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Abstract We analyze, in two dimensions, an optimal control problem for the
Navier–Stokes equations where the control variable corresponds to the ampli-
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ered. This particular setting leads to solutions to the state equation exhibiting
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first and, necessary and sufficient, second order optimality conditions.
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1 Introduction

The purpose of this paper is to study the existence of optimal solutions and
first and, necessary and sufficient, second order optimality conditions for an
optimal control problem that involves the stationary Navier–Stokes equations.
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francisco.fuica@sansano.usm.cl, enrique.otarola@usm.cl, daniel.quero@alumnos.usm.cl

Felipe Lepe
Universidad del B́ıo B́ıo, Concepción, Chile
flepe@ubiobio.cl



2 Francisco Fuica, Felipe Lepe, Enrique Otárola, Daniel Quero

The control variable corresponds to the amplitude of forces modeled as point
sources supported at some prescribed points of the underlying spatial domain
(Dirac measures); control constraints are also considered. The thus singular
control forcing appears in the right-hand side of the momentum equation.
We notice that, since Dirac measures are supported at points, and points
have Lebesgue measure zero, the aforementioned optimization setting can be
seen as an instance of sparse PDE-constrained optimization [30,33,7,11] and
finds relevance in applications where one can specify the position of actua-
tors at finitely many prespecified points. We mention references [5] and [20]
for applications within the context of the active control of sound and vibra-
tions, respectively. Regarding analysis, we mention references [17,3,2], where
the corresponding PDE-constrained optimization problem for when the state
equation is a Poisson problem is considered. These references also design and
analyze some suitable finite element discretizations. Extensions of the theory
to the Stokes and semilinear elliptic equations have been recently investigated
in [16] and [26], respectively.

To the best of our knowledge, the only work available in the literature
that considers an optimal control problem for the stationay Navier–Stokes
equations with a control that is measure valued is [8]. Under the assumption
that the underlying domain Ω ⊂ R2 is of class C2, the authors derive the
existence of local solutions for the corresponding optimal control problem and
derive necessary and sufficient conditions for local optimality of controls. In
addition, on the basis of a suitable second order condition, the authors prove
the stability of optimal states with respect to perturbations of the optimal
control problem data.

In our work we analyze an optimal control problem for the stationary
Navier–Stokes equations with a control variable that corresponds to the ampli-
tude of forces modeled as point sources. This setting leads to the first difficulty
within our analysis: standard energy arguments do not apply to obtain suit-
able estimates and solutions to the Navier–Stokes equations exhibit reduced
regularity properties. In order to deal with such a singular setting, we operate
under the framework developed in [28,27], which is based on the theory of
Muckenhoupt weights, Muckenhoupt-weighted Sobolev spaces, and weighted
norm inequalities. A second difficulty within our analysis is the nonuniqueness
of solutions to the Navier–Stokes equations. An assumption guaranteeing local
uniqueness of the state equation around optimal controls is thus needed to de-
rive first and second order optimality conditions [9,8]. We thus operate under
the framework of regular solutions (see Definition 4.1) [9,8,29]. Note that this
framework is satisfied whenever a suitable smallness assumption on controls is
fulfilled. We provide a complete analysis for our optimal control problem that
includes existence of optimal solutions (Theorem 5.1), first order optimality
conditions (Theorem 6.2), and necessary and sufficient second order optimal-
ity conditions (Theorems 6.4 and 6.5). As instrumental results, we analyze a
suitable linearization of the Navier–Stokes equations and the corresponding
adjoint state equations in weighted spaces. We also analyze regularity prop-
erties for the solution to the adjoint equations. In addition to the difficulties
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that were previously mentioned, we have to deal with the fact that solutions
to the state and adjoint equations lie in different function spaces. The analysis
that we provide thus requires fine properties of Muckenhoupt weights and em-
beddings between weighted and non-weighted spaces. This subtle intertwining
of ideas is one of the highlights of our contribution.

The contents of our manuscript are organized as follows. In Sect. 2 we intro-
duce the PDE-constrained optimization problem that is under consideration.
We collect background information and the main assumptions under which we
shall operate in Sect. 3. Here, we also introduce the concept of regular solution
for the Navier–Stokes equations and prove that an operator associated to the
linearization of such a system is an isomorphism on suitable weighted spaces.
In Sect. 5 we introduce a weak formulation for our optimal control problem
and prove the existence of solutions. Sect. 6 is dedicated to the analysis of op-
timality conditions: we derive first and, necessary and sufficient, second order
optimality conditions. We conclude our work with Sect. 7, where we provide
a brief summary of the obtained results and comment on possible extensions.

2 Statement of the Problem

To describe our problem, we let Ω ⊂ R2 be an open and bounded domain
with Lipschitz boundary ∂Ω and let ∅ 6= D ⊂ Ω be a finite ordered set
with cardinality #D =: `. Given a desired velocity field yΩ ∈ L2(Ω) and a
regularization parameter η > 0, we introduce the cost functional

J(y,U) :=
1

2
‖y − yΩ‖2L2(Ω) +

η

2

∑
t∈D
|ut|2, U = (u1, . . . ,u`), ut ∈ R2. (1)

The PDE-constrained optimization problem under consideration reads as
follows: Find min J(y,U) subject to the stationary Navier–Stokes equations

−ν∆y+(y ·∇)y+∇p =
∑
t∈D

utδt in Ω, div y = 0 in Ω, y = 0 on ∂Ω, (2)

and the control constraints

U ∈ Uad, Uad := {V = (v1, . . . ,v`) ∈ [R2]` : at ≤ vt ≤ bt for all t ∈ D}, (3)

with at,bt ∈ R2 satisfying at < bt for every t ∈ D. We immediately comment
that, throughout this work, vector inequalities must be understood componen-
twise and that | · | denotes the euclidean norm in R2. In (2), y represents the
velocity of the fluid, p represents the pressure, ν > 0 denotes the kinematic
viscosity, and δt corresponds to the Dirac delta supported at the interior point
t ∈ D.

3 Notation and Preliminaries

The main purpose of this section is to introduce the main notation and recall
basic results which we shall use later on.
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3.1 Notation

Let X be a Banach function space. We denote by X′, X′′, and ‖ · ‖X the dual,
the bidual, and the norm of X, respectively. Let {xn}n∈N be a sequence in
X. We denote by xn → x and xn ⇀ x the strong and weak convergence,
respectively, of {xn}n∈N to x in X. We denote by 〈·, ·〉X′,X the duality pairing
between X′ and X and simply write 〈·, ·〉 when X′ and X are clear from the
context. We write X ↪→ Y to denote that X is continuously embedded in the
Banach function space Y.

Let E ⊂ R2 be a Lebesgue measurable set. We denote the Lebesgue mea-
sure of such a set by |E| . For f : E → Ω, we set 

E

f =
1

|E|

ˆ
E

f.

By a . b we mean a ≤ Cb, with a positive constant C that does not
depend on either a or b. The value of C might change at each occurrence. If
the particular value of the constant C is of relevance for our analysis, we will
thus assign it a name.

3.2 Muckenhoupt Weights

By a weight, we shall mean a locally integrable function ω on R2 such that
ω(x) > 0 for a.e. x ∈ R2. A special class of weights that will be of importance
for our analysis is the so-called Muckenhoupt class A2 [12,14,25,32].

Definition 3.1 (Muckenhoupt Class A2) A weight ω belongs to the Muck-
enhoupt class A2 if

[ω]A2
:= sup

B

( 
B

ω

)( 
B

ω−1

)
<∞,

where the supremum is taken over all balls B in R2. We call [ω]A2
the Muck-

enhoupt characteristic of ω.

We refer the interested reader to [12,14,25,32] for basic facts about the
Muckenhoupt class A2. To present prototypical examples of Muckenhoupt
weights, we let K be a smooth compact submanifold of dimension k ∈ {0, 1}
and define dαK(x) := dist(x,K)α. The weight dαK belongs to the Muckenhoupt
class A2 provided α ∈ (−(2− k), (2− k)); see [1] and [15, Lemma 2.3(vi)]. We
thus identify the following two particular cases:

1. Let z ∈ Ω. Then, the weight dαz ∈ A2 if α ∈ (−2, 2).
2. Let γ ⊂ Ω be a smooth closed curve without self-intersections. Then, the

weight dαγ ∈ A2 if α ∈ (−1, 1).

As a consequence of the fact that the lower dimensional objects z and γ are
strictly contained in Ω, there are neighborhoods of ∂Ω where the weights dαz
and dαγ have no degeneracies or singularities. This simple observation motivates
the following restricted class of Muckenhoupt weights [15, Definition 2.5].
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Definition 3.2 (Class A2(G)) Let G ⊂ R2 be a Lipschitz domain. We say
that ω ∈ A2 belongs to A2(G) if there is an open set G ⊂ G and ε, ωl > 0 such
that {x ∈ G : dist(x, ∂G) < ε} ⊂ G, ω ∈ C(Ḡ), and ω(x) ≥ ωl for all x ∈ Ḡ.

