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the approximation error of the optimal variables on anisotropic meshes. We present several numerical
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1. Introduction. We are interested in the study of new and efficient solution
techniques for an unconstrained linear–quadratic optimal control problem involving a
convection–reaction-diffusion equation. To be precise, let Ω = (0, 1)2. Given a desired
state yd : Ω → R, we define the cost functional

J(y, u) =
1

2
‖y − yd‖

2
L2(Ω) +

λ

2
‖u‖2L2(Ω), (1.1)

where λ > 0 denotes the so-called regularization parameter. Let c, f : Ω → R be fixed
functions and b : Ω → R

2 be a given vector field. We shall be concerned with the
following optimal control problem: Find

min J(y, u) (1.2)

subject to the singularly perturbed convection–reaction–diffusion equation

−ε2∆y + b · ∇y + cy = u+ f in Ω, y = 0 on ∂Ω, (1.3)

where ε denotes the perturbation parameter and satisfies 0 < ε ≪ 1. The term u

denotes the control variable, and y, the solution to the state equation (1.3), corresponds
to the state variable. We will also be interested in the particular scenario where b ≡ 0,
which yields a singularly perturbed reaction–diffusion problem as state equation:

−ε2∆y + cy = u+ f in Ω, y = 0 on ∂Ω. (1.4)
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Since the optimal control problem (1.2)–(1.3) does not involve control constraints,
the associated optimality system corresponds to a coupled one involving two singularly
perturbed convection–reaction–diffusion equations: the state and adjoint equations;
see [10, 14, 25, 30]. The adjoint equation has a convection component that is the
negative of the one appearing in (1.3) [14, 25]. This leads to the computational
challenge of how to efficiently resolve the optimality system associated with (1.2)–
(1.3), which in turn demands the use of an efficient method to solve the state equation
(1.3). When solving the latter, it is known that standard finite element techniques
lead to strongly oscillatory solutions unless the mesh–size is sufficiently small with
respect to the ratio between ε and ‖b‖. In addition, the sharp boundary and interior
layers and corner and edge singularities, that usually appear in the solution to these
types of problems, must be efficiently resolved [7, 27, 39, 41].

In the context of optimal control problems, to overcome such difficulties, different
stabilized finite element techniques have been proposed and analyzed in the literature;
see [1, 10, 14, 16, 26, 35, 46, 47]. To the best of our knowledge, the first work that an-
alyzed a stabilized scheme is [14]. This work considers the streamline upwind/Petrov
Galerkin (SUPG) method, elaborates on the fact that the optimize–then–discretize
and discretize–then–optimize approaches do not coincide and explores their respective
advantages. Later, local projection stabilization (LPS) techniques were proposed in
[10]. These techniques have the advantage that, due to the symmetry of the proposed
stabilization term, optimize–then–discretize and discretize–then–optimize coincide. In
addition, the authors derive global a priori error estimates for the approximation er-
ror of the optimal variables. However, it is important to notice, as pointed out in
[25], that these global error estimates (see also [10, 11, 26, 35, 46]) contain constants
that depend on derivatives of the optimal variables and so in the presence of interior
and boundary layers such estimates become meaningless. This motivates the local
a priori error analysis of [25], where the SUPG method is used to approximate the
solution of the state equation (1.3). The authors derive local a priori error estimates
in subdomains Ω0 ⊂ Ω that do not include boundary or interior layers. However,
the presence of boundary layers pollute the numerical solution, even in subregions
where the solution is smooth. This is due to the fact that the boundary layers are
not sufficiently resolved; see [25] for a discussion.

In some particular cases, where some information on the behavior of the solution
to the single state equation (1.3) or (1.4) is available, it is possible to design a priori
graded meshes to efficiently approximate the boundary layers exhibited by the solu-
tion; see [17, 18, 29, 41]. Some well–known approximation techniques of this kind are
those based on the so-called Shishkin meshes [9, 34, 41]. In the context of the optimal
control theory, some numerical experiments provided in [25, Section 5.2] show promis-
ing results when Shishkin meshes are considered. In [40], the one dimensional version
of (1.2)–(1.3) is analyzed and discretized using these meshes. The authors derive
optimal rates of convergence in the energy–norm, but the presented error estimates
for the L2–norm are not optimal in terms of approximation.

In this work we propose a different approach based on the finite element ap-
proximation of the optimality system, associated with the optimal control problem
(1.2)–(1.3), on the graded or anisotropic meshes proposed by Durán and Lombardi in
[17, 18]. In the case that b = 0, i.e., when (1.4) corresponds to the state equation,
we propose a solution technique and derive a priori quasi–optimal error estimates in
both the energy and the L2–norm. The error estimates derived in the energy–norm
are ε-independent [19, 20], which is a property that Shishkin meshes do not satisfy.
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We also propose an approximation scheme for solving the optimal control problem
(1.2)–(1.3), where the state equation (1.3) contains a non–zero constant vector field b.
We prove the convergence of the scheme by invoking the theory of Γ–convergence. We
design several computational experiments that show a competitive performance of the
proposed solution technique when it is compared with adaptive stabilized schemes.
In addition, we observe that

• the experimental rates of convergence in both the energy and the L2–norm
are quasi–optimal in terms of approximation.

• the pollution effect discussed in [25] is not observed. This is due to the fact
that the boundary layers are appropriately approximated.

We comment that, the numerical analysis of the proposed approximation scheme
to solve (1.2)–(1.3), where b is a non–zero and constant vector field, could be derived
under strong assumptions on the optimal control variable; see Section 4.2.1 for a
discussion. The main disadvantage of our graded-mesh scheme is that it is based on
the anisotropic error estimates analyzed in [17] which are valid under a tensor product
structure of the domain Ω.

The outline of this paper is as follows. In Section 2 we introduce the functional
framework that is suitable for analysing the optimal control problem (1.2)–(1.3) and
state existence and uniqueness results in conjunction with optimality conditions. Sec-
tion 3 is a review of the graded finite element techniques developed in [18] and [17]
to solve the state equations (1.3) and (1.4), respectively. In Section 4 we propose
a numerical technique to solve the optimal control problem (1.2)–(1.3): a fully dis-
crete scheme that discretizes the optimal control and state with standard piecewise
bilinear finite elements on anisotropic meshes. Subsection 4.1 contains a complete
quasi–optimal a priori error analysis, in both the energy and the L2–norm, when
(1.4) is considered as the state equation. In Subsection 4.2, we assume that b is a
non–zero vector field and prove the convergence of the proposed scheme via the theory
of Γ–convergence. Finally, in Section 5 we present several numerical experiments that
reveal a competitive performance of the proposed solution technique. We also explore
computationally the performance of our method when solving a constrained optimal
control problem with (1.3) as the state equation.

Throughout the manuscript, the relation a . b indicates that a ≤ Cb, with a
constant C that does not depend on either a or b. The value of C might change at
each occurrence.

2. The optimal control problem. In this section, we describe the optimal
control problem (1.2)–(1.3). Following [10, 25], we present existence and uniqueness
results together with necessary and sufficient optimality conditions. Since (1.2)–(1.3)
is unconstrained, we reformulate the optimality conditions as a coupled system of
partial differential equations (PDE). On the basis of this idea, we propose a numerical
technique to solve the optimal control problem (1.2)–(1.3).

We start by considering some suitable functional analysis setting. We denote by
Y the so–called state space. This corresponds to the standard Sobolev space H1

0 (Ω)
equipped with the ε-weighted energy norm, which is defined by

‖v‖2ε = ε2‖∇v‖2L2(Ω) + ‖v‖2L2(Ω) ∀v ∈ Y.

Since (1.2)–(1.3) is unconstrained, we define the set of admissible controls as Uad =
L2(Ω). To state existence and uniqueness results we assume that:

(1) 0 < ε ≪ 1.
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(2) c ∈ L∞(Ω) and b ∈ [W 1,∞(Ω)]2 satisfy c ≥ 0 and

c−
1

2
div b ≥ µ > 0.

