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Abstract. We consider the square root of the Laplace operator (−∆)1/2 in a bounded domain. The square
root of the Laplacian can be realized as the Dirichlet to Neumann operator of an extension problem posed on a
semi-infinite cylinder. This extension problem involves a mixed boundary value problem, which we analyze in
the framework of Sobolev spaces. For numerical approximation we propose a suitable truncated problem, which
can be justified by the rapid decay of the solution to the extension problem. A finite element approximation is
considered for the truncation. A priori error estimates are obtained for conforming and shape regular meshes
and numerical experiments are presented illustrating the theory.

1. Introduction. Singular integrals and nonlocal operators have been a standard topic
in different branches of mathematics such as operator theory and harmonic analysis (see [21]).
They are now becoming increasingly important because of their strong connection with real-
world problems. Concerning applications, nonlocal operators arise in: boundary control prob-
lems [12], finance [11], electromagnetic fluids [18], image processing [15], material science [5],
turbulence [2] and others.

In this work, we shall be interested in a specific nonlocal positive operator: the square root
of the Laplace operator in a bounded domain with zero Dirichlet boundary conditions and its
respective numerical approximation via the finite element method.

The problem we shall be concerned with reads as follows: Given a smooth enough function
f , find u such that

{

(−∆)1/2u = f in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ Rn with n ≥ 1 is a bounded domain with a smooth boundary ∂Ω, and (−∆)1/2

denotes the square root of the Laplace operator −∆ supplemented with homogeneous Dirichlet
values on ∂Ω.

The study of elliptic equations involving the square root of the Laplacian is important
in many physical applications in which long-range or anomalous difussion is considered. For
instance in probability, (−∆)1/2 is the infinitesimal generator of a stable Lévy process (see [6]).

Problem (1.1) involves the square root of the Laplace operator, which is a nonlocal operator
(see [16, 21, 8, 9]). It is well known that problem (1.1) can be realized in a local manner as
an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an
extension problem in the semi-infinite cylinder C := Ω × (0,∞). This extension problem
corresponds to a mixed boundary value problem for the laplace operator −∆:















−∆u = 0 in C,
u = 0 on ∂LC,

∂u

∂ν
= f on Ω× {0},

(1.2)

where ∂LC := ∂Ω × [0,∞) denotes the lateral boundary of C, and ν the unit outer normal to
C at Ω× {0}.

Then, the square root of the Laplace operator −∆ in a bounded domain Ω is related to
the Dirichlet to Neumann operator for problem (1.2) in the following way:

(−∆)1/2u =
∂u

∂ν
in Ω.

Using the idea developed above, our stategy to solve the nonlocal problem (1.1) is as
follows: given a sufficiently smooth function f we solve problem (1.2), obtaining a function u.
Hence, taking the trace of u at Ω× {0} we obtain the function u that solves (1.1).
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The outline of this paper is as follows. In section 2 we consider a suitable function space
designed to study problems (1.1) and (1.2), and we define the square root of the Laplace
operator in Rn and bounded domains. In order to approximate numerically u, in section 3 we
study a suitable truncated problem of (1.2). In section 4, a finite element approximation is
considered for the truncation and a priori error estimates for both u and u are obtained. We
conclude with numerical experiments, which ilustrate the developed theory.

2. Preliminaries: Function spaces and the fractional Laplace operator.

2.1. Function spaces. In order to define the square root of the Laplace operator, we start
by recalling some appropriate function spaces, see for instance ([17, 19, 22]). The fractional
Sobolev space H1/2(Ω) can de defined via the so called Gagliardo-Slobodeckĭı seminorm (see
[19, 22]). Let Ω be a open non-empty subset of Rn, we define the Gagliardo-Slobodeckĭı
seminorm | · |H1/2(Ω) as follows:

|u|H1/2(Ω) :=

(
∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|n+1

dxdy

)1/2

.