3.3 Muckenhoupt-weighted Sobolev Spaces

Let ω ∈ A2 and G ⊂ R2 be an open set. We define

• L2(ω,G) as the space of measurable functions f on G such that

‖f‖L2(ω,G) :=

(ˆ
G

|f |2ω
) 1

2

<∞,

• H1(ω,G) := {f ∈ L2(ω,G) : Dαf ∈ L2(ω,G) for |α| ≤ 1}, endowed with

the norm ‖f‖H1(G) := (‖f‖2L2(G) + ‖∇f‖2L2(G))
1
2 , and

• H1
0 (ω,G) as the closure of C∞0 (G) in H1(ω,G).

For basic properties of these spaces, such as approximation by smooth func-
tions, extensions theorems, and interpolation inequalities, we refer the inter-
ested reader to [32, Chapter 2].

Spaces of vector valued functions will be denoted by boldface uppercase
letters whereas lowercase bold letters will be used to denote vector valued
functions. In particular, we introduce H1

0(ω,G) and | · |H1(ω,G) as follows:

H1
0(ω,G) := [H1

0 (ω,G)]2, |v|2H1(ω,G) := ‖∇v‖2L2(ω,G) =

2∑
i=1

‖∇vi‖2L2(ω,G),

for every v ∈ H1
0(ω,G).

3.4 Weighted Inequalities and Embeddings

The following fundamental result, which is known as reverse Hölder inequality,
will be essential for our analysis; see [12, Theorem 7.4].

Proposition 3.1 (Reverse Hölder Inequality) If ω ∈ A2, then there exists
a positive constant ε such that, for every ball B ⊂ R2, we have

 
B

ω1+ε .

( 
B

ω

)1+ε

.

The hidden constant only depends on the Muckenhoupt characteristic [ω]A2 .

We now present the following embedding results.

Theorem 3.1 (Continuous Embeddings) If ω ∈ A2, then there exists ε >
0 such that H1

0(ω,Ω) ↪→ L2+ε(Ω) and there exists κ > 1 such that H1
0(ω,Ω) ↪→

W1,κ
0 (Ω).
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Proof We prove the first embedding result; the second one follows from similar
considerations. Let ω ∈ A2 and Φ ∈ H1

0(ω,Ω). An application of [14, Theorem
1.3] implies that Φ ∈ L4(ω,Ω). We thus invoke Hölder’s inequality to obtain

ˆ
Ω

|Φ|2+ε =

ˆ
Ω

|Φ|2+εω
2+ε
4 ω−

2+ε
4 ≤

(ˆ
Ω

|Φ|4ω
) 2+ε

4
(ˆ

Ω

ω−
2+ε
2−ε

) 2−ε
4

, (4)

for some ε > 0. We observe that, since ω ∈ A2 and 2+ε
2−ε = 1 + δ, with δ = 2ε

2−ε ,
the reverse Hölder inequality of Proposition 3.1 allows us to obtain

ˆ
Ω

ω−
2+ε
2−ε =

ˆ
Ω

ω−(1+δ) . |Ω|−δ
(ˆ

Ω

ω−1

)1+δ

= |Ω|
( 

Ω

ω−1

) 2+ε
2−ε

.

Here, ε > 0 is sufficiently small such that the previously defined parameter δ
is less or equal that the one dictated by the reverse Hölder inequality. Since´
Ω
ω−1 is uniformly bounded, the previous bound combined with estimate (4)

allow us to conclude. ut

3.4.1 A Particular Weight

In this section, we introduce a particular weight in the class A2 that will be
of fundamental importance. With the finite set D ⊂ Ω at hand, we define

dD :=

{
dist(D, ∂Ω), if ` = 1,
min {dist(D, ∂Ω),min{|t− t′| : t, t′ ∈ D, t 6= t′}} , otherwise.

(5)

We recall that ` = #D. Since D ⊂ Ω is finite, we immediately conclude that
dD > 0. With this notation at hand, we define the weight ρ as follows:

If ` = 1, ρ(x) = dαt (x), otherwise, ρ(x) =

{
dαt (x), ∃t ∈ D : dt(x) < dD

2 ,

1, dt(x) ≥ dD
2 ∀t ∈ D,

(6)

where dt(x) := |x − t| and α ∈ (0, 2). Since (0, 2) ⊂ (−2, 2), owing to [1,
Theorem 6] and [15, Lemma 2.3 (vi)], ρ ∈ A2. The extra restriction on α,
namely, α > 0, is needed in order to guarantee that for t ∈ D and vt ∈ R2,
vtδt ∈ H1

0(ρ−1, Ω)′; see [19, Remark 21.19] and [13, Proposition 5.2] for details.
The following lemma provides instrumental embedding and density results.

Lemma 3.1 (Embedding and Density Results) Let ρ be the weight de-
fined in (6). If α ∈ (0, 2), then

(i) H1
0(ρ−1, Ω) ↪→ H1

0(Ω) ↪→ H1
0(ρ,Ω),

(ii) H1
0(ρ,Ω)′ ↪→ H−1(Ω) ↪→ H1

0(ρ−1, Ω)′, and
(iii) H−1(Ω) is dense in H1

0(ρ−1, Ω)′.

Proof (i) We prove that H1
0(ρ−1, Ω) ↪→ H1

0(Ω); the other embedding follows
from similar considerations. If v ∈ H1

0(ρ−1, Ω), then

‖∇v‖L2(Ω) = ‖ρ 1
2 ρ−

1
2∇v‖L2(Ω) ≤ ‖ρ

1
2 ‖L∞(Ω)‖∇v‖L2(ρ−1,Ω).

Notice that, since α > 0, the weight ρ is uniformly bounded in Ω.
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(ii) We prove that H−1(Ω) ↪→ H1
0(ρ−1, Ω)′; the other embedding follows from

similar considerations. Let L be an arbitrary element in H−1(Ω). In view
of the embedding H1

0(ρ−1, Ω) ↪→ H1
0(Ω), we immediately deduce that

‖L‖H1
0(ρ−1,Ω)′ := sup

v∈H1
0(ρ−1,Ω)

〈L,v〉
‖∇v‖L2(ρ−1,Ω)

≤ sup
v∈H1

0(Ω)

〈L,v〉
‖∇v‖L2(ρ−1,Ω)

≤ ‖ρ 1
2 ‖L∞(Ω)‖L‖H−1(Ω).

This implies that L ∈ H1
0(ρ−1, Ω)′, as we intended to show.

(iii) For completeness, we provide a proof based on [6, Corollary 1.8 and Remark
5]: Let F ∈ H1

0(ρ−1, Ω)′′ be such that

〈F,L〉H1
0(ρ−1,Ω)′′,H1

0(ρ−1,Ω)′ = 0 ∀L ∈ H−1(Ω). (7)

We have to prove that F = 0 in H1
0(ρ−1, Ω)′′. Since H1

0(ρ−1, Ω) is a reflex-
ive space, there exists f ∈ H1

0(ρ−1, Ω) such that

〈F,Q〉H1
0(ρ−1,Ω)′′,H1

0(ρ−1,Ω)′ = 〈Q, f〉H1
0(ρ−1,Ω)′,H1

0(ρ−1,Ω), (8)

for all Q ∈ H1
0(ρ−1, Ω)′. In view of H−1(Ω) ↪→ H1

0(ρ−1, Ω)′, relation (8) is
also valid for all Q ∈ H−1(Ω). On the other hand, the Riesz representation
theorem immediately yields that for every u ∈ H1

0(Ω) there exists L ∈
H−1(Ω) satisfying

〈L,w〉H−1(Ω),H1
0(Ω) =

ˆ
Ω

∇u : ∇w ∀w ∈ H1
0(Ω). (9)

Since H1
0(ρ−1, Ω) ↪→ H1

0(Ω), identity (9) holds for u ∈ H1
0(ρ−1, Ω). In

particular, for f ∈ H1
0(ρ−1, Ω), there exists Lf ∈ H−1(Ω) such that

〈Lf ,w〉H−1(Ω),H1
0(Ω) =

ˆ
Ω

∇f : ∇w ∀w ∈ H1
0(Ω).

Set w = f into the previous relation and invoke (7) and (8) to conclude
that ‖∇f‖L2(Ω) = 0. This implies that f = 0 a.e. in Ω. Consequently, f = 0
in H1

0(ρ−1, Ω) and hence F = 0 in H1
0(ρ−1, Ω)′′. ut

4 The Navier–Stokes Equations Under Singular Forcing

In this section, we follow the weighted approach developed in [28] and review
existence results for a suitable variational formulation of the stationary Navier–
Stokes equations under singular forcing. By singular, we mean that the forcing
term of the momentum equation is allowed to belong to the space H1

0(ω−1, Ω)′
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with ω ∈ A2. To be precise, given f ∈ H1
0(ω−1, Ω)′, we consider the following

weak problem: Find (Φ, ζ) ∈ H1
0(ω,Ω)× L2(ω,Ω)/R such thatˆ

Ω

(ν∇Φ : ∇v −Φ⊗Φ : ∇v − ζdiv v) = 〈f ,v〉H1
0(ω−1,Ω)′,H1

0(ω−1,Ω),ˆ
Ω

qdiv Φ = 0,

(10)

for all (v, q) ∈ H1
0(ω−1, Ω)× L2(ω−1, Ω)/R. Here, ν > 0 and ω ∈ A2.