(3) f, yd ∈ L2(Ω).
The standard weak formulation of (1.3) reads as follows: find y = y(u) ∈ Y such that

B(y, v) = (f + u, v)L2(Ω) ∀ v ∈ Y, (2.1)

where (·, ·)L2(Ω) denotes the standard inner product in L2(Ω) and B is defined by

B(y, v) =

ˆ

Ω

ε2∇y · ∇v + b · ∇yv + cyv, y, v ∈ Y. (2.2)

Under the assumptions (1)–(3), the bilinear form B is coercive in Y × Y, i.e., there
exists β > 0, independent of ε, such that

β‖v‖2ε ≤ B(v, v) ∀v ∈ Y. (2.3)

For a given control u ∈ Uad and data satisfying the assumptions (1)–(3), the
Lax-Milgram Lemma implies the well–posedness of (2.1). We are then in position to
introduce the so–called control–to–state operator.

Definition 2.1 (control–to–state operator). We define the control to state op-

erator S : Uad → Y such that for a given control u ∈ Uad it associates a unique state

y = y(u) ∈ Y via the state equation (2.1).
It follows that S is a linear and continuous map from H−1(Ω) into Y. In view

of the continuous embedding H−1(Ω) →֒ L2(Ω) →֒ Y, we may also consider S acting
from L2(Ω) and with range in L2(Ω). With this operator at hand, we define the
reduced cost functional

f(u) =
1

2
‖Su− yd‖

2
L2(Ω) +

λ

2
‖u‖2L2(Ω). (2.4)

We now define the optimal state-control pair as follows.
Definition 2.2 (optimal state-control pair). A state-control pair (ȳ(ū), ū) ∈

Y× Uad is called optimal for problem (1.2)–(1.3) if ȳ(ū) = Sū and

J(ȳ(ū), ū) ≤ J(y(u), u),

for all (y(u), u) ∈ Y× Uad such that y(u) = Su.

We define the adjoint state associated to the state y = y(u) as follows.
Definition 2.3 (adjoint state). Given a control u ∈ Uad, we define the adjoint

state p = p(u) ∈ Y as the solution to

p ∈ Y : B(q, p) = (y(u)− yd, q)L2(Ω), (2.5)

for all q ∈ Y.

We present the following result about existence and uniqueness of the optimal
control together with necessary and sufficient optimality conditions for (1.2)–(1.3);
see [10, Theorem 1 and Lemma 1] and [25, Theorem 2.1].

Theorem 2.4 (existence, uniqueness and optimality conditions). The optimal

control problem (1.2)–(1.3) has a unique optimal solution (ȳ(ū), ū) ∈ Y × Uad. The

optimality conditions






ȳ ∈ Y : B(ȳ, v) = (f + ū, v) ∀v ∈ Y,
p̄ ∈ Y : B(v, p̄) = (ȳ − yd, v) ∀v ∈ Y,

λū+ p̄ = 0,
(2.6)
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hold. These conditions are necessary and sufficient.

Theorem 2.4, in conjunction with the fact that λ > 0, yields immediately the
following reduced and equivalent optimality system: find (ȳ, p̄) ∈ Y× Y such that

{

λB(ȳ, v) + (p̄, v)L2(Ω) = λ(f, v)L2(Ω) ∀ v ∈ Y,
B(q, p̄)− (ȳ, q)L2(Ω) = −(yd, q)L2(Ω) ∀ q ∈ Y.

(2.7)

Inspired in this reformulation of the optimality conditions, a natural and simple tech-
nique to solve the optimal control problem is the following: given λ > 0, f ∈ L2(Ω)
and yd ∈ L2(Ω), we solve the coupled PDE system (2.7), thereby obtaining ȳ and p̄.
Setting ū = − 1

λ p̄, we obtain the optimal variables ū and ȳ solving (1.2)–(1.3).
We finally define the auxiliary bilinear form

A((y, p), (v, q)) := λB(y, v) + (p, v)L2(Ω) + B(q, p)− (y, q)L2(Ω), (2.8)

for all (y, p), (v, q) ∈ Y× Y.
Since an efficient technique to solve (2.7) relies on a method to solve the state

equations (1.3) and (1.4), in the next section we describe simply and efficient ap-
proaches to solve such equations.

3. Discretization of the state equation. In this section we review the graded
finite element approximation techniques developed by Durán and Lombardi in [17]
and [18] for the state equations (1.3) and (1.4), respectively. To accomplish this task,
we start by introducing some terminology and describing the construction of the
underlying finite element spaces. We recall that Ω = (0, 1)2. We consider a mesh T

of Ω that is composed of rectangular elements T , with sides parallel to the coordinate
axes, such that

Ω̄ =
⋃

T∈T

T and |Ω| =
∑

T∈T

|T |.

The mesh T is assumed to be conforming or compatible. We denote by NT the
number of degrees of freedom of the partition T , and given T ∈ T , we define hi

T as
the length of T in the i-th direction, where i = 1, 2.

Since we will be working with anisotropic discretizations that do not satisfy the
standard shape regularity condition [12, 21], we assume the following weak shape

regularity condition [17, 36]: there exists a constant σ > 1 such that, if T, S ∈ T are
neighboring elements, then

hi
T (h

i
S)

−1 ≤ σ, i = 1, 2. (3.1)

We define the finite element space V(T ) by

V(T ) =
{

wT ∈ C0(Ω) : wT |T ∈ Q1(T ) ∀T ∈ T , wT |∂Ω = 0
}

, (3.2)

where, for an element T , the set Q1(T ) denotes the space of polynomials of degree
not larger than one in each variable.

The Galerkin approximation of the solution to (1.3) is given by the unique function
yT ∈ V(T ) that solves the discrete problem

B(yT , vT ) = (f + u, vT )L2(Ω) ∀ vT ∈ V(T ), (3.3)

where B is defined by (2.2).
The discretization and analysis developed in [17, 18] for the state equation (1.3)

differs whether b ≡ 0 or b 6≡ 0. Therefore, we proceed to review and analyze each
approximation scheme separately.
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3.1. The reaction-diffusion state equation. In this case the state equation
is (1.4) and then the bilinear form B, defined by (2.2), is continuous and coercive on
Y × Y with constants that do not depend on ε. For convenience, we will consider
c ≡ 1 in (1.4). Then, invoking Galerkin orthogonality [12, 21] we deduce that

‖y− yT ‖ε ≤ ‖y− wT ‖ε ∀wT ∈ V(T ). (3.4)

Consequently, the numerical analysis of (1.4) reduces to a result in approximation
theory: the distance between y and yT is bounded by the best approximation error in
the finite element space with respect to the ε-norm. To bound such an approximation
error it is standard to consider wT = ΠT y in (3.4), where ΠT denotes a suitable
interpolation operator, and then invoke interpolation error estimates, which in turn
rely on the fact that y typically exhibits sharp boundary layers of width O(ε| log ε|)
along the boundary ∂Ω. To approximate efficiently such a singular behavior, we
consider the graded mesh introduced in [17] as a realization of T . In fact, let h, γ ∈
(0, 1) be fixed. We consider a partition {ξi}

M
i=0 of the interval [0, 12 ] given by

ξ0 = 0, ξ1 = h1/(1−γ), ξi+1 = ξi + hξγi for j = 1, . . .M − 2, ξM = 1
2 , (3.5)

where M is such that ξM−1 < 1
2 , ξM−1 + hξγM−1 ≥ 1

2 and ξM = 1
2 . If 1

2 − ξM−1 <

ξM−1 − ξM−2 the definition of ξM−1 is modified as follows: ξM−1 = (12 + ξM−2)/2.
Invoking symmetry we define a graded partition on [ 12 , 1]. Collecting this two meshes
we obtaining a partition {ξi}

2M
i=0 of [0, 1]. We then define a graded mesh T = {Tij}

2M
i,j=1

based on the rectangular elements Tij = [ξi−1, ξi] × [ξj−1, ξj ]. Figure 3.1 shows an
example of this type of meshes. We remark that the family of meshes {T } satisfies
the weak regularity condition (3.1) with a constant σ = 2γ .
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Fig. 3.1. The left panel shows a graded meshes T constructed on the basis of (3.5) with
γ = 0.75. The number of degrees of freedom is NT = 2916. The center panel presents a zoom of
the graded mesh near to the origin and the right panels shows a zoom near to (1, 1).

