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1. Introduction. In this work we shall be interested in the design and analysis
of an a posteriori error estimator for a distributed optimal control problem involving
the stationary Navier–Stokes equations; control constraints are also considered. To
make matters precise, let Ω ⊂ R

d, with d ∈ {2, 3}, be an open and bounded poly-
topal domain with Lipschitz boundary ∂Ω. Given a desired state yΩ ∈ L2(Ω) and a
regularization parameter α > 0, we define the quadratic cost functional

J(y,u) :=
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω).

We shall be concerned with the following PDE-constrained optimization problem:
Find

(1) min J(y,u)

subject to the stationary Navier–Stokes equations

(2) − ν∆y + (y · ∇)y +∇p = u in Ω, div y = 0 in Ω, y = 0 on ∂Ω,

and the control constraints

(3) u ∈ Uad, Uad := {v ∈ L2(Ω) : a ≤ v ≤ b a.e. in Ω},

with a,b ∈ R
d satisfying a < b. We immediately comment that, throughout this

work, vector inequalities must be understood componentwise. In (2), ν > 0 denotes
the kinematic viscosity.
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The numerical analysis of optimal control problems governed by the stationary
Navier–Stokes equations has been previously considered in a number of works. For a
slightly different cost functional J , which in contrast to (1) measures the difference
y− yΩ in the L4(Ω)-norm, the authors of [19] have analyzed inf-sup stable finite ele-
ment approximations of suitable distributed and boundary optimal control problems;
control constraints are not considered. In two and three dimensions and under the
assumptions that Ω is a convex polytope, the mesh–size is sufficiently small, and that
both the optimal state (ȳ, p̄) and adjoint state (z̄, r̄) belong to H2(Ω) ×H1(Ω), the
authors prove, for the distributed case, that ‖ū− ūT ‖L2(Ω) . h2

T
[19, Corollary 4.5

and section 5.2]. Here, ūT denotes the corresponding finite element approximation
of the optimal control variable ū. Later, the authors of [13] derived error estimates
for suitable finite element approximations of (1)–(3). Notice that control constraints
are considered. Under the assumption that Ω is of class C2, the authors show that
the L2(Ω)-norm of the error approximation of the control variable behaves as h2

T
,

when the control set is not discretized, and as hT , when such a set is discretized
by using piecewise constant functions [13, Theorem 4.18]. These error estimates are
obtained for local solutions of the optimal control problem which are nonsingular (in
the sense that the linearized Navier–Stokes equations around these solutions define
some isomorphisms) and satisfy a second order sufficient optimality condition.

A class of numerical methods that has proven useful for approximating the so-
lution to PDE–constrained optimization problems, and the ones we will use in this
work, are the so-called adaptive finite element methods (AFEMs). AFEMs are it-
erative methods that improve the quality of the finite element approximation to a
partial differential equation (PDE) while striving to keep an optimal distribution of
computational resources measured in terms of degrees of freedom. An essential ingre-
dient of an AFEM is an a posteriori error estimator, which is a computable quantity
that depends on the discrete solution and data and provides information about the
local quality of the approximate solution. The a posteriori error analysis for optimal
control problems that are based on the minimization of a quadratic functional subject
to a linear PDE and control constraints has achieved several advances in recent years.
We refer the reader to [10, 21, 22, 23] for a discussion. As opposed to these advances,
the analysis of AFEMs for optimal control problems involving nonlinear equations is
rather scarce. We mention the approach introduced in [10] for estimating the error
in terms of the cost functional for semilinear optimal control problems [10, section 6]
and its extensions to problems with control constraints [20, 30]. Recently, the authors
of [4] have studied a posteriori error estimates for a distributed semilinear elliptic
optimal control problem. They have proposed a general framework that, on the basis
of global reliability estimates for the state and adjoints equations and second order
optimality conditions, yields a global reliability result for the proposed error estima-
tor of the underlying optimal control problem. For a particular residual–type setting,
the authors obtain, on the basis of bubble functions arguments, local efficiency esti-
mates. Regarding a posteriori error estimates for optimal control problems involving
(2) we mention references [8, 9]. For particular boundary control problems, the au-
thors of [8, 9] invoke the approach of [10] and construct an upper bound for the error
J(ȳ, ū)− J(ȳT , ūT ). An efficiency analysis is, however, not provided.

In this work we propose a residual–based a posteriori error estimator for the
optimal control problem (1)–(3) that can be decomposed as the sum of following
three individual contributions: a contribution related to the discretization of the
state equations, a second one associated to the discretization of the adjoint equations,
and a third one that accounts for the discretization of the control variable. We must
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immediately mention that, as is usual in the a posteriori error analysis for the Navier–
Stokes equations, we shall operate under a smallness assumption on data; see [3, 24,
29]. Under this assumption, in two and three dimensional Lipschitz polytopes, we
obtain global reliability and local efficiency estimates. On the basis of the devised error
estimator, we also design a simple adaptive strategy that exhibits, for the examples
that we present, optimal experimental rates of convergence for all the optimal variables
but with the exception of the control variable. Several remarks and comparisons with
the existing literature are now in order:

• In contrast to [8, 9], we show that our error estimator is equivalent, up to
oscillation terms, to the total approximation error; see Theorems 9 and 12.
• In contrast to the a priori theory developed in [13, 19], our a posteriori error
analysis only requires that Ω is a Lipschitz polytope, yΩ ∈ L2(Ω), and that
both the optimal state (ȳ, p̄) and adjoint state (z̄, r̄) belong to H1(Ω)×L2(Ω).
• As opposed to the case when the state equation is linear, where, in general,
only first order optimality conditions are needed to obtain a posteriori error
estimates, the strategy that we develop here relies on the use of a second
order sufficient optimality condition and on the particular structure of the
associated critical cone; see Theorems 8 and 9.

The rest of the paper is organized as follows. In section 2 we set notation and
review some preliminaries for the Navier–Stokes equations. Basic results for the op-
timal control problem (1)–(3) as well as first and second order optimality conditions
are reviewed in section 3. The core of our work are sections 4 and 5, where we design
an a posteriori error estimator, for a suitable inf-sup stable finite element scheme,
and show its global reliability and local efficiency. Finally, two and three dimensional
numerical examples are presented in section 6. These examples illustrate the theory
and reveal a competitive performance of the devised AFEM.

2. Notation and preliminaries. Let us set notation and recall some facts that
will be useful later.

2.1. Notation. We shall use standard notation for Lebesgue and Sobolev spaces.
Let d ∈ {1, 2, 3} and U ⊂ R

d be an open and bounded domain. The space of functions
in L2(U) that have zero average is denoted by L2

0(U). By Wm,t(U), we denote the
Sobolev space of functions in Lt(U) with partial derivatives of order up tom in Lt(U).
Here, 0 ≤ m <∞ and 1 ≤ t ≤ ∞. The closure with respect to the norm in Wm,t(U)
of the space of C∞ functions compactly supported in U is denoted byWm,t

0 (U). When
t = 2 and m ∈ [0,∞), we set Hm(U) := Wm,2(U) and Hm

0 (U) := Wm,2
0 (U). We use

bold letters to denote the vector-valued counterparts of the aforementioned spaces.
In particular, we set

V(U) := {v ∈ H1
0(U) : div v = 0}.

If X and Y are normed vector spaces, we write X →֒ Y to denote that X is
continuously embedded in Y. The relation a . b indicates that a ≤ Cb, with a
positive constant that depends neither on a, b nor the discretization parameter. The
value of C might change at each occurrence.

Finally, throughout this work, Ω denotes an open and bounded polytopal domain
in R

d (d ∈ {2, 3}) with Lipschitz boundary ∂Ω.

2.2. Preliminaries for the Navier–Stokes equations. Let us, for the sake
of future reference, collect here some standard results involved in the analysis of (2).
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In order to write a weak formulation for (2), we introduce the trilinear form

b(v1;v2,v3) := ((v1 · ∇)v2,v3)L2(Ω).

The form b satisfies the following properties [18, Chapter IV, Lemma 2.2], [26, Chapter
II, Lemma 1.3]: Let v1 ∈ V(Ω) and v2,v3 ∈ H1

0(Ω). Then, we have

(4) b(v1;v2,v3) = −b(v1;v3,v2), b(v1;v2,v2) = 0.

The form b is well-defined and continuous on H1
0(Ω)

3 and

(5) |b(v1;v2,v3)| ≤ Cb‖∇v1‖L2(Ω)‖∇v2‖L2(Ω)‖∇v3‖L2(Ω),

where Cb > 0; see [17, Lemma IX.1.1] and [26, Chapter II, Lemma 1.1].
On the other hand, the surjectivity of the divergence operator yields the existence

of a constant β > 0 such that [18, Chapter I, section 5.1], [16, Corollary B. 71]

(6) sup
v∈H1

0(Ω)

(q, div v)L2(Ω)

‖∇v‖L2(Ω)
≥ β‖q‖L2(Ω) ∀q ∈ L2

0(Ω).

With these ingredients at hand, we introduce the following weak formulation of
problem (2): Given f ∈ H−1(Ω), find (y, p) ∈ H1

0(Ω)× L
2
0(Ω) such that

(7)
ν(∇y,∇v)L2(Ω) + b(y;y,v) − (p, div v)L2(Ω) = 〈f ,v〉 ∀v ∈ H1

0(Ω),

(q, div y)L2(Ω) = 0 ∀q ∈ L2
0(Ω).

Here, 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0(Ω).

Denote by C2 the constant in the standard Sobolev embedding H1
0(Ω) →֒ L2(Ω).

The following result states the existence and uniqueness of solutions for the Navier–
Stokes equations for small data (see [18, Chapter IV, Theorem 2.2] and [26, Chapter
II, Theorem 1.3]). Since it will be useful later, we restrict the discussion to f ∈ L2(Ω).

