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In a previous work, we introduced a discretization scheme for a constrained optimal control problem
involving the fractional Laplacian. For such a control problem, we derived optimal a priori error estimates
that demand the convexity of the domain and some compatibility conditions on the data. To relax such
restrictions, in this paper, we introduce and analyze an efficient and, under certain assumptions, reliable
a posteriori error estimator. We realize the fractional Laplacian as the Dirichlet-to-Neumann map for a
nonuniformly elliptic problem posed on a semi–infinite cylinder in one more spatial dimension. This
extra dimension further motivates the design of an posteriori error indicator. The latter is defined as
the sum of three contributions, which come from the discretization of the state and adjoint equations
and the control variable. The indicator for the state and adjoint equations relies on an anisotropic error
estimator in Muckenhoupt weighted Sobolev spaces. The analysis is valid in any dimension. On the
basis of the devised a posteriori error estimator, we design a simple adaptive strategy that exhibits optimal
experimental rates of convergence.

Keywords: linear-quadratic optimal control problem, fractional diffusion, nonlocal operators, a posteriori
error estimates, anisotropic estimates, adaptive algorithm.

1. Introduction

In this work we shall be interested in the derivation and analysis of a computable, efficient and, under
certain assumptions, reliable a posteriori error estimator for a constrained linear-quadratic optimal con-
trol problem involving fractional powers of the Dirichlet Laplace operator. To the best of our knowledge,
this is the first work that addresses this problem. To make matters precise, for n > 1, we let Ω be an
open and bounded polytopal domain of Rn with Lipschitz boundary ∂Ω . Given s ∈ (0,1), and a desired
state ud : Ω → R, we define the cost functional

J(u,z) =
1
2
‖u−ud‖2

L2(Ω)+
µ

2
‖z‖2

L2(Ω), (1.1)
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where µ > 0 is the so-called regularization parameter. With these ingredients at hand, we define the
fractional optimal control problem as follows: Find

min J(u,z), (1.2)

subject to the fractional state equation

(−∆)su= z in Ω , u= 0 on ∂Ω , (1.3)

and the control constraints
a(x′)6 z(x′)6 b(x′) a.e. x′ ∈Ω . (1.4)

The operator (−∆)s, with s ∈ (0,1), denotes the fractional powers of the Dirichlet Laplace operator,
which for convenience we will simply call the fractional Laplacian. The functions a and b both belong
to L2(Ω) and satisfy the property a(x′)6 b(x′) for almost every x′ ∈Ω .

A rather incomplete list of problems where fractional derivatives and fractional diffusion appears
includes: mechanics Atanackovic et al. (2014), where they are used to model viscoelastic behavior
Debnath (2003a), turbulence Chen (2006); del Castillo-Negrete et al. (2004) and the hereditary proper-
ties of materials Gorenflo et al. (2002); diffusion processes Abe & Thurner (2005); Nigmatullin (1986),
in particular processes in disordered media, where the disorder may change the laws of Brownian mo-
tion and thus lead to anomalous diffusion Barkai et al. (2000); Bouchaud & Georges (1990); nonlocal
electrostatics Ishizuka et al. (2008); finance Levendorskiı̆ (2004); image processing Gatto & Hesthaven
(2015); biophysics Bueno-Orovio et al. (2014); chaotic dynamical systems Saichev & Zaslavsky (1997)
and many others Bucur & Valdinoci (2015); Debnath (2003b). Optimal control problems arise natu-
rally in these applications and then it is essential to design numerical schemes to efficiently approximate
them.

The analysis of problems involving the fractional Laplacian is delicate and involves fine results in
harmonic analysis Landkof (1972); Silvestre (2007); Stein (1970); one of the main difficulties being the
nonlocality of the operator. This difficulty has been resolved to some extent by Caffarelli & Silvestre
(2007), who have proposed a technique that turned out to be a breakthrough and has paved the way
to study fractional laplacians using local techniques. Namely, any power s ∈ (0,1) of the fractional
Laplacian in Rn can be realized as an operator that maps a Dirichlet boundary condition to a Neumann-
type condition via an extension problem on the upper half-space Rn+1

+ . This result was later adapted in
Capella et al. (2011); Stinga & Torrea (2010) to bounded domains Ω , thus obtaining an extension prob-
lem posed on the semi-infinite cylinder C = Ω × (0,∞). This extension corresponds to the following
mixed boundary value problem:

div(yα
∇U ) = 0 in C , U = 0 on ∂LC , ∂να U = dsz on Ω ×{0}, (1.5)

where ∂LC = ∂Ω × [0,∞) is the lateral boundary of C and ds = 2αΓ (1− s)/Γ (s) is a positive nor-
malization constant. The parameter α is defined as α = 1− 2s ∈ (−1,1) and the conormal exterior
derivative of U at Ω ×{0} is

∂να U =− lim
y→0+

yαUy. (1.6)

We call y the extended variable and call the dimension n+1 in Rn+1
+ the extended dimension of problem

(1.5). The limit in (1.6) must be understood in the distributional sense; see Caffarelli & Silvestre (2007);
Capella et al. (2011); Stinga & Torrea (2010). With these elements at hand, we then write the funda-
mental result by Caffarelli & Silvestre (2007): the fractional Laplacian and the Dirichlet-to-Neumann
map of problem (1.5) are related by ds(−∆)su= ∂να U in Ω .
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The use of the aforementioned localization techniques for the numerical treatment of problem (1.3)
followed not so long after in Nochetto et al. (2015). In this reference, the authors propose the fol-
lowing technique to solve problem (1.3): given z, solve (1.5), thus obtaining a function U ; setting
u(x′) = U (x′,0), the solution to (1.3) is obtained. The implementation of this scheme uses standard
components of finite element analysis, while its analysis combines asymptotic properties of Bessel
functions Abramowitz & Stegun (1964), elements of harmonic analysis Duoandikoetxea (2001); Muck-
enhoupt (1972) and a polynomial interpolation theory on weighted spaces Durán & Lombardi (2005);
Nochetto et al. (2016b). The latter is valid for tensor product elements that exhibit a large aspect ratio
in y (anisotropy), which is necessary to fit the behavior of U (x′,y) with x′ ∈ Ω and y > 0. The main
advantage of this scheme is that it solves the local problem (1.5) instead of dealing with (−∆)s in (1.3).
However, this comes at the expense of incorporating one more dimension to the problem; issue that
has been resolved to some extent with the design of fast solvers Chen et al. (2016) and adaptive finite
element methods (AFEMs) Chen et al. (2015).

Exploiting the ideas developed in Nochetto et al. (2015), in the previous work Antil & Otárola
(2015), we have proposed two numerical strategies to approximate the solution to (1.2)–(1.4). Invoking
the localization results of Caffarelli & Silvestre (2007); Capella et al. (2011); Stinga & Torrea (2010),
we have considered an equivalent optimal control problem: minJ(U (·,0),z) subject to the linear state
equation (1.5) and the control constraints (1.4). Since (1.5) is posed on the semi-infinite cylinder C ,
we have then introduced a truncated optimal control problem and analyzed its approximation proper-
ties. On the basis of this, we have proposed two schemes based on the discretization of the state and
adjoint equations with first-degree tensor product finite elements on anisotropic meshes: the variational
approach by Hinze (2005) and a fully discrete scheme that discretizes the set of controls by piecewise
constant functions; see Arada et al. (2002); Casas et al. (2005). The latter yields an optimal error esti-
mate for the control approximation: If Ω is convex, ud ∈H1−s(Ω), and a,b ∈R are such that a6 06 b
for s ∈ (0, 1

2 ], then

‖z̄− Z̄‖L2(Ω) . | logN|2sN−
1

n+1 , (1.7)

where z̄ denotes the optimal solution to fractional optimal control problem, Z̄ corresponds to the optimal
solution of the discrete counterpart of (1.2)–(1.4) and N denotes the number of the degrees of freedom
of the underlying mesh.