Existence of solutions without smallness conditions is as follows [28, The-
orem 1]: Let Ω be Lipschitz, ω ∈ A2(Ω), ν > 0, and f ∈ H1

0(ω−1, Ω)′. Thus,
(10) has at least one solution (Φ, ζ) ∈ H1

0(ω,Ω)×L2(ω,Ω)/R, which satisfies

‖∇Φ‖L2(ω,Ω) + ‖ζ‖L2(ω,Ω) . ‖f‖H1
0(ω−1,Ω)′ . (11)

A similar result can be obtained on Lp-based spaces. In an abuse of nota-
tion, we denote by (Φ, ζ) ∈W1,p

0 (Ω)× Lp(Ω)/R the solution toˆ
Ω

(ν∇Φ : ∇v −Φ⊗Φ : ∇v − ζdiv v) = 〈f ,v〉W−1,p(Ω),W1,p′ (Ω),ˆ
Ω

qdiv Φ = 0,

(12)

for all (v, q) ∈W1,p′

0 (Ω)×Lp′(Ω)\R. Here, f ∈W−1,p(Ω) and p′ is such that
1/p + 1/p′ = 1. Let us assume that Ω is Lipschitz and that ν > 0. Within
this setting at hand, we have the following existence result: If p ∈ (4/3− ε, 2),
where ε = ε(Ω) > 0 denotes a constant that depends on Ω, then problem (12)
has at least one solution (Φ, ζ) ∈ W1,p

0 (Ω) × Lp(Ω)/R. In addition, we have
the following stability bound:

‖∇Φ‖Lp(Ω) + ‖ζ‖Lp(Ω) . ‖f‖W−1,p(Ω). (13)

The proof of such an existence result and the stability bound (13) follows from
the arguments elaborated in [21, Section 3].

4.1 Regular Solutions

In this section, we follow [8] and introduce the concept of regular solutions for
the Navier–Stokes equations.

Definition 4.1 (Regular Solution) Let (Φ, ζ) ∈ H1
0(ρ,Ω)×L2(ρ,Ω)/R be

a weak solution to (2) associated to a control U = (u1, . . .u`) ∈ Uad. We say
that the velocity field Φ is regular if for every g ∈ H−1(Ω) the weak problem:
Find (θ, ξ) ∈ H1

0(Ω)× L2(Ω)/R such thatˆ
Ω

[(ν∇θ −Φ⊗ θ − θ ⊗Φ) : ∇w − ξdiv w] = 〈g,w〉H−1(Ω),H1
0(Ω),ˆ

Ω

sdiv θ = 0,

(14)

for all (w, s) ∈ H1
0(Ω)× L2(Ω)/R, is well–posed.
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Let us introduce the linear map

T : V(Ω)× L2(Ω)/R→ H−1(Ω),

(θ, ξ) 7→ −ν∆θ + div (Φ⊗ θ) + div(θ ⊗Φ) +∇ξ,
(15)

where V(Ω) = {w ∈ H1
0(Ω) : div w = 0 in Ω}. We notice that, as a conse-

quence of Definition 4.1, if the velocity field Φ is regular, then the map T is
an isomorphism from V(Ω)× L2(Ω)/R into H−1(Ω) [8, Section 2].

In the following result, we show a well-posedness result that is crucial for
the upcoming analysis.

Theorem 4.1 (Well-Posedness in Weighted Spaces) Let (Φ, ζ) be a so-
lution to (2) associated to U ∈ Uad such that Φ is regular. Then, for every
g ∈ H1

0(ρ−1, Ω)′ the problem: Find (θ, ξ) ∈ H1
0(ρ,Ω)× L2(ρ,Ω)/R such that

ˆ
Ω

[(ν∇θ −Φ⊗ θ − θ ⊗Φ) : ∇w − ξdiv w]

= 〈g,w〉H1
0(ρ−1,Ω)′,H1

0(ρ−1,Ω),

ˆ
Ω

sdiv θ = 0, (16)

for all (w, s) ∈ H1
0(ρ−1, Ω) × L2(ρ−1, Ω)/R, admits a unique solution. In

addition, we have the stability bound

‖∇θ‖L2(ρ,Ω) + ‖ξ‖L2(ρ,Ω) . (1 + ‖∇Φ‖Lp(Ω))‖g‖H1
0(ρ−1,Ω)′ , (17)

where p ∈ (4/3− ε, 2) and ε = ε(Ω) > 0.

Proof We adapt the duality argument elaborated in the proof of [8, Theorem
2.9] to our weighted setting. To accomplish this task, we introduce the map

Tρ : V(ρ,Ω)× L2(ρ,Ω)/R→ H1
0(ρ−1, Ω)′,

(θ, ξ) 7→ −ν∆θ + div (Φ⊗ θ) + div(θ ⊗Φ) +∇ξ,
(18)

where V(ρ,Ω) = {v ∈ H1
0(ρ,Ω) : div v = 0 in Ω}, and prove that Tρ is an

isomorphism on the basis of three steps.
Step 1. Well-posedness of the adjoint problem in H1

0(Ω)×L2(Ω)/R. Given
ψ ∈ H−1(Ω), we introduce the adjoint problem: Find (z, r) such that

−ν∆z−(Φ·∇)z+(∇Φ)ᵀz+∇r = ψ in Ω, div z = 0 in Ω, z = 0 on ∂Ω. (19)

We also introduce a suitable linear map associated to the system (19):

S : V(Ω)× L2(Ω)/R→ H−1(Ω),

(z, r) 7→ −ν∆z− (Φ · ∇)z + (∇Φ)ᵀz +∇r.
(20)

In what follows, we prove that S is an isomorphism. As a first step, we
derive the bound

‖∇z‖L2(Ω) + ‖r‖L2(Ω) . ‖S(z, r)‖H−1(Ω) ∀(z, r) ∈ V(Ω)× L2(Ω)/R. (21)
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Let g ∈ H−1(Ω) and let (z, r) ∈ V(Ω) × L2(Ω)/R. Since Φ is regular, the
map T , defined in (15), is an isomorphism. Consequently, there exists (θ, ξ) ∈
V(Ω) × L2(Ω)/R such that T (θ, ξ) = g. Invoke the definitions of T and S,
given by (15) and (20), respectively, integration by parts, and the fact that
div θ = div Φ = div z = 0 to arrive at

〈g, z〉 = 〈T (θ, ξ), z〉 = 〈−ν∆θ + div(Φ⊗ θ) + div(θ ⊗Φ) +∇ξ, z〉
= 〈−ν∆z + (∇Φ)ᵀz− (Φ · ∇)z +∇r,θ〉 = 〈S(z, r),θ〉

. ‖S(z, r)‖H−1(Ω)‖g‖H−1(Ω),

where, in the last step, we have utilized the bound ‖∇θ‖L2(Ω) . ‖g‖H−1(Ω);
the latter follows from the fact that Φ is regular (cf. Definition 4.1). Since g
and (z, r) are arbitrary, we can thus conclude that, for every (z, r) ∈ V(Ω)×
L2(Ω)/R, we have

‖∇z‖L2(Ω) . ‖S(z, r)‖H−1(Ω). (22)

It remains to bound ‖r‖L2(Ω). Invoke the definition of S given in (20) to obtain

‖∇r‖H−1(Ω) ≤ ‖S(z, r)‖H−1(Ω) + ‖ν∆z‖H−1(Ω)

+ ‖(Φ · ∇)z‖H−1(Ω) + ‖(∇Φ)ᵀz‖H−1(Ω). (23)

It is clear that ‖∆z‖H−1(Ω) ≤ ‖∇z‖L2(Ω). To bound the first convective term
on the right-hand side of (23), we invoke Hölder’s inequality, the standard
Sobolev embedding H1

0(Ω) ↪→ Lβ(Ω), which holds for every β < ∞, and the
first embedding result of Theorem 3.1. These arguments reveal that

‖(Φ · ∇)z‖H−1(Ω) . ‖Φ‖L2+ε(Ω)‖∇z‖L2(Ω) . ‖∇Φ‖L2(ρ,Ω)‖∇z‖L2(Ω).

Here, ε > 0 is as in the statement of Theorem 3.1. The second convective term
on the right-hand side of (23) can be controlled as follows:

‖(∇Φ)ᵀz‖H−1(Ω) ≤ sup
v∈H1

0(Ω)

‖∇Φ‖L2(ρ,Ω)‖z‖Lκ(Ω)‖v‖Lµ(Ω)‖ρ−
1
2 ‖Lς(Ω)

‖∇v‖L2(Ω)

. ‖∇Φ‖L2(ρ,Ω)‖∇z‖L2(Ω), κ−1 + µ−1 + ς−1 = 2−1, (24)

upon utilizing H1
0(Ω) ↪→ Lβ(Ω) (β < ∞). To bound ‖ρ− 1

2 ‖Lς(Ω) we invoke
Proposition 3.1 and the fact that ς can be written as ς = 2 + δ for δ > 0
arbitrarily small. In fact, we have

‖ρ− 1
2 ‖ςLς(Ω) =

(ˆ
Ω

ρ−1− δ2

)
. |Ω|− δ2

(ˆ
Ω

ρ−1

)1+ δ
2

. (25)

Replace (22) and the estimates previously obtained into (23) to obtain

‖∇r‖H−1(Ω) . ‖S(z, r)‖H−1(Ω) +
(
ν + ‖∇Φ‖L2(ρ,Ω)

)
‖∇z‖L2(Ω)

.
(
1 + ν + ‖∇Φ‖L2(ρ,Ω)

)
‖S(z, r)‖H−1(Ω).
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This bound, together with (22), allows us to obtain (21). With estimate (21) at
hand, we can thus deduce that the linear and bounded operator S is injective
with a closed range in H−1(Ω). The surjectivity of S can be obtained with
similar arguments to the ones developed in the Step 1 of the proof of [8,
Theorem 2.9].