Theorem 1 (well–posedness). If ‖f‖L2(Ω) < C−1
2 C

−1
b ν2, then there exists a

unique solution (y, p) ∈ H1
0(Ω)× L

2
0(Ω) of problem (7). In addition, we have

(8) ‖∇y‖L2(Ω) ≤ θC
−1
b ν, θ ∈ [0, 1).

3. The optimal control problem. In this section we present a weak formu-
lation for problem (1)–(3). We review first and second order optimality conditions
in sections 3.2 and 3.3, respectively, and introduce, in section 3.4, a finite element
discretization for problem (1)–(3).

We consider the following weak version of our control problem (1)–(3): Find

(9) min
H1

0(Ω)×Uad

J(y,u)

subject to the weak formulation of the stationary Navier–Stokes equations

(10)
ν(∇y,∇v)L2(Ω) + b(y;y,v) − (p, div v)L2(Ω) = (u,v)L2(Ω) ∀v ∈ H1

0(Ω),

(q, div y)L2(Ω) = 0 ∀q ∈ L2
0(Ω).

Assume that

(11)
CbC2

ν2
sup

u∈Uad

‖u‖L2(Ω) < 1.
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Owing to Theorem 1 we immediately conclude that, for each u ∈ Uad, there exists a
unique pair (y, p) ∈ H1

0(Ω)× L
2
0(Ω) that solves problem (10).

Notice that, due to de Rham’s Theorem (see section 4.1.3 and Theorem B. 73 in
[16]), (10) is equivalent to the following formulation: Find y ∈ V(Ω) such that

(12) ν(∇y,∇v)L2(Ω) + b(y;y,v) = (u,v)L2(Ω) ∀v ∈ V(Ω).

3.1. Local solutions. Since the optimal control problem (9)–(10) is not convex,
we discuss optimality conditions in the context of local solutions. A control ū ∈ Uad

is said to be locally optimal in L2(Ω) for (9)–(10), if there exists δ > 0 such that

J(ȳ, ū) ≤ J(y,u)

for all u ∈ Uad such that ‖u− ū‖L2(Ω) ≤ δ. Here, ȳ and y denote the velocity fields
associated to ū and u, respectively.

The existence of a local solution (ȳ, ū) ∈ H1
0(Ω)×Uad for problem (9)–(10) follows

standard arguments; see [15, Theorem 3.1].

3.2. First order optimality conditions. We now turn our attention to discuss
first and second order optimality conditions for problem (9)–(10). We begin such a
discussion by introducing the so-called control-to-state map S : L2(Ω)→ V(Ω) which,
given a control u ∈ Uad, associates to it the unique velocity field y ∈ V(Ω) that solves
(12) under the smallness assumption (11). With this operator at hand, we introduce
the reduced cost functional

j(u) := J(Su,u) =
1

2
‖Su− yΩ‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω).

Under the smallness assumption (11), the control-to-state map S is Fréchet dif-
ferentiable from L2(Ω) to V(Ω); see [28, Lemma 3.8]. As a consequence, if ū denotes
a local optimal control for problem (9)–(10), ū satisfies the variational inequality

(13) (z̄+ αū,u− ū)L2(Ω) ≥ 0 ∀u ∈ Uad,

where (z̄, r̄) ∈ H1
0(Ω)× L

2
0(Ω) is the unique solution to the adjoint equations

(14)
ν(∇w,∇z̄)L2(Ω) + b(ȳ;w, z̄) + b(w; ȳ, z̄)− (r̄, div w)L2(Ω)= (ȳ − yΩ,w)L2(Ω),

(s, div z̄)L2(Ω)= 0,

for all (w, s) ∈ H1
0(Ω)× L

2
0(Ω). For details, we refer the reader to [25, Theorem 2.2],

[28, Theorem 3.10], and [13, Theorem 3.2].

Remark 2 (well–posedness of adjoint equations). Define B : H1
0(Ω)×H1

0(Ω) by

B(w,v) := ν(∇w,∇v)L2(Ω) + b(ȳ;w,v) + b(w; ȳ,v).

Assume that (11) holds. Theorem 1 thus yields ‖∇ȳ‖L2(Ω) ≤ θC
−1
b ν. Consequently,

(15) B(w,w) ≥ ν‖∇w‖2L2(Ω) − Cb‖∇w‖
2
L2(Ω)‖∇ȳ‖L2(Ω) ≥ ν(1− θ)‖∇w‖

2
L2(Ω),

where, we recall θ < 1. We have thus proved that B is coercive on H1
0(Ω) ×H1

0(Ω).
The standard inf–sup theory for saddle point problems [16, Theorem 2.34] yields, on
the basis of (6), the existence and uniqueness of a solution (z̄, r̄) ∈ H1

0(Ω)×L
2
0(Ω) to

(14). In addition, set w = z̄ and invoke (4), (5), and (11) to arrive at the bound

(16) ‖∇z̄‖L2(Ω) ≤
C2

ν(1 − θ)
‖ȳ − yΩ‖L2(Ω).
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The local optimal control ū satisfies (13) if and only if [25, equation (2.10)], [13,
equation (3.9)]

(17) ū(x) = Π[a,b]

(

−α−1z̄(x)
)

a.e. x ∈ Ω,

where the projection operator Π[a,b] : L
1(Ω)→ Uad is defined as

(18) Π[a,b](v) := min{b,max{v, a}}.

3.3. Second order optimality conditions. We now follow [13, section 3.2]
and present necessary and sufficient second order optimality conditions. To introduce
them, we define d̄ := z̄+ αū and the cone of critical directions

Cū := {v ∈ L2(Ω) that satisfies (19) and vi(x) = 0 if d̄i(x) 6= 0, i = 1, . . . , d}.

Here, d̄i corresponds to the i-th component of the vector d̄ and condition (19) reads

(19) v(x)

{

≥ 0 a.e. x ∈ Ω if ū(x) = a and d̄(x) = 0,

≤ 0 a.e. x ∈ Ω if ū(x) = b and d̄(x) = 0.

We are now in position to present second order necessary and sufficient optimality
conditions; see [13, Theorems 3.6 and 3.8 and Corollary 3.9].

Theorem 3 (second order optimality conditions). Assume that (11) holds. If

ū ∈ Uad is a local minimum for problem (9)–(10), then

j′′(ū)v2 ≥ 0 ∀v ∈ Cū.

Conversely, if (ȳ, p̄, z̄, r̄, ū) ∈ H1
0(Ω)×L

2
0(Ω)×H1

0(Ω)×L
2
0(Ω)×Uad satisfies the first

order optimality conditions (10), (13), and (14), and

(20) j′′(ū)v2 > 0 ∀v ∈ Cū \ {0},

then, there exist µ > 0 and ε > 0 such that

j(u) ≥ j(ū) +
µ

2

(

‖u− ū‖2L2(Ω) + ‖y− ȳ‖2L2(Ω)

)

,

for every pair (u,y) that satisfies (2), u ∈ Uad, and ‖u− ū‖2
L2(Ω)+ ‖y− ȳ‖2

L2(Ω) ≤ ε.

We now introduce, given τ > 0, the cone

(21) Cτ
ū := {v ∈ L2(Ω) that satisfies (22)},

where condition (22) reads as follows:

(22) vi(x)











= 0 if |d̄i(x)| > τ,

≥ 0 a.e. x ∈ Ω if ūi(x) = ai and |d̄i(x)| ≤ τ,

≤ 0 a.e. x ∈ Ω if ūi(x) = bi and |d̄i(x)| ≤ τ,

with i ∈ {1, . . . , d}.
The next result will be of importance for deriving a posteriori error estimates for

the numerical discretizations of (9)–(10) that we will propose; see [13, Corollary 3.11].
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Theorem 4 (equivalent second order optimality condition). Assume that (11)
holds. Let (ȳ, p̄, z̄, r̄, ū) ∈ H1

0(Ω)×L
2
0(Ω)×H1

0(Ω)×L
2
0(Ω)×Uad be a local solution to

(9)–(10) satisfying the first order optimality conditions (10), (13), and (14). Then,

(20) is equivalent to the existence of µ > 0 and τ > 0 such that

(23) j′′(ū)v2 ≥ µ‖v‖2L2(Ω) ∀v ∈ Cτ
ū.

We close this section with the next result.

Lemma 5 (property of j′′). Let u,h,v ∈ L∞(Ω) and M > 0 be such that

max{‖u‖L∞(Ω), ‖h‖L∞(Ω)} ≤ M. Then, there exists CM > 0 such that

(24) |j′′(u+ h)v2 − j′′(u)v2| ≤ CM‖h‖L∞(Ω)‖v‖
2
L2(Ω).

3.4. Finite element approximation. We now introduce the discrete setting
in which we will operate. We consider T = {T } to be a conforming partition of Ω into
closed simplices T with size hT = diam(T ). Define hT := maxT∈T hT . We denote
by T the collection of conforming and shape regular meshes that are refinements of
an initial mesh T0. Let S be the set of internal (d − 1)−dimensional interelement
boundaries S of T . For T ∈ T , let ST denote the subset of S which contains the
sides in S which are sides of T . We denote by NS the subset of T that contains the
two elements that have S as a side, i.e., NS = {T+, T−}, where T+, T− ∈ T are such
that S = T+ ∩ T−. For T ∈ T , we define the star associated with the element T as

(25) NT := {T ′ ∈ T : ST ∩ST ′ 6= ∅} .

In an abuse of notation, in what follows, by NT we will indistinctively denote either
this set or the union of the triangles that comprise it.

For a discrete tensor valued function WT , we define the jump or interelement
residual on the internal side S ∈ S , shared by the distinct elements T+, T− ∈ NS ,
by JWT · nK = WT |T+ · n+ +WT |T− · n−. Here, n+ and n− are unit normal on S
pointing towards T+ and T−, respectively.