Since the aforementioned scheme incorporates one extra dimension, it raises the following question:
How efficient is this method? A quest for an answer to this question motivates the study of AFEMs, since
it is known that they constitute an efficient class of numerical methods for approximating the solution
to optimal control problems Becker et al. (2000); Hintermüller et al. (2008); Kohls et al. (2014): they
allow for their resolution with relatively modest computational resources. In addition, they can achieve
optimal performance, measured as error versus degrees of freedom, in situations when classical FEM
cannot Kohls et al. (2014); Nochetto & Vesser (2011); Nochetto et al. (2009). An essential ingredient
of AFEMs is an posteriori error estimator, which is a computable quantity that depends on the discrete
solution and data, and provides information about the local quality of the approximate solution. For
linear second-order elliptic boundary value problems, the theory has attained a mature understanding;
see Ainsworth & Oden (2000); Morin et al. (2000); Nochetto et al. (2009); Nochetto & Vesser (2011);
Verfürth (1996) for an up-to-date discussion including also the design of AFEMs, their convergence
and optimal complexity. In contrast to this well-established theory, the a posteriori error analysis for
constrained optimal control problem has not been fully understood yet; the main source of difficulty
is its inherent nonlinear feature. We refer the reader to Kohls et al. (2014) for an for an up-to-date
discussion.
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AFEMs for the fractional optimal control problem are also motivated by the fact that the a priori error
estimate (1.7) requires z̄∈H1−s(Ω), which in turn demands Ω convex, ud ∈H1−s(Ω) and a6 06 b for
s ∈ (0, 1

2 ]. If one of these conditions does not hold, the optimal control z̄ may have singularities in the
x′-variables and thus exhibits fractional regularity. Consequently, quasi-uniform refinement of Ω would
not result in an efficient solution technique; see (Nochetto et al., 2015, section 6.3) for an illustration of
this situation at the level of solving the state equation (1.5).

The main contribution of this work is the design and analysis of a computable, efficient and, un-
der certain assumptions, reliable a posteriori error estimator for the fractional optimal control problem
(1.2)–(1.4). As it was highlighted before, there is undoubtedly need for developing such an estimator
and this is the first work that addresses this question for problem (1.2)–(1.4). Given a mesh T and
corresponding approximations ŪT , P̄T and z̄T , the proposed error indicator is built on the basis of
three contributions:

Eocp = EU +EP +Ez,

where EU and EP correspond to the a anisotropic posteriori error estimator on weighted Sobolev spaces
of Chen et al. (2015), for the state and adjoint equations, respectively. The error indicator Ez is defined
as the `2-sum of the local contributions Ez(z̄T ,P̄T ;T ) = ‖z̄T −Π(− 1

µ
P̄T (·,0))‖L2(Ω), with T ∈ T

and Π(v) = min{b,max{a,v}}. We present an analysis for Eocp, we prove its efficiency and, under
certain assumptions, its reliability. We remark that the devised error estimator is able to deal with both:
the natural anisotropy of the mesh T in the extended variable and the degenerate coefficient yα . This
approach is of value not only for the fractional optimal control problem, but in general for control
problem involving anisotropic meshes since rigorous anisotropic a posteriori error estimators are scarce
in the literature.

2. Notation and preliminaries

Throughout this work Ω is an open and bounded polytopal domain of Rn (n> 1) with Lipschitz bound-
ary ∂Ω . We define the semi-infinite cylinder with base Ω and its lateral boundary, respectively, by
C =Ω×(0,∞) and ∂LC = ∂Ω× [0,∞). Given Y > 0, we define the truncated cylinder CY =Ω×(0,Y )
and ∂LCY accordingly. If x ∈Rn+1, we write x = (x1, . . . ,xn,xn+1) = (x′,xn+1) = (x′,y), with xi ∈R for
i = 1, . . . ,n+1, x′ ∈ Rn and y ∈ R; this notation distinguishes the extended dimension y.

We denote by (−∆)s, s ∈ (0,1), a fractional power of Dirichlet Laplace operator (−∆). The param-
eter α belongs to (−1,1) and is related to the power s of the fractional Laplacian (−∆)s by the formula
α = 1−2s.

Finally, the relation a . b indicates that a 6 Cb, with a constant C that does not depend on a or b
nor the discretization parameters. The value of C might change at each occurrence.

2.1 The fractional Laplace operator

We adopt the spectral definition for the fractional powers of the Dirichlet Laplace operator Capella et al.
(2011); Nochetto et al. (2015). The operator (−∆)−1 : L2(Ω)→ L2(Ω) that solves −∆w = f in Ω

and w = 0 on ∂Ω , is compact, symmetric and positive, whence its spectrum {λ−1
k }k∈N is discrete, real,

positive and accumulates at zero. Moreover, the eigenfunctions

{ϕk}k∈N : −∆ϕk = λkϕk in Ω , ϕk = 0 on Ω , k ∈ N,
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form an orthonormal basis of L2(Ω). Fractional powers of (−∆) can be defined by

(−∆)sw :=
∞

∑
k=1

λ
s
k wkϕk, w ∈C∞

0 (Ω), s ∈ (0,1),

where wk =
´

Ω
wϕk. By density we extend this definition to

Hs(Ω) =

{
w =

∞

∑
k=1

wkϕk :
∞

∑
k=1

λ
s
k w2

k < ∞

}
= [H1

0 (Ω),L2(Ω)]1−s;

see Nochetto et al. (2015) for details. For s ∈ (0,1) we denote by H−s(Ω) the dual space of Hs(Ω).

2.2 The Caffarelli–Silvestre extension problem

In this section we explore problem (1.5) and its relation with the nonlocal problem (1.3); we refer the
reader to Caffarelli & Silvestre (2007); Capella et al. (2011); Nochetto et al. (2015); Stinga & Torrea
(2010) for details. Since α ∈ (−1,1), problem (1.5) is nonuniformly elliptic and thus it requires to
introduce weighted Lebesgue and Sobolev spaces for its description. Let E be an open set in Rn+1. We
define L2(|y|α ,E) as the Lebesgue space for the measure |y|α dx. We also define the weighted Sobolev
space H1(|y|α ,E) := {w ∈ L2(|y|α ,E) : |∇w| ∈ L2(|y|α ,E)}, which we endow with the norm

‖w‖H1(|y|α ,E) =
(
‖w‖2

L2(|y|α ,E)+‖∇w‖2
L2(|y|α ,E)

) 1
2
. (2.1)

Since α = 1−2s∈ (−1,1), the weight |y|α belongs to the Muckenhoupt class A2(Rn+1) Duoandikoetxea
(2001); Turesson (2000). Consequently, H1(|y|α ,D) is Hilbert and C∞(D)∩H1(|y|α ,D) is dense in
H1(|y|α ,D) (cf. (Turesson, 2000, Proposition 2.1.2, Corollary 2.1.6) and (Gol′dshtein & Ukhlov, 2009,
Theorem 1)).