Step 2. Well-posedness of the adjoint problem in H1
0(ρ−1, Ω)×L2(ρ−1, Ω)/R.

The purpose of this step is to prove that problem (19) is well-posed in the space
H1

0(ρ−1, Ω)×L2(ρ−1, Ω)/R whenever ψ ∈ H1
0(ρ,Ω)′. To accomplish this task,

we introduce the map

Sρ : V(ρ−1, Ω)× L2(ρ−1, Ω)/R→ H1
0(ρ,Ω)′,

(z, r) 7→ −ν∆z− (Φ · ∇)z + (∇Φ)ᵀz +∇r.
(26)

In what follows, we prove that the linear map Sρ is an isomorphism.
Step 2.1. Sρ is surjective: Let ψ ∈ H1

0(ρ,Ω)′. Since H1
0(ρ,Ω)′ ⊂ H−1(Ω)

(cf. Lemma 3.1), we immediately deduce that ψ ∈ H−1(Ω). As a consequence,
the well-posedness results obtained in Step 1 yield the existence of a unique
solution (z, r) ∈ H1

0(Ω)×L2(Ω)/R to system (19) together with a suitable sta-
bility bound. We now prove that (z, r) belongs to H1

0(ρ−1, Ω)×L2(ρ−1, Ω)/R.
To accomplish this task, we first observe that (z, r) can be seen as the solution
to the Stokes problem

−ν∆z +∇r = ψ+ (Φ · ∇)z− (∇Φ)ᵀz in Ω, div z = 0 in Ω, z = 0 on ∂Ω,

and notice that the forcing term of the momentum equation belongs to H1
0(ρ,Ω)′.

In fact, the control of the convective term (Φ · ∇)z in H1
0(ρ,Ω)′ is as follows:

‖(Φ · ∇)z‖H1
0(ρ,Ω)′ ≤ sup

v∈H1
0(ρ,Ω)

‖Φ‖Lµ(Ω)‖∇z‖L2(Ω)‖v‖Lς(Ω)

‖∇v‖L2(ρ,Ω)

. ‖∇Φ‖Lp(Ω)‖∇z‖L2(Ω), µ−1 + ς−1 = 2−1,

upon setting ς = 2 + ε with ε being dictated by Theorem 3.1. Notice that, we
have also utilized the fact that Φ ∈W1,p

0 (Ω) for every p ∈ (4/3− ε, 2), where
ε = ε(Ω) > 0; see estimate (13). The second convective term can be bounded
in light of similar arguments:

‖(∇Φ)ᵀz‖H1
0(ρ,Ω)′ ≤ sup

v∈H1
0(ρ,Ω)

‖∇Φ‖Lp(Ω)‖z‖Lµ(Ω)‖v‖Lς(Ω)

‖∇v‖L2(ρ,Ω)

. ‖∇Φ‖Lp(Ω)‖∇z‖L2(Ω), p−1 + µ−1 + ς−1 = 1,

upon setting, again, ς = 2+ε with ε being dictated by Theorem 3.1. Notice that
we have also utilized the standard Sobolev embedding H1

0(Ω) ↪→ Lβ(Ω), which
holds for every β <∞. Having proved that the forcing term of the momentum
equation belongs to H1

0(ρ,Ω)′, we invoke [27, Theorem 17] to conclude that
(z, r) ∈ V(ρ−1, Ω)× L2(ρ−1, Ω)/R together with the bound

‖∇z‖L2(ρ−1,Ω) + ‖r‖L2(ρ−1,Ω) . ‖ψ‖H1
0(ρ,Ω)′(1 + ‖∇Φ‖Lp(Ω)), (27)
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where we have utilized the bounds ‖∇z‖L2(Ω) . ‖ψ‖H−1(Ω) . ‖ψ‖H1
0(ρ,Ω)′ .

The first bound follows from the results of Step 1 while the second one follows
from the item (ii) in Lemma 3.1. We have thus proved that Sρ is surjective.

Step 2.2. Sρ is injective: Let (z, r) ∈ V(ρ−1, Ω) × L2(ρ−1, Ω)/R be such
that Sρ(z, r) = 0. Since V(ρ−1, Ω) × L2(ρ−1, Ω)/R ⊂ V(Ω) × L2(Ω)/R, we
have that S(z, r) = 0. The fact that S is an isomorphism allows us to conclude
that (z, r) = (0, 0).

Step 3. Well-posedness of problem (16). We prove that problem (16) is well-
posed. To accomplish this task, we proceed on the basis of a density argument.
Let g ∈ H1

0(ρ−1, Ω)′. Since H−1(Ω) is dense in H1
0(ρ−1, Ω)′ (cf. Lemma 3.1),

there exists a sequence {gk}k∈N ⊂ H−1(Ω) such that gk → g in H1
0(ρ−1, Ω)′

as k ↑ ∞. On the other hand, since Φ is regular, the map T is an isomorphism.
Consequently, for every k ∈ N, there exists a unique pair (θk, ξk) ∈ H1

0(Ω)×
L2(Ω)/R that solves problem (14) with g being replaced by gk.

Step 3.1. {(θk, ξk)}k∈N is bounded in H1
0(ρ,Ω) × L2(ρ,Ω)/R. Let ψ ∈

H1
0(ρ,Ω)′. The results obtained in Step 2 guarantee that Sρ, which is defined

in (26), is an isomorphism. As a consequence, there exists a pair (z, r) ∈
V(ρ−1, Ω)× L2(ρ−1, Ω)/R such that ψ = Sρ(z, r). Let us now observe that

〈ψ,θk〉 = 〈Sρ(z, r),θk〉 = 〈z, T (θk, ξk)〉 = 〈gk, z〉. (28)

With the previous identity at hand, the stability bound (27) reveals that

|〈ψ,θk〉| ≤ ‖gk‖H1
0(ρ−1,Ω)′‖∇z‖L2(ρ−1,Ω)

. ‖gk‖H1
0(ρ−1,Ω)′‖ψ‖H1

0(ρ,Ω)′(1 + ‖∇Φ‖Lp(Ω)).

The arbitrariness of ψ allows us to deduce the following bound for θk and
k ∈ N: ‖∇θk‖L2(ρ,Ω) . ‖gk‖H1

0(ρ−1,Ω)′(1+‖∇Φ‖Lp(Ω)). This estimate and the
inf-sup condition on weighted spaces of [13, Lemma 6.1] yield the boundedness
of the sequence {‖ξk‖L2(ρ,Ω)}k∈N in R.

Step 3.2. Existence of solutions for (16). Since the sequence {(θk, ξk)}k∈N is
bounded in H1

0(ρ,Ω)×L2(ρ,Ω)/R, we deduce the existence of a nonrelabeled
subsequence {(θk, ξk)}k∈N such that

θk ⇀ θ in H1
0(ρ,Ω), ξk ⇀ ξ in L2(ρ,Ω)/R, k ↑ ∞.

In what follows, we show that (θ, ξ) ∈ H1
0(ρ,Ω)×L2(ρ,Ω)/R solves the system

(16). To accomplish this task, we let (w, s) be an arbitrary pair in H1
0(ρ−1, Ω)×

L2(ρ−1, Ω)/R and observe that
∣∣´
Ω
∇(θ − θk) : ∇w

∣∣→ 0 and that∣∣∣∣ˆ
Ω

(Φ⊗ θ −Φ⊗ θk) : ∇w

∣∣∣∣ ≤ ‖Φ‖L4(ρ,Ω)‖θ − θk‖L4(ρ,Ω)‖∇w‖L2(ρ−1,Ω) → 0,

as k ↑ ∞; the second convergence result being a consequence of the weighted
compact Sobolev embedding H1

0(ρ,Ω) ↪→ L4(ρ,Ω) [18, Theorem 4.12] (see
also [28, Proposition 2]). Similarly, we have∣∣∣∣ˆ

Ω

(θ − θk)⊗Φ : ∇w

∣∣∣∣ , ∣∣∣∣ˆ
Ω

(ξ − ξk)div w

∣∣∣∣ , ∣∣∣∣ˆ
Ω

sdiv (θ − θk)

∣∣∣∣→ 0,
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as k ↑ ∞. We have thus proved that (θ, ξ) ∈ H1
0(ρ,Ω) × L2(ρ,Ω)/R is a

solution to problem (16).
Step 3.3. Stability bound. Let ψ ∈ H1

0(ρ,Ω)′ and let (z, r) ∈ H1
0(ρ−1, Ω)×

L2(ρ−1, Ω)/R be the unique solution to (19). Similar arguments to the ones
utilized to obtain (28) combined with the stability bound (27) yield

〈ψ,θ〉 = 〈g, z〉 ≤ ‖g‖H1
0(ρ−1,Ω)′‖∇z‖L2(ρ−1,Ω)

. ‖g‖H1
0(ρ−1,Ω)′‖ψ‖H1

0(ρ,Ω)′(1 + ‖∇Φ‖Lp(Ω)).

