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Abstract

We derive a posteriori error estimators for an optimal control problem governed by a convection–reaction–diffusion equation;
control constraints are also considered. We consider a family of low-order stabilized finite element methods to approximate the
solutions to the state and adjoint equations. We obtain a fully computable a posteriori error estimator for the optimal control
problem. All the constants that appear in the upper bound for the error are fully specified. Therefore, the proposed estimator can
be used as a stopping criterion in adaptive algorithms. We also obtain a robust a posteriori error estimator for when the error is
measured in a norm that involves the dual norm of the convective derivative. Numerical examples, in two and three dimensions,
are presented to illustrate the theory.
c⃝ 2018 Elsevier B.V. All rights reserved.

Keywords: Linear–quadratic optimal control problem; Convection–reaction–diffusion equation; Stabilized methods; Fully computable a posteriori
error estimator; Robust a posteriori error estimator

1. Introduction

The purpose of this work is to construct and analyze a posteriori error estimators for a control-constrained optimal
control problem involving a convection–reaction–diffusion equation as state equation. To describe our problem, let
Ω be an open and bounded polytopal domain in Rd , d ∈ {2, 3}, with Lipschitz boundary ∂Ω . Given a desired state
yΩ ∈ L2(Ω ), we define the cost functional

J (y, u) =
1
2
∥y − yΩ∥

2
L2(Ω) +

ϑ

2
∥u∥

2
L2(Ω), (1)
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where ϑ > 0 denotes the so-called regularization parameter. We shall be concerned with the following optimal control
problem: Find

min J (y, u) (2)

subject to the convection–reaction–diffusion equation

− ν∆y + b · ∇y + κy = f + u in Ω , y = 0 on ∂Ω , (3)

and the control constraints

u ∈ Uad , Uad := {v ∈ L2(Ω ) : a ≤ v(x) ≤ b for almost every x in Ω}. (4)

Here, the bounds a, b ∈ R and are such that a < b and f ∈ L2(Ω ). Assumptions on ν, b and κ are deferred until later.
The a priori error analysis for standard finite element approximations of problem (2)–(4) has been well established;

see [1–6] and the references therein. This analysis strongly relies on the error estimates involved in the approximation
of (3). However, it is well known that applying the standard finite element method to (3) produces poor results when
convection-dominated regimes are considered. In order to overcome such a difficulty, in the last few decades a variety
of finite element approaches, such as stabilized finite element methods, have been proposed in the literature. In this
work, we will focus on low-order conforming stabilized schemes, for which [7] provides an extensive overview in
the subject. In the context of optimal control, the numerical approximation of problem (2)–(4) relies additionally on
the discretization of the so-called adjoint equation (see Section 2.12 in [8]). Since (2)–(4) is intrinsically nonlinear
and presents a crosswind phenomena, an efficient method for solving such a control problem has to properly treat
the oscillatory behaviors that occur when approximating ȳ and its adjoint variable p̄ and resolve the boundary layers
exhibited by the state and adjoint state. Failure to resolve boundary layers pollutes the numerical solution in the entire
domain [9]. Different stabilized finite element methods have been proposed to solve (2)–(4); see [10–16]. However,
considering only stabilized schemes is not sufficient to efficiently approximate the solution to (2)–(4); boundary or
interior layers and possible geometric singularities need to be resolved. This motivates the design of stabilized adaptive
finite element methods.

Adaptive procedures for obtaining finite element solutions are based on the so-called a posteriori error analysis,
and it has a solid foundation for elliptic problems; see [17–22]. In contrast, the a posteriori error analysis for finite
element approximations of optimal control problems has not yet been fully understood. We refer the reader to [23–25]
for contributions to the theory. An important contribution to the theory is presented in [26], where the authors derive a
relationship between the error in optimal control problems and estimators for problems associated with the state and
adjoint equations. The analysis is based on the energy norm inherited by the state and adjoint equations. Recently, the
authors of [27] provided a general framework that complements the one developed in [26], and measures the error
in a norm that is motivated by the objective. The analysis relies on the convexity of Ω . Both approaches exploit the
first-order optimality conditions to derive a posteriori error estimates. However, the derived error estimates involve
several unknown constants in the analysis, in particular, in the upper bound for the error in terms of the proposed error
estimators (see [26, Theorem 3.2] and [27, Theorem 3.3]). This is also the case in [28], where an a posteriori error
estimator is obtained for an optimal control problem in which Dirac measures feature. Hence, in real computations,
it will be unclear whether over or under estimation of the error has occurred. In fact, in a practical setting, if the
estimator is to be used as a stopping criterion, then all of the constants involved in the upper bound for the error
must be fully computable. This motivates the design and analysis of fully computable error estimators [29–36] for our
optimal control problem, which guarantee a genuine upper bound for the error in the sense that the value of the error
estimator is greater than or equal to the value of the error; see Theorem 3.

One of the main aims of this work is to develop an a posteriori error estimator with the following features:

• to be fully computable, in order to have at hand a stopping criterion for the adaptive resolution;
• to be applicable to a wide variety of low-order stabilized methods, allowing different combinations of

stabilization terms for the state and adjoint equations.

We follow the a posteriori error analyses from [37,38], which are based on the analyses performed in [39–41],
in order to obtain a fully computable error estimator for the convection–reaction–diffusion equation (3). With this
estimator at hand, we provide what we believe is the first fully computable error estimator for the optimal control
problem (2)–(4). However, the proposed fully computable estimator is not robust; the constant involved in the lower
bound for the error depends on ν, b and κ . This motivates another aim of our work:
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• to propose and analyze a robust a posteriori error estimator.

To accomplish this task we follow [22,42,43] and measure the error in a norm that involves the dual norm of the
convective derivative. We comment that the derived robust estimator is not fully computable.

This manuscript is organized as follows: Section 3 presents a general framework for constructing a fully computable
a posteriori error estimator for a convection–reaction–diffusion problem in the presence of a general stabilized method.
Section 4 presents the finite element discretization of the optimal control problem with its a posteriori error analysis.
A fully computable a posteriori error bound is provided for a general family of stabilization schemes. This is one of
the highlights of our contribution. In Section 5, we present the analysis of an alternative a posteriori error estimator
which is robust with respect to a norm that involves the dual norm of the convective derivative. Finally, Section 6
presents numerical examples to illustrate the theory.

2. Preliminaries

We shall use standard notation for Sobolev and Lebesgue spaces, norms, and inner products. For a bounded domain
G ⊂ Rd (d = 2, 3): L2(G) denotes the space of square integrable functions over G, H 1(G) is the usual Sobolev space
and H 1

0 (G) denotes the subspace of H 1(G) consisting of functions whose trace is zero on ∂G. Let (·, ·)L2(G) denote
the inner product in L2(G). The norm of L2(G) is denoted by ∥·∥L2(G). We use bold letters to denote the vector-valued
counterparts of spaces, e.g. L2(G) = L2(G)d .

Let T = {K } be a conforming partition of Ω into simplices K in the sense of Ciarlet [44]. We denote by T a
collection of conforming and shape regular meshes that are refinements of an initial mesh T0. For a fixed T ∈ T, let

• F denote the set of all element edges(2D)/faces(3D);
• FI ⊂ F denote the set of interior edges(2D)/faces(3D), F∂Ω ⊂ F denote the set of boundary edges(2D)

/faces(3D);
• Ωn = {K ∈ T : xn ∈ K }, the set of elements for which xn is a vertex;
• Fn = {γ ∈ F : xn ∈ γ }, the set of element edges(2D)/faces(3D) that have xn as a vertex;
• V index the set {xn} of all the vertices in the mesh.

For an element K ∈ T , let

• Pn(K ) denote the space of polynomials on K of total degree at most n;
• FK ⊂ F denote the set containing the individual edges(2D)/faces(3D) of K ;
• ΩK = {K ′

∈ T : FK ∩ FK ′ ̸= ∅};
• VK index the set {xn} of all the vertices of the element K ;
• |K | denote the area/volume of K ;
• hK denote the diameter of K ;
• nK

γ denote the unit exterior normal vector to the edge/face γ ∈ FK ;
• v|K denote the restriction of v to the element K ;
• v̄K denote the mean value of the function v on K , i.e. v̄K =

1
|K |

(v, 1)L2(K ).

For an edge/face γ ∈ F , let:

• Pn(γ ) denote the space of polynomials on γ of total degree at most n;
• Ωγ = {K ∈ T : γ ∈ FK };
• Vγ index the set {xn} of all the vertices of the edge/face γ ;
• |γ | denote the length/area of the edge/face γ ;
• hγ denote the diameter of the edge/face γ ;
• v|γ denote the restriction of v to the edge/face γ .

For n ∈ V , we let λn denote the continuous, piecewise linear basis function associated to xn , characterized by the
conditions λn|K ∈ P1(K ) for all K ∈ T and λn(xm) = δnm for all m ∈ V , where δnm denotes the Kronecker delta.

For K ∈ T , we define ΠK : L2(K ) → P1(K ) to be the orthogonal projection operator characterized by

( f − ΠK ( f ), p)L2(K ) = 0 ∀p ∈ P1(K ). (5)

Finally, in the manuscript we shall use C to denote any positive constant which is independent of any mesh size
and any physical parameter related with the problem.
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3. A posteriori error analysis for the state equation

In this section, we review and extend fully computable a posteriori error estimates for a wide family of low-order
stabilized finite element discretizations of (3). Before presenting this material, we briefly summarize some results
concerning the analysis of problem (3).

3.1. The state equation

We consider the following stationary convection–reaction–diffusion problem: Find y such that

− ν∆y + b · ∇y + κy = q in Ω , y = 0 on ∂Ω . (6)

The weak formulation of the previous problems reads: Find y ∈ H 1
0 (Ω ) such that

B(y, v) = (q, v)L2(Ω) ∀v ∈ H 1
0 (Ω ), (7)

where, for w, v ∈ H 1
0 (Ω ), the bilinear form B is defined by

B(w, v) := ν(∇w, ∇v)L2(Ω) + (b · ∇w + κw, v)L2(Ω). (8)

We assume that the data of problem (7) satisfy the following conditions:

(A1) ν and κ are real and positive constants;
(A2) b ∈ W1,∞(Ω ) and is a solenoidal field, that is, div b = 0;
(A3) q ∈ L2(Ω ).

We define, for G = Ω or G ∈ T , and v ∈ H 1(G), the norm

|||v|||G :=

(
ν∥∇v∥

2
L2(G) + κ∥v∥

2
L2(G)

)1/2
. (9)

On the basis of (A1)–(A3), this definition implies that B(v, v) = |||v|||
2
Ω and that B(w, v) ≤ (1 + (κν)−1/2

∥ |b| ∥L∞(Ω))
|||v|||Ω |||w|||Ω for all v, w ∈ H 1

0 (Ω ), with ∥ |b| ∥L∞(Ω) being the L∞(Ω ) norm of |b|. Then, the Lax–Milgram Lemma
immediately yields the well-posedness of problem (7) [7,45].