The natural space to seek for a weak solution to problem (1.5) is
◦

H1
L(y

α ,C ) :=
{

w ∈ H1(yα ,C ) : w = 0 on ∂LC
}
.

We recall the following weighted Poincaré inequality (Nochetto et al., 2015, inequality (2.21)):

‖w‖L2(yα ,C ) . ‖∇v‖L2(yα ,C ) ∀w ∈
◦

H1
L(y

α ,C ).

This yields that the seminorm on
◦

H1
L(y

α ,C ) is equivalent to (2.1). For w ∈ H1(yα ,C ) trΩ w denotes its
trace onto Ω ×{0}. We recall ((Nochetto et al., 2015, Prop. 2.5) and (Capella et al., 2011, Prop. 2.1))

trΩ

◦
H1

L(y
α ,C ) =Hs(Ω), ‖ trΩ w‖Hs(Ω) 6CtrΩ

‖w‖ ◦H1
L (y

α ,C )
. (2.2)

We must mention that CtrΩ
6 d

− 1
2

s (Chen et al., 2015, section 2.3), where ds = 2αΓ (1− s)/Γ (s). This
will be useful in the analysis of the proposed a posteriori error indicator.

We conclude this section with the fundamental result by Caffarelli & Silvestre (2007); Capella et al.
(2011); Stinga & Torrea (2010): If u ∈ Hs(Ω) and U ∈

◦
H1

L(y
α ,C ) solve (1.3) and (1.5), respectively,

then
ds(−∆)su= ∂να U =− lim

y→0+
yαUy,

in the sense of distributions. Here, s ∈ (0,1) and α = 1−2s ∈ (−1,1).
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3. A priori error estimates

In an effort to make this work self-contained, in this section we review the results of Antil & Otárola
(2015), where an a priori error analysis for a fully discrete approximation of the fractional optimal
control problem is investigated. This will also serve to make clear the limitations of this theory.

3.1 The extended optimal control problem

We start by recalling an equivalent problem to (1.2)–(1.4): the extended optimal control problem. The
main advantage of this problem is its local nature and is based on the Cafarelli–Silvestre extension result.
To describe it, we define the set of admissible controls as

Zad = {w ∈ L2(Ω) : a(x′)6 w(x′)6 b(x′) a.e x′ ∈Ω}, (3.1)

where a,b ∈ L2(Ω) and satisfy the property a(x′) 6 b(x′) a.e. x′ ∈ Ω . The extended optimal control
problem problem is then defined as follows: Find min J(trΩ U ,z), subject to the linear state equation

a(U ,φ) = 〈z, trΩ φ〉 ∀φ ∈
◦

H1
L(y

α ,C ), (3.2)

and the control constraints z ∈ Zad. The functional J is defined by (1.2) with ud ∈ L2(Ω) and µ > 0. For
w,φ ∈

◦
H1

L(y
α ,C ), the bilinear form a is defined by

a(w,φ) =
1
ds

ˆ
C

yα
∇w ·∇φ

and 〈·, ·〉 denotes the duality pairing between Hs(Ω) and H−s(Ω) which, as a consequence of (2.2), is
well defined for z ∈H−s(Ω) and φ ∈

◦
H1

L(y
α ,C ).

The extended optimal control problem has a unique optimal solution (Ū , z̄) ∈
◦

H1
L(y

α ,C )×Hs(Ω)
(Antil & Otárola, 2015, Theorem 3.11) and is equivalent to the fractional optimal control problem:
trΩ Ū = ū (Antil & Otárola, 2015, Theorem 3.12).

3.2 The truncated optimal control problem

Since C is unbounded, problem (3.2) cannot be directly approximated with finite-element-like tech-
niques. However, as (Nochetto et al., 2015, Proposition 3.1) shows, the solution U of problem (3.2)
decays exponentially in the extended variable y. This suggests to consider a truncated optimal control
problem, which is based on a truncation of the state equation (3.2). To describe it, we define

◦
H1

L(y
α ,CY ) =

{
w ∈ H1(yα ,CY ) : w = 0 on ∂LCY ∪Ω ×{Y }

}
,

and for all w,φ ∈
◦

H1
L(y

α ,CY ), the bilinear form

aY (w,φ) =
1
ds

ˆ
CY

yα
∇w ·∇φ . (3.3)

The truncated optimal control problem is then defined as follows: Find min J(trΩ v, r) subject to the
truncated state equation

aY (v,φ) = 〈r, trΩ φ〉 ∀φ ∈
◦

H1
L(y

α ,CY ) (3.4)
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and the control constraints r∈Zad. The existence and uniqueness of an optimal pair (v̄, r̄)∈
◦

H1
L(y

α ,CT )×
Hs(Ω) follows from (Antil & Otárola, 2015, Theorem 4.5). In addition, we have that the optimal control
r̄ ∈ Zad verifies the variational inequality

(trΩ p̄+µ r̄, r− r̄)L2(Ω) > 0 ∀r ∈ Zad, (3.5)

where p̄ ∈
◦

H1
L(y

α ,CY ) denotes the optimal adjoint state and solves

aY (p̄,φ) = (trΩ v̄−ud, trΩ φ)L2(Ω). (3.6)

The following approximation properties follow from (Antil & Otárola, 2015, Lemma 4.6): If (Ū , z̄)∈
◦

H1
L(y

α ,C )×Hs(Ω) and (v̄, r̄) ∈
◦

H1
L(y

α ,CY )×Hs(Ω) solve the extended and truncated optimal control
problems, respectively, then

‖z̄− r̄‖L2(Ω) . e−
√

λ1Y /4
(
‖r̄‖L2(Ω)+‖ud‖L2(Ω)

)
,

‖∇(U − v̄)‖L2(yα ,C ) . e−
√

λ1Y /4
(
‖r̄‖L2(Ω)+‖ud‖L2(Ω)

)
,

where λ1 denotes the first eigenvalue of the operator −∆ .

3.3 A fully discrete scheme

In this section we recall the fully discrete scheme, proposed in (Antil & Otárola, 2015, section 5.3),
that approximates the solution to (1.2)–(1.4). We also review its a priori error analysis; see (Antil &
Otárola, 2015, section 5.3) for details. To do so in this section, and this section only, we will assume the
following regularity result, which is valid if, for instance, the domain Ω is convex Grisvard (1985):

‖w‖H2(Ω) . ‖∆x′w‖L2(Ω) ∀w ∈ H2(Ω)∩H1
0 (Ω). (3.7)

The analysis of the fully discrete scheme of (Antil & Otárola, 2015, section 5.3) relies on the reg-
ularity properties of the optimal pairs (Ū , z̄) and (v̄, r̄) that solve the extended and truncated optimal
control problems, respectively. We review such regularity properties in what follows. The results of
(Nochetto et al., 2015, Theorem 2.7) reveals that the second order regularity of U , solving (3.2), is
much worse in the extended direction, namely

‖∆x′U ‖L2(yα ,C )+‖∂y∇x′U ‖L2(yα ,C ) . ‖z‖H1−s(Ω), (3.8)

‖Uyy‖L2(yβ ,C ) . ‖z‖L2(Ω), (3.9)

where β > 2α +1. These result are also valid for the solution v of problem (3.4); see (Nochetto et al.,
2016a, Remark 4.4).