Then, the fractional Sobolev space H1/2(Ω) is defined by

H1/2(Ω) :=
{

u ∈ L2(Ω) : |u|H1/2(Ω) < +∞
}

, (2.1)

which, equipped with the norm

‖u‖H1/2(Ω) :=
(

‖u‖2L2(Ω) + |u|2H1/2(Ω)

)1/2

is a Banach space. Now, we can define the so-called Lions-Magenes space as follows:

H
1/2
00 (Ω) :=

{

u ∈ H1/2(Ω) :

∫

Ω

u2(x)

d(x)
dx < +∞

}

,

where d(x) = dist(x, ∂Ω). This space equipped with the norm

‖u‖
H

1/2
00

(Ω)
:=

{

‖u‖2H1/2(Ω) +

∫

Ω

u2

d

}1/2

is a Banach space.
When Ω is an open and bounded subset of Rn with a smooth boundary ∂Ω, an equivalent

approach to define the Lions-Magenes space is given by interpolation (see, for instance, [17,
Ch. 1]). Let us use the standard convention H0(Ω) = L2(Ω). Then, the Lions-Magenes space
is equivalently defined as the interpolation space of index 1/2 for the pair [H1

0 (Ω), L
2(Ω)]:

H
1/2
00 (Ω) :=

[

H1
0 (Ω), L

2(Ω)
]

1/2
,

(see [17, Theorem 11.7]). In the case where Ω has a Lipschitz boundary, the equivalence is still
true (see [1, Ch. 7] for details).

We define H
1/2
0 (Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖H1/2(Ω), i.e.,

H
1/2
0 (Ω) := C∞

0 (Ω)
H1/2(Ω)

. (2.2)

We have the strict inclusion

H
1/2
00 (Ω) $ H

1/2
0 (Ω);

for instance, 1 ∈ H
1/2
0 (Ω) but 1 /∈ H

1/2
00 (Ω). On the other hand, it is known that if Ω is a

bounded domain with a smooth boundary ∂Ω, the space C∞
0 (Ω) is dense in H1/2(Ω) (see [17,

Theorem 11.1]). Then, we have the following relationship among the spaces defined above

H
1/2
00 (Ω) $ H

1/2
0 (Ω) = H1/2(Ω).
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To treat the nonlocal problem (1.1), we will study a corresponding extension problem in
one more dimension, for which we need to consider an appropiate setting. Let us denote the
upper half-space in Rn+1 by

Rn+1
+ = {(x, y) = (x1, x2, · · · , xn, y) ∈ Rn × R : y > 0},

Let Ω be a bounded smooth domain in Rn. Denote the half-cylinder with base Ω by

C = Ω× (0,∞), (2.3)

and its lateral boundary by

∂LC = ∂Ω× [0,∞). (2.4)

Then, we define

◦

H1
L(C) =

{

v ∈ H1(C) : v = 0 a.e. on ∂LC
}

, (2.5)

which as a consequence of the Poincaré inequality (see [14, 13]), can be equipped with the
norm |v|H1(C) := ‖∇v‖L2(C).

Finally, we denote by trΩ the trace operator on Ω × {0} for functions in H1(C). Notice
that given v ∈ H1(C), trΩv ∈ H1/2(Ω), since traces of H1 functions are H1/2 functions on the
boundary (see [1, 22]).

2.2. The square root of the Laplace operator. The square root of the Laplace oper-
ator of a smooth function with compact support u : Rn → R is defined via Fourier transform
as

F((−∆)1/2u)(ξ) := |ξ|F(u)(ξ). (2.6)

This definition can be extended to any function belonging to the fractional Sobolev space
H1/2(Rn). It can also be expressed by the pointwise formula

(−∆)1/2u(x) = Cn P.V.

∫

Rn

u(x)− u(y)

|x− y|n+1
dy, (2.7)

where P.V. stands for the Cauchy principal value and Cn is a normalization constant to guar-
antee that the symbol of the resulting operator is |ξ|; see the references [9, 16] for more details.
Observe from the pointwise formula (2.7) that the square root of the Laplace operator is a
nonlocal operator.

