega h)

\leq [j\prime h(\=zh) - j\prime (\=zh)](zh  - \=zh) + j\prime (\=zh)(zh  - \=z)
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for every zh \in \BbbZ ad,h. Let \Pi h : L2(\Omega ) \rightarrow \BbbZ h be the orthogonal projection operator
onto piecewise constant functions over Th. Set zh = \Pi h\=z \in \BbbZ ad,h in (7.16) to obtain

\frakC 

2
\| \=z  - \=zh\| 2L2(\Omega h)

\leq [j\prime h(\=zh) - j\prime (\=zh)](\Pi h\=z  - \=zh) + j\prime (\=zh)(\Pi h\=z  - \=z) =: I + II.

We bound the term II as follows. First, standard properties of \Pi h reveal that

II\Omega h
:= (p\=zh + \alpha \=zh,\Pi h\=z  - \=z)L2(\Omega h) = (p\=zh ,\Pi h\=z  - \=z)L2(\Omega h)(7.17)

= (p\=zh  - \Pi hp\=zh ,\Pi h\=z  - \=z)L2(\Omega h) \lesssim h\gamma +\vargamma + 1
2 - \epsilon | p\=zh | Hs+1

2
 - \epsilon (\Omega )

| \=z| H\gamma (\Omega ),

where \vargamma = min\{ s, 1/2  - \epsilon \} , \gamma = min\{ 1, s + 1/2  - \epsilon \} , and \epsilon > 0 is arbitrarily small.
Here, p\=zh = p(\=zh) denotes the solution to (4.7) with u replaced by \scrS \=zh. Notice that
Theorem 4.10 guarantees that \=z \in H\gamma (\Omega ). On the other hand, on the basis of (C.1)--
(C.2) and a bootstrap argument, Proposition 4.9 reveals that p\=zh \in Hs+1/2 - \epsilon (\Omega ),
where \epsilon > 0 is arbitrarily small. The remaining term II\Omega \setminus \Omega h

vanishes:

| II\Omega \setminus \Omega h
| = | (p\=zh + \alpha \=zh,\Pi h\=z  - \=z)L2(\Omega \setminus \Omega h)| = 0.

We now control I. To accomplish this task, we first observe that I = (\=ph  - 
p\=zh ,\Pi h\=z  - \=zh)L2(\Omega ). Second, we split I = I\Omega h

+ I\Omega \setminus \Omega h
and control I\Omega h

as follows:

(7.18) I\Omega h
:= (\=ph  - p\=zh ,\Pi h\=z  - \=zh)L2(\Omega h) = (\=ph  - p\=zh ,\Pi h(\=z  - \=zh))L2(\Omega h)

\lesssim \| \=ph  - p\=zh\| L2(\Omega )\| \=z  - \=zh\| L2(\Omega h) \leq 
\frakC 

4
\| \=z  - \=zh\| 2L2(\Omega h)

+ Ch2(\vargamma +
1
2 - \epsilon )| p\=zh | 2Hs+1

2
 - \epsilon (\Omega )

,

where \vargamma = min\{ s, 1/2  - \epsilon \} , \epsilon > 0 is arbitrarily small and C > 0. The control of
\| \=ph  - p\=zh\| L2(\Omega ) follows from Theorem 6.1. Since discrete functions zh \in \BbbZ ad,h are
extended to \Omega upon setting zh(x) = \=z(x) in \Omega \setminus \Omega h, I\Omega \setminus \Omega h

= 0.
A collection of the derived estimates yields the bound \| \=z  - \=zh\| L2(\Omega ) \lesssim h\gamma , which

is a contradiction. This concludes the proof.

Remark 7.2 (optimality). The error estimate (7.15) is, in terms of approximation,
optimal for s > 1

2 and suboptimal for s \leq 1
2 , suboptimality being dictated by the

regularity properties obtained in Theorem 4.10.

Remark 7.3 (L2(\Omega h)-error estimate). To derive (7.15), the L2(\Omega h)-error estimate
of Theorem 6.1 and the instrumental one obtained in Theorem 7.4 are essential. The
latter strongly relies on the second order optimality conditions analyzed in Theorems
4.7 and 4.8; observe inequality (4.20). In view of the assumptions n \in \{ 2, 3\} and
s > n/4, solutions to the state and adjoint equations belong to \~Hs(\Omega ) \cap L\infty (\Omega ) for
corresponding forcing terms in L2(\Omega ). Without these assumptions, global ones on a
and L should be imposed in order to provide an analysis and an error estimate in
L2(\Omega h); observe the local nature in (A.1)--(A.3), (B.1)--(B.2), and (C.1)--(C.2).