The estimates (3.8)–(3.9) have important consequences in the design of efficient numerical tech-
niques to solve (3.2); they suggest that a graded mesh in the extended (n+1)–dimension must be used
(Nochetto et al., 2015, section 5). We recall the construction of the mesh over CY used in Antil &
Otárola (2015); Nochetto et al. (2015). First, we consider a graded partition IY of the interval [0,Y ]
with mesh points

yk =

(
k
M

)γ

Y , k = 0, . . . ,M, (3.10)
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and γ > 3/(1−α) = 3/(2s) > 1. Second, we consider TΩ = {K} to be a conforming mesh of Ω ,
where K ⊂ Rn is an element that is isoparametrically equivalent either to the unit cube [0,1]n or the
unit simplex in Rn. We denote by TΩ the collections of all conforming refinements of an original mesh
T 0

Ω
. We assume that TΩ is shape regular; see Ciarlet (2002). We then construct a mesh TY over CY

as the tensor product triangulation of TΩ ∈ TΩ and IY . We denote by T the set of all the meshes
obtained with this procedure, and recall that T satisfies the following weak shape regularity condition:
If T1 = K1× I1 and T2 = K2× I2 ∈TY have nonempty intersection, then there exists a positive constant
σY such that

hI1h−1
I2 6 σY , (3.11)

where hI = |I|. This weak shape regularity condition allows for anisotropy in the extended variable y
Durán & Lombardi (2005); Nochetto et al. (2015, 2016b).

For TY ∈ T, we define the finite element space

V(TY ) =
{

W ∈C0(CY ) : W |T ∈P1(K)⊗P1(I) ∀T ∈TY , W |ΓD = 0
}
, (3.12)

where ΓD = ∂LCY ∪Ω ×{Y } is the Dirichlet boundary. The space P1(K) is P1(K) – the space of
polynomials of degree at most 1, when the base K of T = K× I is a simplex. If K is a cube, P1(K)
stand for Q1(K) – the space of polynomials of degree not larger that 1 in each variable. We also define
the space U(TΩ ) = trΩ V(TY ), which is simply a P1 finite element space over the mesh TΩ .

Before describing the numerical scheme introduced and developed in Antil & Otárola (2015), we
recall the regularity properties of the extended and truncated optimal controls z̄ and r̄, respectively.
If ud ∈ H1−s(Ω) and a 6 0 6 b for s ∈ (0, 1

2 ], then z̄ ∈ H1(Ω)∩H1−s(Ω) (Antil & Otárola, 2015,
Lemmas 3.5 and 5.9). Under the same framework, we have the same result for the truncated optimal
control: r̄ ∈ H1(Ω)∩H1−s(Ω) (Antil & Otárola, 2015, Lemma 5.9).

After all these preparations, we are ready to describe the fully discrete scheme to approximate
the fractional optimal control problem. The fully discrete optimal control problem reads as follows:
minJ(trΩ V,Z), subject to the discrete state equation

aY (V,W ) = (Z, trΩ W )L2(Ω) ∀W ∈ V(TY ), (3.13)

and the discrete control constraints Z ∈ Zad(TΩ ). We recall that the functional J, the bilinear form aY
and the discrete space V(TY ) are defined by (1.1), (3.3), and (3.12), respectively. The discrete and
admissible set of controls is defined by

Zad(TΩ ) = Zad∩{Z ∈ L∞(Ω) : Z|K ∈ P0(K) ∀K ∈TΩ} ,

i.e., the space of piecewise constant functions defined on the partition TΩ that verifies the control
bounds, which we assume to be real constants.

The existence and uniqueness of an optimal pair (V̄ , Z̄) ∈ V(TY )×Zad(TΩ ) solving the aforemen-
tioned problem is standard (Antil & Otárola, 2015, Theorem 5.15). In addition, the optimal control
Z̄ ∈ Zad(TΩ ) is uniquely characterized by the variational inequality

(trΩ P̄+µZ̄,Z− Z̄)L2(Ω) > 0 ∀Z ∈ Zad(TΩ ), (3.14)

where the optimal and discrete adjoint state P̄ ∈ V(TY ) solves

aY (P̄,W ) = (trΩ V̄ −ud, trΩW )L2(Ω) ∀W ∈ V(TY ). (3.15)
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With the discrete solution V̄ ∈ V(TY ) at hand, we define

Ū := trΩ V̄ , (3.16)

and thus obtain a fully discrete approximation (Ū , Z̄) ∈ U(TΩ )×Zad(TΩ ) of the optimal pair (ū, z̄) ∈
Hs(Ω)×Zad solving the fractional optimal control problem.

To write the a priori error estimates for the fully discrete optimal control problem, we notice that
#TY = M #TΩ , and that #TΩ ≈Mn implies #TY ≈Mn+1. Consequently, if TΩ is quasi-uniform, we
have that hTΩ

≈ (#TΩ )−1/n. We then have the following result (Antil & Otárola, 2015, Corollary 5.17).

THEOREM 3.1 (fractional control problem: error estimate) Let (V̄ , Z̄) ∈ V(TY )×Zad solves the fully
discrete control problem and Ū ∈U(TΩ ) be defined as in (3.16). If Ω verifies (3.7), ud ∈H1−s(Ω), and
a6 06 b for s ∈ (0, 1

2 ], then we have

‖z̄− Z̄‖L2(Ω) . | log(#TY )|2s(#TY )
−1

n+1

(
‖r̄‖H1(Ω)+‖ud‖H1−s(Ω)

)
, (3.17)

and
‖ū−Ū‖Hs(Ω) . | log(#TY )|2s(#TY )

−1
n+1

(
‖r̄‖H1(Ω)+‖ud‖H1−s(Ω)

)
, (3.18)

where the truncation parameter Y , in the truncated optimal control problem, is chosen such that Y ≈
log(#TY ).

REMARK 3.1 (Domain and data regularity) The results of Theorem 3.1 are valid if and only if Ω is such
that (3.7) holds, ud ∈H1−s(Ω), and a6 06 b for s ∈ (0, 1

2 ].