Remark 3.1 (ε-independent mesh). The graded mesh defined by (3.5) is ε-
independent. Computationally, this property has the advantage that one graded
mesh solves efficiently (3.3) for a whole range of perturbation parameters. This is
a property that Shishkin meshes do not have; see [20, Section 5].

We now consider the finite element space V(T ) on these graded meshes. Under
this setting, referece [17] provides a quasi-interpolation operator ΠT which is built
on local averages over stars and has optimal approximation properties on anisotropic
meshes; the theory has been recently extended to a Muckenhoupt weighted Sobolev
space setting [36]. Then, these results, in view of (3.4), allow us to control ‖y− yT ‖ε.
To state the precise estimate, we introduce the following notation: we say that φ
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satisfies (3.6) if

φ ∈ C2([0, 1]2) and φ(0, 0) = φ(1, 0) = φ(0, 1) = φ(1, 1) = 0. (3.6)

Then, if u and f satisfy (3.6) and 1
2 ≤ γ < 1, we have that

‖y − yT ‖ε . | logNT |N
−1/2
T

, (3.7)

where the hidden constant is independent of ε and NT ; see [17, Corollary 4.5]. We
remark that (3.7) is called quasi-optimal because of the logarithmic term | logNT |.
Notice that, up to this logarithmic factor, the estimate (3.7) is the same as the one
obtained with uniform refinement for the approximation of a smooth solution. We
conclude with the following quasi–optimal estimate in the L2–norm [20, Corollary
4.9]. If 3

4 ≤ γ < 1, then

‖y − yT ‖L2(Ω) . log
(

1
ε

)1/2
| logNT |2N−1

T
, (3.8)

where the hidden constant is independent of ε and NT . We remark that the derivation
of (3.8) is non–trivial and involves fine results in analysis such as weighted-Poincaré
inequalities and the use of the Hardy–Littlewood maximal function; see [20] for details.

3.2. Convection–reaction–diffusion equation. In this subsection, we con-
sider the graded finite element approximation developed in [17] for the convection–
reaction–diffusion equation (2.1). We start by commenting that, since the bilinear
form (2.2) is not uniformly continuous with respect to the parameter ε, the standard
finite element theory based on Cea’s Theorem cannot be applied. However, [18] hinges
on the explicit behavior of the solution to (1.3) and provide optimal interpolation es-
timates, which are the basis to obtain a priori nearly-optimal error estimates. We
review this theory in what follows.

From now on, and following [18, 19], we assume that b = (b1, b2) is a constant
vector such that bi < −δ for i = 1, 2 and δ > 0. Then, the solution to (1.3) presents
a boundary layer of width O(ε2| log ε|) at the outflow boundary {(x, y) ∈ Ω : x =
0 or y = 0}. In order to design a graded scheme that captures such a singular behavior,
we proceed as follows [18]. Given a parameter h ∈ (0, 1), we define a partition {ξi}

M
i=0

of the interval [0, 1] based on the mesh–points

ξ0 = 0, ξ1 = hε2, ξi+1 = ξi + hξi for j = 1, . . .M − 2, ξM = 1, (3.9)

where M is such that ξM−1 < 1 and ξM−1 + hξγM−1 ≥ 1. If 1− ξM−1 < ξM−1 − ξM−2

the definition of ξM−1 is modified as follows: ξM−1 := (1 + ξM−2)/2. We then
define a graded mesh T = {Tij}

2M
i,j=1 where each rectangle Tij is defined by Tij =

[ξi−1, ξi]× [ξj−1, ξj ]. Figure 3.2 shows an example of this type of meshes.

We consider a family of finite element spaces defined by (3.2) on the graded
meshes constructed on the basis of (3.9). We now present the error estimates derived
in [18, 19]. To state these estimates appropriately, we introduce the following notation:
we say that φ satisfies (3.10) if







φ ∈ C4((0, 1)2), φ(0, 0) = φ(1, 0) = φ(0, 1) = φ(1, 1) = 0,
∂i+jφ

∂xi
1∂x

j
2

(1, 1) = 0, for 0 ≤ i+ j ≤ 2,
(3.10)
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Fig. 3.2. The left panel shows a graded mesh T constructed on the basis of (3.5) with ε2 =
10−4. The number of degrees of freedom is NT = 1156. The right panel presents a zoom of the
mesh near to the origin.

Then, if f and u satisfy (3.10), we have the following quasi-optimal error estimate [18,
Corollary 2.3]:

‖y − yT ‖ε . log 2
(

1
ε2

)

N
−1/2
T

,

where the hidden constant is independent of ε and NT . In addition, we present the
following quasi-optimal estimate in the L2-norm [19, Corollary 3.7]:

‖y− yT ‖L2(Ω) . log 5
(

1
ε2

)

N−1
T

,

where again the hidden constant is independent of ε and NT .

4. Discretization of the optimal control problem. The goal of this section
is to propose and analyze a simple and efficient numerical strategy to solve the optimal
control problem (1.2)–(1.3): a fully discrete scheme that discretizes the optimal control
and state with standard piecewise bilinear finite elements on the anisotropic meshes
described in Sections 3.1 and 3.2, depending on the corresponding singularly perturbed
equation. To be concrete, we consider the following fully discrete scheme: Find

min J(yT , uT ) (4.1)

subject to the discrete singularly perturbed equation

yT ∈ V(T ) : B(yT , vT ) = (f + uT , vT )L2(Ω) ∀ vT ∈ V(T ), (4.2)

and uT ∈ V(T ). We recall that B is defined by (2.2).
We denote by (ȳT , ūT ) ∈ V(T ) × V(T ) the optimal pair solving (4.1)–(4.2).

We define the discrete control–to–state operator ST : V(T ) → V(T ), which given
uT ∈ V(T ), it associates a unique discrete state yT (uT ) = ST uT solving (4.2).
With this operator at hand, we define the discrete and reduced cost functional by

fT (uT ) = J(ST uT , uT ) =
1

2
‖ST uT − yd‖

2
L2(Ω) +

λ

2
‖uT ‖2L2(Ω). (4.3)

We define the discrete adjoint state pT = pT (uT ) as the unique solution to

pT ∈ V(T ) : B(qT , pT ) = (yT − yd, qT )L2(Ω) ∀qT ∈ V(T ). (4.4)

We now state the existence and uniqueness of the discrete optimal control together
with the necessary and sufficient optimality conditions for problem (4.1)–(4.2).

Theorem 4.1 (existence, uniqueness and optimality system). The fully discrete

optimal control problem (4.1)–(4.2) has a unique optimal solution (ȳT , ūT ) ∈ V(T )×
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V(T ). The optimality system











ȳT (ūT ) ∈ V(T ) solution to (4.2),

p̄T (ūT ) ∈ V(T ) solution to (4.4),

λūT + p̄T = 0,

(4.5)

hold. These conditions are necessary and sufficient.

As in the continuous case described in Section 2, we eliminate the discrete control
uT ∈ V(T ) from (4.5) and rewrite the optimality conditions as follows:

{

λB(ȳT , vT ) + (p̄T , vT )L2(Ω) = λ(f, vT )L2(Ω) ∀ vT ∈ V(T ),
B(qT , p̄T )− (ȳT , qT )L2(Ω) = −(yd, qT )L2(Ω) ∀ qT ∈ V(T ).