We now introduce the inf–sup stable finite element spaces that we will consider
in our work. Given a mesh T ∈ T, we denote by V(T ) and P(T ) the finite element
spaces that approximate the velocity field and the pressure, respectively, based on the
classical Taylor–Hood elements [16, section 4.2.5]:

V(T ) = {vT ∈ C(Ω) : vT |T ∈ [P2(T )]
d ∀T ∈ T } ∩H1

0(Ω),(26)

P(T ) = {qT ∈ C(Ω) : qT |T ∈ P1(T ) ∀T ∈ T } ∩ L2
0(Ω).(27)

To approximate local optimal controls, we consider piecewise quadratic functions,
that is: ūT ∈ Uad(T ), where

(28) Uad(T ) = U(T ) ∩ Uad, U(T ) = {vT ∈ L∞(Ω) : vT |T ∈ [P2(T )]
d ∀T ∈ T }.

The discrete counterpart of (9)–(10) thus reads as follows: Find min J(yT ,uT )
subject to the discrete state equation

(29)
ν(∇yT ,∇vT )L2(Ω) + b(yT ;yT ,vT )− (pT , div vT )L2(Ω) = (uT ,vT )L2(Ω),

(qT , div yT )L2(Ω) = 0,

for all (vT , qT ) ∈ V(T )×P(T ), and the discrete constraints uT ∈ Uad(T ). Assume
that (11) holds. Under the assumptions that the mesh T is sufficiently refined and



8 A. ALLENDES, F. FUICA, E. OTÁROLA, D. QUERO

that uT ∈ Uad(T ) is close enough to ū, the discrete equations (29) admit a unique
solution which lies in a neighborhood of (ȳ, p̄); see [13, Theorem 4.8]. In addition, we
have that our discrete optimal control problem admits at least one solution; see [13,
Theorem 4.11].

If ūT denotes a local solution, we have

(30) (z̄T + αūT ,uT − ūT )L2(Ω) ≥ 0 ∀uT ∈ Uad(T ),

where the pair (z̄T , r̄T ) ∈ V(T )× P(T ) solves

(31)

ν(∇wT ,∇z̄T )L2(Ω) + b(ȳT ;wT , z̄T )

+b(wT ; ȳT , z̄T )− (r̄T , div wT )L2(Ω) = (ȳT − yΩ,wT )L2(Ω),

(sT , div z̄T )L2(Ω) = 0,

for all (wT , sT ) ∈ V(T )× P(T ) [13, Lemma 4.14]. Under the assumption that

(32) 2‖∇ȳT ‖L2(Ω) ≤ θνC
−1
b , θ < 1,

the discrete problem (31) admits a unique solution. In fact, define

(33) C(w,v) := ν(∇w,∇v)L2(Ω) + b(ȳT ;w,v) + b(w; ȳT ,v).

With (32) at hand, similar arguments to ones used to derive (15) yield the coercivity of
C in H1

0(Ω)×H
1
0(Ω). Since the pair (V(T ),P(T )) satisfy a discrete inf–sup condition

[16, Lemma 4.24], an application of [16, Theorem 2.42] allows us to conclude.

4. Reliability Analysis. In this section we propose and analyze an a posteri-
ori error estimator for the optimal control problem (9)–(10). This estimator can be
decomposed as the sum of three contributions which are related to the discretization
of the state equations, adjoint equations, and the control set. To obtain a reliability
estimate, i.e., an upper bound for the error in terms of the devised a posteriori error
estimator, we invoke upper bounds on the error between the solution to the discretiza-
tion (29)–(31) and auxiliary variables that we define in the following sections.

In order to guarantee the existence of a local solution (ȳT , ūT ) ∈ V(T )×Uad(T )
to the discrete version of the optimal control problem (9)–(10), satisfying the discrete
system (29)–(31), we shall assume, throughout the following sections, that ūT is close
enough to the locally optimal control ū and that the underlying mesh is sufficiently
refined.

4.1. A posteriori error analysis for the state equations. We present, in-
spired in [24] (see also [3, section 9.3]), a posteriori error estimates for the stationary
Navier–Stokes equations (2).

We begin the discussion by introducing the following auxiliary variables. Assume
that (11) holds. Let (ŷ, p̂) ∈ H1

0(Ω)× L
2
0(Ω) be the solution to

(34)
ν(∇ŷ,∇v)L2(Ω) + b(ŷ; ŷ,v)− (p̂, div v)L2(Ω) = (ūT ,v)L2(Ω) ∀v ∈ H1

0(Ω),

(q, div ŷ)L2(Ω) = 0 ∀q ∈ L2
0(Ω).

Theorem 1 guarantees the existence of a unique pair (ŷ, p̂) solving problem (34) with

(35) ‖∇ŷ‖L2(Ω) ≤ θC
−1
b ν, θ < 1.
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Notice that the pair (ȳT , p̄T ), which solves (29) with uT replaced by ūT , can be
seen as the finite element approximation, within the space V(T ) × P(T ), of (ŷ, p̂).
This observation motivates us to define the following a posteriori error estimator:

E2st :=
∑

T∈T

E2st,T , E2st,T := h2T ‖ūT + ν∆ȳT − (ȳT · ∇)ȳT −∇p̄T ‖
2
L2(T )(36)

+‖div ȳT ‖
2
L2(T ) + hT ‖J(ν∇ȳT − p̄T Id) · nK‖2L2(∂T\∂Ω).

We present the following global reliability result.

Theorem 6 (global reliability of Est). Assume that (11) holds. Let (ŷ, p̂) ∈
H1

0(Ω)× L
2
0(Ω) be the unique solution to (34). Let (ȳT , p̄T ) ∈ V(T )×P(T ) be the

solution to (29) with uT replaced by ūT . Assume that the estimate

(37) ‖∇ȳT ‖L2(Ω) < νC−1
b

holds. Then, we have that

(38) ‖∇(ŷ − ȳT )‖2L2(Ω) + ‖p̂− p̄T ‖
2
L2(Ω) . E

2
st,

with a hidden constant that is independent of (ŷ, p̂) and (ȳT , p̄T ), the size of the

elements in the mesh T , and #T .

Proof. To perform a reliability analysis for the a posteriori error estimator (36),
we introduce a Ritz projection (ϕ, ψ) of the residuals [2]. The pair (ϕ, ψ) is defined
as the solution to the following problem: Find (ϕ, ψ) ∈ H1

0(Ω)× L
2
0(Ω) such that

(39)
(∇ϕ,∇v)L2(Ω) = ν(∇êy,∇v)L2(Ω)−(êp, div v)L2(Ω)+b(ŷ; êy,v)+b(êy; ȳT ,v),

(ψ, q)L2(Ω) = (q, div êy)L2(Ω),

for all v ∈ H1
0(Ω) and q ∈ L2

0(Ω), respectively. To shorten notation, we have intro-
duced (êy, êp) := (ŷ − ȳT , p̂− p̄T ). The existence and uniqueness of the pair (ϕ, ψ)
follows from a simple application of the Lax–Milgram Lemma. On the other hand,
under assumption (37), similar arguments to the ones developed in [24, Theorem 4]
(see also [3, section 9.3]) yield the estimate

(40) ‖∇êy‖
2
L2(Ω) + ‖êp‖

2
L2(Ω) . ‖∇ϕ‖

2
L2(Ω) + ‖ψ‖

2
L2(Ω).

The rest of the proof is dedicated to bound the terms on the right-hand side of
(40). Let v ∈ H1

0(Ω) and set q = 0 in (39). This, combined with (34), yields

(∇ϕ,∇v)L2(Ω) = (ūT ,v)L2(Ω)−ν(∇ȳT ,∇v)L2(Ω)−b(ȳT ; ȳT ,v)+(p̄T , div v)L2(Ω).

Denote by IT : L1(Ω) → V(T ) the Clément interpolation operator [11, 14]. Invoke
the previous relation, the discrete problem (29) with vT = IT v, an elementwise
integration by parts formula, standard approximation properties for IT , and the
finite overlapping property of stars, to conclude that

(∇ϕ,∇v)L2(Ω) .

(

∑

T∈T

h2T ‖ūT + ν∆ȳT − (ȳT · ∇)ȳT −∇p̄T ‖
2
L2(T )

+ hT ‖J(ν∇ȳT − p̄T Id) · nK‖2L2(∂T\∂Ω)

)
1
2

‖∇v‖L2(Ω).
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Set v = ϕ. This yields the estimate ‖∇ϕ‖L2(Ω) . Est.
Now, let q ∈ L2

0(Ω) and set v = 0 in (39). The Cauchy–Schwarz inequality yields

(ψ, q)L2(Ω) ≤

(

∑

T∈T

‖div ȳT ‖
2
L2(T )

)
1
2

‖q‖L2(Ω).

Consequently, ‖ψ‖L2(Ω) ≤ Est.
A collection of the previous estimates yield ‖∇ϕ‖2

L2(Ω)+‖ψ‖
2
L2(Ω) . E

2
st. We thus

invoke (40) to arrive at the desired estimate (38). This concludes the proof.

4.2. A posteriori error analysis for the adjoint equations. In this section
we introduce an auxiliary problem related to the adjoint equations, devise an a pos-
teriori error estimator for such a problem, and obtain a global reliability result. To
the best of our knowledge, these results are not available in the literature.

Let (ẑ, r̂) ∈ H1
0(Ω)× L

2
0(Ω) be the solution to

(41)
ν(∇w,∇ẑ)L2(Ω)+b(ȳT ;w, ẑ)+b(w; ȳT , ẑ)−(r̂, div w)L2(Ω)=(ȳT −yΩ,w)L2(Ω),

(s, div ẑ)L2(Ω)=0,

for all w ∈ H1
0(Ω) and s ∈ L

2
0(Ω), respectively. Under assumption (32) problem (41)

is well–posed. On the other hand, notice that (z̄T , r̄T ), the solution to (31), can be
seen as the finite element approximation, within the space V(T ) × P(T ), of (ẑ, r̂).
In view of this fact, we define, for T ∈ T , the local error indicators

(42) E2ad,T := h2T ‖ȳT − yΩ + ν∆z̄T − (∇ȳT )⊺z̄T + (ȳT · ∇)z̄T −∇r̄T ‖
2
L2(T )

+ hT ‖J(ν∇z̄T − r̄T Id) · nK‖2L2(∂T\∂Ω) + ‖div z̄T ‖
2
L2(T ),

and the a posteriori error estimator

(43) E2ad :=
∑

T∈T

E2ad,T .