4. A posteriori error analysis

The design and analysis of a posteriori error estimators for linear second-order elliptic boundary value
problems on isotropic discretizations, i.e., meshes where the aspect ratio of all cells is bounded indepen-
dently of the refinement level, has achieved a certain degree of maturity. Starting with the pioneering
work of Babuška & Rheinboldt (1978), a great deal of work has been devoted to its study. We refer
the reader to Ainsworth & Oden (2000); Babuška & Strouboulis (2001); Morin et al. (2003); Nochetto
et al. (2009); Nochetto & Vesser (2011); Verfürth (1996) for an up-to-date discussion including also
the design of AFEMs, their convergence and optimal complexity. In contrast to this well-established
theory, the a posteriori error estimation on anisotropic discretizations, i.e., meshes where the cells have
disparate sizes in each direction, is still not completely understood. To the best of our knowledge, the
first work that introduces an a posteriori error estimator on anisotropic meshes is Siebert (1996). The
analysis provided in this work relies on certain assumptions on the mesh (Siebert, 1996, section 2), on
the exact solution (Siebert, 1996, Definition 3.1), and on the discrete solution (Siebert, 1996, Definition
5.2). However, no explicit examples of AFEMs satisfying these assumptions are provided and their
construction is not evident. Afterwards, the so–called matching function is introduced in Kunert (2000);
Kunert & Verfürth (2000) for deriving error indicators on anisotropic meshes. The presented analysis
relies on the correct alignment of the grid with the exact solution. Indeed, the upper bound for the
error involves the matching function, which depends on the error itself and then it does not provide a
real computable quantity; see (Kunert, 2000, Theorem 2) and see (Kunert & Verfürth, 2000, Theorem
5.1). The effect of approximating the matching function with a recovered gradient based technique is
discussed in Kunert (2000); Kunert & Verfürth (2000).
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To the best of our knowledge, the first paper that attempts to deal with an anisotropic a posteriori
error estimator for an optimal control problem is Picasso (2006). In this work, the author proposes, based
on the the goal–oriented approach developed in Becker et al. (2000), an anisotropic error indicator for a
parabolic optimal control problem involving the heat equation. However, the presented upper bound for
the error (Picasso, 2006, Proposition 7) depends on the exact solution and therefore, it is not computable;
see the discussion in (Picasso, 2006, section 5). Later, reference Micheletti & Perotto (2011) presents
an anisotropic posteriori error estimator for an optimal control problem of a scalar advection–reaction–
diffusion equation. The analysis relies on the goal–oriented approach of Becker et al. (2000), and
the a priori and posteriori error analyses of Formaggia & Perotto (2001) and Formaggia & Perotto
(2003), respectively. The presented upper bound for the error depends on the exact optimal variables
and therefore is not computable (Micheletti & Perotto, 2011, Proposition 3.5). This shortcoming is
circumvented, computationally, by invoking a suitable recovery procedure.

The main contribution of this work is the design and study of an a posteriori error indicator for
the fractional optimal control problem (1.2)–(1.4). To accomplish this task, we invoke the a posteriori
error indicator developed in Chen et al. (2015) that is based on the solution of local problems on stars;
we remark that, since problems (3.4) and (3.6) involve the coefficient yα (−1 < α < 1), that is not
uniformly bounded, the usual residual estimator does not apply. The idea of working on stars goes back
to Babuška & Miller (1987), who introduced local Dirichlet problems. Later, references Carstensen &
Funken (9900); Morin et al. (2003) proposed solving local weighted problems on stars that deliver rather
good effectivity indices. A convergence proof of AFEM driven by such error indicators is provided in
Morin et al. (2003) for a Poisson problem, and in Cascón & Nochetto (2012) for a general second-order
elliptic PDE; the latter also includes optimal complexity. We also refer the reader to R. E. Bank (1985)
for estimators based on solving Neumann problems on elements and their further improvements via the
so-called flux equilibration principle Ainsworth & Oden (2000).

Concerning the a posteriori error analysis for (1.2)–(1.4), we first propose and explore an ideal
anisotropic error indicator that is constructed on the basis of solving local problems on cylindrical stars.
This indicator is able to deal with both: the coefficient yα and the anisotropic mesh TY . Under a
computationally implementable geometric condition imposed on the mesh, which does not depend on
the exact optimal variables, we derive the equivalence between the ideal estimator and the error without
oscillation terms. This ideal indicator sets the basis to define a computable error estimator, which, under
certain assumptions, is equivalent to the error up to data oscillations terms.

4.1 Preliminaries

Let us begin the discussion on a posteriori error estimation with some terminology and notation that
follows from Chen et al. (2015). Given a node z on the mesh TY , we write z = (z′,z′′) where z′ and z′′

are nodes on the meshes TΩ and IY respectively.
Given K ∈ TΩ , we denote by N (K) the set of nodes of K and by ◦N (K) the set of interior nodes.

With this notation at hand, we define N (TΩ ) =∪{N (K) : K ∈TΩ} and ◦N (TΩ ) =∪{ ◦N (K) : K ∈TΩ}.
Given T ∈TY , we define N (T ), ◦N (T ), and then ◦N (TY ) and N (TY ) accordingly.

Given z′ ∈ N (TΩ ), we define the star around z′ as

Sz′ =
⋃{

K ∈TΩ : K 3 z′
}
⊂Ω

and the cylindrical star around z′ as

Cz′ :=
⋃{

T ∈TY : T = K× I, K 3 z′
}
= Sz′ × (0,Y )⊂ CY . (4.1)
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Given K ∈ TΩ we define its patch as SK :=
⋃

z′∈K Sz′ . For T ∈ TY its patch ST is defined similarly.
Given z′ ∈ N (TΩ ) we define its cylindrical patch as

Dz′ :=
⋃{

Cw′ : w′ ∈ Sz′
}
⊂ CY .

For each z′ ∈ N (TΩ ) we set hz′ := min{hK : K 3 z′}.

4.2 Local weighted Sobolev spaces

To define the a posteriori error estimator proposed in this work, we need to introduce some local
weighted Sobolev spaces.

DEFINITION 4.1 (local spaces) Given z′ ∈ N (TΩ ), we define

W(Cz′) =
{

w ∈ H1(yα ,Cz′) : w = 0 on ∂Cz′ \Ω ×{0}
}
, (4.2)

where Cz′ denotes the cylindrical star around z′ defined in (4.1).

Since yα belongs to the class A2(Rn+1) Duoandikoetxea (2001); Muckenhoupt (1972), the space
W(Cz′) is Hilbert. In addition, we have the following weighted Poincaré-type inequality (Chen et al.,
2015, Proposition 5.8): If w ∈W(Cz′), then

‖w‖L2(yα ,Cz′ )
. Y ‖∇w‖L2(yα ,Cz′ )

, (4.3)

where Y denotes the truncation parameter introduced in section 3.2. We also have the following trace
inequality that follows from (Capella et al., 2011, Proposition 2.1): If w ∈W(Cz′), then

‖ trΩ w‖L2(Sz′ )
6CtrΩ

‖∇w‖L2(yα ,Cz′ )
. (4.4)

We notice that the same arguments of (Chen et al., 2015, Section 2.3) yield CtrΩ
6 d

− 1
2

s .

4.3 An ideal a posteriori error estimator

On the basis of the notation introduced in subsections 4.1 and 4.2, we propose and analyze an ideal
a posteriori error estimator for the fractional optimal control problem (1.2)–(1.4). The proposed error
indicator is ideal because it is not computable: it is based on the resolution of local problems on infinite
dimensional spaces. However, it provides the intuition required to define a discrete and computable
error indicator, as is explained in section 4.4. The construction of this ideal indicator allows for the
anisotropic meshes TY defined in section 3 and the nonuniformly coefficient yα of problem (3.2). We
prove that is equivalent to the error without oscillation terms.