(4.6)

We now construct suitable finite element spaces V(T ) that will be essential to
design an efficient solution technique to compute the solution to the discrete system
(4.6). Since the discretization and analysis for the state equation (1.3) differs of the
one for the reaction-diffusion equation (1.4), we analyze each case separately.

4.1. Reaction–diffusion equation. In this subsection we present a numerical
technique to solve the optimal control problem composed by (1.2) and the state equa-
tion (1.4). In addition, we provide a complete quasi-optimal priori error analysis in
both the energy and the L2–norm. For convenience, we will consider c ≡ 1 in (1.4).

4.1.1. Energy estimates. The a priori error analysis in the energy norm relies
on a standard Galerkin approximation technique: the distance between (ȳ, p̄) and
(ȳT , p̄T ) is bounded by the best approximation error in the finite element space. To
estimate such an approximation error we will invoke results in interpolation theory
that rely on suitable pointwise estimates for the solution (ȳ, p̄) to (2.7).

If a function φ is such that

∣

∣

∣

∣

∂kφ

∂xk
i

(x1, x2)

∣

∣

∣

∣

≤ C
(

1 + ε−k
(

e−xi/ε + e−(1−xi)/ε
))

, (4.7)

for i = 1, 2 and 0 ≤ k ≤ 4, we say that φ satisfies (4.7). Under the assumption
that f and u satisfy (3.6), these pointwise estimates are derived for the solution y to
the reaction–diffusion equation (1.4) in [31, Lemmas 2.1–2.5] and [33, Lemma 4.1].
We now proceed to derive the pointwise estimates (4.7) for the solution (ȳ, p̄) to the
coupled PDE system (2.7).

Theorem 4.2 (pointwise estimates). Let (ȳ, p̄) be the unique solution to (2.7).
If f and yd satisfy (3.6), then ȳ and p̄ verify the pointwise estimates (4.7).

Proof. We start by writing the second equation of (2.7) as follows:

B(q, p̄) = (ȳ − yd, q)L2(Ω) ∀q ∈ Y.

Standard elliptic regularity immediately yields p̄ ∈ H2(Ω) ∩ H1
0 (Ω), which in turn

implies that p̄ ∈ Cα(Ω̄) for α ∈ (0, 1); see [23, Corollary 7.11]. We now write the first
equation of (2.7) as follows:

B(ȳ, v) = (f − p̄/λ, v)L2(Ω) ∀v ∈ Y.

Since f − p̄/λ ∈ Cα(Ω̄) for α ∈ (0, 1), an application of Theorem 1.2 in [41, Part III]
allows us to conclude that ȳ ∈ C2(Ω)∩C(Ω̄). Given the structure of (1.4), the previous
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result can be improved by invoking the results of [23, 24, 45]: y ∈ C2,α(Ω)∩C1,α(Ω̄);
see also [41, Part III]. Now, recalling that ȳ−yd = 0 on the vertices of Ω̄, we conclude,
on the basis of [38, Theorem 2.1], that p ∈ C4(Ω) ∩ C2(Ω̄); see also [24, 32, 33, 45].
Invoking the pointwise estimates derived for the solution to the singularly perturbed
reaction-diffusion problem (1.4) in [31, Lemmas 2.1–2.5] and [33, Lemma 4.1], we
deduce that p̄ satisfies (4.7). Finally, since p̄ and f satisfy (3.6), the same pointwise
estimates hold for ȳ. This concludes the proof.

Remark 4.3 (regularity of the optimal control). The arguments developed in
the proof of Theorem 4.2, in conjunction with the relation λū + p̄ = 0, immediately
yield the following regularity result for the optimal control: u ∈ C4(Ω) ∩ C2(Ω̄).

The pointwise estimates (4.7) satisfied by ȳ and p̄ allow us to obtain the weighted
a priori estimates derived in [17, Lemmas 4.1–4.3], which together with the anisotropic
interpolation estimates developed in [17, Section 3] yield a quasi-optimal a priori error
estimate in the energy norm. Before elaborating on this, let us comment about the
family of meshes yielding quasi-optimality of our graded solution technique.

Remark 4.4 (graded–mesh for the optimality system). The functions ȳ and p̄

solve a singularly perturbed reaction–diffusion equation. Consequently, they will typ-
ically exhibit the same singular behavior: sharp boundary layers of width O(ε| log ε|)
along the boundary ∂Ω. Therefore, the graded mesh based on (3.1) is the appropri-
ate refinement law that yields the quasi-optimality of our graded solution technique
approximating the system (2.7); see Theorem 4.5.

Theorem 4.5 (quasi-optimal a priori error estimate in energy norm). Let (ȳ, p̄) ∈
Y × Y and (ȳT , p̄T ) ∈ V(T ) × V(T ) be the unique solutions to (2.7) and (4.6),
respectively. Then, we have the following a priori error estimate

λ‖ȳ − ȳT ‖ε + ‖p̄− p̄T ‖ε . | logNT |N
−

1
2

T
, (4.8)

where the hidden constant is independent of ε and NT .

Proof. Define eȳ = ȳ− ȳT and ep̄ = p̄− p̄T . We write the systems (2.7) and (4.6)
as single equations. Subtracting these derived equations and invoking the definition
of A, given by (2.8), we arrive at the following Galerkin orthogonality property:

A ((eȳ, ep̄), (vT , qT )) = 0 ∀ (vT , qT ) ∈ V(T )× V(T ). (4.9)

Invoking again the definition of the bilinear form A and exploiting (4.9), we obtain

λ‖ȳ− ȳT ‖2ε + ‖p̄− p̄T ‖2ε = λB(eȳ, eȳ) + B(ep̄, ep̄) = A ((eȳ, eȳ), (ep̄, ep̄))

= A ((eȳ, ȳ − vT ), (ep̄, p̄− qT ))

. ‖eȳ‖ε‖ȳ− vT ‖ε + ‖ep̄‖ε‖p̄− qT ‖ε,

which, together with Young’s inequality yields

λ‖ȳ − ȳT ‖ε + ‖p̄− p̄T ‖ε . inf
vT ∈VT

λ‖ȳ− vT ‖ε + inf
qT ∈VT

‖p̄− qT ‖ε.

Let us estimate infvT ∈VT
λ‖ȳ − vT ‖ε, the estimate of infqT ∈VT

‖p̄− qT ‖ε being
similar. We bound this best approximation error by using the Q1-quasi interpolation
operator analyzed in [17, 36]: infvT ∈VT

‖ȳ− vT ‖ε ≤ ‖ȳ−ΠT ȳ‖ε. We now invoke the
pointwise estimates for ȳ derived in Theorem 4.2 to obtain the weighted estimates of
[17, Lemmas 4.1–4.3]. These estimates, in conjunction with the anisotropic estimates
of [17, Theorem 4.4] on the family of graded meshes {T }, defined in Section 3.1, yield

‖ȳ−ΠT ȳ‖ε . | logNT |N
−1/2
T

.

The hidden constant is independent of ε and NT . This concludes the proof.
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4.1.2. L2 estimates. In this subsection, we follow [20] and derive a quasi–
optimal a priori error analysis in the L2–norm. We start with the following estimates.