Smooth and bounded functions are admissible for the definition above. In particular, the
above integral is well defined if, for instance, u is bounded (which ensures the integrability
at infinity) and u ∈ C2

loc(R
n) (which ensures the integrability at x = y in the principal value

sense).
In order to define the square root of the Laplace operator in a bounded domain, we follow

the approach presented in [8]. Recall the well known spectral theory of the Laplacian −∆
in a bounded domain Ω with zero Dirichlet boundary values (see, for instance [13, 14]). If
∂Ω ∈ C0,1, then regularity theory asserts that the operator (−∆)−1 is compact. Hence, there
exists a sequence of eigenvalues of −∆ repeated by their finite multiplicity

0 < λ1 < λ2 ≤ · · ·λk ≤ · · · → ∞, as k → ∞

and, there exists an orthonormal basis {ϕk} of L2(Ω), such that ϕk ∈ H1
0 (Ω) is an eigenfunction

of −∆ corresponding to λk:
{

−∆ϕk = λkϕk in Ω,
ϕk = 0 on ∂Ω,

(2.8)

for k = 1, 2, · · · . The square root of the Dirichlet Laplacian (−∆)1/2 can defined for any
function u ∈ C∞

0 (Ω) by

u =

∞
∑

k=1

bkϕk 7→ (−∆)1/2u =

∞
∑

k=1

bkλ
1/2
k ϕk, (2.9)
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where the coefficients bk are given by

bk =

∫

Ω

uϕkdx.

By density this operator can be extended to the Hilbert space

H :=

{

u ∈ L2(Ω) : ‖u‖2H =

∞
∑

k=1

λ
1/2
k |bk|2 < ∞

}

. (2.10)

Following the theory of Hilbert scale presented in [17, Ch. 1] we have

[

H1
0 (Ω), L

2(Ω)
]

1/2
= Dom(−∆)1/2,

where Dom(−∆)1/2 stands for the domain of the operator (−∆)1/2, and as a consequence, we
conclude

H =
[

H1
0 (Ω), L

2(Ω)
]

1/2
= H

1/2
00 (Ω). (2.11)

As we discussed in section 2.1, the traces of functions in
◦

H1
L(C) should be characterized.

In fact, such a characterization is given in [8, Proposition 1.8], which is complemented with
(2.11) to get the following result.

Proposition 2.1. Let Ω be a bounded and smooth domain in Rn. Then, we have

H = H
1/2
00 (Ω) = {u = trΩv : v ∈ ◦

H1
L(C)}. (2.12)

It is known that the square root of the Laplace operator in a bounded domain Ω defined
as above, can be determined as an operator that maps a Dirichlet boundary condition to a
Neumann-type condition via an extension problem (see [8, 10, 9]).

Let us consider a smooth function u defined in Ω. Let u be the unique solution of the
Laplace equation in the cylinder C, with u vanishing on the lateral boundary ∂LC and u as the
boundary condition on Ω× {0}:















−∆u = 0 in C = Ω× (0,∞),

u = 0 on ∂LC = ∂Ω× [0,∞),
∂u

∂ν
= u on Ω× {0},

(2.13)

where ν denotes the unit outer normal to the cylinder C at Ω× {0}. Consider the operator

T : u → −∂yu(x, 0) =
∂u

∂ν

∣

∣

∣

∣

Ω×{0}
.

By a simple integration by parts argument, we see that

(Tu, u)L2(Ω) = −
∫

Ω

u(x, 0)∂yu(x, 0)

=

∫

C
|∇u|2 ≥ 0

Thus, T is a positive operator. Moreover, since −∂yu(x, 0) is also a harmonic function, if we
apply the operator T twice to the function u, we get

(T ◦ T )u = T (−∂yu(x, 0)) = ∂yyu(x, 0) = −∆xu(x, 0) = ∆xu

where ∆x denotes ∂2
x1

+ · · · ∂2
xn
. Therefore, the operator T that maps the Dirichlet type

condition u into the Neumann type condition −∂yu(x, 0), is actually the square root of the
Laplace operator (−∆)1/2. In this way, we transform the nonlocal problem (1.1) in a local one,
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but in one more dimension. More precisely, we look for a function u with u(·, 0) = u satisfying
the following mixed boundary value problem in a half-cylinder:















−∆u = 0 in C = Ω× (0,∞),

u = 0 on ∂LC = ∂Ω× [0,∞),
∂u

∂ν
= f on Ω× {0}.

(2.14)

Then, if u satisfies problem (2.14), the trace u on Ω × {0} of u is a solution of the problem
(1.1).

Now, let us consider the following Dirichlet to Neumann operator

Γ : H → H ′

u 7→ Γ(u) = f :=
∂u

∂ν
,

where u is the solution of problem (2.13) and H ′ denotes the dual space of H . We summarize
the ideas explained above in the following result (see [8, 9]).