To approximate the solution to problem (7), we will consider stabilized finite element methods: Find yT ∈ V(T )
such that

B(yT , vT ) + S(yT , q; vT ) = (q, vT )L2(Ω) ∀vT ∈ V(T ), (10)

where V(T ) denotes the space of continuous piecewise linear functions on T , i.e,

V(T ) := {v ∈ C0(Ω ) : v|K ∈ P1(K ) ∀K ∈ T and v|∂Ω = 0}

and S corresponds to a particular choice of a stabilization term; the election S = 0 corresponds to the standard finite
element method without stabilization. We note that S may contain contributions of the datum q. In the next subsection,
we will be precise about the stabilized terms that are allowed in our analysis. Meanwhile, we will assume that problem
(10) has a unique solution yT ∈ V(T ).

In general, stabilized schemes add mesh-dependent terms to the standard Galerkin formulation of (6) with the aim
of improving the stability of the numerical method in the regime where the layers are unresolved [7]. Recently, to
improve the accuracy of the schemes, attention has shifted toward the development of a posteriori error estimators,
which is the content of the following subsections.

3.2. Reliability: a fully computable upper bound

In order to construct a fully computable a posteriori error estimator, we follow [37,38], where the a posteriori error
analysis is based on two main ingredients: the construction of equilibrated boundary fluxes and explicit solutions to
Neumann-type problems. First, we use (7) and integration by parts to arrive at the error equation

B(y − yT , v) =

∑
K∈T

(q − b · ∇yT − κyT , v)L2(K ) −

∑
K∈T

∑
γ∈FK

(
ν∇yT |K · nK

γ , v
)

L2(γ )
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for all v ∈ H 1
0 (Ω ). We now introduce boundary fluxes gγ,K ∈ P1(γ ) on elements K ∈ T and γ ∈ FK , which satisfy

• Consistency : gγ,K + gγ,K ′ = 0, if γ ∈ FK ∩ FK ′ , K , K ′
∈ T , K ̸= K ′. (11)

We can then incorporate such fluxes into the error equation to see that

B(y − yT , v) =

∑
K∈T

⎛⎝(RK , v)L2(K ) + (oscK , v)L2(K ) +

∑
γ∈FK

(Rγ,K , v)L2(γ )

⎞⎠ , (12)

where, for K ∈ T and γ ∈ FK ,

RK := ΠK (q) − ΠK (b · ∇yT ) − κyT |K , Rγ,K := gγ,K − ν∇yT |K · nK
γ , (13)

oscK := q − ΠK (q) − b · ∇yT |K + ΠK (b · ∇yT ). (14)

In addition, for K ∈ T , we introduce a smooth enough vector function σ K , such that

σ K · nK
γ = Rγ,K on γ, for all γ ∈ FK , (15)

and hence, integration by parts yields that

(div σ K , v)L2(K ) + (σ K , ∇v)L2(K ) =

∑
γ∈FK

(Rγ,K , v)L2(γ ).

Consequently, we can rewrite and bound the error equation as

B(y − yT , v) =

∑
K∈T

(
(RK + div σ K , v)L2(K ) + (σ K , ∇v)L2(K ) + (oscK , v)L2(K )

)
≤

(∑
K∈T

η̃2
K

)1/2

|||v|||Ω , (16)

where the error indicator η̃K is defined by

η̃K :=
1

√
κ

∥RK + div σ K ∥L2(K ) +
1

√
ν
∥σ K ∥L2(K ) + Cosc,K ∥oscK ∥L2(K ). (17)

To obtain (16), we have used the Cauchy–Schwarz inequality and

|(oscK , v)L2(K )| ≤ Cosc,K ∥oscK ∥L2(K )|||v|||K , Cosc,K = min
{

hK

π
√

ν
,

1
√

κ

}
.

The latter holds because, by using (5) and the Poincaré inequality [46,47], we have that |(oscK , v)L2(K )| = |(oscK , v−

v̄K )L2(K )| ≤ (hK /π )∥oscK ∥L2(K )∥∇v∥L2(K ) but also |(oscK , v)L2(K )| ≤ κ−1/2
∥oscK ∥L2(K )|||v|||K .

Finally, taking v = y − yT and using that B(v, v) = |||v|||
2
Ω , we arrive at

|||y − yT |||Ω ≤ η̃, η̃ :=

(∑
K∈T

η̃2
K

)1/2

. (18)

Remark 1 (Fully Computable Upper Bound). The main advantage of the previous a posteriori error analysis is that
it provides an upper bound for the error that is free of any unknown constants. Consequently, the error estimator η̃

can be confidently used as a stopping criterion for an adaptive mesh procedure. This is also the case for the fully
computable a posteriori error estimators that are derived in [29–41].

We conclude this subsection by mentioning that the quality of the error estimation depends on the construction of
the vector function σ K satisfying (15) and the equilibrated boundary fluxes. Before discussing such constructions, we
introduce a family of stabilized schemes.



A. Allendes et al. / Comput. Methods Appl. Mech. Engrg. 340 (2018) 0–30 5

3.3. Stabilized schemes

We now describe the stabilized finite element methods that will be the focus of our work. To do this, we write the
stabilization term S, based on [38], in terms of local contributions coming from each element, namely,

S(yT , q; vT ) =

∑
K∈T

SK (yT , q; vT |K ).

The local contributions, SK , for the below mentioned stabilizations, are as follows:

Streamline Upwind Petrov–Galerkin (SUPG): This stabilization technique was introduced in [48]; see also [7,49,50].
The local contributions are

SK (yT , q; vT |K ) := τK (b · ∇yT + κyT − q, b · ∇vT )L2(K ). (19)

Galerkin Least Squares (GLS): This method was introduced in [51]; see also [7,52]. The local contributions are

SK (yT , q; vT |K ) := τK (b · ∇yT + κyT − q, b · ∇vT + κvT )L2(K ). (20)

Continuous Interior Penalty (CIP): This stabilization method was proposed in [53]. Upon defining [[b · ∇yT ]]γ,K :=

b · ∇(yT |K − yT |K γ ) with K γ being the element that shares γ with K , the local contributions are

SK (yT , q; vT |K ) :=

∑
γ∈FK ∩FI

τγ

(
[[b · ∇yT ]]γ,K , b · ∇vT |K

)
L2(γ ) . (21)

Edge Stabilization (ES): This technique was proposed in [54] (see also [7,55]). Upon defining [[·]] to be the usual jump
on internal edges/faces and K γ to be the element that shares γ with K , the local contributions are

SK (yT , q; vT |K ) :=

∑
γ∈FK ∩FI

τγ

(
[[∇yT · nγ ]], ∇vT |K · nK

γ (h2
K + h2

K γ )
)

L2(γ )
. (22)

In all the previous schemes τK and τγ denote nonnegative stabilization parameters that can vary from one method to
another but are such that τK is a constant on each K ∈ T and τγ is a constant on each γ ∈ FI .

3.4. Construction of the equilibrated fluxes

We now describe a procedure for obtaining a set of equilibrated fluxes {gγ,K : γ ∈ FK , K ∈ T } which satisfy
(11) and

• First order equilibration: for all λ ∈ P1(K ) and all K ∈ T ,

0 = (q, λ)L2(K ) − BK (yT , λ) +

∑
γ∈FK

(
gγ,K , λ

)
L2(γ ) − SK (yT , q; λ) , (23)

where BK (yT , λ) = ν(∇yT , ∇λ)L2(K ) + (b · ∇yT + κyT , λ)L2(K ).

In addition, the equilibrated fluxes satisfy a property, namely (29), that will be used to prove that the local error
indicators defined by (17) are locally efficient. This procedure is a slight generalization of the procedure described
in [20,56] for unstabilized finite element methods on two dimensional domains.

Let

⟨J ⟩γ,K :=

⎧⎨⎩
1
2

(Jγ,K − Jγ,K ′ ) if γ ∈ FK ∩ FK ′ , K ̸= K ′,

Jγ,K if γ ∈ FK ∩ F∂Ω ,

(24)

where Jγ,K := ν∇yT |K · nK
γ . For every i ∈ V , let {ξK ,i : K ∈ Ωi } be a solution to the linear system of equations

1
2

∑
K ′∈ΩK ∩Ωi

(
ξK ,i − ξK ′,i

)
+

∑
γ∈FK ∩Fi ∩F∂Ω

ξK ,i = ∆K (λi ) ∀ K ∈ Ωi (25)
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where

∆K (λi ) = BK (yT , λi ) − (q, λi )L2(K ) −

∑
γ∈FK

(
⟨J ⟩γ,K , λi

)
L2(γ ) + SK

(
yT , q; λi |K

)
.

In terms of the solutions to these systems of equations, we define

µ
γ

K ,i =

⎧⎨⎩
1
2

(
ξK ,i − ξK ′,i

)
+
(
⟨J ⟩γ,K , λi

)
L2(γ ) if γ ∈ FK ∩ FK ′ , K ̸= K ′,

ξK ,i +
(
⟨J ⟩γ,K , λi

)
L2(γ ) if γ ∈ FK ∩ F∂Ω ,

(26)

for i ∈ V , K ∈ Ωi and γ ∈ Fi . Now, the terms SK are defined in such a way that∑
K∈Ωi

∆K (λi ) = B(yT , λi ) − (q, λi )L2(Ω) −

∑
K∈Ωi

∑
γ∈FK

(
⟨J ⟩γ,K , λi

)
L2(γ ) + S (yT , q; λi )

for i ∈ V . Hence, we can conclude that∑
K∈Ωi

∆K (λi ) = 0 ∀ i ∈ V : xi ̸∈ ∂Ω

upon taking vT = λi in (10) and noticing that∑
K∈Ωi

∑
γ∈FK

(
⟨J ⟩γ,K , λi

)
L2(γ ) = 0 ∀ i ∈ V : xi ̸∈ ∂Ω .

It then follows from [56, Lemma 5] (and its three dimensional analog which can be proved using the same arguments)
that, for i ∈ V ,

• if xi ∈ ∂Ω , then (25) has a unique solution;
• if xi ̸∈ ∂Ω , then solutions to (25) exist and are of the form {ξK ,i + ci , K ∈ Ωi }, where ci is any constant and

{ξK ,i , K ∈ Ωi } is any solution to (25).

Consequently, the µ
γ

K ,i are uniquely defined by (26). This is due to the fact that, if xi ̸∈ ∂Ω , the solution to (25)
only appears in (26) as ξK ,i − ξK ′,i and so the nonuniqueness cancels out. Hence, for each i ∈ V , the µ

γ

K ,i , for K ∈ Ωi
and γ ∈ Fi , can be computed using (26) after obtaining a solution to (25).

For γ ∈ FK and K ∈ T , we define

gγ,K =
d
|γ |

∑
j∈Vγ

µ
γ

K , j

(
(d + 1)λ j − 1

)
(27)

which is such that gγ,K ∈ P1(γ ) and(
gγ,K , λi

)
L2(γ ) = µ

γ

K ,i for all i ∈ Vγ . (28)

Now, let γ ∈ FK ∩ FK ′ , K , K ′
∈ T , K ̸= K ′. From (26) and (24) it can be seen that

µ
γ

K , j =
1
2

(
ξK , j − ξK ′, j

)
+
(
⟨J ⟩γ,K , λ j

)
L2(γ ) =

1
2

(
ξK , j − ξK ′, j

)
+

(
1
2

(Jγ,K − Jγ,K ′ ), λ j

)
L2(γ )

and, similarly,

µ
γ

K ′, j =
1
2

(
ξK ′, j − ξK , j

)
+

(
1
2

(Jγ,K ′ − Jγ,K ), λ j

)
L2(γ )

.