The following result yields an upper bound for the error ‖∇(ẑ− z̄T )‖L2(Ω)+ ‖r̂−
r̄T ‖L2(Ω) in terms of the computable quantity Ead.

Theorem 7 (global reliability of Ead). Let (ŷ, p̂) and (ȳT , p̄T ) be as in the

statement of Theorem 6. Let (ẑ, r̂) ∈ H1
0(Ω)× L

2
0(Ω) and (z̄T , r̄T ) ∈ V(T )× P(T )

be the solutions to (41) and (31), respectively. Assume that the estimate (32) holds.

Then, we have that

(44) ‖∇(ẑ− z̄T )‖2L2(Ω) + ‖r̂ − r̄T ‖
2
L2(Ω) . E

2
ad,

with a hidden constant that is independent of (ẑ, r̂), (z̄T , r̄T ), the size of the elements

in the mesh T , and #T .

Proof. We proceed on the basis of four steps.
Step 1. To simplify the presentation of the material, we define the pair (êz, êr) :=

(ẑ− z̄T , r̂ − r̄T ).
Define the Ritz projection (η, ω) of the residuals associated to the discretization

(31) of (41) as the solution to the following problem: Find (η, ω) ∈ H1
0(Ω) × L

2
0(Ω)

such that

(45)
(∇η,∇w)L2(Ω) = C(w, êz)− (êr, div w)L2(Ω) ∀w ∈ H1

0(Ω),

(ω, s)L2(Ω) = (s, div êz)L2(Ω) ∀s ∈ L2
0(Ω),
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where C is defined as in (33). The Lax–Milgram Lemma immediately yields the
existence and uniqueness of (η, ω) ∈ H1

0(Ω)× L
2
0(Ω) solving (45).

The rest of the proof is dedicated to obtain the estimates

(46) ‖∇êz‖
2
L2(Ω) + ‖êr‖

2
L2(Ω) . ‖∇η‖

2
L2(Ω) + ‖ω‖

2
L2(Ω) . E

2
ad.

Step 2. The goal of this step is to prove the first estimate in (46). To accomplish
this task, we first observe that the pair (êz, êr) satisfies the identities:

C(w, êz)− (êr, div w)L2(Ω) = (∇η,∇w)L2(Ω) ∀w ∈ H1
0(Ω),

(s, div êz)L2(Ω) = (ω, s)L2(Ω) ∀s ∈ L2
0(Ω).

In view of the fact that ȳT ∈ V(T ) satisfies assumption (32), similar arguments to
those elaborated in the proof of (15) yield that C is coercive in H1

0(Ω)×H1
0(Ω). We

can thus apply the inf–sup theory for saddle point problems given by Brezzi in [12]
to conclude the stability estimate

(47) ‖∇êz‖
2
L2(Ω) + ‖êr‖

2
L2(Ω) . ‖∇η‖

2
L2(Ω) + ‖ω‖

2
L2(Ω),

with a hidden constant that depends on ν.
Step 3. In this step we obtain the second estimate in (46). To accomplish this

task, we invoke problems (45) and (41) to arrive at

(48)

(∇η,∇w)L2(Ω) = (ȳT − yΩ,w)L2(Ω) − ν(∇w,∇z̄T )L2(Ω) − b(ȳT ;w, z̄T )

− b(w; ȳT , z̄T ) + (r̄T , div w)L2(Ω),

(ω, s)L2(Ω) = (s, div êz)L2(Ω),

for all w ∈ H1
0(Ω) and s ∈ L

2
0(Ω), respectively. Let w ∈ H1

0(Ω) and set s = 0 in (48).
Invoke the discrete problem (31) with wT = IT w, an elementwise integration by
parts formula, standard approximation properties for IT , and the finite overlapping
property of stars, to conclude that

(∇η,∇w)L2(Ω).

(

∑

T∈T

h2T ‖ȳT −yΩ+ν∆z̄T −(∇ȳT )⊺z̄T +(ȳT ·∇)z̄T −∇r̄T ‖
2
L2(T )

+ hT ‖J(ν∇z̄T − r̄T Id) · nK‖2L2(∂T\∂Ω)

)
1
2

‖∇w‖L2(Ω).

Set w = η. This yields the estimate ‖∇η‖L2(Ω) . Ead.
Now, let s ∈ L2

0(Ω) and set w = 0 in (48). The Cauchy–Schwarz inequality, in
view of the fact that ẑ ∈ V(Ω), yields

(ω, s)L2(Ω) ≤

(

∑

T∈T

‖div z̄T ‖
2
L2(T )

)
1
2

‖s‖L2(Ω),

which implies that ‖ω‖L2(Ω) ≤ Ead.
A collection of the previous estimates yield ‖∇η‖2

L2(Ω) + ‖ω‖
2
L2(Ω) . E

2
ad.

Step 4. Apply (47) and the bounds obtained in step 3 for ‖∇η‖L2(Ω) and ‖ω‖L2(Ω)

to arrive at the desired estimate (44).
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4.3. Reliability analysis for the optimal control problem. In this section
we design an a posteriori error estimator for problem (9)–(10) and provide a reliability
analysis. The error estimator can be decomposed as the sum of three contributions:
two contributions related to the discretization of the state and adjoint equations, Est
and Ead, respectively (which have been already introduced in sections 4.1 and 4.2)
and a contribution associated to the discretization of the optimal control variable.

To present the contribution associated to ū, we define the auxiliary variable

(49) ũ := Π[a,b]

(

−α−1z̄T

)

.

A key property in favor of the definition of ũ ∈ Uad is that ũ satisfies the inequality

(50) (z̄T + αũ,u− ũ)L2(Ω) ≥ 0 ∀u ∈ Uad.

With the variable ũ at hand, we define the following error estimator and local
error indicators associated to the discretization of the optimal control variable:

(51) E2ct :=
∑

T∈T

E2ct,T , Ect,T := ‖ũ− ūT ‖L2(T ).

We define now the a posteriori error estimator for the control problem (9)–(10):

(52) E2ocp := E2st + E
2
ad + E

2
ct.

The estimators Est, Ead, and Ect, are defined as in (36), (43), and (51), respectively.
The next result is instrumental for our a posteriori error analysis.

Theorem 8 (auxiliary control estimate). Assume that the smallness assump-

tion (11) holds. Let (ȳ, p̄, z̄, r̄, ū) ∈ H1
0(Ω) × L2

0(Ω) × H1
0(Ω) × L2

0(Ω) × Uad be a

local solution of (9)–(10) that satisfies the sufficient second order optimality condi-

tion (20), or equivalently (23). Let M be a positive constant such that max{‖ū +
θT (ũ− ū)‖L∞(Ω), ‖ũ− ū‖L∞(Ω)} ≤ M with θT ∈ (0, 1). Let z̄T be the unique solution

to (31) and T be a mesh such that

(53) ‖z̄− z̄T ‖L∞(Ω) ≤ min{αµ(2CM)
−1, τ/2}.

Then ũ− ū ∈ Cτ
ū and

(54)
µ

2
‖ū− ũ‖2L2(Ω) ≤ (j′(ũ)− j′(ū))(ũ − ū).

The constant CM is given by (24) while the auxiliary variable ũ is defined in (49).

Proof. We proceed in two steps.
Step 1. We first prove that ũ − ū ∈ Cτ

ū. Since ũ ∈ Uad, we can immediately
conclude that v = ũ − ū ≥ 0 if ū = a and that v = ũ − ū ≤ 0 if ū = b. It thus
suffices to verify the remaining condition in (22), i.e., vi = (ũ− ū)i = 0 if |d̄i(x)| > τ ,
with i ∈ {1, · · · , d}. To accomplish this task, we first use the triangle inequality and
invoke the Lipschitz property of Π[a,b], in conjunction with (53), to obtain

(55) ‖z̄+ αū− (z̄T + αũ)‖L∞(Ω) ≤ 2‖z̄− z̄T ‖L∞(Ω) ≤ τ.

Now, let ξ ∈ Ω and i ∈ {1, . . . , d} be such that d̄i(ξ) = (z̄ + αū)i(ξ) > τ . Since
τ > 0, this implies that ūi(ξ) > −α−1z̄i(ξ). Therefore, from the projection formula
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(17), we conclude that ūi(ξ) = ai. On the other hand, since ξ ∈ Ω is such that
(z̄+ αū)i(ξ) > τ , from (55) we can conclude that

(z̄T + αũ)i(ξ) > 0,

and thus that ũi(ξ) > −α−1(z̄T )i(ξ). This, on the basis of the definition of the
auxiliary variable ũ, given in (49), yields that ũi(ξ) = ai. Consequently, ūi(ξ) =
ũi(ξ) = ai. Since i is arbitrary, we conclude that (ũ − ū)(ξ) = 0. Similar arguments
allow us to conclude that, if d̄i(ξ) = (z̄ + αū)i(ξ) < −τ , with i ∈ {1, . . . , d}, then
(ũ− ū)(ξ) = 0.

Step 2. Since ũ − ū ∈ Cτ
ū, with C

τ
ū defined in (21), and ū satisfies the sufficient

second order optimality condition (23), we are allow to set v = ũ− ū in (23). Thus

(56) µ‖ũ− ū‖2L2(Ω) ≤ j
′′(ū)(ũ− ū)2.