Theorem 2.2. For every u ∈ H, we have that

(−∆)1/2u = Γ(u) =
∂u

∂ν
,

where the equality above holds in the distributional sense.
In other words, given f ∈ H ′, a function u ∈ H solves the equation (−∆)1/2u = f in Ω if

and only if its harmonic extension u solves problem (2.14).

The associated weak formulation of problem (2.14) reads: Find u ∈ ◦

H1
L(C) such that

∫

C
∇u · ∇φ = 〈f, trΩφ〉, for all φ ∈ ◦

H1
L(C). (2.15)

where 〈·, ·〉 denotes the duality pairing between H and H ′, which is well defined because of the
characterization of the space H given in Proposition 2.1.

We remark that via the Lax-Milgram Lemma, for every f ∈ H ′ problem (2.15) has a
unique solution, and moreover, we have the following estimate (see [8]):

‖u‖ ◦

H1

L(C) . ‖u‖H = ‖f‖H′ (2.16)

We conclude this section with a trace estimate, which will be important in order to obtain
the error estimates derived in Section 4 (see estimate (2.17) in [8]):

‖u‖H . ‖u‖ ◦

H1

L(C) (2.17)

3. A Truncated Problem. The variational equation (2.15) is posed on the infinite do-
main C = Ω× (0,∞). The rapid decay of the solution u in the y-direction, suggests truncation
to a bounded domain with a convenient Dirichlet condition. In fact, the next result shows that
the energy of the solution u outside of a truncated domain Ω× (0, Y ) can be made as small as
desired, by choosing properly the parameter Y .

Proposition 3.1. For any positive constant Y > 0, the solution u of the problem (2.14)
satisfies the following estimate

‖∇u‖L2(Ω×(Y ,∞)) . e−λ
1/2
1
Y ‖f‖H′ . (3.1)

Proof. Let u ∈ H . Then u ∈ L2(Ω), and we can consider its expansion in terms of the
eigenfunctions {ϕk}∞k=1: u(x) =

∑∞
k=1 bkϕk(x). Hence, the function

u(x, y) =

∞
∑

k=1

bkϕk(x)e
−λ

1/2
k y,
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belongs to the Sobolev space
◦

H1
L(C) and solves problem (2.14) (see [8, Lemma 2.10]). Using

the expression above, and the fact that {ϕk} are eigenfunctions of −∆ and orthonormal in
L2(Ω), we have

∫ ∞

Y

∫

Ω

|∇u|2 =

∫ ∞

Y

∫

Ω

|∇xu|2 + |∂yu|2

=

∞
∑

k=1

b2kλ
1/2
k e−2λ

1/2
k Y

≤ e−2λ
1/2
1
Y ‖u‖2H .

Finally, using the fact that ‖u‖H = ‖f‖H′ , we obtain the desired estimate (3.1). �

Then, due to the fast decay of the solution u, given a tolerance ǫ we may find an adequately
large value of the parameter Y such that, the following estimate holds true:

‖∇u‖L2(Ω×(Y ,∞)) ≤ ǫ.

Hence, it turns out natural to define a truncated solution v in a bounded domain CY :=
Ω × (0, Y ), imposing a zero Dirichlet condition on the top of the bounded cylinder CY . We
define v to be the solution of the following mixed boundary value problem:























∆v = 0 in CY = Ω× (0, Y ),

v = 0 on ∂LCY := ∂Ω× [0, Y ],

v = 0 on Ω× {Y },
∂v

∂ν
= f on Ω× {0}.

(3.2)

In order to look for a solution v of problem (3.2), we have to consider a suitable Sobolev space:

◦

H1
L(CY ) =

{

v ∈ H1(C) : v = 0 on ∂LCY ∪ Ω× {Y }
}

.

Then, the weak formulation of problem (3.2) reads: Find v ∈ ◦

H1
L(CY ) such that

∫

CY
∇v · ∇φ = 〈f, trΩφ〉, for all φ ∈ ◦

H1
L(CY ). (3.3)

Existence and uniqueness of the solution v in
◦

H1
L(CY ) follows from Lax-Milgram Lemma.