Since ψ is an arbitrary element of H1
0(ρ,Ω)′, we can thus deduce that

‖∇θ‖L2(ρ,Ω) . ‖g‖H1
0(ρ−1,Ω)′(1 + ‖∇Φ‖Lp(Ω)).

We now utilize the inf-sup condition on weighted spaces of [13, Lemma 6.1] to
control the pressure: ‖ξ‖L2(ρ,Ω) . ‖g‖H1

0(ρ−1,Ω)′(1 + ‖∇Φ‖Lp(Ω)).

Step 3.4 The map Tρ is injective. Let (θ, ξ) ∈ H1
0(ρ,Ω) × L2(ρ,Ω)/R

be such that Tρ(θ, ξ) = 0. This immediately implies that 〈Tρ(θ, ξ), z〉 = 0
for every z ∈ H1

0(ρ−1, Ω). An argument based on integration by parts thus
reveals that 〈θ, Sρ(z, r)〉 = 0 for every (z, r) ∈ H1

0(ρ−1, Ω) × L2(ρ−1, Ω)/R.
This implies that θ = 0. Since Tρ(θ, ξ) = 0, we invoke the definition of Tρ to
deduce that ∇ξ = 0 and thus that ξ = 0. This concludes the proof. ut

Remark 4.1 (Well-Posedness in W1,p
0 (Ω)×Lp(Ω)/R) Let g ∈W−1,p(Ω) and

p′ be such that 1/p + 1/p′ = 1. Let us denote by (θ, ξ) the weak solution to
the system (16) with

〈g,w〉
W−1,p(Ω),W1,p′

0 (Ω)
,

as a forcing term. An adaptation of the arguments elaborated in the proof of
Theorem 4.1, that are in turn inspired by the ones in [8, Theorem 2.9], show
that problem 16 is well posed in W1,p

0 (Ω) × Lp(Ω)/R whenever p belongs
to (4/3, 2). This results holds under the assumption that Ω is Lipschitz and
therefore improves on [8, Theorem 2.9] where ∂Ω ∈ C2. We notice that the only
place in the proof of [8, Theorem 2.9] where such a regularity on Ω is needed is
[8, estimate (2.19)]. Since p ∈ (4/3, 2) and thus p′ ∈ (2, 4), [8, estimate (2.19)]
on Lipschitz domains can be obtained upon utilizing [23, Theorem 1.6, (1.52)].

4.1.1 Differentiability Properties of a Solution Operator

In this section, we investigate differentiability properties for a solution map
associated to system (2) around a regular velocity field y. We present some of
these properties in the following theorem.

Theorem 4.2 (Differentiability of U 7→ (y, p)) Let Ū ∈ Uad and let (ȳ, p̄) ∈
H1

0(ρ,Ω) × L2(ρ,Ω)/R be a solution to (2). If ȳ is regular, then there exist
open neighborhoods O(Ū) ⊂ [R2]`, O(ȳ) ⊂ V(ρ,Ω), and O(p̄) ⊂ L2(ρ,Ω)/R
of Ū , ȳ, and p̄, respectively, and a map of class C2,

Q : O(Ū)→ O(ȳ)×O(p̄), (29)
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such that Q(Ū) = (ȳ, p̄). In addition, the neighborhood O(Ū) can be taken such
that, for each U ∈ O(Ū),

(i) the pair (yU , pU ) = Q(U) uniquely solves (2) in O(ȳ)×O(p̄),
(ii) the map Q′(U) : [R2]` → V(ρ,Ω)× L2(ρ,Ω)/R is an isomorphism,
(iii) if V ∈ [R2]`, then (θ, ξ) := Q′(U)V corresponds to the unique solution to

(16) with Φ and g being replaced by yU and
∑
t∈D vtδt, respectively, and

(iv) if V1,V2 ∈ [R2]`, then (ψ, γ) := Q′′(U)V1V2 corresponds to the unique
solution to

ˆ
Ω

([ν∇ψ − yU ⊗ψ −ψ ⊗ yU ] : ∇v − γdiv v)

=

ˆ
Ω

(θV1 ⊗ θV2 + θV2 ⊗ θV1) : ∇v,

ˆ
Ω

qdiv ψ = 0, (30)

for all (v, q) ∈ H1
0(ρ−1, Ω) × L2(ρ−1, Ω)/R. Here, (θVi , ξVi) = Q′(U)Vi,

with i ∈ {1, 2}, corresponds to the unique solution to (16) with Φ and g
being replaced by yU and

∑
t∈D vtδt, respectively.

Proof The proof follows from slight modifications of the arguments elaborated
in the proof of [8, Theorem 2.10 and Corollary 2.11] upon utilizing the results
of Theorem 4.1. For brevity, we skip the details. ut

We conclude this section with the following Lipschitz property for Q, which
will be of importance to study second order conditions in Section 6.3.

Lemma 4.1 (Lipschitz Property) In the framework of Theorem 4.2, we
have the following Lipschitz property for the map Q:

‖∇(y − ȳ)‖L2(ρ,Ω) + ‖p− p̄‖L2(ρ,Ω) . ‖U − Ū‖[R2]` ∀U ∈ O(Ū), (31)

with a hidden constant that depends on Q′ and O(Ū).

Proof In view of the results of Theorem 4.2, we can choose an open, bounded,
and convex neighborhood O(Ū) of Ū such that Q′(U) : [R2]` → V(ρ,Ω) ×
L2(ρ,Ω)/R is an isomorphism and ‖Q′(U)‖ ≤ MQ for every U ∈ O(Ū). Here,
MQ > 0 and ‖ · ‖ denotes the norm in the space of linear and continuous
operators from [R2]` into V(ρ,Ω)×L2(ρ,Ω)/R. Thus, as a consequence of the
mean value theorem for operators [4, Proposition 5.3.11], we have

‖Q(U)−Q(Ū)‖H1
0(ρ,Ω)×L2(ρ,Ω)/R ≤ sup

t∈[0,1]

‖Q′((1− t)U + tŪ)‖‖U − Ū‖[R2]` ,

for every U ∈ O(Ū). Invoke the fact that ‖Q′(U)‖ ≤ MQ, for every U ∈ O(Ū),
to immediately arrive at the desired bound. ut
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5 The Optimal Control Problem

In this section, we propose and analyze the following weak formulation for the
optimal control problem (1)–(3): Find

min{J(y,U) : (y,U) ∈ H1
0(ρ,Ω)× Uad}, (32)

subject to the weak formulation of the stationary Navier–Stokes equations
ˆ
Ω

(ν∇y : ∇v − y ⊗ y : ∇v − pdiv v) =
∑
t∈D
〈utδt,v〉,

ˆ
Ω

qdiv y = 0, (33)

for all (v, q) ∈ H1
0(ρ−1, Ω)× L2(ρ−1, Ω)/R. The weight ρ is defined as in (6),

where the parameter α belongs to (0, 2). We comment that, since the velocity
component y of a solution to the state equation is sought in H1

0(ρ,Ω), an
application of Theorem 3.1 guarantees that y ∈ L2(Ω). Consequently, all the
terms involved in the definition of the cost functional J are well defined.

5.1 Existence of Optimal Solutions

The existence of an optimal solution (ȳ, Ū) is as follows.

Theorem 5.1 (Existence) The control problem (32)–(33) admits at least
one global solution (ȳ, Ū) ∈ H1

0(ρ,Ω)× Uad.

Proof Let {(yk,Uk)}k∈N be a minimizing sequence, i.e., for k ∈ N, the pair
(yk, pk) ∈ H1

0(ρ,Ω)× L2(ρ,Ω)/R solves
ˆ
Ω

(ν∇yk : ∇v − yk ⊗ yk : ∇v − pkdiv v) =
∑
t∈D
〈ukt δt,v〉,

ˆ
Ω

qdiv yk = 0,

for all (v, q) ∈ H1
0(ρ−1, Ω)× L2(ρ−1, Ω)/R, and the pair (yk,Uk) is such that

J(yk,Uk) → i := inf{J(y,U) : (y,U) ∈ H1
0(ρ,Ω) × Uad} as k ↑ ∞. Here, for

k ∈ N, we denote Uk := {ukt }t∈D. We notice that the existence of solutions for
the previously stated problem follows from the results of Section 4.

Since Uad is compact, we immediately conclude the existence of a non-
relabeled subsequence {Uk}k∈N such that Uk → Ū in [R2]` with Ū ∈ Uad.
On the other hand, in view of the stability bound (11), we conclude that
{(yk, pk)}k∈N is uniformly bounded in H1

0(ρ,Ω)× L2(ρ,Ω)/R. Consequently,
we deduce the existence of a nonrelabeled subsequence {(yk, pk)}k∈N such that
(yk, pk) ⇀ (ȳ, p̄) in H1

0(ρ,Ω)× L2(ρ,Ω)/R as k ↑ ∞; (ȳ, p̄) being the natural
candidate for an optimal state. The rest of the proof is dedicated to prove that
(ȳ, p̄) solves (33) with ut being replaced by ūt for t ∈ D.