The ideal error indicator is defined as the sum of three contributions:

Eocp(V̄ , P̄, Z̄;TY ) = EV (V̄ , Z̄;N (TΩ ))+EP(P̄,V̄ ;N (TΩ ))+EZ(Z̄, P̄;TΩ ), (4.5)

where TY ∈ T corresponds to the anisotropic mesh constructed in subsection 3.3 and V̄ , P̄ and Z̄ denote
the optimal variables solving the fully discrete optimal control problem described in subsection 3.3.
We now proceed to describe each contribution in (4.5) separately. To do this, we introduce, for w,ψ ∈
W(Cz′), the bilinear form

az′(w,ψ) =
1
ds

ˆ
Cz′

yα
∇w∇ψ. (4.6)



12 of 27 H. ANTIL AND E. OTÁROLA

Then, the first contribution in (4.5) is defined on the basis of the indicator developed in (Chen et al.,
2015, section 5.3). We define ζz′ ∈W(Cz′) as the solution to

az′(ζz′ ,ψ) = 〈Z̄, trΩ ψ〉−az′(V̄ ,ψ) ∀ψ ∈W(Cz′), (4.7)

where we recall that the space W(Cz′) is defined in (4.2). With this definition at hand, we then define
the local error estimator

EV (V̄ , Z̄;Cz′) := ‖∇ζz′‖L2(yα ,Cz′ )
(4.8)

and the global error estimator EV (V̄ , Z̄;N (TΩ )) :=
(
∑z′∈N (TΩ )E

2
V (V̄ , Z̄;Cz′)

) 1
2 .

We now describe the second contribution in (4.5). To accomplish this task, we define χz′ ∈W(Cz′)
as the solution to the local problem

az′(χz′ ,ψ) = 〈trΩ V̄ −ud , trΩ ψ〉−az′(P̄,ψ) ∀ψ ∈W(Cz′). (4.9)

We then define the local error indicator

EP(P̄,V̄ ;Cz′) := ‖∇χz′‖L2(yα ,Cz′ )
(4.10)

and the global error indicator EP(P̄,V̄ ;N (TΩ )) :=
(
∑z′∈N (TΩ )E

2
P (P̄,V̄ ;Cz′)

)2.
Finally, we define a global error estimator for the optimal control as follows:

EZ(Z̄, P̄;TΩ ) :=

(
∑

K∈TΩ

E 2
Z (Z̄, P̄;K)

)1/2

, (4.11)

with the local error indicators

EZ(Z̄, P̄;K) := ‖Z̄−Π(− 1
µ

trΩ P̄)‖L2(K). (4.12)

In (4.12), Π : L2(Ω)→ Zad denotes the nonlinear projection operator defined by

Π(x′) = min{b,max{a,x′}}, (4.13)

where a and b denote the control bounds defining the set Zad in (3.1).
To invoke the results of (Chen et al., 2015, section 5.3), we introduce an implementable geometric

condition that will allow us to consider graded meshes in Ω while preserving the anisotropy in the
extended direction y that is necessary to retain optimal orders of approximation. The flexibility of
having graded meshes in Ω is essential for compensating some possible singularities in the x′–variables.
We thus assume the following condition over the family of triangulations T: there exists a positive
constant CT such that, for every mesh TY ∈ T, we have that

hY 6CThz′ , (4.14)

for all interior nodes z′ of TΩ . Here, hY denotes the largest size in the y–direction. We remark that this
condition is fully implementable.

We now derive an estimate of the energy error in terms of the total error estimator Eocp defined in
(4.5) (reliability).
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THEOREM 4.2 (global upper bound) Let (v̄, p̄, r̄) ∈
◦

H1
L(y

α ,CY )×
◦

H1
L(y

α ,CY )×Zad be the solution to
the optimality system associated with the truncated optimal control problem defined in subsection 3.2
and (V̄ , P̄, Z̄) ∈ V(TY )×V(TY )×Zad(TΩ ) its numerical approximation defined in subsection 3.3. If
(4.14) holds, then

‖∇(v̄−V̄ )‖L2(yα ,CY )+‖∇(p̄− P̄)‖L2(yα ,CY )+‖r̄− Z̄‖L2(Ω)

. EV (V̄ , Z̄;N (TΩ ))+EP(P̄,V̄ ;N (TΩ ))+EZ(Z̄, P̄;TΩ ), (4.15)

where the hidden constant is independent of the continuous and discrete optimal variables, and the size
of the elements in the meshes TΩ and TY .

Proof. The proof involves six steps.
Step 1. With the definition (4.12) of the local error indicator EZ in mind, we define the auxiliary

control r̃ = Π(− 1
µ

trΩ P̄) and notice that it verifies

(trΩ P̄+µ r̃, r− r̃)L2(Ω) > 0 ∀r ∈ Zad. (4.16)

Then, an application of the triangle inequality yields

‖r̄− Z̄‖L2(Ω) 6 ‖r̄− r̃‖L2(Ω)+‖r̃− Z̄‖L2(Ω) (4.17)

We notice that the second term on the right hand side of the previous inequality corresponds to the
definition of the global indicator (4.11). Thus, it suffices to bound the first term, i.e., ‖r̄− r̃‖L2(Ω).

Step 2. Set r = r̃ in (3.5) and r = r̄ in (4.16). Adding the obtained inequalities we arrive at

µ‖r̄− r̃‖2
L2(Ω) 6 (trΩ (p̄− P̄), r̃− r̄)L2(Ω), (4.18)

where p̄ and P̄ solve (3.6) and (3.15), respectively. To control the right hand side of this expression, we
introduce the auxiliary adjoint state q that uniquely solves

q ∈
◦

H1
L(y

α ,CY ) : aY (φ ,q) = (trΩ V̄ −ud, trΩ φ)L2(Ω) ∀φ ∈
◦

H1
L(y

α ,CY ). (4.19)

By writing p̄− P̄ = (p̄−q)+(q− P̄), the estimate (4.18) immediately yields

µ‖r̄− r̃‖2
L2(Ω) 6 (trΩ (p̄−q), r̃− r̄)L2(Ω)+(trΩ (q− P̄), r̃− r̄)L2(Ω). (4.20)

We conclude this step by noticing that, by construction, problem (3.15) corresponds to the Galerkin
approximation of (4.19). Then, (Chen et al., 2015, Proposition 5.14) yields

|II| := |(trΩ (q− P̄), r̃− r̄)L2(Ω)|. ‖∇(q− P̄)‖L2(yα ,CY )‖r̃− r̄‖L2(Ω)

. EP(P̄,V̄ ;N (TΩ ))‖r̃− r̄‖L2(Ω) 6
µ

4
‖r̃− r̄‖2

L2(Ω)+CEP(P̄,V̄ ;N (TΩ )), (4.21)

where in the first inequality we used (2.2); C denotes a positive constant.
Step 3. The goal of this step is to bound the term I := (trΩ (p̄− q), r̃− r̄)L2(Ω). To accomplish this

task, we introduce another auxiliary adjoint state

w ∈
◦

H1
L(y

α ,CY ) : aY (φ ,w) = (trΩ ṽ−ud, trΩ φ)L2(Ω) ∀φ ∈
◦

H1
L(y

α ,CY ), (4.22)
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where ṽ is defined as the unique solution to

ṽ ∈
◦

H1
L(y

α ,CY ) : aY (ṽ,φ) = (r̃, trΩ φ)L2(Ω) ∀φ ∈
◦

H1
L(y

α ,CY ), (4.23)

and r̃ = Π(− 1
µ

trΩ P̄). We then write p̄− q = (p̄−w)+ (w− q) and bound each contribution to the
term I separately. To do this, we observe that v̄− ṽ solves the problem aY (v̄− ṽ,φ) = (r̄− r̃, trΩ φ)L2(Ω)

for all φ ∈
◦

H1
L(y

α ,CY ). On the other hand, for all these test functions, p̄−w solves aY (φ , p̄−w) =
(trΩ (v̄− ṽ), trΩ φ)L2(Ω). Combining these two problems, we arrive at