The next result shows that u, the solution of the harmonic extension problem (2.14), can
be approximated by the solution v of the truncated problem (3.2), if Y is chosen sufficiently
large.

Lemma 3.2. For any positive Y > 0, the following estimate holds

‖∇(u− v)‖L2(CY ) . e−
√
λ1Y /2‖f‖H′ . (3.4)

Proof. Given φ ∈ ◦

H1
L(CY ), we can extend it by zero to C to get φe ∈

◦

H1
L(C). Then, taking φe

and φ as test functions in (2.15) and (3.3), respectively, and substracting both expressions, we
have

∫

CY
∇(u− v) · ∇φ = 0 for all φ ∈ ◦

H1
L(CY ),

which means that v is the best approximation of u in the space
◦

H1
L(CY ), i.e.,

‖∇(u− v)‖L2(CY ) = inf
φ∈ ◦

H1

L(CY )
‖∇(u− φ)‖L2(CY ). (3.5)

Now we construct explicitly a function φ0 such that the estimate (3.4) holds true with v = φ0.
Let us consider the function ρ defined by

ρ(y) =















1, 0 ≤ y ≤ Y /2
2

Y
(Y − y), Y /2 < y < Y

0, Y ≥ 0

(3.6)
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Notice that ρ ∈ W 1,∞(0,∞) and satisfies the following bounds |ρ(y)| ≤ 1 and |ρ′(y)| ≤ 2/Y
for all y > 0. Using this function, we define φ0(x, y) := u(x, y)ρ(y) for x ∈ Ω and y > 0. A
straightforward computation shows

|∇ ((1 − ρ)u) |2 ≤ 2
(

(ρ′)2u2 + (1− ρ)2|∇u|2
)

≤ 2

(

4

Y 2
u
2 + |∇u|2

)

.

Using the estimate above and the definition of the function ρ, we obtain

‖∇(u− φ0)‖2L2(CY ) ≤ 2

(

4

Y 2

∫

Y

Y /2

∫

Ω

|u|2 +
∫

Y

Y /2

∫

Ω

|∇u|2
)

. (3.7)

Now, we have to estimate both integrals appearing on the right hand side of inequality (3.7).
In fact,

∫

Y

Y /2

∫

Ω

|u|2 =

∞
∑

k=1

b2k

∫

Y

Y /2

e−2λ
1/2
k y

≤ 1

2
λ−1
1 e−λ

1/2
1
Y

∞
∑

k=1

b2kλ
1/2
k (1− e−λ

1/2
k Y )

. e−λ
1/2
1
Y ‖f‖2H′ . (3.8)

The second integral in (3.7) is estimated as follows:

∫

Y

Y /2

∫

Ω

|∇u|2 =

∞
∑

k=1

b2kλk

∫

Y

Y /2

e−2λ
1/2
k y

≤ 1

2
e−λ

1/2
1
Y

∞
∑

k=1

b2kλ
1/2
k (1− e−λ

1/2
k Y )

. e−λ
1/2
1
Y ‖f‖H′ . (3.9)

Replacing the estimates (3.8) and (3.9) into (3.7), we get

‖∇(u− φ0)‖2L2(CY ) . e−λ
1/2
1
Y ‖f‖2H′ .

Finally, using the best approximation property (3.5), we obtain the desired estimate

‖∇(u− v)‖2L2(CY ) = inf
φ∈ ◦

H1

L(CY )
‖∇(u− φ)‖2L2(CY )

≤ ‖∇(u− φ0)‖2L2(CY )

. e−λ
1/2
1
Y ‖f‖2H′ . �

Notice that we have introduced a truncation parameter Y which determines the size of the
truncated domain CY = Ω× (0, Y ). Lemma 3.2 shows that the solution of the problem on the
truncated domain (3.2) converges exponentially to that of the original problem (2.14) in the
domain of interest.

To conclude this section, we present and estimate for the diference ∇(u− v), in the whole
domain C, i.e., in the L2(C)-norm. The key ingredients are Proposition 3.1 and Lemma 3.2.