Lemma 4.6 (auxiliary estimates). Let (ȳ, p̄) be the solution to (2.7) with data f

and yd satisfying (3.6). If γ, defining the graded mesh (3.5), satisfies γ ∈ [ 34 , 1], then

∣

∣

∣

∣

ε2
ˆ

Ω

∇(ȳ −ΠT ȳ) · ∇vT

∣

∣

∣

∣

+

∣

∣

∣

∣

ε2
ˆ

Ω

∇(p̄− ΠT p̄) · ∇vT

∣

∣

∣

∣

. log
(

1
ε

)
1
2 | logNT |2N−1

T
‖vT ‖ε, (4.10)

and
∣

∣

∣

∣

ˆ

Ω

(ȳ −ΠT ȳ)vT

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

Ω

(p̄−ΠT p̄)vT

∣

∣

∣

∣

. log
(

1
ε

)
1
2 | logNT |2N−1

T
‖vT ‖ε, (4.11)

for all vT ∈ V(T ). In these estimates ΠT denotes the Lagrange interpolation opera-

tor, and the hidden constants are independent of ε and NT .

Proof. Since ȳ and p̄ satisfy the pointwise estimates (4.7), we apply [20, Lemma
3.1] to deduce some suitable weighted estimates for ȳ and p̄. These estimates are
the key ingredients in the derivation of the desired estimates (4.10) and (4.11), which
follow from an application of [20, Lemmas 4.5 and 4.6].

With the help of estimates (4.10) and (4.11), we are able to derive a quasi-optimal
a priori error analysis in the L2–norm. To present it, we prove the following auxiliary
error estimate that is instrumental in the analysis.

Lemma 4.7 (auxiliary error estimate). Let (ȳT , p̄T ) be the unique solution to

(4.6). If f and yd satisfy (3.6), then we have the following error estimate

λ‖ȳT −ΠT ȳ‖ε + ‖ȳT −ΠT ȳ‖ε . log
(

1
ε

)
1
2 | logNT |2N−1

T
, (4.12)

for all vT ∈ V(T ). In these estimates ΠT denotes the Lagrange interpolation opera-

tor, and the hidden constants do not depend on ε and NT .

Proof. We start by using the definition of the bilinear forms A and B, given by
(2.8) and (2.2), respectively, to derive

λ‖ȳT −ΠT ȳ‖2ε + ‖p̄T −ΠT p̄‖2ε

= λB(ȳT −ΠT ȳ, ȳT −ΠT ȳ) + B(p̄T −ΠT p̄, p̄T −ΠT p̄)

= A((ȳT −ΠT ȳ, p̄T − ΠT p̄), (ȳT −ΠT ȳ, p̄T −ΠT p̄))

= A((ȳ −ΠT ȳ, p̄−ΠT p̄), (ȳT −ΠT ȳ, p̄T −ΠT p̄)).

where in the last inequality we have used the Galerkin orthogonality property (4.9):
A((eȳ, ep̄), (ȳT − ΠT ȳ, p̄T − ΠT p̄)) = 0. Therefore, the estimate (4.12) follows by
using (4.10) and (4.11) with vT = ȳT −ΠT ȳ and vT = p̄T −ΠT p̄ accordingly. This
concludes the proof.

Theorem 4.8 (quasi-optimal interpolation error estimate in the L2–norm). Let

(ȳ, p̄) be the solution to (2.7) and ΠT be the Lagrange interpolation operator. If the

grading parameter γ in (3.5) satisfies γ ∈ [ 34 , 1] and f and yd verify (3.6), then

‖ȳ −ΠT ȳ‖L2(Ω) + ‖p̄−ΠT p̄‖L2(Ω) . log(1ε )
1
2 | logNT |2N−1

T
, (4.13)

where the hidden constant is independent of ε and NT .
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Proof. The key pointwise estimates derived in Theorem 4.2 yields the weighted
estimates derived in [20, Lemma 3.1]. These estimates in conjunction with [20, Lemma
4.1], which only requires to have a function in H2((0, 1)2), are the main ingredients
to derive the quasi-optimal interpolation error estimate (4.13) via an application of
[20, Theorem 4.4.].

We conclude with the following quasi-optimal a priori error estimate in the L2–
norm for the optimal control variables ȳ and p̄.

Theorem 4.9 (quasi-optimal a priori error estimate in the L2–norm). Let (ȳ, p̄) ∈
Y × Y and (ȳT , p̄T ) ∈ V(T ) × V(T ) be the unique solutions to (2.7) and (4.6),
respectively. Then, we have the following error estimate

λ‖ȳ − ȳT ‖L2(Ω) + ‖p̄− p̄T ‖L2(Ω) . log(1ε )
1
2 | logNT |2N−1

T
, (4.14)

where the hidden constant does not depend on ε and NT .

Proof. The estimate (4.14) follows as a trivial application of the triangle inequality
and Lemma 4.7 and Theorem 4.8.

Remark 4.10 (quasi optimal error estimate: advantages and disadvantages).
Theorems 4.5 and 4.9 show quasi-optimal error estimates in terms of approximation.
Since the optimal variables ȳ and p̄ have the same singular behavior on ∂Ω, the graded
mesh described in Section 3.1 for a single singularly perturbed equation (1.4) dictates
the appropriate refinement technique to obtain the optimality of the proposed graded
scheme (4.5). The main disadvantage of the latter is that is valid under a tensor
product structure of the domain Ω and that relies on strong regularity assumptions
on f and yd; see condition (3.6).

4.2. Convection–reaction–diffusion equation. In this subsection we design
an efficient solution technique to approximate the solution to the optimal control
problem (1.2)–(1.3). To do this, we recall that in Section 3.2 we have assumed that
b = (b1, b2) with bi < −δ for i = 1, 2 and δ > 0.

To approximate the optimal control problem (1.2)–(1.3), we rewrite the optimality
conditions as the system of PDE (2.7). To design an efficient technique to approximate
such a system, it is essential to realize the structure of the adjoint equation:

−∆p− b · ∇p+ cp = y − yd,

i.e., it is a linear convection–reaction-diffusion equation with a convective term that
is the negative of the one appearing in the state equation (1.3). As a consequence of
the assumptions on the vector field b, the solution p to the adjoint equation exhibit
a boundary layer of width O(ε2| log ε|) at {(x, y) ∈ Ω : x = 1 or y = 1}. Inspired in
[18], we now design a graded mesh to capture the singular behavior of the optimal
variables ȳ and p̄ solving (2.7). Given a parameter h ∈ (0, 1), we construct a partition
{ξi}

M
i=0 of the interval [0, 12 ] with mesh–points:

ξ0 = 0, ξ1 = hε2, ξi+1 = ξi + hξi for j = 1, . . .M − 2, ξM = 1/2, (4.15)

where M is such that ξM−1 < 1
2 and ξM−1+hξM−1 ≥ 1

2 . If
1
2 − ξM−1 < ξM−1− ξM−2

we consider ξM−1 = (12 + ξM−2)/2. We now invoke symmetry to define a partition on
[ 12 , 1], thereby obtaining a partition {ξi}

2M
i=0 of [0, 1]. With this setting, we construct

a graded mesh T = {Tij}
2M
i,j=1 where each rectangular element Tij = [ξi−1, ξi] ×

[ξj−1, ξj ]. Figure 4.1 shows an example of this type of meshes.
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Fig. 4.1. The left panel shows a graded mesh T constructed on the basis of (3.9) with ε = 10−4.
The number of degrees of freedom is NT = 18496. The center panel presents a zoom of the graded
mesh near to the origin and the right panel shows a zoom near to (1, 1).

4.2.1. Convergence. To derive an a priori error analysis in both the energy
and the L2–norm we could follow similar arguments to the ones developed in Section
4.1 and [18, 19]. In fact, following the analysis presented in [18] for the state equation
(1.3), the first step is the derivation of suitable pointwise estimates for ȳ and p̄ (see [19,
inequality (1.3)]). However, the derivation of these estimates requires strong regularity
assumptions on ȳ and ū which, in principle, could be unrealistic. In what follows, we
show convergence of our graded-scheme, without rates, by invoking Γ–convergence
techniques [8, 15].