Consequently, by (27) we have that

gγ,K + gγ,K ′ =
d
|γ |

∑
j∈Vγ

(
µ

γ

K , j + µ
γ

K ′, j

) (
(d + 1)λ j − 1

)
= 0

and hence (11) is satisfied.
Now, let i ∈ V and K ∈ Ωi . By (28) and (26) we have that

1
2

∑
K ′∈ΩK ∩Ωi

(
ξK ,i − ξK ′,i

)
=

∑
γ∈FK ∩Fi :γ ̸∈F∂Ω

(
gγ,K − ⟨J ⟩γ,K , λi

)
L2(γ )
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and ∑
γ∈FK ∩Fi ∩F∂Ω

ξK ,i =

∑
γ∈FK ∩Fi ∩F∂Ω

(
gγ,K − ⟨J ⟩γ,K , λi

)
L2(γ ).

Consequently,

1
2

∑
K ′∈ΩK ∩Ωi

(
ξK ,i − ξK ′,i

)
+

∑
γ∈FK ∩Fi ∩F∂Ω

ξK ,i =

∑
γ∈FK ∩Fi

(
gγ,K − ⟨J ⟩γ,K , λi

)
L2(γ )

=

∑
γ∈FK

(
gγ,K − ⟨J ⟩γ,K , λi

)
L2(γ )

since λi |γ = 0 for γ ∈ FK \ (FK ∩ Fi ). Therefore, from (25) we can see that

0 = (q, λi )L2(K ) − BK (yT , λi ) +

∑
γ∈FK

(
gγ,K , λi

)
L2(γ ) − SK (yT , q; λi ) .

The fact that (23) is satisfied then follows since (·, ·)L2(K ), BK (·, ·), (·, ·)L2(γ ) and SK (·, ·; ·) are linear in their final
arguments and {λi |K , i ∈ VK } is a basis for P1(K ).

Furthermore, following the arguments in the proof of [20, Theorem 6.2], yields that

∥gγ,K − ⟨J ⟩γ,K ∥L2(γ ) ≤ C
1

√
|γ |

∑
n∈Vγ

∑
K ′∈Ωn

|∆K ′ (λn)|

and that

|∆K ′ (λn)| ≤
√

|K ′|∥RK ′∥L2(K ′) +

∑
γ ′∈FK ′∩Fn

√
|γ ′|∥[[Jγ ′ ]]∥L2(γ ′) + |SK ′ (yT , q; λn|K ′ )|.

Consequently, for K ∈ T and γ ∈ FK , we have that(
hK

ν

)1/2

∥gγ,K − ⟨J ⟩γ,K ∥L2(γ )

≤ C
∑

n∈Vγ

∑
K ′∈Ωn

⎛⎝hK ′

√
ν

∥RK ′∥L2(K ′) +

∑
γ ′∈FK ′∩Fn

(
hK ′

ν

)1/2

∥[[Jγ ′ ]]∥L2(γ ′)

+

(
h2−d

K ′

ν

)1/2

|SK ′ (yT , q; λn|K ′ )|

⎞⎠ .

(29)

3.5. Construction of σ K

In order to obtain a fully computable error estimator, we choose σ K ∈ P2(K )d to be a solution to{
−div σ K = pK in K ,

σ K · nK
γ = pγ,K on γ for all γ ∈ FK ,

(30)

with

pK = RK − RK −
1

|K |

∑
γ∈FK

(
Rγ,K , 1

)
L2(γ ) ∈ P1(K ), pγ,K = Rγ,K ∈ P1(γ ) (31)

where RK and Rγ,K are defined in (13). Since the data of problem (30) satisfies a constant equilibration condition,
that is,∑

γ∈FK

(
pγ,K , 1

)
L2(γ ) + (pK , 1)L2(K ) = 0,
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then [57,58] guarantees the existence of a solution to (30). Moreover, functions from which explicit solutions to such
problems can be constructed are given in [59]. Furthermore, [38, Theorem 6.3] provides an explicit formula for a
solution to (30) that satisfies

∥σ K ∥L2(K ) ≤ C

⎛⎝h1/2
K

∑
γ∈FK

∥pγ,K ∥L2(γ ) + hK ∥pK ∥L2(K )

⎞⎠ . (32)

We note that (32) will also be satisfied by the σ K ∈ P2(K )d which satisfies (30) and is such that ∥σ K ∥L2(K ) is
minimized. Furthermore, once the discrete solution is obtained, the only problems that have to be solved in order to
compute σ K and gγ,K are local problems of size at most max{#Ωi : i ∈ V}. Hence, once the number of degrees of
freedom is sufficiently large, the cost of obtaining the estimator should be inexpensive when compared with the cost
of obtaining the solution to (10).

3.6. Final fully computable upper bound

Gathering all our findings of the previous sections, allows us to state the following reliability result.

Theorem 1 (Fully Computable Upper Bounds). Let y ∈ H 1
0 (Ω ) and yT ∈ V(T ) be the solutions to problems (7)

and (10), respectively. Then, we have the following fully computable upper bound for the energy norm of the error:

|||y − yT |||Ω ≤ η =

(∑
K∈T

η2
K

)1/2

, (33)

where the error indicators ηK are defined by

ηK :=
1

√
κ|K |

|SK (yT , q; 1)| +
1

√
ν
∥σ K ∥L2(K ) + Cosc,K ∥oscK ∥L2(K ). (34)

Proof. Upon noticing that∑
γ∈FK

(
∇yT |K · nK

γ , 1
)

L2(γ )
= (div (∇yT ), 1)L2(K ) = 0

and Rγ,K = gγ,K − ν∇yT |K · nK
γ , it follows that

1
|K |

∑
γ∈FK

(
Rγ,K , 1

)
L2(γ ) =

1
|K |

∑
γ∈FK

(
gγ,K , 1

)
L2(γ ). (35)

Moreover, (5), the equilibration condition (23) and the definition of RK yield that∑
γ∈FK

(
gγ,K , 1

)
L2(γ ) = BK (yT , 1) − (q, 1)L2(K ) + SK (yT , q; 1) = −(RK , 1)L2(K ) + SK (yT , q; 1) .

Combining this with (35) implies that

1
|K |

∑
γ∈FK

(
Rγ,K , 1

)
L2(γ ) = −RK +

1
|K |

SK (yT , q; 1) . (36)

Consequently, we rewrite the norm of RK + div σ K , as

∥RK + div σ K ∥L2(K ) =

RK +
1

|K |

∑
γ∈FK

(
Rγ,K , 1

)
L2(γ )


L2(K )

=

 1
|K |

SK (yT , q; 1)


L2(K )

=
1

|K |
1/2 |SK (yT , q; 1)| , (37)

which combined with (17), (18), and (34), yields the result claimed. □
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Applying the above theorem to each of the stabilized methods that we are considering allows us to arrive at the
below corollary.

Corollary 1. Let y ∈ H 1
0 (Ω ) and yT ∈ V(T ) be the solutions to problems (7) and (10), respectively. Then, we have

the following fully computable upper bound for the energy norm of the error:

|||y − yT |||Ω ≤

(∑
K∈T

(
1

√
ν
∥σ K ∥L2(K ) + Cosc,K ∥oscK ∥L2(K )

)2
)1/2

for SUPG, ES and CIP, and

|||y − yT |||Ω ≤

(∑
K∈T

(
τK

√
κ

RK


L2(K )

+
1

√
ν
∥σ K ∥L2(K ) + Cosc,K ∥oscK ∥L2(K )

)2
)1/2

for GLS.

Proof. The results follow from Theorem 1 and an inspection of the stabilization terms. The latter reveals that
SK (yT , q; 1) = 0 for SUPG, CIP and ES, and that |SK (yT , q; 1)| = τK

⏐⏐⏐(−RK , κ)L2(K )

⏐⏐⏐ = τK κ
√

|K |

RK


L2(K )

for GLS. □

Remark 2 (Extension of the Theory). We are not assuming that SK (yT , q; 1) = 0 as in Assumption 4.3
from [38]. This advantage allows us to consider, for example, the GLS scheme. From (30) and (36), it follows that
−div σ K = RK if SK (yT , q; 1) = 0. If SK (yT , q; 1) ̸= 0 then −div σ K ̸= RK and the error indicator ηK , in
which the estimator η is defined in terms of, has an additional term.

3.7. Local efficiency

We now explore the local efficiency properties of the local indicator (34). From (32), we have that

∥σ K ∥L2(K ) ≤ C

⎛⎝h1/2
K

∑
γ∈FK

∥Rγ,K ∥L2(γ ) + hK ∥RK ∥L2(K )

⎞⎠ (38)

since pγ,K = Rγ,K and

hK ∥pK ∥L2(K ) ≤ hK

RK − RK


L2(K )

+ hK |K |
1/2

∑
γ∈FK

|γ |
1/2

|K |

Rγ,K


L2(γ )

≤ hK ∥RK ∥L2(K ) + Ch1/2
K

∑
γ∈FK

Rγ,K


L2(γ )

because
RK − RK


L2(K )

≤ ∥RK ∥L2(K ). Now, we define

[[Jγ ]] :=

⎧⎨⎩
1
2

(Jγ,K + Jγ,K ′ ) if γ ∈ FK ∩ FK ′ , K ̸= K ′,

0 if γ ∈ FK ∩ F∂Ω ,

where Jγ,K := ν∇yT |K ·nK
γ . This, combined with (13) and (24) allows us to state that Rγ,K = gγ,K −⟨J ⟩γ,K − [[Jγ ]].

Then, in view of (34), (38) provides the bound:

ηK ≤ C

⎛⎝ hK
√

ν
∥RK ∥L2(K ) +

∑
γ∈FK

(
hK

ν

)1/2 (
∥[[Jγ ]]∥L2(γ ) + ∥gγ,K − ⟨J ⟩γ,K ∥L2(γ )

)⎞⎠
+ Cosc,K ∥oscK ∥L2(K ) +

1
√

κ|K |
|SK (yT , q; 1)|.

(39)
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To prove local efficiency, the terms on the right hand side of (39) have to be bounded by the energy norm of the error
y − yT plus data oscillation terms. To do this, we first note that we can rewrite the error Eq. (12), for any v ∈ H 1

0 (Ω ),
as ∑

K∈T

(RK , v)L2(K ) − 2
∑
γ∈FI

([[Jγ ]], v)L2(γ ) = B(y − yT , v) −

∑
K∈T

(oscK , v)L2(K ).

Applying standard bubble function arguments [20,60] to this error equation yields that
hK
√

ν
∥RK ∥L2(K ) ≤ C

(
CK |||y − yT |||K +

hK
√

ν
∥oscK ∥L2(K )

)
(40)

for K ∈ T , and(
hK

ν

)1/2

∥[[Jγ ]]∥L2(γ ) ≤ C
∑

K ′∈Ωγ

(
CK ′ |||y − yT |||K ′ +

hK ′

√
ν

∥oscK ′∥L2(K ′)

)
(41)

for K ∈ T and γ ∈ FK , where

CK := max
{

1,
∥b∥L∞(K )hK

ν
,
√

κ
hK
√

ν

}
. (42)

Now, from (39), (40), (41) and (29) we have that

ηK ≤ C
∑

n∈VK

∑
K ′∈Ωn

(
CK ′ |||y − yT |||K ′ +

hK ′

√
ν

∥oscK ′∥L2(K ′) +

(
h2−d

K ′

ν

)1/2

|SK ′ (yT , q; λn|K ′ )|
)

+
1

√
κ|K |

|SK (yT , q; 1)|.