Theorem 3.3. For any positive Y > 0, the following estimate holds

‖∇(u− v)‖L2(C) . e−
√
λ1Y /2‖f‖H′ . (3.10)

In particular, given a tolerance ǫ > 0, there exists a positive number Y0 such that for any
Y > Y0, the following estimate holds

‖∇(u− v)‖L2(C) ≤ ǫ‖f‖H′ . (3.11)
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Proof. Notice that the function v can be extended by zero to Ω̄× [Y ,∞). Then, we have

‖∇(u− v)‖2L2(C) = ‖∇(u− v)‖2L2(C) + ‖∇u‖2L2(Ω×(Y ,∞))

Using Lemma 3.2 and Proposition 3.1, we obtain

‖∇(u− v)‖2L2(C) ≤ Ce−λ
1/2
1
Y ‖f‖2H (3.12)

≤ ǫ2‖f‖2H′ ,

for all Y > Y0, where

Y0 =
1√
λ1

(

ln(C) + 2 ln

(

1

ǫ

))

,

with C denoting the constant in inequality (3.12). �

4. A Priori Error Estimates. Let CY be a polyhedral domain in Rn+1
+ . A triangulation

CY (also called mesh or grid) of CY is a partition of CY into a set of n+ 1-simplexes.
We impose two conditions on a triangulation T which are important in finite element

construction. First, a triangulation T is called conforming or compatible if the intersection of
any two simplexes T and T ′ in T is either empty or a common lower dimensional simplex.

The second important condition is shape regularity. A set of triangulations T is called
shape regular if there exists a constant σ such that

max
T∈T

diam(T )n+1

|T | ≤ σ, for all T ∈ T,

where diam(T ) is the diameter of T and |T | is the measure of T in Rn+1 . For shape regular
triangulations, diam(T ) ≈ hT := |T |1/(n+1) which will be used to represent the size of T and
we define hT := maxT∈T hT .

The standard finite element method is to approximate problem (3.3) within a piecewise
polynomial finite dimensional subspace. For simplicity we consider the piecewise linear finite
element space V(T ) over a shape-regular triangulation T of CY :

V(T ) := {V ∈ C0(CY ) : V |T ∈ P1(T )∀T ∈ T and V |ΓD = 0} ⊂ ◦

H1
L(C). (4.1)

where ΓD denotes the Dirichlet boundary given by the union of ∂LCY and Ω × {Y }. We now
solve (3.3) in the finite element space V(T ): find VT ∈ V(T ) such that

∫

CY
∇VT · ∇W = 〈f, trΩW 〉, (4.2)

for all W ∈ V(T ). The existence and uniqueness of the solution to (4.2) follows again from
Lax-Milgram Lemma since V(T ) is Hilbert.

The results of section 2.2 show that for f ∈ H ′, if u solves the harmonic extension problem
(2.14), then u = trΩu solves problem (1.1). Using this result, we define a finite element
aproximation of u. First, we define U(T ) := trΩV(T ), which corresponds to a space of
piecewise polynomials of degree 1 over the mesh TΩ := trΩT . Now, we can define a finite
element aproximation of u ∈ H , by UT := trΩVT ∈ U(T ).

We are now in position to derive a global error estimate. To this end, it is convenient
to introduce the mesh-size function h ∈ L∞(CY ) given by h|T = hT for all T ∈ T . Then, a
combination of the Céa Lemma (see [7, Theorem 2.8.1]), interpolation estimates (see [7, Ch.
4]) and Theorem 3.3 yields the following error estimate.

Theorem 4.1. Assume that the exact solution u of (1.1) satisfies v ∈ Hs(CY ) with 1 ≤
s ≤ 2, and set r := s− 1. Then, the error of the finite element solution UT ∈ U(T ) of (4.2)
satisfies the following global a priori upper bound

‖u− UT ‖H ≤ ǫ‖f‖H′ + ‖hrDsv‖L2(CY ). (4.3)
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Proof. We start from the trace estimate (2.17) applied to u−UT and the triangle inequality:

‖u− UT ‖H . ‖u− VT ‖ ◦

H1

L(C)

≤ ‖u− v‖ ◦

H1

L(C) + ‖v − VT ‖ ◦

H1

L(CY ). (4.4)

Now, given a tolerance ǫ, we know there exists a positive number Y0 such that the estimate
(3.11) holds, which reads

‖u− v‖ ◦

H1

L(C) . ǫ‖f‖H′ (4.5)

Standard finite element approximation (see [7, Ch. 4]) provides the following estimate