With the weak convergence (yk, pk) ⇀ (ȳ, p̄) in H1
0(ρ,Ω)× L2(ρ,Ω)/R as

k ↑ ∞, at hand, we obtain
ˆ
Ω

ν∇(yk − ȳ) : ∇v→0,

ˆ
Ω

(pk − p̄)div v→ 0,

ˆ
Ω

qdiv (yk − ȳ)→ 0,
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as k ↑ ∞, for every v ∈ H1
0(ρ−1, Ω) and q ∈ L2(ρ−1, Ω)/R. On the other hand,

the convergence Uk → Ū in [R2]` yields
∑
t∈D〈ukt δt,v〉 →

∑
t∈D〈ūtδt,v〉 as

k ↑ ∞. It thus suffices to analyze the convective term. To accomplish this task,
we invoke Hölder’s inequality to arrive at∣∣∣∣ˆ

Ω

(yk ⊗ yk − ȳ ⊗ ȳ) : ∇v

∣∣∣∣
≤
(
‖yk‖L4(ρ,Ω) + ‖ȳ‖L4(ρ,Ω)

)
‖ȳ − yk‖L4(ρ,Ω)‖∇v‖L2(ρ−1,Ω).

The compact embedding H1
0(ρ,Ω) ↪→ L4(ρ,Ω), which follows from [18, The-

orem 4.12] (see also [28, Proposition 2]), combined with yk ⇀ ȳ in H1
0(ρ,Ω)

as k ↑ ∞, allow us to conclude that (ȳ, p̄) solves (33) with ut being replaced
by ūt for t ∈ D; Ū = {ūt}t∈D.

To conclude the proof, we must prove the optimality of Ū . Observe that
Uk → Ū in [R2]` as k ↑ ∞, and that yk → ȳ in L2(Ω) as k ↑ ∞. The latter
follows from

‖ȳ−yk‖L2(Ω) ≤ ‖ȳ−yk‖L4(ρ,Ω)

(ˆ
Ω

ρ−1

) 1
4

. ‖ȳ−yk‖L4(ρ,Ω) → 0, k ↑ ∞.

With these convergence properties at hand, we thus conclude the optimality
of Ū : J(ȳ, Ū) = limk→∞ J(yk,Uk) = i. ut

6 First and Second Order Optimality Conditions

In this section, we analyze first and second order optimality conditions for the
optimal control problem (32)–(33). We must immediately mention that, since
(32)–(33) is not convex, we distinguish between local and global solutions and
present optimality conditions in the context of local solutions [8,9].

Definition 6.1 (Local Solutions) We say that (ȳ, Ū) is a local solution for
problem (32)–(33) if there exist neighborhoods A ⊂ H1

0(ρ,Ω) and B ⊂ [R2]` ∩
Uad of ȳ and Ū , respectively, such that J(ȳ, Ū) ≤ J(y,U) for all (y,U) ∈ A×B.
If the inequality is strict for every (y,U) ∈ A×B\{(ȳ, Ū)}, we say that (ȳ, Ū)
is a strict local solution.

From now on, we will assume that (ȳ, Ū) is a local solution to (32)–(33)
such that ȳ is regular. Within this setting, the results of Theorem 4.2 guarantee
the existence of neighborhoods O(Ū) ⊂ [R2]`, O(ȳ) ⊂ V(ρ,Ω), and O(p̄) ⊂
L2(ρ,Ω)/R of Ū , ȳ, and p̄, respectively, and a map of class C2,

Q : O(Ū)→ O(ȳ)×O(p̄),

such that (ȳ, p̄) = Q(Ū). In addition, for each U ∈ O(Ū), the pair (yU , pU ) :=
Q(U) corresponds to the unique solution of (2) in O(ȳ)×O(p̄).
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6.1 Adjoint Equation

We begin the section by introducing the adjoint problem as follows: Find
(z, r) ∈ H1

0(ρ−1, Ω)× L2(ρ−1, Ω)/R such that

ˆ
Ω

(ν∇z : ∇w − (yU · ∇)zw +∇yᵀ
Uz ·w − rdiv w)

=

ˆ
Ω

(yU − yΩ) ·w,
ˆ
Ω

sdiv z = 0, (34)

for all (w, s) ∈ H1
0(ρ,Ω)× L2(ρ,Ω)/R. Here, yU denotes the velocity compo-

nent of the unique solution (yU , pU ) ∈ H1
0(ρ,Ω)×L2(ρ,Ω)/R to problem (33),

associated to U ∈ O(Ū), in the neighborhood O(ȳ)×O(p̄).

The well-posedness of the adjoint problem in weighted spaces is as follows:
Since (ȳ, Ū) is a local solution to (32)–(33) such that ȳ is regular, a direct
application of item (ii) in Theorem 4.2 reveals that

Q′(U) : [R2]` → V(ρ,Ω)× L2(ρ,Ω)/R,

is an isomorphism for every U ∈ O(Ū); the characterization of Q′(U) being
available in the item (iii) of Theorem 4.2. On the basis of this fact, the duality
argument elaborated within the proof of Theorem 4.1 reveals that problem (34)
admits a unique solution (z, r) ∈ H1

0(ρ−1, Ω)× L2(ρ−1, Ω)/R. In addition, in
view of (27), we have the following stability bound in weighted spaces:

‖∇z‖L2(ρ−1,Ω) + ‖r‖L2(ρ−1,Ω) . ‖yU − yΩ‖H1
0(ρ,Ω)′

. ‖yU − yΩ‖L2(Ω).
(35)

The following result guarantees that point evaluations of the velocity com-
ponent z of the adjoint pair (z, r) are well-defined.

Theorem 6.1 (Regularity Estimates) If (z, r) solves (34), then z belongs
to W1,q(Ω) for some q > 2. Consequently, z ∈ C(Ω̄).

Proof We begin the proof by rewriting the adjoint equation as the following
Stokes problem:

ˆ
Ω

(ν∇z : ∇w − rdiv w) =

ˆ
Ω

(yU − yΩ) ·w +

ˆ
Ω

[(yU · ∇)zw −∇yᵀ
Uz ·w] ,ˆ

Ω

sdiv z = 0,

for all (w, s) ∈ H1
0(ρ,Ω)× L2(ρ,Ω)/R.

Denote W−1,q(Ω) = W1,q′

0 (Ω)′ and define the linear functional F := F1 −
F2, where F1,F2 : H1

0(ρ,Ω) → R are defined by F1(w) :=
´
Ω

(yU · ∇)zw and
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F2(w) :=
´
Ω
∇yᵀ
Uz ·w. Let us prove that F ∈ W−1,q(Ω) for some q > 2. To

accomplish this task, we first study F1 on the basis of Hölder’s inequality:

‖F1‖W−1,q(Ω) ≤ sup
w∈W1,q′

0 (Ω)

‖ρ 1
4 ‖L∞(Ω)‖yU‖L4(ρ,Ω)‖∇z‖L2(ρ−1,Ω)‖w‖L4(Ω)

‖∇w‖Lq′ (Ω)

. ‖ρ 1
4 ‖L∞(Ω)‖∇yU‖L2(ρ,Ω)‖∇z‖L2(ρ−1,Ω),

where we have used H1
0(ρ,Ω) ↪→ L4(ρ,Ω), W1,q′

0 (Ω) ↪→ L4(Ω), which holds
for q′ ≥ 4/3 (q ≤ 4), and z ∈ H1

0(ρ−1, Ω). We thus deduce the existence of q >
2 such that F1 ∈W−1,q(Ω) and ‖F1‖W−1,q(Ω) . ‖∇yU‖L2(ρ,Ω)‖∇z‖L2(ρ−1,Ω).

We now control the term F2. To accomplish this task, we invoke Hölder’s
inequality combined with the fact that there exists ε = ε(Ω) > 0 such that
yU ∈W1,p

0 (Ω) for every p ∈ (4/3− ε, 2):

‖F2‖W−1,q(Ω) ≤ sup
w∈W1,q′

0 (Ω)

‖∇yU‖Lp(Ω)‖z‖Lµ(Ω)‖w‖Lυ(Ω)

‖∇w‖Lq′ (Ω)

,

with p−1 + µ−1 + υ−1 = 1. Invoke now that W1,q′

0 (Ω) ↪→ Lσ(Ω), which holds
for every σ ≤ 2q′/(2− q′), that z ∈ H1

0(ρ−1, Ω), and the Sobolev embeddings
H1

0(ρ−1, Ω) ↪→ H1
0(Ω) ↪→ Lβ(Ω), which hold for every β <∞, to arrive at the

existence of q > 2 such that ‖F2‖W−1,q(Ω) . ‖∇yU‖Lp(Ω)‖∇z‖L2(ρ−1,Ω).
Having obtained the existence of q > 2 such that F ∈W−1,q(Ω), it suffices

to invoke [24, (1.52)] to conclude that z ∈W1,q(Ω). ut

6.2 First Order Optimality Conditions

In this section, we derive first order optimality conditions for the optimal
control problem (32)–(33). To accomplish this task, we begin this section by
introducing some preliminary ingredients. Before presenting them, we recall
that we are operating under the assumption that (ȳ, Ū) is a local solution to
(32)–(33), which is such that ȳ is regular. The first ingredient is the operator
G, which is defined as follows:

G : O(Ū) ⊂ [R2]` → O(ȳ) ⊂ H1
0(ρ,Ω), U 7→ y, (36)

where y corresponds to the velocity component of the pair (y, p) = Q(U). The
second ingredient is the reduced cost functional:

j : O(Ū)→ R, j(U) :=
1

2
‖G(U)− yΩ‖2L2(Ω) +

η

2

∑
t∈D
|ut|2. (37)

Having defined the reduced cost functional, we present the following stan-
dard result: If Ū ∈ Uad denotes a locally optimal control for problem (32)–(33),
then it satisfies the following variational inequality [31, Lemma 4.18]:

j′(Ū)(U − Ū) ≥ 0 ∀U ∈ Uad. (38)

The following result explores the variational inequality (38).
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Theorem 6.2 (First Order Optimality Conditions) If the pair (ȳ, Ū) ∈
H1

0(ρ,Ω) × Uad denotes a local solution to the optimal control problem (32)–
(33) such that ȳ is regular, then Ū ∈ Uad satisfies the variational inequality∑

t∈D
(z̄(t) + ηūt) · (ut − ūt) ≥ 0 ∀U = (u1, . . . ,u`) ∈ Uad, (39)

where (z̄, r̄) ∈ H1
0(ρ−1, Ω) × L2(ρ−1, Ω)/R denotes the optimal adjoint pair,

which solves the adjoint problem (34) with yU replaced by ȳ.