Consequently, to obtain the local efficiency of ηK it remains to control the stabilization term SK in the previous
inequality. We proceed to examine the local contribution of each method described in Section 3.3, namely, SUPG,
GLS, ES, and CIP.

Streamline Upwind Petrov–Galerkin (SUPG): Clearly SK (yT , q; 1) = 0. Moreover,(
h2−d

K

ν

)1/2 ⏐⏐SK (yT , q; λn|K )
⏐⏐ =

h1−d/2
K
√

ν
τK |(b · ∇yT + κyT − q, b · ∇λn)L2(K )|

≤ CτK
∥b∥L∞(K )

hK

hK
√

ν

(
∥RK ∥L2(K ) + ∥oscK ∥L2(K )

)
.

Galerkin Least Squares (GLS): In view of (20), we have that

1
√

κ|K |
|SK (yT , q, 1)| =

1
√

κ|K |
τK κ

√
|K |

RK


L2(K )

= τK

√
κν

hK

hK
√

ν
∥RK ∥L2(K )

and (
h2−d

K

ν

)1/2 ⏐⏐SK (yT , q; λn|K )
⏐⏐ =

h1−d/2
K
√

ν
τK |(b · ∇yT + κyT − q, b · ∇λn + κλn)L2(K )|

≤ CτK max
{

∥b∥L∞(K )

hK
, κ

}
hK
√

ν

(
∥RK ∥L2(K ) + ∥oscK ∥L2(K )

)
.

Edge Stabilization (ES): Clearly SK (yT , q; 1) = 0. Moreover, (22) yields(
h2−d

K

ν

)1/2 ⏐⏐SK (yT , q; λn|K )
⏐⏐ ≤ C

hK

ν

∑
γ∈FK ∩FI

τγ

(
hK

ν

)1/2

∥[[Jγ ]]∥L2(γ ).

Continuous Interior Penalty (CIP): Clearly SK (yT , q; 1) = 0. Now, notice that b = (nK
γ ·b)nK

γ +(tγ ·b)tγ where tγ is a
unit tangent vector to γ . Hence, using the fact that b ∈ W1,∞(Ω ), allows us to see that [[b ·∇yT ]]γ,K =

2
ν
(nK

γ ·b)[[Jγ ]]
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since

[[b · ∇yT ]]γ,K = (nK
γ · b)nK

γ · ∇(yT |K − yT |K γ ) + (tγ · b)tγ · ∇(yT |K − yT |K γ ).

Thus ∥[[b · ∇yT ]]γ,K ∥L2(γ ) ≤ C 1
ν
∥b∥L∞(γ )∥[[Jγ ]]∥L2(γ ). Consequently, (21) yields(

h2−d
K

ν

)1/2 ⏐⏐SK (yT , q; λn|K )
⏐⏐ ≤ C

∑
γ∈FK ∩FI

τγ ∥b∥
2
L∞(γ )

νhK

(
hK

ν

)1/2

∥[[Jγ ]]∥L2(γ ).

By combining all of the previous results, we can bound the error indicator ηK as described in the following theorem.

Theorem 2. Let y ∈ H 1
0 (Ω ) and yT ∈ V(T ) be the solutions to problems (7) and (10), respectively. Then, we have

the following local lower bound for the energy norm of the error:

ηK ≤ C
∑

n∈VK

∑
K ′∈Ωn

(
CK ′ |||y − yT |||K ′ +

hK ′

√
ν

∥oscK ′∥L2(K ′)

+ CSK ′

( ∑
K ′′∈ΩK ′

(
CK ′′ |||y − yT |||K ′′ +

hK ′′

√
ν

∥oscK ′′∥L2(K ′′)

)))
,

where CK is defined as in (42) and

CSK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τK
∥b∥L∞(K )

hK
, for SUPG,

τK max
{√

κν

hK
,
∥b∥L∞(K )

hK
, κ

}
, for GLS,

hK

ν
max

γ∈FK ∩FI
τγ , for ES,

max
γ∈FK ∩FI

τγ ∥b∥
2
L∞(γ )

νhK
, for CIP.

The right hand side of this local efficiency bound can itself be bounded in order to arrive at the following corollary.

Corollary 2. Let y ∈ H 1
0 (Ω ) and yT ∈ V(T ) be the solutions to problems (7) and (10), respectively. In addition, let

the stabilization parameters be such that, for all K ∈ T , CSK can be bounded by a constant which is independent of
the size of the elements in the mesh. Then,

η2
K ≤ Cle

∑
K ′∈DK

(
|||y − yT |||

2
K ′ + h2

K ′∥oscK ′∥
2
L2(K ′)

)
,

where the constant Cle depends on the physical parameters in (7) but is independent of the size of the elements in the
mesh and DK = {K ′

∈ T : FK ′ ∩ FK ′′ ̸= ∅, K ′′
∈ Ω̂K } with Ω̂K = {K ′

∈ T : K ′
∩ K ̸= ∅}.

4. Optimal control problem

In this section, we analyze the optimal control problem (2)–(4). To approximate its solution, we propose a numerical
method that is based on the stabilized schemes of Section 3.3. We derive fully computable a posteriori upper bounds
for the error and prove local efficiency properties of the proposed error estimators.

Under the assumptions (A1)–(A3), the existence and uniqueness of an optimal pair (ȳ, ū) ∈ H 1
0 (Ω )×Uad satisfying

(2)–(4) follows standard arguments [8]. An equivalent formulation can be obtained by introducing the so-called adjoint
variable p̄. We then say that (ȳ, p̄, ū) is optimal if and only if it solves the nonlinear system⎧⎪⎨⎪⎩

ȳ ∈ H 1
0 (Ω ) : B(ȳ, v) = (f + ū, v)L2(Ω), ∀ v ∈ H 1

0 (Ω ),

p̄ ∈ H 1
0 (Ω ) : B∗(p̄, w) = (ȳ − yΩ , w)L2(Ω), ∀ w ∈ H 1

0 (Ω ),

ū ∈ Uad :
(
p̄ + ϑ ū, u − ū

)
L2(Ω) ≥ 0, ∀ u ∈ Uad ,

(43)
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which is necessary and sufficient for optimality. The form B is given in (8), and

B∗(w, v) := ν(∇w, ∇v)L2(Ω) + (κw − b · ∇w, v)L2(Ω). (44)

Finally, we recall the projection formula for the optimal control variable: the variational inequality in (43) can be
equivalently written as (see [8, Chapter 2]),

ū = Π

(
−

1
ϑ

p̄
)

, (45)

where

(Π (w)) (x) := min {b, max {a, w(x)}} for almost every x in Ω (46)

with a and b being the control bounds that define the set Uad in (4). We note that this operator is such that, for K ∈ T ,

∥Π (w1) − Π (w2)∥L2(K ) ≤ ∥w1 − w2∥L2(K ) for all w1, w2 ∈ H 1
0 (Ω ). (47)

We now introduce a numerical technique to solve problem (2)–(4) that is based on the discretization of the
optimality system (43), i.e., we consider the so-called optimize-then-discretize approach. The scheme incorporates
stabilized terms into the standard Galerkin discretizations of the state and adjoint equations; no a priori relation
between the stabilized terms is required. The stabilized scheme reads as follows: Find (ȳT , p̄T , ūT ) ∈ V(T ) ×

V(T ) × Uad (T ) such that

B(ȳT , vT ) + S(ȳT , f + ūT ; vT ) = (f + ūT , vT )L2(Ω), ∀vT ∈ V(T ),
B∗(p̄T , wT ) + S∗(p̄T , ȳT − yΩ ; wT ) = (ȳT − yΩ , wT )L2(Ω), ∀wT ∈ V(T ),(

p̄T + ϑ ūT , uT − ūT

)
L2(Ω) ≥ 0, ∀uT ∈ Uad (T ),

(48)

where Uad (T ) = {uT ∈ L∞(Ω ) : uT |K ∈ P0(K ) ∀K ∈ T } ∩ Uad , and S and S∗ are stabilization terms. The
stabilization for the state equation S is defined in Section 3.3 for different stabilization methods. The stabilization for
the adjoint equation reads:

S∗(p̄T , ȳT − yΩ ; wT ) =

∑
K∈T

S∗

K (p̄T , ȳT − yΩ ; wT |K ),

where the local terms S∗

K for the below mentioned stabilizations, are defined as follows:

SUPG : S∗

K (p̄T , ȳT − yΩ ; wT |K ) := τ ∗

K

(
−b · ∇p̄T + κp̄T − ȳT + yΩ , −b · ∇wT

)
L2(K ). (49)

GLS : S∗

K (p̄T , ȳT − yΩ ; wT |K ) := τ ∗

K

(
−b · ∇p̄T + κp̄T − ȳT + yΩ , −b · ∇wT + κwT

)
L2(K ). (50)

CIP : S∗

K (p̄T , ȳT − yΩ ; wT |K ) :=

∑
γ∈FK ∩FI

τ ∗

γ

(
[[b · ∇p̄T ]]γ,K , b · ∇wT |K

)
L2(γ ) . (51)

ES : S∗

K (p̄T , ȳT − yΩ ; wT |K ) :=

∑
γ∈FK ∩FI

τ ∗

γ

(
[[∇p̄T · nγ ]], ∇wT |K · nK

γ (h2
K + h2

K γ )
)

L2(γ )
. (52)

In all the above mentioned schemes τ ∗

K and τ ∗
γ denote nonnegative stabilization parameters that can vary from one

method to another but are such that τ ∗

K is a constant on each K ∈ T and τ ∗
γ is a constant on each γ ∈ FI .

Remark 3 (Optimize-Then-Discretize). In general, there are two approaches to solve (2)–(4): optimize-then-discretize
and discretize-then-optimize. The first approach is based on the discretization of the optimality system (43). In
contrast, the second approach first discretizes the optimal control problem (2)–(4) and then deduces the discrete
optimality conditions. In principle, these two approaches do not coincide: they could lead to different discrete
problems. If S and S∗ are based on the same scheme and S is symmetric, then both approaches lead to the same
discrete system.

Before proceeding with the description of our solution technique for (2)–(4), let us comment on those advocated
in the literature. Concerning the a priori theory, to the best of our knowledge, the first work that analyzed a stabilized
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scheme is [61]. This work considers the SUPG method, elaborates on the fact that the approaches optimize-then-
discretize and discretize-then-optimize do not coincide and explores their respective advantages; see [62] for an
improvement on the theory. Later, local projection stabilization (LPS) techniques were proposed in [11,12]. These
techniques have the advantage that, due to the symmetry of the proposed stabilization term, optimize-then-discretize
and discretize-then-optimize coincide. The ES scheme has also been employed to derive a discrete technique that
approximates the solution to (2)–(4) [13,63]: optimize-then-discretize and discretize-then-optimize coincide. We refer
the reader to [15] for a survey that includes other discretization techniques and an extensive list of references.