To avoid irrelevant technicalities let us here assume that f ≡ 0. In this setting
S is linear. Before starting with the convergence analysis, we remark that the family
of discrete control–to–state operators {ST } is uniformly bounded in B(L2(Ω)). In
addition, since the error estimates are valid for right–hand sides that range over a
dense subset of L2(Ω), we obtain the pointwise convergence of these operators to S.
Similar conclusions hold for the family {S∗

T
}.

We now show the convergence of the fully discrete scheme (4.6).
Theorem 4.11 (convergence). The sequence {ūT } is uniformly bounded. In

addition, {ūT } contains a subsequence that converges strongly to ū in L2(Ω).
Proof. Since ūT minimizes the reduced cost functional fT , defined by (4.3), we

deduce that {ūT } is uniformly bounded. Now, if u0 ∈ L2(Ω) and ΠT denotes the
quasi-interpolation operator of [17, 36], the uniform boundedness of both families
{ΠT } and {ST } yield fT (ūT ) ≤ fT (ΠT u0) . ‖u0‖L2(Ω) + ‖yd‖L2(Ω). This implies
the existence of a weakly convergent subsequence. We proceed to invoke the theory
of Γ–convergence and prove that this subsequence converges to ū. To acomplish this
task, we follow [15] and verify some suitable assumptions.

(a.1) Let us assume that uT ⇀ u in L2(Ω) and observe that

(ST uT − Su, v)L2(Ω) = (ST u− Su, v)L2(Ω) + (ST (uT − u), v)L2(Ω)

for v ∈ L2(Ω). The pointwise convergence of {ST } to S implies that (ST u−
Su, v)L2(Ω) → 0, while the pointwise convergence of the sequence {S∗

T
} shows

that (ST (uT −u), v)L2(Ω) = (uT −u,S∗

T
v)L2(Ω) → 0. Consequently ST uT ⇀

Su. Invoking the lower semicontinuity property of the norms, we derive that

f(u) ≤ lim inf fT (uT ),

where f denotes the reduced cost functional defined in (2.4).
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(a.2) Let u ∈ L2(Ω), then ΠT u → u in L2(Ω). This implies that ST ΠT u → Su in
L2(Ω) as well. Then, the continuity of fT yields

f(u) ≥ lim sup fT (ΠT u).

(a.3) Given that fT (uT ) ≥ λ
2 ‖uT ‖2L2(Ω), [15, Proposition 7.7] implies that the

family {fT } is equicoercive.
Properties (a.1) and (a.2) imply the Γ–convergence of fT to f , which implies

that minimizers of fT , if they converge, must do so to a minimizer of f [15, Corollary
7.20]. Property (a.3) and the uniqueness of the minimizer of the reduced cost f are
the conditions for the Lemma of Γ–convergence [15, Corollary 7.24]: {ūT } converges
weakly to ū. The strong convergence follow similar arguments to the ones elaborated
in the proof of [8, Theorem 37].

5. Numerical examples. Here we explore computationally the performance
of the proposed solution scheme to solve the optimal control (1.2)–(1.3). With the
graded schemes introduced in Section 4, we solve (4.6) and explore several test cases.
In addition, we compare our solution technique with a combined method that involves
adaptivity and stabilized schemes. Computationally, we observe a competitive per-
formance of our method in terms of accuracy. We also observe optimal experimental
rates of convergence in both the energy and the L2(Ω)–norm. The pollution effect
discussed in [25] is not observed. This is due to the fact that the boundary layers
are appropriately approximated. Let us finally remark that the computational imple-
mentation of the proposed scheme is simpler than implementing adaptive stabilized
procedures, but it relies on the a priori knowledge of the boundary layers.

We recall the finite element discretization of the coupled system (2.7) introduced
in Section 4: Find (ȳT , p̄T ) ∈ V(T )× V(T ) such that

{

λB(ȳT , vT ) + (p̄T , vT )L2(Ω) = λ(f, vT )L2(Ω) ∀ vT ∈ V(T ),
B(qT , p̄T )− (ȳT , q)L2(Ω) = −(yd, qT )L2(Ω) ∀ qT ∈ V(T ),

where the data yd and f satisfy (3.6) in the case that b ≡ 0. We design the graded
meshes on the basis of (3.5) and (4.15) depending on the considered state equation.
This solution technique is implemented with the help of a code that we implemented
using C++. In all our numerical examples the domain is Ω = (0, 1)2, and the regularized
parameter is λ = 1. The stiffness matrix of this discrete system is assembled exactly.
The forcing terms and the approximation errors are computed by a quadrature formula
which is exact for polynomials of degree 10. The resulting linear system is solved by
using the multifrontal massively parallel sparse direct solver (MUMPS) [5, 6].

We now proceed to explore and examine several numerical examples.

5.1. Reaction–diffusion equation: double boundary layer test. The pur-
pose of this numerical example is to show how a standard Q1–finite element technique
based on the graded meshes (3.5) solves efficiently the coupled system (2.7) when (1.4)
is considered as state equation. We set γ = 0.75 in (3.5) and c = 1 in (1.4). We design
the numerical experiment such that the optimal variables ȳ and p̄ exhibit boundary
layers on ∂Ω. To do that, we consider the data yd and f such that:

ȳ = x2(1−x2)

(

1− x1 −
e−

x1
ε2 − e−

1
ε2

1− e−
1
ε2

)

, p̄ = x1(1−x1)

(

1− x2 −
e−

x2
ε2 − e−

1
ε2

1− e−
1
ε2

)

.

The optimal state variable ȳ presents a singular behavior at {(x1, x2) ∈ ∂Ω : x1 =
0}. Meanwhile, the optimal adjoint state p̄ exhibits a boundary layer at {(x1, x2) ∈
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∂Ω : x2 = 0}. The asymptotic relations ‖ȳ − ȳT ‖ε ≈ N
−1/2
T

and ‖p̄− p̄T ‖ε ≈ N
−1/2
T

are shown in Figure 5.1. This illustrates the quasi-optimal decay rate, in the energy
norm, of our graded solution technique for all choices of the parameter ε considered.
We also report the asymptotic relation ‖ȳ−ȳT ‖L2(Ω) ≈ N−1

T
and ‖p̄−p̄T ‖L2(Ω) ≈ N−1

T
,

which are optimal in terms of approximation. We conclude computational robustness
of our technique with respect to the parameter ε.

10
2

10
4

10
6

10
−6

10
−4

10
−2

Ndofs

 

 

‖p̄− p̄T ‖L2(Ω)
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Fig. 5.1. Example 1: Computational rates of convergence for our graded solution technique
in the L2–norm (top) and in the energy–norm (bottom) with respect to the number of degrees of
freedom (DOFs). The values of the parameter ε2 considered are: 10−2, 10−4 and 10−6. The graded
meshes are based on (3.5) with γ = 0.75. In all cases we recover optimal rates of convergence.

In Figure 5.2, we present the numerical approximation of both the optimal state
ȳ and the optimal adjoint state p̄. To obtain them, we have considered a standard Q1

finite element method on the graded meshes based on (3.5) with NT = 192721 and
ε2 = 10−6.

5.2. Convection–reaction–diffusion equation: double boundary layer

test. In this second numerical example we explore the use of the graded meshes
based on (4.15) to approximate the solution to the optimal control problem (1.2)–
(1.3). We consider a convection–reaction–diffusion equation as a state equation: we
set b = (−1,−1) and c = 1 in (1.3). In addition, we consider a suitable data yd and f

such that the optimal variables ȳ and p̄ both have boundary layers. In fact,

ȳ =

(

1− x1 −
e−

x1
ε2 − e−

1
ε2

1− e−
1
ε2

)(

1− x2 −
e−

x2
ε2 − e−

1
ε2

1− e−
1
ε2

)

,

p̄ =

(

x1 −
e−

(1−x1)

ε2 − e−
1
ε2

1− e−
1
ε2

)(

x2 −
e−

(1−x2)

ε2 − e−
1
ε2

1− e−
1
ε2

)

.
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p̄T

Fig. 5.2. Example 1: We present the discrete optimal adjoint state p̄T (left) and the discrete
optimal state ȳT (right) approximating the optimal variables that solve the optimal control problem
(1.2)-(1.3). We consider b = 0, c = 1 and ε2 = 10−6. The number of degrees of freedom is
NT = 192721.