‖v − VT ‖ ◦

H1

L(CY ) . ‖hrDsv‖L2(Ω) (4.6)

Finally, replacing the estimates (4.5) and (4.6) in (4.4), we obtained the desired a priori upper
bound (4.3). �

If s = 2, and so v has the maximal regularity v ∈ H2(CY ), we obtain the optimal conver-
gence rate in a linear Sobolev scale

‖∇(v − VT )‖L2(CY ) . hT ‖v‖H2(CY ). (4.7)

The order 1 is dictated by the polynomial degree 1 and cannot be improved upon assuming
either higher regularity H2(CY ) or a graded mesh T . Notice that, in this case, (4.7) does not
provide an optimal estimate for the approximation of the solution of (1.1). In fact, the estimate
obtained reads

‖u− UT ‖H . ǫ‖f‖H′ + hT ‖v‖H2(CY )

If u has the maximal regularity u ∈ H2(Ω), the optimal convergence rate in a linear Sobolev
scale is

‖u− UT ‖H . h
3/2
T

‖u‖H2(Ω). (4.8)

However, to have such an estimate, we need f ∈ H1
0 (Ω) (see [8, Proposition 3.1]). Then, if we

assume just f ∈ H the estimate for u would be

‖u− UT ‖H . hT ‖f‖H, (4.9)

which is recovered by Theorem 4.1.
In order to have the optimal estimate (4.7), we need the function v ∈ H2(CY ). It is well

known that in general the solution of a mixed boundary value problem is not smooth, even for
C∞-data. This singular behavior occurs near the points of interseccion between the Dirichlet
and Neumann boundary. For instance, let us consider an example. The solution of the following
problem: ∆w(x, y) = 0 in {y > 0}, wy = 0 for {x ≤ 0} and {y = 0} and w = r1/2 sin(θ/2)
otherwise, does not belong to H2. In order to recover more regular solutions, one has to impose
some compatibility conditions between the data, the operator and the boundary.

For a mixed boundary value problem with an elliptic second order operator, optimal reg-
ularity results under weak assumptions on the data are obtained in [20]. For instance, for
θ ∈ (−1/2, 1/2), f ∈ H−1/2+θ implies v ∈ H1+θ. In our particular problem, given that
CY = Ω×(0, Y ), using the spectral theory, it is possible to prove that if f ∈ H then v ∈ H2(CY ).

5. A numerical example. In the following numerical example we choose a function f
such that the solution of (1.1) does not have H2−regularity. In fact, we consider Ω = (0, 1)
and a function f such that f(0) = f(1) = 0 and the exact solution of problem (1.1) is given by

u(x) =

{

2x, x ∈ (0, 1/2),
2(1− x), x ∈ (1/2, 1).

This function is such that u ∈ Hs(Ω) for every s < 3/2, then we have the estimate

‖u− UT ‖H . ǫ‖f‖H + h
s−1/2
T

‖v‖H2(CY ), ǫ = ǫ(Y ). (5.1)
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The implementation of this numerical experiment has been carried out with the help of
the deal.II library (see [3, 4]). We implemented the truncated problem (3.3) over the domain
(0, 1)× (0, Y ), where Y denotes the truncation parameter defined in section 3. For this type of
elliptic problems, it is well know (see for instance [7, 3]) that the discretization via the finite
element method of problem (3.3) is reduced to solve a linear system of equations. In our case
the obtained linear system is solved using the conjugate gradient method preconditioned with
SSOR. The stopping criterion is as follows: stop after 1000 iterations and stop if the norm of
the residual is below 10−12.

In order to compare the theoretical and experimental orders of convergence (EOC), we
consider a sequence of 10 meshes {Tk}10k=1, and over each mesh Tk we choose the parameter
Y such that ǫ ≈ hT . In this way, the estimate (5.1) becomes

‖u− UT ‖H . h
s−1/2
T

‖v‖H2(CY ). (5.2)

In figure 5.1 we show the numerical approximation VT obtained in a uniform mesh with
#T = 1024 degrees of freedom, and the EOC for the H1/2-norm. Notice that this estimate is
the one predicted by Theorem 4.1.

Fig. 5.1: Numerical approximation VT with #T = 1024 and EOC for the H1/2-norm.
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