In contrast to this well-established theory, the a posteriori error analysis for stabilized finite element discretizations
of (2)–(4) is not as well developed. We refer the reader to [10,13,26,62–64] for a posteriori error estimators based
on different stabilized schemes: ES scheme, discontinuous Galerkin methods and the Lagrange functional method. A
common feature of all of the above-cited references is that the upper bound for the error in terms of the estimator, when
it is derived, involves constants that are not known. This motivates the construction of fully computable a posteriori
error estimators for the discretization (48) of the system (43). In contrast to [10,13,62–64], we also study the efficiency
properties of the proposed error indicators.

4.1. A posteriori error analysis: reliability

We assume that the discrete and non-linear problem (48) has a unique solution. We then construct a posteriori error
estimators that are based on three contributions. First, we define the global a posteriori error estimator associated with
the optimal control variable

ηct :=

(∑
K∈T

η2
ct,K

)1/2

where ηct,K := ∥ūT − Π (−
1
ϑ

p̄T )∥L2(K ). (53)

Here, Π denotes the nonlinear operator defined in (46).
We now construct the error estimators associated with the state and adjoint optimal variables. To accomplish this

task, we define ŷ ∈ H 1
0 (Ω ) to be such that

B(ŷ, v) = (f + ūT , v) ∀ v ∈ H 1
0 (Ω ), (54)

and p̂ ∈ H 1
0 (Ω ) to be such that

B∗(p̂, w) = (ȳT − yΩ , w) ∀ w ∈ H 1
0 (Ω ). (55)

Performing the a posteriori error analysis presented in Section 3, to bound the error between the solutions of (54) and
the discretization of the state equation in (48), and the error between the solutions of (55) and the discretization of the
adjoint equation from (48), we can conclude that

|||ŷ − ȳT |||
2
Ω ≤ η2

st and |||p̂ − p̄T |||
2
Ω ≤ η2

ad , (56)

where, for ϱ = st or ϱ = ad , the error estimators ηst and ηad are defined by

η2
ϱ :=

∑
K∈T

η2
ϱ,K , ηϱ,K :=

1
√

κ|K |

⏐⏐Sϱ

K (1)
⏐⏐+ ∥σ

ϱ

K ∥L2(K )
√

ν
+ Cosc,K ∥oscϱ

K ∥L2(K ). (57)

Here, for all K ∈ T , σ
ϱ

K ∈ P2(K )d denotes the solution to⎧⎪⎨⎪⎩
−div σ

ϱ

K = R
ϱ

K −
1

|K |

(
R

ϱ

K , 1
)

L2(K ) −
1

|K |

∑
γ∈FK

(Rϱ

γ,K , 1)L2(γ ) in K ,

σ
ϱ

K · nK
γ = R

ϱ

γ,K on γ for all γ ∈ FK ,

(58)

which is such that ∥σ
ϱ

K ∥L2(K ) is minimized, with residuals and oscillation terms defined as⎧⎪⎨⎪⎩
Rst

K := ΠK (f) + ūT |K − ΠK (b · ∇ȳT ) − κ ȳT |K ,

Rst
γ,K := gst

γ,K − ν∇ȳT |K · nK
γ ,

oscst
K := f − ΠK (f) − (b · ∇ȳT |K − ΠK (b · ∇ȳT )),

(59)
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and ⎧⎪⎨⎪⎩
Rad

K := ȳT |K − ΠK (yΩ ) + ΠK (b · ∇p̄T ) − κp̄T |K ,

Rad
γ,K := gad

γ,K − ν∇p̄T |K · nK
γ ,

oscad
K := −(yΩ − ΠK (yΩ )) + b · ∇p̄T |K − ΠK (b · ∇p̄T ).

(60)

The equilibrated boundary fluxes {gϱ

γ,K } are constructed on the basis of the material presented in Section 3.4. First,
they must satisfy the consistency property

gϱ

γ,K + gϱ

γ,K ′ = 0, if γ ∈ FK ∩ FK ′ , K , K ′
∈ T , K ̸= K ′. (61)

In addition, they must satisfy the first order equilibration condition that is

0 = (f + ūT , λ)L2(K ) − BK (ȳT , λ) +

∑
γ∈FK

(gst
γ,K , λ)L2(γ ) − Sst

K (λ),

and

0 = (ȳT − yΩ , λ)L2(K ) − B∗

K

(
p̄T , λ

)
+

∑
γ∈FK

(gad
γ,K , λ)L2(γ ) − Sad

K (λ),

for all λ ∈ P1(K ) and all K ∈ T , and where BK (ȳT , λ) = ν(∇ȳT , ∇λ)L2(K ) + (b · ∇ȳT + κ ȳT , λ)L2(K ),
B∗

K

(
p̄T , λ

)
= ν(∇p̄T , ∇λ)L2(K ) + (κp̄T − b · ∇p̄T , λ)L2(K ) and

Sϱ

K (λ) :=

{
SK

(
ȳT , f + ūT ; λ

)
for ϱ = st,

S∗

K

(
p̄T , ȳT − yΩ ; λ

)
for ϱ = ad.

(62)

Finally, they must satisfy the corresponding analog of (29).
For G = Ω or G ∈ T , we define

∥(eȳ, ep̄, eū)∥G =

(
|||ȳ − ȳT |||

2
G + |||p̄ − p̄T |||

2
G + ∥ū − ūT ∥

2
L2(G)

)1/2
.

We now present the analysis through which we obtain a fully computable upper bound for the total error for our
optimal control problem.

Theorem 3 (Global Reliability). Let (ȳ, p̄, ū) ∈ H 1
0 (Ω ) × H 1

0 (Ω ) × Uad be the solution to (43) and (ȳT , p̄T , ūT ) ∈

V(T ) × V(T ) × Uad(T ) its numerical approximation obtained as the solution to (48), then

∥(eȳ, ep̄, eū)∥Ω ≤ Υ =

(∑
K∈T

Υ 2
K

)1/2

(63)

where

Υ 2
K := Cstη

2
st,K + Cadη

2
ad,K + Cctη

2
ct,K , (64)

with η2
st and η2

ad being given in (57), η2
ct being defined in (53) and

Cst := 2 +
4
κ2 +

8
ϑ2κ6

(
κ3

+ 2κ2
+ 4

)
, Cad := 2 +

4
ϑ2κ4

(
κ3

+ 2κ2
+ 4

)
and

Cct := 2 +
4
κ

+
8
κ3 +

8
ϑ2κ7

(
κ3

+ 2κ2
+ 4

)
.

Proof. We proceed in four steps.

Step 1. The goal of this step is to control the error ū − ūT . We define ũ = Π (− 1
ϑ

p̄T ), which can be equivalently
characterized by

(p̄T + ϑ ũ, u − ũ)L2(Ω) ≥ 0 ∀u ∈ Uad. (65)

With this definition at hand, we have that

∥ū − ūT ∥
2
L2(Ω) ≤ 2

(
∥ū − ũ∥

2
L2(Ω) + ∥ũ − ūT ∥

2
L2(Ω)

)
= 2∥ū − ũ∥

2
L2(Ω) + 2η2

ct . (66)



A. Allendes et al. / Comput. Methods Appl. Mech. Engrg. 340 (2018) 0–30 15

Let us now focus on the first term on the right hand side of (66). The variational inequality of (43) with u = ũ and
(65) with u = ū yield that

(p̄ + ϑ ū, ũ − ū)L2(Ω) ≥ 0 and (p̄T + ϑ ũ, ū − ũ)L2(Ω) ≥ 0,

from which it follows that

ϑ∥ū − ũ∥
2
L2(Ω) ≤ (p̄ − p̄T , ũ − ū)L2(Ω).

To bound the right hand side of the above expression, we let (ỹ, p̃) be such that{
ỹ ∈ H 1

0 (Ω ) : B(ỹ, v) = (f + ũ, v) ∀ v ∈ H 1
0 (Ω ),

p̃ ∈ H 1
0 (Ω ) : B∗(p̃, w) = (ỹ − yΩ , w) ∀ w ∈ H 1

0 (Ω ).

We then have that

ϑ∥ū − ũ∥
2
L2(Ω) ≤ (p̄ − p̃, ũ − ū)L2(Ω) + (p̃ − p̂, ũ − ū)L2(Ω) + (p̂ − p̄T , ũ − ū)L2(Ω)

≤ (p̄ − p̃, ũ − ū)L2(Ω) +
1
ϑ

∥p̃ − p̂∥
2
L2(Ω) +

1
ϑ

∥p̂ − p̄T ∥
2
L2(Ω) +

ϑ

2
∥ū − ũ∥

2
L2(Ω)

upon using Cauchy–Schwarz and Young’s inequalities. Hence,

∥ū − ũ∥
2
L2(Ω) ≤

2
ϑ

(p̄ − p̃, ũ − ū)L2(Ω) +
2
ϑ2 ∥p̃ − p̂∥

2
L2(Ω) +

2
ϑ2 ∥p̂ − p̄T ∥

2
L2(Ω). (67)

We now proceed to bound the term (p̄ − p̃, ũ − ū)L2(Ω). To do this, we note that ỹ − ȳ is such that B(ỹ − ȳ, v) =

(ũ − ū, v)L2(Ω) for all v ∈ H 1
0 (Ω ) and that p̄ − p̃ solves B∗(p̄ − p̃, w) = (ȳ − ỹ, w) for all w ∈ H 1

0 (Ω ). Hence,

(p̄ − p̃, ũ − ū)L2(Ω) = B(ỹ − ȳ, p̄ − p̃) = B∗(p̄ − p̃, ỹ − ȳ) = −∥ȳ − ỹ∥
2
L2(Ω) ≤ 0.

This, in conjunction with (67) yields

∥ū − ũ∥
2
L2(Ω) ≤

2
ϑ2 ∥p̃ − p̂∥

2
L2(Ω) +

2
ϑ2 ∥p̂ − p̄T ∥

2
L2(Ω) ≤

2
ϑ2 ∥p̃ − p̂∥

2
L2(Ω) +

2
ϑ2κ

η2
ad (68)

since ∥p̂ − p̄T ∥
2
L2(Ω)

≤
1
κ
|||p̂ − p̄T |||

2
≤

1
κ
η2

ad because of (56). To bound ∥p̃ − p̂∥
2
L2(Ω)

we first note that
B∗(p̃ − p̂, w) = (ỹ − ȳT , w)L2(Ω) for all w ∈ H 1

0 (Ω ). So, taking w = p̃ − p̂ and using the fact that b is a solenoidal
field allows us to conclude that

κ∥p̃ − p̂∥
2
L2(Ω) ≤ B∗(p̃ − p̂, p̃ − p̂) = (ỹ − ȳT , p̃ − p̂)L2(Ω) = (ỹ − ŷ + ŷ − ȳT , p̃ − p̂)L2(Ω)

and hence,

∥p̃ − p̂∥
2
L2(Ω) ≤

1
κ

(
∥ỹ − ŷ∥L2(Ω) + ∥ŷ − ȳT ∥L2(Ω)

)
∥p̃ − p̂∥L2(Ω).