The optimal state ȳ presents a boundary layer at {(x1, x2) ∈ ∂Ω : x1 = 0 and x2 = 0}.
Meanwhile the optimal adjoint state p̄ at {(x1, x2) ∈ ∂Ω : x1 = 1 and x2 = 1}. We
remark that that this situation represents a more complicated scenario to the one
considered in Section 5.1: the region where one optimal variable is smooth corresponds
to a sector where the other optimal variable exhibit a singular behavior. This leads to
the challenge of capturing efficiently and robustly both solutions. Our graded solution
technique does not present the pollution effect discussed in [25], which is due to the
fact that the boundary layers are appropriately approximated.
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‖ȳ − ȳT ‖L2(Ω)

DOFs−1

Example 2 - ε2 = 10−2

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

Ndofs

 

 

‖p̄− p̄T ‖L2(Ω)
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‖ȳ − ȳT ‖ε
DOFs−1/2

Example 2 - ε2 = 10−6

Fig. 5.3. Example 2: Computational rates of convergence for our graded solution technique
in the L2–norm (top) and in the energy–norm (bottom) with respect to the number of degrees of
freedom (DOFs). We consider b = (−1,−1) and c = 1 in (1.3). The values of the parameter ε2

considered are: 10−2, 10−4 and 10−6. The graded meshes are based on (4.15). In all cases we
recover optimal rates of convergence.
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In Figure 5.3, we present the computational rates of convergence for the error
approximating the optimal variables in the energy and in the L2–norm. We consider
different values of the parameter ε2: 10−2, 10−4 and 10−6. For both norms, our
method delivers optimal rates of convergence. We also conclude robustness of our
graded technique with respect to the parameter ε2.

In Figure 5.4, we show the numerical approximation of both optimal variables ȳ
and p̄ obtained by using our graded technique with NT = 192721 and ε2 = 10−6.

−

Fig. 5.4. Example 2: We show the discrete optimal adjoint state p̄T (left), and the discrete
optimal state ȳT (right) approximating the optimal variables solving the optimal control problem
(1.2)-(1.3) with b = (−1,−1), c = 1 and ε2 = 10−6. The number of degrees of freedom is NT =
44100.

5.3. Convection–reaction–diffusion equation: single interior layer test.

Here, we explore the performance of our method by solving the optimal control prob-
lem (1.2)–(1.3) with b = (1, 0) and c = 1 in (1.3) . We remark that under this setting
our theoretical results can not be applied: the optimal adjoint state p̄ exhibits an
interior layer. We consider a smooth solution as optimal state variable ȳ, and study
computationally if any pollution effect occurs. To do this, we set

ȳ = x1x2(1− x1)(1− x2), p̄ = x1x2(1− x1)(1 − x2)tg
−1

(

x1 −
1
2

ε2

)

.

as the exact solution to (2.7). The adjoint variable p̄ present an interior layer on the
line x1 = 0.5.

The asymptotic relations ‖ȳ−ȳT ‖ε ≈ N
−1/2
T

, ‖p̄−p̄T ‖ε ≈ N
−1/2
T

, ‖ȳ−ȳT ‖L2(Ω) ≈

N−1
T

and ‖p̄− p̄T ‖L2(Ω) ≈ N−1
T

are shown in Figure 5.5. We conclude that in this case,
which is not is not covered by our theoretical results, we again recover optimality of
our method. This also exhibits robustness with respect to the perturbation parameter
ε. We remark that the pollution effect discussed in [25] is not observed. In Figure
5.6, we present the numerical approximations ȳT and p̄T of both optimal variables
ȳ and p̄, respectively. They were obtained using our graded solution technique based
on the graded mesh (4.15) with ε2 = 10−6. The number of degrees of freedom is
NT = 192721.

5.4. Graded scheme and an adaptive stabilized scheme. The purpose of
this section is to compare our proposed numerical technique with an adaptive stabi-
lized scheme. Stabilized finite element methods have being proposed to improve the
stability properties of the pure Galerkin method and to reduce its oscillatory behavior
at solving a convection–reaction–diffusion equation [27, 39, 41]. These techniques have
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‖ȳ− ȳT ‖ε
DOFs−1/2

Example 3 - ε2 = 10−4

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

Ndofs

 

 

‖p̄− p̄T ‖ε
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Fig. 5.5. Example 3: Computational rates of convergence for our graded solution technique in
the L2–norm (top) and in the energy–norm (bottom) with respect to the number of degrees of freedom
(DOFs). We consider b = (1, 0) and c = 1 in (1.3). The values of the parameter ε2 considered are:
10−2, 10−4 and 10−6. The graded meshes are based on (4.15). In all cases we recover optimal rates
of convergence.

replacemen

Fig. 5.6. Example 3: We present the discrete optimal adjoint state p̄T (left), and the discrete
optimal state ȳT (right) approximating the optimal variables solving (2.7) with b = (1, 0), c = 1
and ε2 = 10−6. The number of degrees of freedom is NT = 192721.

been extended to solve the optimal control problem (1.2)–(1.3) [10, 25]. We review
briefly an scheme based on SUPG, which leads to the following system of equations

{

λBS(ȳT , vT ) + (p̄T , vT )S = λ(f, vT )S ∀ vT ∈ V(T ),
BS(qT , p̄T )− (ȳT , qT )S = −(yd, qT )S ∀ qT ∈ V(T ),

where each stabilized term BS and (·, ·, )S add, to the usual formulation (2.7), element
residuals; see [25, equations (2.13a)–(2-13b)]. The finite element space is given by

V(T ) =
{

W ∈ C0
(

Ω
)

: W |T ∈ P1(T ) ∀ T ∈ T , W |∂Ω = 0
}

,
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where P1 is the set of polynomials of degree one and {T } is a shape regular family
of triangulation of Ω. As it is stated in [25], the properties of the stabilized SUPG
method when is applied to the optimal control problem (1.2)–(1.3) are substantially
different from the ones observed at solving the single equation (1.3). In [25], the
authors observe optimal error estimates in the H1–norm; the discrete space V(T ) is
based on piecewise linear functions. However, the observed estimates in the L2–norm
are not optimal: O(h). This is due to the fact that the boundary layers are not
properly resolved, and then they pollute the numerical solution in the entire domain.
On the contrary, our proposed graded method delivers optimal computational rates
of convergence in both norms and no pollution effects occur.

We explore a SUPG technique combined with adaptivity. This has as a key
ingredient an a posteriori error estimator and leads to selectively refinements where
the solution is poorly resolved; see [3, 37, 44]. Recently, and in the context of optimal
control problems, reference [28] provides a general framework to obtain a posteriori
error estimators. Following Section 4 in [28] and Section 4 in [43], the following a
posteriori error bound can be derived

λ‖y − ȳT ‖ε + ‖p− p̄T ‖ε ≤ C

(

∑

T∈T

η2T

)1/2

with η2T := η2T,ȳ + η2T,p̄,

where

η2T,ȳ = min

{

hT

ε
, 1

}2
(

∥

∥ΠT (f) + λ
(

ε2∆ȳT −ΠT (b · ∇ȳT )− cȳT

)

− p̄T

∥

∥

2

L2(T )

+ ‖f −ΠT (f)− λ(b · ∇ȳT −ΠT (b · ∇ȳT ))‖
2
L2(T )

)

+
∑

E∈∂T

min

{

hE

ε2
,
1

ε

}

∥

∥λε2J∂nȳT K
∥

∥

2

L2(E)
,

and

η2T,p̄ = min

{

hT

ε2
, 1

}2
(

∥

∥−ΠT (yd) + ε2∆p̄T +ΠT (b · ∇p̄T )− cp̄T + ȳT

∥

∥

2

L2(T )

+ ‖yd −ΠT (yd) + b · ∇p̄T −ΠT (b · ∇p̄T ))‖
2
L2(T )

)

+
∑

E∈∂T

min

{

hE

ε2
,
1

ε

}

∥

∥ε2J∂nP̄T K
∥

∥

2

L2(E)
,

where ΠT denotes the L2–orthogonal projection over P1(T ). We construct an adap-
tive procedure, where refinement take place using the so–call maximum strategy: the
element T̂ is marked for refinement if

ηT̂ ≥
1

2
max
T∈T

{ηT }.