I1 := (trΩ (p̄−w), r̃− r̄)L2(Ω) =−aY (v̄− ṽ, p̄−w) =−‖ trΩ (v̄− ṽ)‖2
L2(Ω) 6 0. (4.24)

We now estimate the term I2 := (trΩ (w− q), r̃− r̄)L2(Ω), where w and q solve problems (4.22) and
(4.19), respectively. We observe that the difference w−q solves aY (φ ,w−q) = (trΩ (ṽ−V̄ ), trΩ φ)L2(Ω)

for all φ ∈
◦

H1
L(y

α ,CY ). Thus, the trace estimate (2.2) and the stability of problem (4.19) yield

|I2|. ‖∇(w−q)‖L2(yα ,CY )‖r̃− r̄‖L2(Ω) . ‖ trΩ (ṽ−V̄ )‖L2(Ω)‖r̃− r̄‖L2(Ω). (4.25)

It suffices to bound the term ‖ trΩ (ṽ− V̄ )‖L2(Ω). To accomplish this task, we invoke the triangle in-
equality and obtain the estimate ‖ trΩ (ṽ− V̄ )‖L2(Ω) 6 ‖ trΩ (ṽ− v∗)‖L2(Ω)+‖ trΩ (v∗− V̄ )‖L2(Ω), where
v∗ denotes the unique solution to the following problem:

v∗ ∈
◦

H1
L(y

α ,CY ) : aY (v∗,φ) = (Z̄, trΩ φ)L2(Ω) ∀φ ∈
◦

H1
L(y

α ,CY ). (4.26)

Now, we invoke (2.2) and the stability of (4.26) to derive that ‖ trΩ (ṽ− v∗)‖L2(Ω) . ‖r̃− Z̄‖L2(Ω). This,
in view of the definition of EZ , given by (4.11)–(4.12), yields

‖ trΩ (ṽ− v∗)‖L2(Ω) . EZ(Z̄, P̄;TΩ ). (4.27)

To control the remainder term, we observe that problem (3.13) corresponds to the Galerkin approxima-
tion of (4.26). Consequently, (2.2) and (Chen et al., 2015, Proposition 5.14) yield

‖ trΩ (v∗−V̄ )‖L2(Ω) . ‖∇(v∗−V̄ )‖L2(yα ,CY ) . EV (V̄ , Z̄;N (TΩ )). (4.28)

In view of (4.25), the collection of the estimates (4.27) and (4.28) allows us to obtain

|I2|6
µ

4
‖r̃− r̄‖2

L2(Ω)+C
(
E 2

Z (Z̄, P̄;TΩ )+E 2
V (V̄ , Z̄;N (TΩ ))

)
,

where C denotes a positive constant. Since (4.24) tells us that I1 6 0, we obtain a similar estimate for
the term I = I1 + I2. This estimate implies, on the basis of (4.20) and (4.21), the following bound

‖r̄− r̃‖2
L2(Ω) . E 2

V (V̄ , Z̄;N (TΩ ))+E 2
P (P̄,V̄ ;TΩ )+E 2

Z (Z̄, P̄;TΩ ),

which, invoking (4.17), provides an estimate for the error in control approximation:

‖r̄− Z̄‖L2(Ω) . Eocp(V̄ , P̄, Z̄;TY ). (4.29)

Step 4. The goal of this step in to bound the error ‖∇(v̄− V̄ )‖L2(yα ,CY ) in terms of the ideal error
indicator (4.5). We employ similar arguments to the ones developed in step 2. We write v̄− V̄ =
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(v̄−v∗)+(v∗−V̄ ), where v∗ is defined in (4.26). The stability of problem (4.26) and the estimate (4.29)
immediately provide the bound

‖∇(v̄− v∗)‖L2(yα ,CY ) . ‖r̄− Z̄‖L2(Ω) . Eocp(V̄ , P̄, Z̄;TY ).

which, combined with (4.28), allows us to derive

‖∇(v̄−V̄ )‖L2(yα ,CY ) . Eocp(V̄ , P̄, Z̄;TY ). (4.30)

Step 5. We bound the term ‖∇(p̄− P̄)‖L2(yα ,CY ). To accomplish this task, we invoke the triangle
inequality and write

‖∇(p̄− P̄)‖L2(yα ,CY ) 6 ‖∇(p̄−q)‖L2(yα ,CY )+‖∇(q− P̄)‖L2(yα ,CY ).

where q is defined as the solution to problem (4.19). Applying the stability of problem (4.19), the trace
estimate (2.2), and (4.30), we arrive at

‖∇(p̄−q)‖L2(yα ,CY ) . ‖ trΩ (v̄−V̄ )‖L2(yα ,CY ) . Eocp(V̄ , P̄, Z̄;TY ).

On the other hand, since P̄, solution to (3.15), corresponds to the Galerkin approximation of q, solution
to (4.19), we invoke (Chen et al., 2015, Proposition 5.14) to derive

‖∇(q− P̄)‖L2(yα ,CY ) . EP(P̄, Z̄;N (TΩ )).

Collecting the derived estimates, we obtain that

‖∇(p̄− P̄)‖L2(yα ,CY ) . Eocp(V̄ , P̄, Z̄;TY ). (4.31)

Step 6. Finally, the desired estimate (4.15) follows from a simple collection of the estimates (4.29),
(4.30) and (4.31). �

We now derive a local lower bound that measures the quality of Eocp (efficiency). To achieve this,
we define

C(ds,µ) = max{2d−1
s ,d

− 1
2

s (µ−1 +d
− 1

2
s ),1+d

− 1
2

s }. (4.32)

THEOREM 4.3 (local lower bound) Let (v̄, p̄, r̄) ∈
◦

H1
L(y

α ,CY )×
◦

H1
L(y

α ,CY )×Zad be the solution to the
optimality system associated with the truncated optimal control problem defined in subsection 3.2 and
(V̄ , P̄, Z̄) ∈ V(TY )×V(TY )×Zad(TΩ ) its numerical approximation defined in subsection 3.3. Then,

EV (V̄ , Z̄;Cz′)+EP(P̄,V̄ ;Cz′)+EZ(Z̄, P̄;Sz′)

6C(s,µ)
(
‖∇(v̄−V̄ )‖L2(yα ,Cz′ )

+‖∇(p̄− P̄)‖L2(yα ,Cz′ )
+‖r̄− Z̄‖L2(Sz′ )

)
, (4.33)

where C(ds,µ) depends only on ds and the parameter µ and is defined in (4.32).

Proof. We proceed in three steps.
Step 1. We begin by analyzing the efficiency properties of the indicator EV defined, locally, by (4.8).