On the other hand, in view of the mean value theorem, we obtain, for some θT ∈ (0, 1),

(j′(ũ)− j′(ū))(ũ− ū) = j′′(ζ)(ũ − ū)2,

with ζ = ū+ θT (ũ− ū). Thus, in view of (56), we arrive at

µ‖ũ− ū‖2L2(Ω) ≤ (j′(ũ)− j′(ū))(ũ − ū) + (j′′(ū)− j′′(ζ))(ũ − ū)2.(57)

Since M > 0 is such that max{‖ū+ θT (ũ− ū)‖L∞(Ω), ‖ũ− ū‖L∞(Ω)} ≤ M and j is of
class C2 in L2(Ω) [13, Theorem 3.3], we can thus apply (24) to derive

(j′′(ū)− j′′(ζ))(ũ − ū)2 ≤ CM‖ũ− ū‖L∞(Ω)‖ũ− ū‖2L2(Ω),

where we have also used that θT ∈ (0, 1). Invoke (17) and (49), the Lipschitz property
of the projection operator Π[a,b], and assumption (53), to arrive at

(j′′(ū)− j′′(ζ))(ũ − ū)2 ≤ CMα
−1‖z̄− z̄T ‖L∞(Ω)‖ũ− ū‖2L2(Ω) ≤

µ

2
‖ũ− ū‖2L2(Ω).

Replacing this inequality into (57) allows us to conclude the desired inequality (54).
This concludes the proof.

The following auxiliary variables are also of particular importance for our relia-
bility analysis. Let (ỹ, p̃) ∈ H1

0(Ω)× L
2
0(Ω) be the solution to

ν(∇ỹ,∇v)L2(Ω) + b(ỹ; ỹ,v)− (p̃, div v)L2(Ω) = (ũ,v)L2(Ω) ∀v ∈ H1
0(Ω),

(q, div ỹ)L2(Ω) = 0 ∀q ∈ L2
0(Ω).

We also introduce the pair (z̃, r̃) ∈ H1
0(Ω)× L

2
0(Ω) as the solution to

ν(∇w,∇z̃)L2(Ω) + b(ỹ;w, z̃) + b(w; ỹ, z̃)− (r̃, div w)L2(Ω) = (ỹ − yΩ,w)L2(Ω),

(s, div z̃)L2(Ω) = 0,

for all w ∈ H1
0(Ω) and s ∈ L

2
0(Ω).

To present the following result, we define ey := ȳ−ȳT , ep := p̄−p̄T , ez := z̄−z̄T ,
er := r̄ − r̄T , eu := ū− ūT , and the total error norm

(58) ‖e‖2Ω := ‖∇ey‖
2
L2(Ω) + ‖ep‖

2
L2(Ω) + ‖∇ez‖

2
L2(Ω) + ‖er‖

2
L2(Ω) + ‖eu‖

2
L2(Ω).

We are now ready to state and prove the main result of this section.
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Theorem 9 (global reliability of Eocp). Assume that the smallness assumptions

(11) and (32) hold. Let (ȳ, p̄, z̄, r̄, ū) ∈ H1
0(Ω)×L

2
0(Ω)×H

1
0(Ω)×L

2
0(Ω)×Uad be a local

solution of (9)–(10) that satisfies the sufficient second order optimality condition (20),
or equivalently (23). Let ūT be a local minimum of the associated discrete optimal

control problem with (ȳT , p̄T ) and (z̄T , r̄T ) being the corresponding state and adjoint

state discrete variables, respectively. Let T be a mesh such that (53) holds. Then

(59) ‖e‖2Ω . E2ocp.

The hidden constant is independent of the continuous and discrete optimal variables,

the size of the elements in the mesh T , and #T .

Proof. We proceed in six steps.
Step 1. The goal of this step is to control ‖eu‖L2(Ω) in (58). Invoke the auxiliary

variable ũ, defined in (49), and definition (51) to arrive at

(60) ‖eu‖L2(Ω) ≤ ‖ū− ũ‖L2(Ω) + Ect.

It thus suffices to bound ‖ū− ũ‖L2(Ω). To accomplish this task, we set u = ũ in (13)
and u = ū in (50) to obtain

j′(ū)(ũ− ū) = (z̄+ αū, ũ− ū)L2(Ω) ≥ 0, −(z̄T + αũ, ũ− ū)L2(Ω) ≥ 0.

With these estimates at hand, we invoke inequality (54) to conclude

µ
2 ‖ū− ũ‖2L2(Ω) ≤ j

′(ũ)(ũ− ū)− j′(ū)(ũ − ū) ≤ j′(ũ)(ũ− ū)

≤ j′(ũ)(ũ− ū)− (z̄T + αũ, ũ− ū)L2(Ω) = (z̃− z̄T , ũ− ū)L2(Ω).

Adding and subtracting the auxiliary variable ẑ, defined as the solution to (41), and
utilizing the Cauchy–Schwarz and triangle inequalities we obtain

‖ū− ũ‖L2(Ω) . ‖z̃− ẑ‖L2(Ω) + ‖ẑ− z̄T ‖L2(Ω).

A Poincaré inequality combined with the a posteriori error estimate (44) yield

(61) ‖ū− ũ‖L2(Ω) . ‖∇(z̃− ẑ)‖L2(Ω) + Ead.

We now estimate the remaining term ‖∇(z̃ − ẑ)‖L2(Ω). To accomplish this task,
we notice that the pair (z̃ − ẑ, r̃ − r̂) ∈ H1

0(Ω)× L
2
0(Ω) solves

ν(∇w,∇(z̃ − ẑ))L2(Ω) + b(ỹ;w, z̃)− b(ȳT ;w, ẑ)

+b(w; ỹ, z̃)− b(w; ȳT , ẑ)− (r̃ − r̂, div w)L2(Ω) = (ỹ − ȳT ,w)L2(Ω),

(s, div (z̃− ẑ))L2(Ω) = 0,

for all w ∈ H1
0(Ω) and s ∈ L

2
0(Ω), respectively. Set s = 0 and w = z̃− ẑ to obtain

ν‖∇(z̃− ẑ)‖2L2(Ω) + b(ỹ − ȳT ; z̃− ẑ, z̃) + b(ȳT ; z̃− ẑ, z̃− ẑ)

+ b(z̃− ẑ; ỹ − ȳT , z̃) + b(z̃− ẑ; ȳT , z̃− ẑ) = (ỹ − ȳT , z̃− ẑ)L2(Ω).

Invoke now estimate (5) and the Cauchy–Schwarz inequality to obtain

ν‖∇(z̃− ẑ)‖2L2(Ω) ≤ 2Cb‖∇(z̃− ẑ)‖L2(Ω)‖∇(ỹ − ȳT )‖L2(Ω)‖∇z̃‖L2(Ω)

+ 2Cb‖∇(z̃− ẑ)‖2L2(Ω)‖∇ȳT ‖L2(Ω) + ‖ỹ − ȳT ‖L2(Ω)‖z̃− ẑ‖L2(Ω).
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Then, in view of assumption (32), it immediately follows that

ν(1 − θ)‖∇(z̃− ẑ)‖2L2(Ω) ≤ ‖ỹ− ȳT ‖L2(Ω)‖z̃− ẑ‖L2(Ω)

+ 2Cb‖∇(z̃− ẑ)‖L2(Ω)‖∇(ỹ − ȳT )‖L2(Ω)‖∇z̃‖L2(Ω).

Applying a Poincaré inequality, adding and subtracting the auxiliary variable ŷ, de-
fined as the solution to (34), and using the triangle inequality, we arrive at

(62) ‖∇(z̃− ẑ)‖L2(Ω) .
(

1 + ‖∇z̃‖L2(Ω)

) (

‖∇(ỹ − ŷ)‖L2(Ω) + ‖∇(ŷ − ȳT )‖L2(Ω)

)

.

Notice that the stability estimate for the problem that (z̃, r̃) solves yields

‖∇z̃‖L2(Ω) ≤
C2

ν(1− θ)
‖ỹ− yΩ‖L2(Ω) ≤

C2

ν(1 − θ)

(

C2C
−1
b θν + ‖yΩ‖L2(Ω)

)

,

where we have also used (8). Replacing this estimate into (62) and invoking the a
posteriori error estimate (38) we obtain

(63) ‖∇(z̃− ẑ)‖L2(Ω) . ‖∇(ỹ − ŷ)‖L2(Ω) + Est,

with a hidden constant that is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh T , and #T but depends on the
continuous problem data and C2, Cb, and θ.

The rest of this step is dedicated to bound the term ‖∇(ỹ− ŷ)‖L2(Ω) in (63). To
accomplish this task, we first notice that the pair (ỹ − ŷ, p̃ − p̂) ∈ H1

0(Ω) × L
2
0(Ω)

solves the problem

ν(∇(ỹ−ŷ),∇v)L2(Ω)+b(ỹ; ỹ,v)−b(ŷ; ŷ,v)−(p̃− p̂, div v)L2(Ω)=(ũ− ūT ,v)L2(Ω),
(q, div (ỹ − ŷ))L2(Ω)=0,

for all v ∈ H1
0(Ω) and q ∈ L

2
0(Ω), respectively. Set v = ỹ − ŷ and q = 0, and invoke

the second property for the form b stated in (4) to arrive at

ν‖∇(ỹ − ŷ)‖2L2(Ω) + b(ỹ − ŷ; ŷ, ỹ − ŷ) = (ũ− ūT , ỹ − ŷ)L2(Ω).

Estimates (5) and (35) thus yield

(64) ‖∇(ỹ − ŷ)‖L2(Ω) . ‖ũ− ūT ‖L2(Ω) = Ect,

upon using definition (51). Replacing estimate (64) into (63), and the obtained one
into (61), we obtain

(65) ‖ū− ũ‖L2(Ω) . Ead + Est + Ect.

On the basis of (65) and (60), we can thus obtain the a posteriori error estimate

(66) ‖eu‖L2(Ω) . Ead + Est + Ect.