Consequently,

∥p̃ − p̂∥
2
L2(Ω) ≤

2
κ2

(
∥ỹ − ŷ∥

2
L2(Ω) + ∥ŷ − ȳT ∥

2
L2(Ω)

)
≤

2
κ2 ∥ỹ − ŷ∥

2
L2(Ω) +

2
κ3 η2

st ,

since ∥ŷ − ȳT ∥
2
L2(Ω)

≤
1
κ
|||ŷ − ȳT |||

2
≤

1
κ
η2

st . This, in conjunction with (68), yields

∥ū − ũ∥
2
L2(Ω) ≤

4
ϑ2κ2 ∥ỹ − ŷ∥

2
L2(Ω) +

4
ϑ2κ3 η2

st +
2

ϑ2κ
η2

ad . (69)

To bound ∥ỹ − ŷ∥
2
L2(Ω)

we first note that B(ỹ − ŷ, v) = (ũ − ūT , v)L2(Ω) for all v ∈ H 1
0 (Ω ). So, taking v = ỹ − ŷ

allows us to conclude that

κ∥ỹ − ŷ∥
2
L2(Ω) ≤ B(ỹ − ŷ, ỹ − ŷ) = (ũ − ūT , ỹ − ŷ)L2(Ω) ≤ ∥ũ − ūT ∥L2(Ω)∥ỹ − ŷ∥L2(Ω)

and hence, ∥ỹ − ŷ∥
2
L2(Ω)

≤
1
κ2 ∥ũ − ūT ∥

2
L2(Ω)

=
1
κ2 η2

ct . Combining this with (69) implies that

∥ū − ũ∥
2
L2(Ω) ≤

4
ϑ2κ4 η2

ct +
4

ϑ2κ3 η2
st +

2
ϑ2κ

η2
ad
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which together with (66), allows us to conclude that

∥ū − ūT ∥
2
L2(Ω) ≤

8
ϑ2κ3 η2

st +
4

ϑ2κ
η2

ad +

(
2 +

8
ϑ2κ4

)
η2

ct . (70)

Step 2. The goal of this step is to control the error ȳ − ȳT . Now, we have that

|||ȳ − ȳT |||
2
Ω ≤ 2(|||ȳ − ŷ|||

2
Ω + |||ŷ − ȳT |||

2
Ω ) ≤ 2|||ȳ − ŷ|||

2
Ω + 2η2

st . (71)

Moreover, |||ȳ − ŷ|||
2
Ω ≤

1
κ
∥ū − ūT ∥

2
L2(Ω)

, since

|||ȳ − ŷ|||
2
Ω = B(ȳ − ŷ, ȳ − ŷ) = (ū − ūT , ȳ − ŷ)L2(Ω) ≤

1
√

κ
∥ū − ūT ∥L2(Ω)|||ȳ − ŷ|||Ω .

Therefore, upon combining this with (71) and (70), we can conclude that

|||ȳ − ȳT |||
2
Ω ≤

(
2 +

16
ϑ2κ4

)
η2

st +
8

ϑ2κ2 η2
ad +

(
4
κ

+
16

ϑ2κ5

)
η2

ct . (72)

Step 3. The goal of this step is to control the error p̄ − p̄T . Now, we have that

|||p̄ − p̄T |||
2
Ω ≤ 2(|||p̄ − p̂|||

2
Ω + |||p̂ − p̄T |||

2
Ω ) ≤ 2|||p̄ − p̂|||

2
Ω + 2η2

ad . (73)

Moreover, |||p̄ − p̂|||
2
Ω ≤

1
κ2 |||ȳ − ȳT |||

2
Ω , since

|||p̄ − p̂|||
2
Ω = B∗(p̄ − p̂, p̄ − p̂) = (ȳ − ȳT , p̄ − p̂)L2(Ω) ≤

1
κ

|||ȳ − ȳT |||Ω |||p̄ − p̂|||Ω .

Therefore, upon combining this with (73) and (72), we can conclude that

|||p̄ − p̄T |||
2
Ω ≤

(
4
κ2 +

32
ϑ2κ6

)
η2

st +

(
2 +

16
ϑ2κ4

)
η2

ad +

(
8
κ3 +

32
ϑ2κ7

)
η2

ct . (74)

Step 4. The result claimed follows upon gathering (70), (72) and (74). □

Remark 4 (Fully Computable a Posteriori Upper Bound). The bound (63) is a genuine upper bound in the sense that
the value of the estimator exceeds the value of the true error regardless of the coarseness of the mesh or the nature of
the data of the problem. All constants appearing in the bound are fully specified.

Remark 5 (Poisson Problem). If we set ν = 1, b = 0 and κ = 0, the state and adjoint equations become the
Poisson problem. By examining the proof of Theorem 3, it can be seen that if we apply the Poincaré inequality
∥v∥

2
L2(Ω)

≤ CP∥∇v∥
2
L2(Ω)

for all v ∈ H 1
0 (Ω ), instead of ∥v∥

2
L2(Ω)

≤ κ−1
|||v|||

2
Ω , then (63) will hold if the constants Cst ,

Cad and Cct in (53) are taken to be

Cst = 2 + 4C2
P +

8
ϑ2

(
C3

P + 2C4
P + 4C6

P

)
, Cad = 2 +

4
ϑ2

(
CP + 2C2

P + 4C4
P

)
,

Cct = 2 + 4CP + 8C3
P +

8
ϑ2

(
C4

P + 2C5
P + 4C7

P

)
.

The resulting bound is fully computable because an upper bound for CP can be found, for instance, in [65].

4.2. Error estimator: efficiency

We first write the error equation for the state variable and its approximation, for all v ∈ H 1
0 (Ω ), as∑

K∈T

(Rst
K , v)L2(K ) − 2

∑
γ∈FI

([[J st
γ ]], v)L2(γ ) = B(ȳ − ȳT , v) − (ū − ūT , v)L2(Ω) −

∑
K∈T

(oscst
K , v)L2(K ), (75)

with [[J st
γ ]] :=

1
2 (J st

γ,K + J st
γ,K ′ ) if γ ∈ FK ∩ FK ′ , K ̸= K ′ where J st

γ,K := ν∇ȳT |K · nK
γ . Bubble function arguments

then lead to
hK
√

ν
∥Rst

K ∥L2(K ) ≤ C
(

CK |||ȳ − ȳT |||K +
hK
√

ν

(
∥oscst

K ∥L2(K ) + ∥ū − ūT ∥L2(K )
))

,
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and (
hK

ν

)1/2

∥[[J st
γ ]]∥L2(γ ) ≤ C

∑
K ′∈Ωγ

(
CK ′ |||ȳ − ȳT |||K ′ +

hK ′

√
ν

(
∥oscst

K ′∥L2(K ′) + ∥ū − ūT ∥L2(K ′)
))

.

Now, we write the error equation for the adjoint variable and its approximation as∑
K∈T

(Rad
K , v)L2(K ) − 2

∑
γ∈FI

([[J ad
γ ]], v)L2(γ ) = B∗(p̄ − p̄T , v) − (ȳ − ȳT , v)L2(Ω) −

∑
K∈T

(oscad
K , v)L2(K ),

for all v ∈ H 1
0 (Ω ), where, with J ad

γ,K := ν∇p̄T |K · nK
γ , [[J ad

γ ]] is defined analogously to [[J st
γ ]]. By again using bubble

function arguments, we can establish that

hK
√

ν
∥Rad

K ∥L2(K ) ≤ C
(

CK |||p̄ − p̄T |||K +
hK
√

ν

(
∥oscad

K ∥L2(K ) +
1

√
κ

|||ȳ − ȳT |||K

))
,

and (
hK

ν

)1/2

∥[[J ad
γ ]]∥L2(γ ) ≤ C

∑
K ′∈Ωγ

(
CK ′ |||p̄ − p̄T |||K ′ +

hK ′

√
ν

(
∥oscad

K ′∥L2(K ′) +
1

√
κ

|||ȳ − ȳT |||K ′

))
.

Moreover, an application of the triangle inequality, (45) and (47), yield that

ηct,K =

ūT − Π (−
1
ϑ

p̄T )


L2(K )
≤
ū − ūT


L2(K ) +

Π (−
1
ϑ

p̄) − Π (−
1
ϑ

p̄T )


L2(K )

≤
ū − ūT


L2(K ) +

1
ϑ

√
κ

|||p̄ − p̄T |||K

and hence

η2
ct,K ≤ 2

(ū − ūT

2
L2(K ) +

1
ϑ2κ

|||p̄ − p̄T |||
2
K

)
. (76)

Gathering all of the previous results with (57) and following the analysis presented in Section 3.7, allows us to
conclude the following result.

Theorem 4 (Local Efficiency). Let (ȳ, p̄, ū) ∈ H 1
0 (Ω ) × H 1

0 (Ω ) × Uad be the solution to (43) and (ȳT , p̄T , ūT ) ∈

V(T ) × V(T ) × Uad(T ) be the solution to (48). In addition, let the stabilization parameters be such that, for all
K ∈ T and for both the state and adjoint equations, CSK can be bounded by a constant which is independent of the
size of the elements in the mesh. Then,

Υ 2
K ≤ Ce f

∑
K ′∈DK

(
∥(eȳ, ep̄, eū)∥2

K ′ + h2
K ′

(
∥oscst

K ′∥
2
L2(K ′) + ∥oscad

K ′∥
2
L2(K ′)

))
,

where the constant Ce f depends on the physical parameters in (43) but is independent of the size of the elements in
the mesh and DK = {K ′

∈ T : FK ′ ∩ FK ′′ ̸= ∅, K ′′
∈ Ω̂K } with Ω̂K = {K ′

∈ T : K ′
∩ K ̸= ∅}.

5. Robust a posteriori error estimation

In this section we derive and analyze robust a posteriori error estimates for the approximation of the optimality
system (43) obtained using the stabilized scheme (48). We immediately comment that by robustness we mean that the
constants involved in the upper and lower bounds for the error are independent of the diffusion parameter ν and the
vector field b. Regarding the stabilization, in this section we only consider the following techniques: the streamline
upwind Petrov–Galerkin method (SUPG) and the continuous interior penalty method (CIP).

The analysis is based on the results by Verfürth [22,42] and Tobiska and Verfürth [43]. As in these works, we
measure the error in a norm that adds, to the energy norm, the dual norm of the convective derivative. We also refer
the reader to [37,66–70] for different approaches.
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5.1. The state and adjoint equations

We assume that the data of the problem (7) satisfy, in addition to the assumptions (A1)–(A3) of Section 3.1, the
following assumption:

(B1) 0 < ν ≪ 1.