Proof We begin the proof by computing the expression j′(Ū)(U − Ū) and
rewriting the basic variational inequality (38) as follows:

ˆ
Ω

(ȳ − yΩ) · G′(Ū)(U − Ū) + η
∑
t∈D

ūt · (ut − ūt) ≥ 0 ∀U ∈ Uad. (40)

Define θ := G′(Ū)(U − Ū). Observe that (θ, ξ) ∈ H1
0(ρ,Ω)×L2(ρ,Ω)/R solves

ˆ
Ω

(ν∇θ : ∇v − ȳ ⊗ θ : ∇v − θ ⊗ ȳ : ∇v − ξdiv v)

=
∑
t∈D
〈(ut − ūt)δt,v〉,

ˆ
Ω

qdiv θ = 0, (41)

for all (v, q) ∈ H1
0(ρ−1, Ω)×L2(ρ−1, Ω)/R. Having introduced the pair (θ, ξ),

the variational inequality (40) becomes
ˆ
Ω

(ȳ − yΩ) · θ + η
∑
t∈D

ūt · (ut − ūt) ≥ 0 ∀U = (u1, . . . ,ul) ∈ Uad. (42)

Since the second term on the right-hand side of the previous expression is
already present in the desired inequality (39), we focus on the first term.

Let us set (z̄, r̄) ∈ H1
0(ρ−1, Ω) × L2(ρ−1, Ω)/R as a test pair in problem

(41). This yields
ˆ
Ω

(ν∇θ : ∇z̄− ȳ ⊗ θ : ∇z̄− θ ⊗ ȳ : ∇z̄) =
∑
t∈D

(ut − ūt) · z̄(t), (43)

upon utilizing the fact that
´
Ω
ξdiv z̄ vanishes and that there exists q > 2 such

that z̄ ∈ W1,q(Ω) ↪→ C(Ω̄) (cf. Theorem 6.1). We now set w = θ as a test
function in the first equation of problem (34) to obtain

ˆ
Ω

(ν∇z̄ : ∇θ − (ȳ · ∇)z̄θ +∇ȳᵀz̄ · θ − r̄div θ) =

ˆ
Ω

(ȳ − yΩ) · θ. (44)

We thus utilize (43), (44), the fact that
´
Ω
r̄div θ vanishes, and an integration

by parts formula for the convective terms in (44) to arrive at the needed
relation

∑
t∈D(ut− ūt) · z̄(t) =

´
Ω

(ȳ−yΩ) · θ. In view of (42), the previously
derived identity allows to arrive at (39). ut
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6.3 Second Order Optimality Conditions

In this section, we analyze necessary and sufficient second order optimality
conditions.

6.3.1 Auxiliary Results

We begin this section by recalling that, as stated at the beginning of Section
6, we are operating under the assumption that (ȳ, Ū) ∈ H1

0(ρ,Ω) × Uad is a
local solution of (32)–(33) such that ȳ is regular.

We begin our studies with the following estimate.

Lemma 6.1 (Auxiliary Estimate) Let U ∈ O(Ū) and V ∈ [R2]`. Let y =
G(U), (θ, ξ) = Q′(U)V, and (θ̄, ξ̄) = Q′(Ū)V. Then, we have the estimate

‖∇(θ − θ̄)‖L2(ρ,Ω) . ‖U − Ū‖[R2]`‖V‖[R2]` , (45)

where the hidden constant is independent of (θ, ξ), (θ̄, ξ̄), and V.

Proof We begin the proof by noticing that (θ − θ̄, ξ − ξ̄) solves the following
problem: Find (θ − θ̄, ξ − ξ̄) ∈ H1

0(ρ,Ω)× L2(ρ,Ω)/R such that

ˆ
Ω

(ν∇(θ− θ̄) : ∇w− ȳ⊗ (θ− θ̄) : ∇w− (θ− θ̄)⊗ ȳ : ∇w− (ξ− ξ̄)div w)

=

ˆ
Ω

[(y − ȳ)⊗ θ + θ ⊗ (y − ȳ)] : ∇w,

ˆ
Ω

sdiv (θ − θ̄) = 0, (46)

for all (w, s) ∈ H1
0(ρ−1, Ω)× L2(ρ−1, Ω)/R. Since ȳ is regular, a direct appli-

cation of Theorem 4.1 reveals that problem (46) is well-posed upon realizing
that the forcing term of the momentum equation belongs to the dual space of
H1

0(ρ−1, Ω); see the estimates in (47) below.
To derive (45) we invoke the stability estimate (17), Hölder’s inequality,

the weighted embeddings H1
0(ρ±, Ω) ↪→ L4(ρ±, Ω), and the Lipschitz property

of Lemma 4.1. With these arguments and estimates, we have

‖∇(θ − θ̄)‖L2(ρ,Ω) . ‖(y − ȳ)⊗ θ + θ̄ ⊗ (y − ȳ)‖H1
0(ρ−1,Ω)′

.
[
‖∇θ‖L2(ρ,Ω) + ‖∇θ̄‖L2(ρ,Ω)

]
‖∇(y − ȳ)‖L2(ρ,Ω)

. ‖V‖[R2]`‖U − Ū‖[R2]` .

(47)

This concludes the proof. ut

We conclude this section with the following result.

Theorem 6.3 (Properties of j′′) The reduced cost functional j, defined in
(37), is of class C2. In addition, for U ∈ O(Ū) and V ∈ [R2]`, we have

j′′(U)V2 =

ˆ
Ω

|θ|2 + 2

ˆ
Ω

θ ⊗ θ : ∇z + η
∑
t∈D
|vt|2. (48)
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Here, (θ, ξ) = Q′(U)V and (z, r) denotes the unique solution of (34) with
yU = G(U). Finally, we have the bound

|j′′(U)V2 − j′′(Ū)V2| . ‖U − Ū‖[R2]`‖V‖2[R2]` . (49)

Proof Since Theorem 4.2 guarantees that Q is second order Fréchet differen-
tiable, it is immediate that G, defined in (36), is second order Fréchet differ-
entiable as a map from [R2]` into H1

0(ρ,Ω). Consequently, j is of class C2.
We now derive the identity (48). To accomplish this task, we begin with a

basic computation, which reveals that, for U ∈ O(Ū) and V ∈ [R2]`, we have

j′′(U)V2 =

ˆ
Ω

|G′(U)V|2 +

ˆ
Ω

(G(U)− yΩ) · G′′(U)V2 + η
∑
t∈D
|vt|2. (50)

Define (ψ, γ) := Q′′(U)V2, i.e., (ψ, γ) ∈ H1
0(ρ,Ω) × L2(ρ,Ω)/R corresponds

to the unique solution to (30) with both θV1 and θV2 being replaced by θ and
yU = G(U). Notice that ψ = G′′(U)V2. Setting v = z in the first equation of
the problem that (ψ, γ) solves (c.f. (30) with θV1 = θV2 = θ), we arrive at

ˆ
Ω

([ν∇ψ − yU ⊗ψ −ψ ⊗ yU ] : ∇z− γdiv z) = 2

ˆ
Ω

θ ⊗ θ : ∇z.

Here, (z, r) ∈ H1
0(ρ−1, Ω)× L2(ρ−1, Ω)/R corresponds to the unique solution

to the adjoint problem (34). Similarly, we set w = ψ in the first equation of
the adjoint problem (34). This yields

ˆ
Ω

(ν∇z : ∇ψ − (yU · ∇)zψ +∇yᵀ
Uz ·ψ − rdiv ψ) =

ˆ
Ω

(yU − yΩ) ·ψ.

We now resort to an integration by parts argument based on the fact that
div ψ = div yU = div z = 0 to obtain (48).