Step 2. The goal of this step is to bound ‖∇ey‖L2(Ω) in (58). We begin with a
simple application of the triangle inequality and (38):

(67) ‖∇ey‖L2(Ω) ≤ ‖∇(ȳ − ŷ)‖L2(Ω) + CEst,
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where C > 0. We now bound ‖∇(ȳ − ŷ)‖L2(Ω). To accomplish this task, we first
notice that the pair (ȳ − ŷ, p̄− p̂) ∈ H1

0(Ω)× L
2
0(Ω) solves the problem

(68)

(∇(ȳ − ŷ),∇v)L2(Ω) + b(ȳ; ȳ − ŷ,v) + b(ȳ − ŷ; ŷ,v)

−(p̄− p̂, div v)L2(Ω) = (ū− ūT ,v)L2(Ω),

(q, div (ȳ − ŷ))L2(Ω) = 0,

for all v ∈ H1
0(Ω) and q ∈ L

2
0(Ω), respectively. Set v = ȳ − ŷ and q = 0, and invoke

(4) and the fact that ȳ − ŷ ∈ V(Ω) to arrive at

ν‖∇(ȳ − ŷ)‖2L2(Ω) + b(ȳ − ŷ; ŷ, ȳ − ŷ) = (ū− ūT , ȳ − ŷ)L2(Ω).

We thus invoke (5) and the stability estimate (35) to obtain

(69) ‖∇(ȳ − ŷ)‖L2(Ω) . ‖eu‖L2(Ω).

We finally replace estimate (69) into (67) and invoke (66) to obtain the error estimate

(70) ‖∇ey‖L2(Ω) . Ead + Est + Ect.

Step 3. We now estimate the term ‖ep‖L2(Ω) in (58). A trivial application of the
triangle inequality in conjunction with the a posteriori estimate (38) yield

(71) ‖ep‖L2(Ω) . ‖p̄− p̂‖L2(Ω) + Est.

It thus suffices to bound ‖p̄− p̂‖L2(Ω). To do this, we utilize the inf–sup condition (6),
the fact that (ȳ− ŷ, p̄− p̂) ∈ H1

0(Ω)×L
2
0(Ω) solves (68) and estimate (5) to arrive at

(72) ‖p̄− p̂‖L2(Ω) . sup
v∈H1

0(Ω)

(p̄− p̂, div v)L2(Ω)

‖∇v‖L2(Ω)
. ‖∇(ȳ − ŷ)‖L2(Ω)

+ ‖∇(ȳ − ŷ)‖L2(Ω)(‖∇ȳ‖L2(Ω) + ‖∇ŷ‖L2(Ω)) + ‖eu‖L2(Ω).

Since the smallness assumption (11) holds, we immediately deduce the stability esti-
mates (8) and (35). Thus,

‖∇ȳ‖L2(Ω) + ‖∇ŷ‖L2(Ω) ≤ 2θC−1
b ν, θ < 1.

Replace this estimate into (72) and invoke (69) and (66) to arrive at ‖p̄− p̂‖L2(Ω) .

Ead + Est + Ect. This estimate, in view of (71), yields the a posteriori error estimate

(73) ‖ep‖L2(Ω) . Ead + Est + Ect.

Step 4. We bound ‖∇ez‖L2(Ω). To accomplish this task, we apply the triangle
inequality and invoke the a posteriori estimate (44). These arguments yield

(74) ‖∇ez‖L2(Ω) . ‖∇(z̄− ẑ)‖L2(Ω) + Ead.

To bound ‖∇(z̄− ẑ)‖L2(Ω) we observe that (z̄− ẑ, r̄ − r̂) ∈ H1
0(Ω)× L

2
0(Ω) solves

ν(∇w,∇(z̄ − ẑ))L2(Ω) + b(ȳ − ȳT ;w, z̄) + b(ȳT ;w, z̄− ẑ)

+b(w; ȳ − ȳT , z̄) + b(w; ȳT , z̄− ẑ)− (r̄ − r̂, div w)L2(Ω)=(ȳ−ȳT ,w)L2(Ω),

(s, div (z̄− ẑ))L2(Ω)=0,

(75)
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for all w ∈ H1
0(Ω) and s ∈ L

2
0(Ω), respectively. Set w = z̄− ẑ and s = 0, and invoke

the estimate (5) to obtain

ν‖∇(z̄− ẑ)‖2L2(Ω) ≤ 2Cb‖∇(ȳ − ȳT )‖L2(Ω)‖∇z̄‖L2(Ω)‖∇(z̄− ẑ)‖L2(Ω)

+ 2Cb‖∇(z̄− ẑ)‖2L2(Ω)‖∇ȳT ‖L2(Ω) + ‖ȳ − ȳT ‖L2(Ω)‖z̄− ẑ‖L2(Ω).

Utilize (32) and a Poincaré inequality to obtain

(76) ν(1 − θ)‖∇(z̄− ẑ)‖L2(Ω) ≤
(

2Cb‖∇z̄‖L2(Ω) + C2
2

)

‖∇(ȳ − ȳT )‖L2(Ω).

We thus invoke the stability estimate (16), the smallness assumption (11), and the
results of Theorem 1 to obtain

(77) ‖∇z̄‖L2(Ω) ≤
C2

ν(1 − θ)

(

C2θC
−1
b ν + ‖yΩ‖L2(Ω)

)

.

Replace this estimate into (76) to obtain

‖∇(z̄− ẑ)‖L2(Ω) . ‖∇ey‖L2(Ω),

with a hidden constant that is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh T , and #T but depends on the
continuous problem data and C2, Cb, and θ. We thus invoke (70) to obtain

(78) ‖∇(z̄− ẑ)‖L2(Ω) . Ead + Est + Ect,

which, in view of (74), yields the a posteriori error estimate

(79) ‖∇ez‖L2(Ω) . Ead + Est + Ect.

Step 5. We now control ‖er‖L2(Ω) in (58). We begin by applying (44) to derive

(80) ‖er‖L2(Ω) . ‖r̄ − r̂‖L2(Ω) + Ead.

To estimate ‖r̄ − r̂‖L2(Ω) we utilize the inf–sup condition (6), problem (75), and the
basic estimate (5):

‖r̄ − r̂‖L2(Ω) . sup
w∈H1

0(Ω)

(r̄ − r̂, div w)L2(Ω)

‖∇w‖L2(Ω)
. ‖∇(z̄− ẑ)‖L2(Ω) + ‖ȳ− ȳT ‖L2(Ω)

+ ‖∇(ȳ − ȳT )‖L2(Ω)‖∇z̄‖L2(Ω) + ‖∇ȳT ‖L2(Ω)‖∇(z̄− ẑ)‖L2(Ω).

We thus invoke assumption (32) and estimate (77) to arrive at

‖r̄ − r̂‖L2(Ω) . ‖∇(z̄− ẑ)‖L2(Ω) + ‖∇ey‖L2(Ω),

with a hidden constant that is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh T , and #T but depends on the
continuous problem data and C2, Cb, and θ. The estimates (70) and (78) immediately
yield ‖r̄ − r̂‖L2(Ω) . Ead + Est + Ect. Finally, we replace this estimate into (80) to
obtain the a posteriori error estimate

(81) ‖er‖L2(Ω) . Ead + Est + Ect.

Step 6. The desired estimate (59) follows from collecting the estimates (66), (70),
(73), (79), and (81). This concludes the proof.
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5. Local efficiency analysis. In this section we analyze the efficiency properties
of the a posteriori error estimator Eocp, defined in (52), on the basis of standard
bubble function arguments. Before proceeding with such an analysis, we introduce
the following notation: For an edge, triangle, or tetrahedron G, let V(G) be the set
of vertices of G. With this notation at hand, we introduce, for T ∈ T and S ∈ S ,
the following standard element and edge bubble functions [29]:

ϕT = (d+ 1)(d+1)
∏

v∈V(T )

λv, ϕS = dd
∏

v∈V(S)

λv|T ′ with T ′ ⊂ NS .

In these formulas, by λv we denote the barycentric coordinate function associated to
v ∈ V(T ). We recall that NS corresponds to the patch composed of the two elements
of T sharing S.

We now proceed to derive local efficiency properties for the indicator Est,T defined
in (36).

Theorem 10 (local efficiency of Est). Assume that the smallness assumption

(11) holds. Let (ȳ, p̄, z̄, r̄, ū) ∈ H1
0(Ω) × L2

0(Ω) × H1
0(Ω) × L2

0(Ω) × Uad be a local

solution of (9)–(10). Let ūT be a local minimum of the associated discrete optimal

control problem with (ȳT , p̄T ) and (z̄T , r̄T ) being the corresponding state and adjoint

state discrete variables, respectively. If assumption (32) holds, then, for T ∈ T , the

local error indicator Est,T satisfies

(82) Est,T . (1 + hT )
(

‖ey‖H1(NT ) + ‖ep‖L2(NT ) + ‖eu‖L2(NT )

)

,

where NT is defined as in (25). The hidden constant is independent of the continuous

and discrete optimal variables, the size of the elements in the mesh T , and #T .

Proof. We begin by noticing that, since (ȳ, p̄) ∈ H1
0(Ω)× L

2
0(Ω) solves (10) with

u replaced by ū, an elementwise integration by parts formula allows us to derive the
following identity:

(83) ν(∇ey,∇v)L2(Ω) + b(ȳ; ey,v) + b(ey; ȳT ,v) − (ep, div v)L2(Ω)

+ (q, div ey)L2(Ω) − (eu,v)L2(Ω) =
∑

T∈T

(ūT + ν∆ȳT − (ȳT · ∇)ȳT −∇p̄T ,v)L2(T )

+
∑

S∈S

(J(ν∇ȳT − p̄T Id) · nK,v)L2(S) −
∑

T∈T

(q, div ȳT )L2(T ),

which holds for every v ∈ H1
0(Ω) and q ∈ L

2
0(Ω). With the aid of this identity, in the

following steps, we will estimate separately each of the individual terms that appear
in the definition of the local error indicator Est,T .