This assumption emphasizes that, in this section, we are interested in the convection-dominated regime.
The presented analysis hinges on an appropriate choice of norm. We define

∥v∥R := |||v|||Ω + ∥b · ∇v∥∗ ∀v ∈ H 1
0 (Ω ), (77)

where |||v|||Ω is defined as in (9), and

∥b · ∇v∥∗ = sup
φ∈H1

0 (Ω)\{0}

⟨b · ∇v, φ⟩

|||φ|||Ω

. (78)

The term ⟨·, ·⟩ denotes the duality pairing between H 1
0 (Ω ) and H−1(Ω ). In this setting, we have that

sup
v∈H1

0 (Ω)\{0}

B(w, v)
|||v|||Ω

≥
1
3
∥w∥R ∀w ∈ H 1

0 (Ω ). (79)

We refer the reader to [42, Lemma 3.1] and [22, Proposition 4.17] for more details. We also have that

sup
v∈H1

0 (Ω)\{0}

B∗(w, v)
|||v|||Ω

≥
1
3
∥w∥R ∀w ∈ H 1

0 (Ω ). (80)

Moreover, we note that

∥v∥
2
L2(Ω) ≤

1
κ

|||v|||
2
Ω ≤

1
κ

∥v∥
2
R ∀v ∈ H 1

0 (Ω ). (81)

We follow [43, section 2] and define, for ϱ = st or ϱ = ad , the error estimator

E2
ϱ :=

∑
K∈T

E2
ϱ,K , (82)

where the local error indicators are given by

E2
ϱ,K := ℏ2

K ∥Rϱ

K ∥
2
L2(K ) +

∑
γ∈FK ∩FI

ν−1/2ℏγ ∥[[J ϱ
γ ]]∥2

L2(γ ).

Here, ℏω = min
{
hων−1/2, κ−1/2

}
for ω = K or ω = γ , Rϱ

K is defined as in (59) or (60), and the jump term [[J ϱ
γ ]] is

defined as in Section 4.2. We also define, again for ϱ = st or ϱ = ad, the global oscillation term

∥oscϱ
∥L2(Ω) =

(∑
K∈T

ℏ2
K ∥oscϱ

K ∥
2
L2(K )

) 1
2

, (83)

where oscϱ

K is defined as in (59) or (60).
As stabilization techniques we will consider the SUPG and CIP methods; see (19), (21), (49) and (51). We assume

that their stabilization parameters are such that ([43, inequalities (2.7) and (2.10)]):

∥b∥L∞(K )τK ≤ ChK and ∥b∥L∞(K )τ
∗

K ≤ ChK ∀K ∈ T (84)

and

τγ ≤ Ch2
γ and τ ∗

γ ≤ Ch2
γ ∀γ ∈ FI , (85)

where C is independent of the size of the elements in the mesh and the physical parameters. We also define
Θ(ξ )2

=
∑

K∈T ΘK (ξ )2, where

ΘK (ξ ) =

{
ℏK ∥(b − ΠK (b)) · ∇ξ∥L2(K ) + ℏK hK ∥∇b∥L∞(K )∥∇ξ∥L2(K ), for CIP,

0, for SUPG.
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The assumptions (84) and (85) on the stabilization parameters guarantee that the so-called consistency error can be
bounded robustly by the residual estimator (82) and the oscillation term (83); see [43, Lemma 2.3 and Lemma 2.6].
This is a key result in the derivation of the main result of [43, Theorem 2.8] (see also [42, Theorem 4.1]). Let ŷ be the
solution to problem (54) and ȳT be the solution to the first variational equation of the discrete optimality system (48).
If (84) and (85) hold, then

1
Dy

Est − ∥oscst
∥L2(Ω) ≤ ∥ŷ − ȳT ∥R ≤ Cy

(
E2

st + ∥oscst
∥

2
L2(Ω) + Θ(ȳT )2

) 1
2
. (86)

We have a similar result for the numerical approximation of the adjoint equation. Let p̂ be the solution to problem
(55) and p̄T be the solution to the second variational equation of the discrete optimality system (48). If (84) and (85)
hold, then

1
Dp

Ead − ∥oscad
∥L2(Ω) ≤ ∥p̂ − p̄T ∥R ≤ Cp

(
E2

ad + ∥oscad
∥

2
L2(Ω) + Θ(p̄T )2

) 1
2
. (87)

We immediately comment that the estimates (86) and (87) are robust in the sense that the constants Cy, Cp, Dy and
Dp are independent of ν and b.

5.2. The optimal control problem

We now derive a posteriori error estimates for the discretization of the optimal control problem (2)–(4) proposed
in Section 4. We now present a modification of the analysis elaborated in the proof of Theorem 3 in order to obtain an
estimator, for the error ∥ȳ − ȳT ∥

2
R + ∥p̄ − p̄T ∥

2
R + ∥ū − ūT ∥

2
L2(Ω)

, that is robust with respect to ν and b in the sense
that the constants involved in the upper and lower bounds for the error are independent of ν and b.

Theorem 5 (Global Reliability). Let (ȳ, p̄, ū) ∈ H 1
0 (Ω ) × H 1

0 (Ω ) × Uad be the solution to (43) and (ȳT , p̄T , ūT ) ∈

V(T ) × V(T ) × Uad(T ) be its numerical approximation obtained as the solution to (48). If the stabilization
parameters are such that (84) and (85) hold, then

∥ȳ − ȳT ∥
2
R + ∥p̄ − p̄T ∥

2
R + ∥ū − ūT ∥

2
L2(Ω) ≤ C1Υ

2
R (88)

where

Υ 2
R = E2

st + E2
ad + η2

ct + ∥oscst
∥

2
L2(Ω) + ∥oscad

∥
2
L2(Ω) + Θ(ȳT )2

+ Θ(p̄T )2 (89)

and the positive constant C1 is independent of the size of the elements in the mesh, ν and b.

Proof. Step 1. We begin the proof by recalling the estimate (66):

∥ū − ūT ∥
2
L2(Ω) ≤ 2∥ū − ũ∥

2
L2(Ω) + 2η2

ct , ũ = Π (−
1
ϑ

p̄T ),

where ηct is defined as in (53). We control the first term on the right hand side of the previous expression using the
intermediate step in (68). We thus have that

∥ū − ũ∥
2
L2(Ω) ≤

2
ϑ2 ∥p̃ − p̂∥

2
L2(Ω) +

2
ϑ2κ

∥p̂ − p̄T ∥
2
R

≤
2
ϑ2 ∥p̃ − p̂∥

2
L2(Ω) +

2C2
p

ϑ2κ

(
E2

ad + ∥oscad
∥

2
L2(Ω) + Θ(p̄T )2

)
,

upon using (81) and (87). We now proceed to control the term ∥p̃ − p̂∥L2(Ω). To accomplish this task, we invoke (81)
and (80) to obtain that

∥p̃ − p̂∥L2(Ω) ≤
1

√
κ

∥p̃ − p̂∥R ≤
3

√
κ

sup
v∈H1

0 (Ω)\{0}

B∗(p̃ − p̂, v)
|||v|||Ω

.

We now utilize the problem that p̃ − p̂ solves and (81) to arrive at

∥p̃ − p̂∥L2(Ω) ≤
3

√
κ

sup
v∈H1

0 (Ω)\{0}

(ỹ − ȳT , v)L2(Ω)

|||v|||Ω

≤
3

κ3/2 ∥ỹ − ȳT ∥R. (90)
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To control the right hand side of the previous expression we invoke the triangle inequality and the a posteriori error
estimate (86). This yields that

∥p̃ − p̂∥
2
L2(Ω) ≤

9
κ3 ∥ỹ − ȳT ∥

2
R ≤

18
κ3 ∥ỹ − ŷ∥

2
R +

18C2
y

κ3

(
E2

st + ∥oscst
∥

2
L2(Ω) + Θ(ȳT )2

)
.

The term ∥ỹ − ŷ∥R is controlled using similar arguments to the ones that lead to (90):

∥ỹ − ŷ∥R ≤ 3 sup
v∈H1

0 (Ω)\{0}

B(ỹ − ŷ, v)
|||v|||Ω

≤
3

√
κ

∥ũ − ūT ∥L2(Ω) ≤
3

√
κ

ηct ,

where ηct is the estimator associated with the control variable that is defined in (53). By gathering our previous
findings, we conclude that

∥ū − ūT ∥
2
L2(Ω) ≤

(
2 +

648
ϑ2κ4

)
η2

ct +
4C2

p

ϑ2κ

(
E2

ad + ∥oscad
∥

2
L2(Ω) + Θ(p̄T )2

)
+

72C2
y

ϑ2κ3

(
E2

st + ∥oscst
∥

2
L2(Ω) + Θ(ȳT )2

)
. (91)

Step 2. The goal of this step is to control the error ∥ȳ − ȳT ∥R. In fact, using standard inequalities and (86), we arrive
at

∥ȳ − ȳT ∥
2
R ≤ 2∥ȳ − ŷ∥

2
R + 2C2

y

(
E2

st + ∥oscst
∥

2
L2(Ω) + Θ(ȳT )2

)
.

By using (79) and the problem that ȳ − ŷ solves, we obtain that

∥ȳ − ŷ∥R ≤ 3 sup
v∈H1

0 (Ω)\{0}

B(ȳ − ŷ, v)
|||v|||Ω

≤
3

√
κ

∥ū − ūT ∥L2(Ω).

Therefore, invoking (91) we arrive at

∥ȳ − ȳT ∥
2
R ≤

18
κ

(
2 +

648
ϑ2κ4

)
η2

ct +
72C2

p

ϑ2κ2

(
E2

ad + ∥oscad
∥

2
L2(Ω) + Θ(p̄T )2

)
+

(
2 +

1296
ϑ2κ4

)
C2

y

(
E2

st + ∥oscst
∥

2
L2(Ω) + Θ(ȳT )2

)
.

(92)

Step 3. In this step we bound ∥p̄ − p̄T ∥R. We invoke similar arguments to the ones elaborated in step 2 and conclude
that

∥p̄ − p̄T ∥
2
R ≤ 2(∥p̄ − p̂∥

2
R + ∥p̂ − p̄T ∥

2
R) ≤ 2∥p̄ − p̂∥

2
R + 2C2

p

(
E2

ad + ∥oscad
∥

2
L2(Ω) + Θ(p̄T )2

)
and that

∥p̄ − p̂∥R ≤ 3 sup
v∈H1

0 (Ω)\{0}

B∗(p̄ − p̂, v)
|||v|||Ω

≤
3
κ

∥ȳ − ȳT ∥R.

We thus use these estimates, and (92), to arrive at

∥p̄ − p̄T ∥
2
R ≤

324
κ3

(
2 +

648
ϑ2κ4

)
η2

ct +

(
2 +

1296
ϑ2κ4

)
C2

p

(
E2

ad + ∥oscad
∥

2
L2(Ω) + Θ(p̄T )2

)
+

18
κ2

(
2 +

1296
ϑ2κ4

)
C2

y

(
E2

st + ∥oscst
∥

2
L2(Ω) + Θ(ȳT )2

)
.

(93)

Step 4. Finally, combining the estimates (91), (92), and (93) allows us to arrive at (88). □

We now provide an efficiency analysis.

Theorem 6 (Global Efficiency). Let (ȳ, p̄, ū) ∈ H 1
0 (Ω ) × H 1

0 (Ω ) × Uad be the solution to (43) and (ȳT , p̄T , ūT ) ∈

V(T ) × V(T ) × Uad(T ) be its numerical approximation obtained as the solution to (48). If the stabilization
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parameters are such that (84) and (85) hold, then

E2
st + E2

ad + η2
ct ≤ C2

(
∥ȳ − ȳT ∥

2
R + ∥p̄ − p̄T ∥

2
R + ∥ū − ūT ∥

2
L2(Ω) + ∥oscst

∥
2
L2(Ω) + ∥oscad

∥
2
L2(Ω)

)
(94)

where the positive constant C2 is independent of the size of the elements in the mesh, ν and b.