The refinement is made by using bisection [37]. Local efficiency can be established by
using standard bubble function arguments [3, 44] on the error equation. We remark
that other techniques can be applied to obtain different error estimators, which deliver
fully computable bounds and in some cases robustness [2, 4, 13, 22].

In Figure 5.7, we present the computational rates of convergence obtained by
using the proposed adaptive stabilized scheme to solve examples 2 and 3, for both:
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the energy and the L2–norm. To be precise, we consider (1.3) as state equation with
b = (−1,−1), c = 1 and ε = 10−4, and b = (1, 0), c = 1 and ε2 = 10−4, respectively.
We observe that the proposed adaptive stabilized technique recover optimal rates of
convergence, but at the expense of adding residual terms into the formulation, cal-
culating error indicators and conducting a marking/refinement procedure. In Figure
5.7, we also report the computational rates of convergence for our graded scheme,
which shows a better performance than the one using an adaptive stabilized method,
both in terms of accuracy and computational efficiency.
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‖ȳ− ȳT ‖ε-SUPG
‖p̄− p̄T ‖ε-GRADED
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‖ȳ − ȳT ‖ε-GRADED

DOFs−1/2

Example 3 - AFEM-SUPG vs GRADED

Fig. 5.7. Example 4: Computational rates of convergence in the energy (right) and the L2–
norm (left) for our graded scheme and the proposed adaptive SUPG stabilized scheme, with respect
to the number of degrees of freedom (DOFs). We consider two examples. First, we set b = (−1,−1),
c = 1 and ε = 10−4. Second, we set b = (1, 0), c = 1 and ε2 = 10−4. In all cases we recover optimal
rates of convergence. A better performance of our graded scheme is observed.

5.5. A control constrained problem. To explore the versatility of the pro-
posed graded scheme, in this section we consider a control–constrained optimal con-
trol problem that minimizes the functional (1.1) subject to the convection–reaction-
diffusion equation (1.3) and the following control constraints:

u ∈ Uad :=
{

v ∈ L2(Ω) : ua ≤ v ≤ ub a.e. in Ω
}

,

with ua < ub and ua, ub ∈ R. The existence and uniqueness follows from [42, Theorem
2.14]. In addition, the necessary and sufficient first–order optimality condition is
equivalent to the projection formula

ū = P[ua,ub]

{

−
1

λ
p̄

}

= max

{

ua,min

{

ub,−
1

λ
p̄

}}

a.e. in Ω;
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[42, Theorem 2.28]. This projection formula tells us that, in general, we can only
expect ū ∈ W 1,∞(Ω). Consequently our a priori error analysis can not be developed
due to the restricted regularity properties of the optimal control ū.

The associated optimal control problem can be written as follows:

−ε2∆ȳ + b · ∇ȳ + cȳ = f + ū in Ω, ȳ = 0 on ∂Ω

−ε2∆p̄− b · ∇p̄+ cp̄ = ȳ− yd in Ω, p̄ = 0 on ∂Ω

and

ū =







ua if λū(x) + p̄(x) < ua,
− p̄

λ if λū(x) + p̄(x) ∈ [ua, ub],
ub if λū(x) + p̄(x) > ub.

(5.1)

To solve this constrained problem, we use a primal-dual active set strategy [42,
§2.12.4], which relies on solving the following system: Find (y, p, u) such that

−ε2∆y + b · ∇y + cy − u = f, y = 0 on ∂Ω,

−ε2∆p− b · ∇p+ cp− y = −yd, p = 0 on ∂Ω,

(1− χa − χb)
p

λ
+ u = χaua + χbub,

where χa and χb are the characteristic functions of the active and inactive sets based
on (5.1). We now construct an exact solution assuming that b = 0 and c = 1. We set
the optimal adjoint state as

p̄(x1, x2) = −λx2(1− x2)E(x1, ε
2) = −λuf (x1, x2),

and the optimal control

ū(x1, x2) =







ua if uf (x1, x2) < ua,
uf (x1, x2) if uf (x1, x2) ∈ [ua, ub],
ub if uf (x1, x2) > ub,

where uf (x1, x2) = x2(1 − x2)E(x1, ε
2). In addition, we set ȳ(x1, x2) = x1x2(1 −

x1)(1− x2) and the data yd = ε2∆p̄+ b · ∇p̄− cp̄+ ȳ and f = −ε2∆ȳ+ b · ∇ȳ+ ȳ− ū.
To generate a singular behavior, we consider

E(x1, ε) = x1 −
e−(1−x1)/ε

2

− e−1/ε2

1− e−1/ε2
.

Figure 5.8 shows the computational rates of convergence for our graded method,
which solves the state and adjoint equations using the finite element space (3.2) on
the graded meshes (3.5). The optimal control is approximated within the following
finite element space

Ṽ(T ) =
{

uT ∈ L2(Ω) : uT |T ∈ R ∀T ∈ T , ua ≤ uT ≤ ub
}

,

that is based on the graded meshes (3.5). The proposed graded technique delivers
optimal rates of convergence; see Figure 5.8.
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‖ȳ − ȳT ‖L2(Ω)

DOFs−1

Example 5 - ε2 = 10−3

10
0

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

Ndofs
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Fig. 5.8. Example 5: Computational rates of convergence for our graded solution technique in
the L2–norm, with respect to the number of degrees of freedom (DOFs), when solving a constrained
optimal control problem. We consider b = (0, 0) and c = 1 in (1.3). The value of the parameter ε2

considered is 10−3. The graded meshes are based on (3.5) with γ = 0.75. In all cases we recover
optimal rates of convergence.
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[28] K. Kohls, A. Rösch, and K. G. Siebert. A posteriori error analysis of optimal control problems
with control constraints. SIAM J. Control Optim., 52(3):1832–1861, 2014.

[29] N. Kopteva and E. O’Riordan. Shishkin meshes in the numerical solution of singularly perturbed
differential equations. Int. J. Numer. Anal. Model., 7(3):393–415, 2010.

[30] D. Leykekhman and M. Heinkenschloss. Local error analysis of discontinuous Galerkin meth-
ods for advection-dominated elliptic linear-quadratic optimal control problems. SIAM J.
Numer. Anal., 50(4):2012–2038, 2012.

[31] J. Li. Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer
problem. Comput. Math. Appl., 33(10):11–22, 1997.

[32] J. Li and I. M. Navon. Uniformly convergent finite element methods for singularly perturbed el-
liptic boundary value problems. I. Reaction-diffusion type. Comput. Math. Appl., 35(3):57–
70, 1998.

[33] J. Li and M. F. Wheeler. Uniform convergence and superconvergence of mixed finite element
methods on anisotropically refined grids. SIAM J. Numer. Anal., 38(3):770–798, 2000.

[34] T. Linß. Uniform superconvergence of a Galerkin finite element method on Shishkin-type
meshes. Numer. Methods Partial Differential Equations, 16(5):426–440, 2000.

[35] G. Lube and B. Tews. Optimal control of singularly perturbed advection-diffusion-reaction
problems. Math. Models Methods Appl. Sci., 20(3):375–395, 2010.
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