We now proceed on the basis of four steps.
Step 1. Let T ∈ T . Define

Rst
T := (ūT + ν∆ȳT − (ȳT · ∇)ȳT −∇p̄T ) |T .

We bound h2T ‖R
st
T ‖

2
L2(T ) in (36). To accomplish this task, we set v = ϕTR

st
T and

q = 0 in (83), and utilize standard properties of the bubble function ϕT , a standard
Sobolev embedding, and basic inequalities to obtain

‖Rst
T ‖

2
L2(T ) .

(

‖ȳ‖H1(T )‖∇ey‖L2(T ) + ‖ey‖H1(T )‖∇ȳT ‖L2(T )

)

‖ϕTR
st
T ‖H1(T )

+
(

‖∇ey‖L2(T ) + ‖ep‖L2(T )

)

‖∇(ϕTR
st
T )‖L2(T ) + ‖eu‖L2(T )‖ϕTR

st
T ‖L2(T ).
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We thus apply standard inverse inequalities and bubble functions arguments to obtain

(84) ‖Rst
T ‖L2(T ) . (1 + h−2

T )
1
2

(

‖ȳ‖H1(T )‖∇ey‖L2(T ) + ‖ey‖H1(T )‖∇ȳT ‖L2(T )

)

+ h−1
T

(

‖∇ey‖L2(T ) + ‖ep‖L2(T )

)

+ ‖eu‖L2(T ).

On other hand, a Poincaré inequality combined with the stability estimate (8) yield

(85) ‖ȳ‖H1(T ) ≤ ‖ȳ‖H1(Ω) ≤ C‖∇ȳ‖L2(Ω) ≤ CθC
−1
b ν,

where C > 0. Similarly, in view of assumption (32), we have that

(86) ‖∇ȳT ‖L2(T ) ≤ ‖∇ȳT ‖L2(Ω) < (νC−1
b )/2.

Replacing this estimate and (85) into inequality (84) we obtain

(87) h2T ‖R
st
T ‖

2
L2(T ) . (1 + h2T )

(

‖ey‖
2
H1(T ) + ‖ep‖

2
L2(T ) + ‖eu‖

2
L2(T )

)

,

with a hidden constant that is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh T , and #T but depends on the
continuous problem data and ν, Cb, and θ.

Step 2. Let T ∈ T and S ∈ ST . Define Jst
S := J(ν∇ȳT − p̄T Id) · nK. We bound

the jump term hT ‖Jst
S ‖

2
L2(S) in (36). To accomplish this task, we set v = ϕSJ

st
S and

q = 0 in (83) and proceed on the basis of similar arguments to the ones that lead to
(84). These arguments yield

‖Jst
S ‖

2
L2(S) .

∑

T ′∈NS

(

‖eu‖L2(T ′)+‖R
st
T ′‖L2(T ′)+(1+h−2

T ′ )
1
2

(

‖ȳ‖H1(T ′)‖∇ey‖L2(T ′)

+‖ey‖H1(T ′)‖∇ȳT ‖L2(T ′)

)

+ h−1
T ′

(

‖∇ey‖L2(T ′) + ‖ep‖L2(T ′)

)

)

h
1
2

T ‖J
st
S ‖L2(S).

Invoke (85), (86), and (87) to arrive at

(88) hT ‖J
st
S ‖

2
L2(S) .

∑

T ′∈NS

(1 + h2T ′)
(

‖ey‖
2
H1(T ′) + ‖ep‖

2
L2(T ′) + ‖eu‖

2
L2(T ′)

)

.

Step 3. Let T ∈ T . The goal of this step is to control the term ‖div ȳT ‖2L2(T ) in

(36). From the incompressibility condition div ȳ = 0, it immediately follows that

(89) ‖div ȳT ‖L2(T ) ≤ ‖div ey‖L2(T ) . ‖∇ey‖L2(T ) . ‖ey‖H1(T ).

Step 4. The proof concludes by gathering the estimates (87), (88), and (89).

We now investigate the local efficiency properties of the local indicator Ead,T
defined in (42). To accomplish this task, for any g ∈ L2(Ω) and M ⊂ T , we define
the oscillation term

(90) oscM(g) :=

(

∑

T∈M

h2T ‖g−ΠT (g)‖
2
L2(T )

)
1
2

,

where ΠT denotes the L2–projection onto piecewise constant functions over T .



20 A. ALLENDES, F. FUICA, E. OTÁROLA, D. QUERO

Theorem 11 (local efficiency of Ead). Assume that the smallness assumption

(11) holds. Let (ȳ, p̄, z̄, r̄, ū) ∈ H1
0(Ω) × L2

0(Ω) × H1
0(Ω) × L2

0(Ω) × Uad be a local

solution of (9)–(10). Let ūT be a local minimum of the associated discrete optimal

control problem with (ȳT , p̄T ) and (z̄T , r̄T ) being the corresponding state and adjoint

state discrete variables, respectively. If assumption (32) holds, then, for T ∈ T , the

local error indicator Ead,T satisfies

(91) Ead,T . (1 + hT )
(

‖ez‖H1(NT ) + ‖ey‖H1(NT ) + ‖er‖L2(NT )

)

+ oscNT
(yΩ),

where NT and oscNT
(yΩ) are defined as in (25) and (90), respectively. The hidden

constant is independent of the continuous and discrete optimal variables, the size of

the elements in the mesh T , and #T .

Proof. Since the pair (z̄, r̄) ∈ H1
0(Ω)×L

2
0(Ω) solves (14), an elementwise integra-

tion by parts formula yields the identity

(92) ν(∇w,∇ez)L2(Ω) + b(ey;w, z̄) + b(ȳT ;w, ez) + b(w; ey, z̄) + b(w; ȳT , ez)

− (er, div w)L2(Ω) + (s, div ez)L2(Ω) − (ey,w)L2(Ω) =
∑

T∈T

(

(ΠT (yΩ)− yΩ,w)L2(T )

+ (ȳT −ΠT (yΩ) + ν∆z̄T − (∇ȳT )⊺z̄T + (ȳT · ∇)z̄T −∇r̄T ,w)L2(T )

− (s, div z̄T )L2(T )

)

+
∑

S∈S

(J(ν∇z̄T − r̄T Id) · nK,w)L2(S) ,

which holds for every w ∈ H1
0(Ω) and s ∈ L

2
0(Ω). With equation (92) at hand, in the

following steps, we will estimate separately each of the individual terms that appear
in the definition of Ead,T .

We now proceed on the basis of four steps.
Step 1. Let T ∈ T . Define

Rad
T := (ȳT − yΩ + ν∆z̄T − (∇ȳT )⊺z̄T + (ȳT · ∇)z̄T −∇r̄T ) |T ,

R̂ad
T := (ȳT −ΠT (yΩ) + ν∆z̄T − (∇ȳT )⊺z̄T + (ȳT · ∇)z̄T −∇r̄T ) |T .

We estimate the residual term h2T ‖R
ad
T ‖

2
L2(T ) in (42). We begin with a simple appli-

cation of the triangle inequality to obtain

(93) hT ‖R
ad
T ‖L2(T ) ≤ hT ‖R̂

ad
T ‖L2(T ) + oscT (yΩ).

To bound hT ‖R̂ad
T ‖L2(T ) we set w = ϕT R̂

ad
T and s = 0 in identity (92), utilize

standard properties of the bubble function ϕT , and basic estimates to arrive at

(94) ‖R̂ad
T ‖L2(T ) . (1 + h−2

T )
1
2

(

‖ey‖H1(T )‖z̄‖H1(T ) + ‖ȳT ‖H1(T )‖ez‖H1(T )

)

+ h−1
T

(

‖∇ez‖L2(T ) + ‖er‖L2(T )

)

+ ‖ey‖L2(T ) + ‖ΠT (yΩ)− yΩ‖L2(T ).

On the other hand, notice that the stability estimate (77) yields

(95) ‖z̄‖H1(T ) ≤ ‖z̄‖H1(Ω) ≤ C‖∇z̄‖L2(Ω) ≤
CC2

ν(1 − θ)

(

C2θC
−1
b ν + ‖yΩ‖L2(Ω)

)

,

where C > 0. Replacing this estimate and (86) into (94), we conclude

(96) h2T ‖R̂
ad
T ‖

2
L2(T ) . (1 + h2T )

(

‖ez‖
2
H1(T ) + ‖ey‖

2
H1(T ) + ‖er‖

2
L2(T )

)

+ osc2T (yΩ).
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We conclude the desired estimate by gathering the inequalities (93) and (96).
Step 2. Let T ∈ T and S ∈ ST . We bound hT ‖J(ν∇z̄T − r̄T Id) · nK‖2

L2(S) in

(42). To simplify the presentation of the material, we define

Jad
S := J(ν∇z̄T − r̄T Id) · nK.

Set w = ϕSJ
ad
S and s = 0 in (92) and proceed on the basis of similar arguments to

the ones used to derive (94). These arguments yield

‖Jad
S ‖

2
L2(S).

∑

T ′∈NS

(

(1 + h−2
T ′ )

1
2

(

‖ey‖H1(T ′)‖z̄‖H1(T ′) + ‖ȳT ‖H1(T ′)‖ez‖H1(T ′)

)

+ h−1
T ′

(

‖∇ez‖L2(T ′) + ‖er‖L2(T ′)

)

+ ‖ey‖L2(T ′)

+ ‖R̂ad
T ′‖L2(T ′) + ‖ΠT ′(yΩ)− yΩ‖L2(T ′)

)

h
1
2

T ‖J
ad
S ‖L2(S).

Invoke estimates (86), (95), and (96) to conclude and obtain

(97) hT ‖J
ad
S ‖

2
L2(S) .

∑

T ′∈NS

(1 + h2T ′)
(

‖ez‖
2
H1(T ′)

+‖er‖
2
L2(T ′) + ‖ey‖

2
H1(T ′) + osc2T ′(yΩ)

)

.