We conclude the section with the following result.

Theorem 7.6 (error estimates for approximation of state and adjoint variables).
Let the assumptions of Theorem 7.5 hold. Assume, in addition, that \partial L/\partial u is locally
Lipschitz with respect to the second variable. Then, there exist h \star > 0 such that

(7.19) \| \=u - \=uh\| s \lesssim h
1
2 - \epsilon , \| \=p - \=ph\| s \lesssim h

1
2 - \epsilon \forall h \leq h \star ,

where \epsilon > 0 is arbitrarily small.
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Proof. Observe that \| \=u - \=uh\| s \leq \| \=u - y\| s + \| y - \=uh\| s, where y solves (6.7) with
zh replaced by \=zh. The assumptions on a combined with the arguments elaborated in
the proof of [37, Theorem 4.16] and the error estimate (5.6) yield the estimates

\| \=u - y\| s \lesssim \| \=z  - \=zh\| L2(\Omega ), \| y  - \=uh\| s \lesssim h
1
2 - \epsilon \| y\| 

Hs+1
2
 - \epsilon (\Omega )

.

In view of (7.15), we obtain the left-hand-side estimate in (7.19). The bound for the
error committed within the approximation of \=p is the content of Theorem 6.2.

8. Numerical experiments. In this section, we illustrate the performance of
the fully discrete scheme proposed in section 7 and the sharpness of the error estimates
derived in Theorems 7.5 and 7.6.

8.1. Implementation. The implementation has been carried out in MATLAB
on the basis of the finite element code devised in [1]. To solve the discrete optimality
system we have utilized a slight variation of the primal-dual active set strategy de-
scribed in [37, section 2.12.4]; on each iteration of such a strategy we solve the ensuing
nonlinear system by using a Newton-type method.

Let us now construct an exact solution for the fractional semilinear optimal control
problem (4.1)--(4.2). To accomplish this task, we slight modify the state equation (1.2)
by incorporating an extra forcing term f : ( - \Delta )su+ a(\cdot , u) = f + z in \Omega and u = 0 in
\Omega c. Let n = 2, \Omega = B(0, 1), s \in (0, 1), and \alpha = 1. We set the control bounds a and
b, the nonlinear term a(\cdot , u), and the forcing term f to be as follows:

a =  - 0.8, b =  - 0.1, a(\cdot , u) = u3, f = 1 - \=u3  - \=z.

Within this setting, the optimal state \=u is given by

(8.1) \=u(x) =
\Gamma (n2 )

22s\Gamma (n+2s
2 )\Gamma (1 + s)

\bigl( 
1 - | x| 2

\bigr) s
+
, t+ = max\{ t, 0\} , n = 2.

Additionally, we set L(\cdot , u) = 1
2 (u - ud)

2, where ud corresponds to a suitable desired
state. Within this particular framework, the optimal adjoint variable \=p satisfies

\=p \in \~Hs(\Omega ) : \scrA (v, \=p) +
\bigl( 
3\=u2\=p, v

\bigr) 
L2(\Omega )

= (\=u - ud, v)L2(\Omega ) \forall v \in \~Hs(\Omega ).

We consider ud = \=u - 3\=u2\=p - 1 so that \=p is given by (8.1). Finally, the optimal control
can be obtained in view of a projection formula: \=z(x) = \Pi [a,b]( - \=p(x)) for a.e. x \in \Omega .

We notice that the previous construction of an exact solution is such that both
\=u and \=p belong to Hs+1/2 - \epsilon (\Omega ) for every \epsilon > 0 so that it retains essential difficulties
and singularities and allows us to evaluate experimental rates of convergence.

8.2. Experimental rates of convergence. We discretize \Omega using a sequence of
quasi-uniform meshes and study the performance of the fully discrete scheme described
in section 7 with s \in \{ 0.1, 0.2, . . . , 0.9\} . In Figure 8.1 we present experimental rates
of convergence for the error committed in the approximation of the optimal control,
state, and adjoint variables. We observe that such experimental rates of convergence
are in agreement with the error estimates derived in Theorems 7.5 and 7.6.
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Fig. 8.1: Experimental rates of convergence (ERO) for the fully discrete scheme of section
7 within the setting described in section 8.1. The obtained ERO are in agreement with the
error estimates derived in Theorems 7.5 and 7.6; observe that h ≈ Ndof−1/2.
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