Let us proceed with the task of deriving (49). To accomplish this task, we
define (θ̄, ξ̄) := Q′(Ū)V and notice that (θ, ξ) and (θ̄, ξ̄) solve problem (16)
with Φ = G(U) and Φ = G(Ū), respectively, and g =

∑
t∈D vtδt. In view of

the derived identity (48), we write the following equality:

j′′(U)V2 − j′′(Ū)V2 =

ˆ
Ω

(θ − θ̄) · (θ + θ̄) + 2

[ˆ
Ω

θ ⊗ (θ − θ̄) : ∇z

+

ˆ
Ω

θ ⊗ θ̄ : ∇(z− z̄) +

ˆ
Ω

(θ − θ̄)⊗ θ̄ : ∇z̄

]
. (51)

Here, (z̄, r̄) denotes the unique solution to problem (34) with yU being re-
placed by ȳ = G(Ū). Invoke Hölder’s inequality and the Sobolev embeddings
H1

0(ρ,Ω) ↪→ L4(ρ,Ω) (cf. [14, Theorem 1.3]) and H1
0(ρ,Ω) ↪→ L2(Ω) (cf. The-

orem 3.1) to arrive at

|j′′(U)V2 − j′′(Ū)V2| . ‖∇θ‖L2(ρ,Ω)‖∇θ̄‖L2(ρ,Ω)‖∇(z− z̄)‖L2(ρ−1,Ω)

+ Λ‖∇(θ − θ̄)‖L2(ρ,Ω)

(
‖∇θ‖L2(ρ,Ω) + ‖∇θ̄‖L2(ρ,Ω)

)
,
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where Λ := 1 + ‖∇z‖L2(ρ−1,Ω) + ‖∇z̄‖L2(ρ−1,Ω). This bound combined with
the stability estimate (17), the auxiliary estimate (45), and the boundedness
of z̄, z in H1

0(ρ−1, Ω), which follows from (35), yield

|j′′(U)V2 − j′′(Ū)V2| . ‖U − Ū‖[R2]`‖V‖2[R2]` + ‖∇(z− z̄)‖L2(ρ−1,Ω)‖V‖2[R2]` .

Therefore, it suffices to bound ‖∇(z − z̄)‖L2(ρ−1,Ω). To accomplish this goal,
we notice that (z− z̄, r − r̄) ∈ H1

0(ρ−1, Ω)× L2(ρ−1, Ω)/R solves

ˆ
Ω

(ν∇(z− z̄) : ∇w − (yU · ∇)(z− z̄)w +∇yᵀ
U (z− z̄) ·w − (r − r̄)div w)

=

ˆ
Ω

(yU − ȳ) ·w +

ˆ
Ω

([yU − ȳ] · ∇)z̄w +

ˆ
Ω

[∇(ȳ − yU )]ᵀz̄ ·w,
ˆ
Ω

sdiv(z− z̄) = 0, (52)

for all (w, s) ∈ H1
0(ρ,Ω)× L2(ρ,Ω)/R. We now bound the H1

0(ρ,Ω)′-norm of
the right hand-side of the first equation of (52). We begin by noticing that
Hölder’s inequality combined with the embedding H1

0(ρ,Ω) ↪→ L4(ρ,Ω) yield

‖([yU − ȳ] · ∇)z̄‖H1
0(ρ,Ω)′ . ‖∇(yU − ȳ)‖L2(ρ,Ω)‖∇z̄‖L2(ρ−1,Ω).

Similarly, by exploiting the fact that ȳ,yU ∈W1,p
0 (Ω) for every p ∈ (4/3−ε, 2),

where ε = ε(Ω) > 0 (cf. estimate (13)), we obtain

‖[∇(yU − ȳ)]ᵀz̄‖H1
0(ρ,Ω)′ . sup

v∈H1
0(ρ,Ω)

‖∇(yU − ȳ)‖Lp(Ω)‖z̄‖Lµ(Ω)‖v‖L%(Ω)

‖∇v‖L2(ρ,Ω)
,

where p−1 + µ−1 + %−1 = 1. In view of the embeddings H1
0(ρ−1, Ω) ↪→

H1
0(Ω) ↪→ Lβ(Ω) for every β < ∞, we can thus set % = 2 + ε, with ε be-

ing dictated by Theorem 3.1 and utilize the embedding H1
0(ρ,Ω) ↪→ L2+ε(Ω)

to conclude that

‖[∇(yU − ȳ)]ᵀz̄‖H1
0(ρ,Ω)′ . ‖∇(yU − ȳ)‖Lp(Ω)‖∇z̄‖L2(ρ−1,Ω).

Having controlled the H1
0(ρ,Ω)′-norm of the right hand-side of the first equa-

tion of (52), we invoke the weighted stability estimate (35) twice to obtain

‖∇(z− z̄)‖L2(ρ−1,Ω) .
(
‖∇(yU − ȳ)‖L2(ρ,Ω) + ‖∇(yU − ȳ)‖Lp(Ω)

)
·‖∇z̄‖L2(ρ−1,Ω) .

(
‖∇(yU − ȳ)‖L2(ρ,Ω) + ‖∇(yU − ȳ)‖Lp(Ω)

)
‖ȳ−yΩ‖L2(Ω).

We now utilize the Lipschitz property of Lemma 4.1 and the one in [8, Lemma
4.4], upon further restricting the neighborhood O(Ū) if necessary, to obtain
the bound ‖∇(z− z̄)‖L2(ρ−1,Ω) . ‖U − Ū‖[R2]` . This concludes the proof. ut
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6.3.2 Second Order Necessary and Sufficient Optimality Conditions

Before presenting necessary and sufficient second order optimality conditions,
we introduce a few ingredients. Let us define

Ψ := (Ψ1, . . . ,Ψ `) ∈ [R2]`, Ψ t := z̄(t) + ηūt, t ∈ D. (53)

Let s ∈ D and U ∈ Uad be such that ut = ūt for t ∈ D \ {s}. Set U into the
variational inequality (39). This yields

0 ≤ (z̄(s) + ηūs) · (us − ūs) = Ψ s · (us − ūs). (54)

Let i, j ∈ {1, 2} be such that i 6= j. Set (us)i = (ūs)i. If (ūs)j = (as)j , then
inequality (54) reveals that

0 ≤ Ψ s · (us − ūs) = (Ψ s)j [(us)j − (as)j ] =⇒ (Ψ s)j ≥ 0.

Similarly,

– if (as)j < (ūs)j < (bs)j , then (Ψ s)j = 0, and
– if (ūs)j = (bs)j , then (Ψ s)j ≤ 0.

Let us also introduce the cone of critical directions at Ū ∈ Uad:

CŪ := {V = (v1, . . . ,v`) ∈ [R2]` that satisfies (55) and (56)},

where, for t ∈ D and i ∈ {1, 2}, conditions (55) and (56) read as follows:

(vt)i

{
≥ 0 if (ūt)i = (at)i,

≤ 0 if (ūt)i = (bt)i,
(55)

and
(Ψ t)i 6= 0 =⇒ (vt)i = 0; (56)

compare with [10, (3.16)].
As stated in [10, Section 3.3], the following result follows from the stan-

dard Karush–Kuhn–Tucker theory of mathematical optimization in finite-
dimensional spaces (see, for instance, [10, Theorem 3.8] and [22, Section 6.3])
on the basis of the results derived in Theorem 6.3.

Theorem 6.4 (Second Order Necessary and Sufficient Optimality
Conditions) If Ū ∈ Uad is a local minimum for problem (32)–(33), then
j′′(Ū)V2 ≥ 0 for all V ∈ CŪ . Conversely, if Ū ∈ Uad satisfies the variational
inequality (39) and the second order sufficient condition

j′′(Ū)V2 > 0 ∀V ∈ CŪ \ {0}, (57)

then there exists µ > 0 and σ > 0 such that

j(U) ≥ j(Ū) +
µ

2
‖U − Ū‖2[R2]` ∀U ∈ Uad : ‖U − Ū‖[R2]` ≤ σ. (58)

In particular, Ū is a strict local solution of (32)–(33).
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To present the following result, we introduce, for τ > 0, the cone

Cτ
Ū := {V = (v1, . . . ,v`) ∈ [R2]` that satisfies (55) and (59)},

where, for t ∈ D and i ∈ {1, 2}, condition (59) reads as follows:

|(Ψ t)i| > τ =⇒ (vt)i = 0. (59)

The following result is immediate in view of our finite dimensional setting.

Theorem 6.5 (Equivalence) Let (ȳ, p̄), (z̄, r̄), and Ū satisfy the first order
optimality conditions (33), (34), and (39). Then, (57) is equivalent to

∃κ, τ > 0 : j′′(Ū)V2 ≥ κ‖V‖2[R2]` ∀V ∈ Cτ
Ū . (60)

7 Conclusions

We have analyzed, in two dimensions, an optimal control problem for the
Navier–Stokes equations within a functional framework inherited by Mucken-
houpt weights and Muckenhoupt weighted Sobolev spaces. The control variable
corresponds to the amplitude of forces modeled as point sources. In view of
the nonuniqueness of solutions for the Navier–Stokes equations, we have op-
erated under an assumption guaranteeing local uniqueness of the state equa-
tion around optimal controls. With this assumption at hand, we were able
to prove that a suitable linearization of the Navier–Stokes equations is well-
posed in weighted spaces. We have also proved that the adjoint state equation
is well-posed in weighted spaces and derived further regularity properties for
its solution. A combination of these results allowed us to obtain first order
necessary optimality conditions. Finally, we provided second order necessary
and sufficient optimality conditions on suitable cones of critical directions.

This contribution can be seen as a first step for the development of numeri-
cal methods for approximating solutions to the aforementioned optimal control
problem. In particular, the obtained results could be useful to obtain a priori
and a posteriori error estimates for suitable finite element discretizations.
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27. Otárola, E., and Salgado, A. J. The Poisson and Stokes problems on weighted
spaces in Lipschitz domains and under singular forcing. J. Math. Anal. Appl. 471, 1-2
(2019), 599–612.
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