Step 3. Let T ∈ T . Since div z̄ = 0, we immediately obtain that

(98) ‖div z̄T ‖L2(T ) ≤ ‖div ez‖L2(T ) . ‖ez‖H1(T ).

Step 4. The proof concludes by gathering (93), (96), (97), and (98).

The results obtained in Theorems 10 and 11 yield the local efficiency of

E2ocp,T := E2ad,T + E2st,T + E2ct,T .(99)

Theorem 12 (local efficiency of Eocp,T ). Assume that the smallness assumption

(11) holds. Let (ȳ, p̄, z̄, r̄, ū) ∈ H1
0(Ω) × L2

0(Ω) × H1
0(Ω) × L2

0(Ω) × Uad be a local

solution of (9)–(10). Let ūT be a local minimum of the associated discrete optimal

control problem with (ȳT , p̄T ) and (z̄T , r̄T ) being the corresponding state and adjoint

state discrete variables, respectively. If assumption (32) holds, then, for T ∈ T , we

have that

Eocp,T . (1 + hT )
(

‖ey‖H1(NT ) + ‖eu‖L2(NT ) + ‖ez‖H1(NT )

‖ep‖L2(NT ) + ‖er‖L2(NT )

)

+ oscNT
(yΩ),

where NT and oscNT
(yΩ) are defined as in (25) and (90), respectively. The hidden

constant is independent of the continuous and discrete optimal variables, the size of

the elements in the mesh T , and #T .

Proof. Let T ∈ T . In view of the local efficiency estimates (82) and (91), it
suffices to bound Ect,T . Invoke (51) and an application of the triangle inequality to
obtain

Ect,T ≤ ‖ũ− ū‖L2(T ) + ‖eu‖L2(T )

= ‖Π[a,b](−α
−1z̄T )−Π[a,b](−α

−1z̄)‖L2(T ) + ‖eu‖L2(T ).

Invoke the Lipschitz property of Π[a,b], introduced in (18), to obtain

(100) Ect,T ≤ α
−1‖ez‖L2(T ) + ‖eu‖L2(T ) ≤ α

−1‖ez‖H1(T ) + ‖eu‖L2(T ).

The proof concludes by collecting estimates (82), (91), and (100).
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6. Numerical examples. In this section we conduct a series of numerical ex-
amples that illustrate the performance of the devised a posteriori error estimator Eocp
defined in (52).

6.1. Implementation. The presented numerical examples have been carried
out with the help of a code that we implemented using C++. All matrices have been
assembled exactly and global linear systems were solved using the multifrontal mas-
sively parallel sparse direct solver (MUMPS) [5, 6]. The right hand sides, the ap-
proximation errors, and the error estimators are computed by a quadrature formula
which is exact for polynomials of degree nineteen (19) for two dimensional domains
and degree fourteen (14) for three dimensional domains.

For a given partition T we seek (ȳ
T
, p̄

T
, z̄

T
, r̄

T
, ū

T
) ∈ V(T )×P(T )×V(T )×

P(T )×Uad(T ) that solves the discrete optimality conditions (29)–(31). This system
is solved by using a primal–dual active set strategy [27, section 2.12.4] combined with
a fixed point strategy: for each active set iteration, the ensuing nonlinear system is
solved by using a fixed point method. Once the discrete solution is obtained, we
compute, for T ∈ T , the error indicator Eocp,T , defined in (99), to drive the adaptive
mesh refinement procedure described in Algorithm 1. A sequence of adaptively refined
meshes is thus generated from the initial meshes shown in Figure 1. To visualize finite
element approximations we have used the open–source application ParaView [1, 7].

Algorithm 1 Adaptive algorithm.

Input: Initial mesh T0, fluid viscosity ν, desired state yΩ, external source f , con-
straints a and b, and regularization parameter α;
Set: i = 0.
Active set strategy:
1: Choose an initial discrete guess (y0

Ti
, p0

Ti
, z0

Ti
, r0

Ti
,u0

Ti
) ∈ V(Ti)×P(Ti)×V(Ti)×

P(Ti)× U(Ti);
2: Compute [ȳTi

, p̄Ti
, z̄Ti

, r̄Ti
, ūTi

] = Active-Set[Ti, ν,yΩ, f , a,b, α,y
0
Ti
, p0

Ti
, z0

Ti
,

r0
Ti
,u0

Ti
]. Active-Set implements the active set strategy of [27, section 2.12.4]; for

each active set iteration, the ensuing nonlinear system is solved by using a fixed point
method;
Adaptive loop:
3: For each T ∈ Ti compute the local error indicator Eocp,T defined in (99);
4: Mark an element T ∈ Ti for refinement if E2ocp,T >

1
2 maxT ′∈Ti

E2ocp,T ′ ;
5: From step 4, construct a new mesh Ti+1, using a longest edge bisection algorithm.
Set i← i+ 1 and go to step 1.

Fig. 1. The initial meshes used when the domain Ω is a two-dimensional L–shape (Example
1) and a cube (Example 2).

The total number of degrees of freedom when solving (29)–(31) corresponds to
Ndof = 2 [dim(V(T )) + dim(P(T ))]+dim(U(T )). We recall that the discrete spaces
V(T ), P(T ), and U(T ) are defined by (26), (27), and (28), respectively. The error
is measured in the norm ‖e‖Ω, which is defined in (58).
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To simplify the construction of exact solutions, we incorporate an extra source
term f ∈ L∞(Ω) in the right hand side of the momentum equation of (10). With such a
modification, the right hand side of the first equation in (10) now reads (f+u,v)L2(Ω).

We now provide two numerical experiments. We first consider a problem in two
dimensions where we go beyond the presented analysis and perform a numerical exper-
iment where we violate the assumption of homogeneous Dirichlet boundary conditions.
Second, we consider a problem with homogeneous Dirichlet boundary conditions in
three dimensions. We mention that in both numerical examples the exact solutions
are known.

6.2. Example 1 (two dimensional non–convex domain). We set Ω =
(−1, 1)2 \ [0, 1) × (−1, 0], a = (−2,−2), b = (2, 2), α = 10−4, and ν = 1. The
optimal state and adjoint state are given, in polar coordinates (ρ, ϑ), by

ȳ(ρ, ϑ) = z̄(ρ, ϑ) = 10−2ρσ
(

(1 + σ) sin(ϑ)ψ(ϑ) + cos(ϑ)ψ′(ϑ)
−(1 + σ) cos(ϑ)ψ(ϑ) + sin(ϑ)ψ′(ϑ)

)

,

p̄(ρ, ϑ) = r̄(ρ, ϑ) =
1

1− σ
ρσ−1

(

(1 + σ)2)ψ′(ϑ) + ψ′′′(ϑ)
)

,

ψ(ϑ) =

(

sin((1 + σ)ϑ)

1 + σ
+

sin((σ − 1)ϑ)

σ − 1

)

cos(γσ)− cos((1 + σ)ϑ) + cos((σ − 1)ϑ),

where ϑ ∈ [0, 3π/2], σ = 856399/1572864, and γ = 3π/2.
In Figure 2 we present the results obtained for Example 1. Subfigures (A.1) and

(A.2) show that our AFEM outperforms uniform refinement. Subfigures (A.2) and
(A.3) show that our devised AFEM exhibits optimal experimental rates of conver-
gence for all the individual contributions of ‖e‖Ω and Eocp, respectively, but with the
exception of the ones related to the control variable. For each adaptive iteration, the
effectivity index I := Eocp/‖e‖Ω is presented in subfigure (A.4). The final value is
stabilized around the value of 2 and shows the accuracy of the proposed error esti-
mator when is used in our adaptive loop. The mesh obtained after 45 iterations of
our AFEM is presented in subfigure (B.1); the mesh contains 3914 elements and 2031
nodes. We observe that most of the adaptive refinement occurs near to the interface
of the control variable and the geometric singularity. This attests to the efficiency of
the devised estimator. Finally, in subfigures (B.2), (B.3), and (B.4), we present the
numerical approximations of r̄T , the first component of ūT , and the first component
of z̄T , respectively.

6.3. Example 2 (three dimensional convex domain). We consider Ω =
(0, 1)3, a = 10−3(−7,−7,−7), b = 10−3(7, 7, 7), α = 10−1, and ν = 10−2. The exact
optimal state and adjoint state are given by

ȳ(x1, x2, x3) =10−3curl

(

(x2x3(1− x2)(1− x3))
2

(

1− x1 −
e−x1/ν − e−1/ν

1− e−1/ν

))

,

z̄(x1, x2, x3) =curl
(

(x1x2x3(1− x1)(1− x2)(1− x3))
2
)

,

p̄(x1, x2) = r̄(x1, x2) = (x1x2x3 − 1/8).

In Figure 3 we present the results obtained for Example 2. Subfigures (C.1)
and (C.2) show that, as in the two dimensional example, our AFEM outperforms
uniform refinement; it also exhibits optimal experimental rates of convergence for all
the individual contributions of ‖e‖Ω and Eocp, respectively. Finally, for each adaptive
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iteration, the effectivity index I is presented in subfigure (C.4). The final value is
stabilized around the value of 1.
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Fig. 2. Example 1. Experimental rates of convergence for the individual contributions of ‖e‖Ω
for uniform (A.1) and adaptive refinement (A.2); experimental rates of convergence for the individ-
ual contributions of Eocp (A.3); effectivity index I (A.4); adaptively refined mesh obtained after 45
iterations of our adaptive loop (3914 elements and 2031 nodes) (B.1); finite element approximation
of r̄T (B.2), and the first component of ūT (B.3) and z̄T (B.4).
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Fig. 3. Example 2. Experimental rates of convergence for the individual contributions of
‖e‖Ω for uniform (C.1) and adaptive refinement (C.2); experimental rates of convergence for the
individual contributions of Eocp (C.3) and effectivity index I (C.4).
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