Proof. From (86) and (87) we have that

Est ≤ Dy
(
∥ŷ − ȳT ∥R + ∥oscst

∥L2(Ω)
)

≤ Dy
(
∥ŷ − ȳ∥R + ∥ȳ − ȳT ∥R + ∥oscst

∥L2(Ω)
)

and

Ead ≤ Dp
(
∥p̂ − p̄T ∥R + ∥oscad

∥L2(Ω)
)

≤ Dp
(
∥p̂ − p̄∥R + ∥p̄ − p̄T ∥R + ∥oscad

∥L2(Ω)
)
.

Moreover, (79) and (80) imply that

∥ŷ − ȳ∥R ≤ 3 sup
v∈H1

0 (Ω)\{0}

B(ŷ − ȳ, v)
|||v|||Ω

and ∥p̂ − p̄∥R ≤ 3 sup
v∈H1

0 (Ω)\{0}

B∗(p̂ − p̄, v)
|||v|||Ω

.

Now, (43) and (54) yield that

B(ŷ − ȳ, v) = (ūT − ū, v)L2(Ω) ≤ ∥ū − ūT ∥L2(Ω)∥v∥L2(Ω) ≤
1

√
κ

∥ū − ūT ∥L2(Ω)|||v|||Ω

and (43) and (55) yield that

B∗(p̂ − p̄, v) = (ȳT − ȳ, v)L2(Ω) ≤ ∥ȳ − ȳT ∥L2(Ω)∥v∥L2(Ω) ≤
1
κ

∥ȳ − ȳT ∥R|||v|||Ω .

Hence

E2
st ≤ 3Dy

(
9
κ

∥ū − ūT ∥
2
L2(Ω) + ∥ȳ − ȳT ∥

2
R + ∥oscst

∥
2
L2(Ω)

)
(95)

and

E2
ad ≤ 3Dp

(
9
κ2 ∥ȳ − ȳT ∥

2
R + ∥p̄ − p̄T ∥

2
R + ∥oscad

∥
2
L2(Ω)

)
. (96)

In addition, (76) leads to

η2
ct ≤ 2

(ū − ūT

2
L2(Ω) +

2
ϑ2κ

|||p̄ − p̄T |||
2
R

)
. (97)

The claimed result then follows upon combining (95), (96) and (97). □

Remark 6 (Robustness). We remark that the a posteriori error estimator ΥR is robust in the sense that the constants
that appear in (88) and (94) are independent of ν and b. The estimator is not robust with respect to κ or ϑ . The
dependence of the constant in (88) on κ and ϑ can be seen from (91), (92), and (93). Similarly, the dependence of the
constant in (94) on κ and ϑ can be seen from (95), (96) and (97).

6. Numerical examples

In this section we show numerical examples that illustrate the performance of the error estimator. We wrote a
code in C++ that implements the procedure described in Algorithm 1. The integrals involving the data yΩ and f were
computed using quadrature formulas which are exact for polynomials of degree N. We show results for N ∈ {4, 19}

for d = 2 and N ∈ {4, 14} for d = 3. The error ∥(eȳ, ep̄, eū)∥Ω was computed using a quadrature formula which
is exact for polynomials of degree 19 for d = 2 and 14 for d = 3. The global linear systems were solved using
the multifrontal massively parallel sparse direct solver (MUMPS) [71,72]. For the first three examples, we construct
problems for which the exact solutions are known by fixing the optimal state and adjoint state, and computing the
optimal control and data yΩ and f using (46) and (43).
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Fig. 1. Example 1: The errors ∥(eȳ, ep̄, eū)∥Ω and estimators Υ (left) and effectivity indices Υ/∥(eȳ, ep̄, eū)∥Ω (right) obtained with N = 19 (top)
and N = 4 (bottom).

Fig. 2. Example 1: The initial mesh (left) and the 25th adaptively refined meshes for the SUPG–SUPG method obtained with N = 19 (middle,
Ndof = 156476) and N = 4 (right, Ndof = 156508).



A. Allendes et al. / Comput. Methods Appl. Mech. Engrg. 340 (2018) 0–30 23

Fig. 3. Example 2: The errors ∥(eȳ, ep̄, eū)∥Ω and estimators Υ (left) and effectivity indices Υ/∥(eȳ, ep̄, eū)∥Ω (right) obtained with N = 19 (top)
and N = 4 (bottom).

Fig. 4. Example 2: The initial mesh (left) and the 25th adaptively refined meshes for the SUPG–SUPG method obtained with N = 14 (middle,
Ndof = 15261784) and N = 4 (right, Ndof = 13511617).
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Fig. 5. Example 3: The errors ∥(eȳ, ep̄, eū)∥Ω and estimators Υ (left) and effectivity indices Υ/∥(eȳ, ep̄, eū)∥Ω (right) obtained with N = 19 (top)
and N = 4 (bottom).

Fig. 6. Example 3: The initial mesh (left) and the 26th adaptively refined meshes for the SUPG–SUPG method obtained with N = 14 (middle,
Ndof = 10756415) and N = 4 (right, Ndof = 11780129).
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Fig. 7. Example 4: The estimator Υ obtained with N = 14.

Fig. 8. Example 4: Slices at x3 = 1 of ȳT obtained with the SUPG–SUPG method and N = 14 on the initial mesh (top, Ndof = 1396), 7th
adaptively refined mesh (middle, Ndof = 147099) and final adaptively refined mesh (bottom, Ndof = 10233842).
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Fig. 9. Example 4: Slices at x3 = 1 of p̄T obtained with the SUPG–SUPG method and N = 14 on the initial mesh (top, Ndof = 1396), 7th
adaptively refined mesh (middle, Ndof = 147099) and final adaptively refined mesh (bottom, Ndof = 10233842).

Algorithm 1: Adaptive Primal–Dual Active Set Algorithm.

Input: A mesh T and data ϑ , a, b, ν, b, κ , yΩ and f.
1: Compute (ȳT , p̄T , ūT ) ∈ V(T ) × V(T ) × Uad (T ) that solves (48) using the active set strategy of [8, §2.12.4].
2: Compute the local error indicator ΥK given in (64) for each K ∈ T and the error estimator Υ given in (63).
3: Mark an element K ∈ T for refinement if Υ2

K ≥ Υ2/#T .
4: Refine the mesh T using a longest edge bisection algorithm and return to step 1.

We present results for different combinations of stabilizations for state–adjoint equations. We use the following
notation: SUPG–GLS corresponds to using a SUPG stabilization for the state equation and a GLS stabilization for
the adjoint equation; SUPG–SUPG, SUPG–CIP and SUPG–ES are defined analogously. We took the stabilization
parameters τ ∗

K = τK where

τK =

⎧⎪⎪⎨⎪⎪⎩
hK

2∥ |b| ∥L∞(K )
if PeK > 1,

h2
K

12ν
if PeK ≤ 1,

with PeK :=
∥ |b| ∥L∞(K )hK

2ν
,

for SUPG and GLS, τ ∗
γ = 1/24 for ES and τ ∗

γ = h2
γ /12 for CIP. The total number of degrees of freedom

Ndof = 2#V + #T . We performed the following four examples.
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Fig. 10. Example 4: Slices at x3 = 1 of ūT obtained with the SUPG–SUPG method and N = 14 on the initial mesh (top, Ndof = 1396), 7th
adaptively refined mesh (middle, Ndof = 147099) and final adaptively refined mesh (bottom, Ndof = 10233842).

Example 1. We set d = 2, Ω = (0, 1)2, a = −1, b = −0.1, ϑ = 1, ν = 10−3, b = (1, 0) and κ = 1. The exact
optimal state and adjoint are given by, taking ς := x2(1 − x2),

ȳ(x1, x2) = ς

(
x1 +

e
x1−1

ν − e
−1
ν

e
−1
ν − 1

)
, p̄(x1, x2) = ς

(
1 − x1 +

e
−x1
ν − e

−1
ν

e
−1
ν − 1

)
.

Example 2. We set d = 3, Ω = (0, 1)3, a = −0.01, b = 0.01, ϑ = 1, ν = 0.01, b = (3, 2, 1) and κ = 10. The exact
optimal state and adjoint are given by

ȳ(x1, x2, x3) =

3∏
i=1

xi (1 − xi ), p̄(x1, x2, y3) = ȳ(x1, x2, y3)tan−1
(

x1 − 0.5
ν

)
.

Example 3. We set d = 3, Ω = {(x1, x2, x3) : x1 > 0, x2 > 0, x3 > 0, x1 + x2 + x3 < 1}, a = −0.001, b = 0.001,
ϑ = 1, ν = 0.01, b = (0.1, 0.1, 0.1) and κ = 1. The exact optimal state and adjoint are given by

ȳ(x1, x2, x3) = x1x2x3(1 − x1 − x2 − x3), p̄(x1, x2, x3) = ȳ(x1, x2, x3)tan−1
(

x1 − 0.5
ν

)
.

Example 4. We set d = 3, Ω = ((0, 5) × (0, 2) × (0, 2)) \ ((0.5, 0.8) × (0.8, 1.2) × (0.8, 1.2)), a = 0.1, b = 0.35,
ϑ = 1, ν = 0.1, b(x1, x2, x3) = (1, 0.0475x3

1 − 0.355x2
1 + 0.595x1, 0.0475x3

1 − 0.355x2
1 + 0.595x1), κ = 1, f = 1

and yΩ = 1.
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In Figs. 1, 3 and 5, we present the performance of the adaptive procedure for Examples 1–3 by showing the
total error ∥(eȳ, ep̄, eū)∥Ω and error estimator Υ , as well as effectivity indices Υ/∥(eȳ, ep̄, eū)∥Ω . We observe that,
once the mesh has been sufficiently refined, the experimental rates of convergence for the error are optimal. We note
that the behavior of the estimator seen in Fig. 3 is caused by the dependence of the constant in the local efficiency
estimate on the quantity defined in (42). This means that the estimator can decrease at a faster rate than the error until
the mesh has been sufficiently refined with the amount of refinement that is sufficient depending on the ratio of the
diffusion parameter to both the reaction parameter and the norm of the convection field. We present results for different
combinations of stabilization terms in order to illustrate that this can be done with our estimator. While it appears that
the SUPG–CIP method is the worst in Example 2, this method performs well in Example 3 where it appears that the
SUPG–ES method performs the worst. This supports our belief that it would be wrong to conclude which methods
are the best from the few examples that we have performed. Computationally, we observe that the estimator is never
less than the error, the effectivity index never goes below 1; on the final meshes it takes the numerical value stated in
the plots. In Figs. 2, 4 and 6 we observe that the refinement is being concentrated around the boundary and interior
layers, even though different values of N resulted in different adaptively refined meshes.

For Example 4, the exact optimal state and adjoint are unknown. Nevertheless, we present the performance of the
adaptive procedure for Example 4 by showing the error estimator Υ in Fig. 7. In Figs. 8–10 we can see how the
solutions are being resolved as the mesh is being refined.
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