Let z′ ∈ N (TΩ ). We invoke the fact that ζz′ solves the local problem (4.7) and conclude that

E 2
V (V̄ , Z̄;Cz′) = az′(ζz′ ,ζz′) = 〈r̄, trΩ ζz′〉+ 〈Z̄− r̄, trΩ ζz′〉−az′(V̄ ,ζz′).
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Define eV = v̄−V̄ , where v̄ solves (3.4). Invoking (4.4) with CtrΩ
6 d

− 1
2

s and a simple application of the
Cauchy-Schwarz inequality, we arrive at

E 2
V (V̄ , Z̄;Cz′)6 d−1

s ‖∇eV‖L2(yα ,Cz′ )
‖∇ζz′‖L2(yα ,Cz′ )

+‖r̄− Z̄‖L2(Sz′ )
‖ trΩ ζz′‖L2(Sz′ )

6

(
d−1

s ‖∇eV‖L2(yα ,Cz′ )
+d
− 1

2
s ‖r̄− Z̄‖L2(Sz′ )

)
‖∇ζz′‖L2(yα ,Cz′ )

.

This, in view of definition (4.8), implies the efficiency of EV :

EV (V̄ , Z̄;Cz′)6 d−1
s ‖∇eV‖L2(yα ,Cz′ )

+d
− 1

2
s ‖r̄− Z̄‖L2(Sz′ )

. (4.34)

Step 2. In this step we elucidate the efficiency properties of the indicator EP defined in (4.10).
Following the arguments elaborated in step 1, we write

E 2
P (P̄,V̄ ;Cz′) = 〈trΩ (V̄ − v̄),χz′〉+az′(eP,χz′),

where χz′ ∈W(Cz′) solves (4.9). An application of (4.4) with CtrΩ
6 d

− 1
2

s and the Cauchy-Schwarz
inequality yield

EP(V̄ , Z̄;Cz′)6 d−1
s ‖∇eV‖L2(yα ,Cz′ )

+d−1
s ‖∇eP‖L2(yα ,Cz′ )

. (4.35)

Step 3. The goal of this step is to analyze the efficiency properties of the indicator EZ defined by
(4.11)–(4.12). A trivial application of the triangle inequality yields

EZ(Z̄, P̄;Sz′)6 ‖Z̄−Π(− 1
µ

trΩ p̄)‖L2(Sz′ )
+‖Π(− 1

µ
trΩ p̄)−Π(− 1

µ
trΩ P̄)‖L2(Sz′ )

,

where Π denotes the nonlinear projector defined by (4.13). Now, in view of the local Lipschitz continu-
ity of Π , the fact that r̄ = Π(− 1

µ
trΩ p̄) and the trace estimate (4.4) imply that

EZ(Z̄, P̄;Sz′)6 ‖r̄− Z̄‖L2(Sz′ )
+

d
− 1

2
s

µ
‖∇eP‖L2(yα ,Cz′ )

. (4.36)

Step 4. The desired estimate (4.33) follows from a collection of the estimates (4.34), (4.35), and
(4.36). This concludes the proof. �

REMARK 4.1 (Local efficiency) Examining the proof of Theorem 4.3, we realize that the error indicators
EV , EP and EZ are locally efficient; see inequalities (4.34), (4.35) and (4.36), respectively. In addition,
in all these inequalities the involved constants are known and depend only on the parameter s, through
the constant ds, and the parameter µ . The key ingredients to derive the local efficiency property of the
error estimator EZ are the local Lipschitz continutiy of Π and the trace estimate (4.4). We comment
that obtaining local a posteriori error bounds for the discretization of an optimal control problem is not
always possible. We refer the reader to the Remark 3.3 in Kohls et al. (2014) for a thorough discussion
on this matter.

4.4 A computable a posteriori error estimator

The a posteriori error estimator proposed and analyzed in subsection 4.3 has an obvious drawback:
given a node z′, its construction requires the knowledge of the functions ζz′ and χz′ that solve exactly
the infinite–dimensional problems (4.7) and (4.9), respectively. However, it provides intuition and sets
the mathematical framework under which we will define a computable and anisotropic a posteriori error
estimator. To describe it, we define the following discrete local spaces.
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DEFINITION 4.4 (discrete local spaces) For z′ ∈ N (TΩ ), we define

W (Cz′) =
{

W ∈C0(Cz′) : W |T ∈P2(K)⊗P2(I)∀T = K× I ∈ Cz′ ,W |∂Cz′\Ω×{0} = 0
}
,

where, if K is a quadrilateral, P2(K) stands for Q2(K) — the space of polynomials of degree not larger
than 2 in each variable. If K is a simplex, P2(K) corresponds to P2(K)⊕B(K) where where P2(K)
stands for the space of polynomials of total degree at most 2, and B(K) is the space spanned by a local
cubic bubble function.

With these discrete spaces at hand, we proceed to define the computable counterpart of the error
indicator Eocp given by (4.5). This indicator is defined as follows:

Eocp(V̄ , P̄, Z̄;TY ) = EV (V̄ , Z̄;N (TΩ ))+EP(P̄,V̄ ;N (TΩ ))+EZ(Z̄, P̄;TΩ ), (4.37)

where TY ∈ T is the anisotropic mesh defined in subsection 3.3 and V̄ , P̄ and Z̄ denote the optimal
variables solving the fully discrete optimal control problem. To describe the first contribution in (4.37),
we define ηz′ ∈W (Cz′) as the solution to

az′(ηz′ ,W ) = 〈Z̄, trΩ W 〉−az′(V̄ ,W ) ∀W ∈W (Cz′). (4.38)

We then define the local and computable error estimator, for the state equation, as

EV (V̄ , Z̄;Cz′) := ‖∇ηz′‖L2(yα ,Cz′ )
, (4.39)

and the global error estimator EV (V̄ , Z̄;N (TΩ )) :=
(
∑z′∈N (TΩ ) E2

V (V̄ , Z̄;Cz′)
) 1

2 .
The second contribution in (4.37) is defined on the basis of the discrete object θz′ ∈ W (Cz′) that

solves the following local problem:

az′(θz′ ,W ) = 〈trΩ V̄ −ud , trΩ W 〉−az′(P̄,W ) ∀W ∈W (Cz′). (4.40)

We thus define the local and computable error indicator

EP(P̄,V̄ ;Cz′) := ‖∇θz′‖L2(yα ,Cz′ )
(4.41)

and the global error indicator EP(P̄,V̄ ;N (TΩ )) :=
(
∑z′∈N (TΩ ) E2

P(P̄,V̄ ;Cz′)
) 1

2 .
The third contribution in (4.37), i.e., the error indicator associated to the optimal control EZ , is

defined by (4.12)–(4.11).
We now explore the connection between the error estimator Eocp and the error. We first obtain a

lower bound that does not involve any oscillation term.

THEOREM 4.5 (local lower bound) Let (v̄, p̄, r̄) ∈
◦

H1
L(y

α ,CY )×
◦

H1
L(y

α ,CY )×Zad be the solution to the
optimality system associated with the truncated optimal control problem defined in subsection 3.2 and
(V̄ , P̄, Z̄) ∈ V(TY )×V(TY )×Zad(TΩ ) its numerical approximation defined in subsection 3.3. Then,

EV (V̄ , Z̄;Cz′)+EP(P̄,V̄ ;Cz′)+EZ(Z̄, P̄;Sz′)

6C(s,µ)
(
‖∇(v̄−V̄ )‖L2(yα ,Cz′ )

+‖∇(p̄− P̄)‖L2(yα ,Cz′ )
+‖r̄− Z̄‖L2(Sz′ )

)
, (4.42)

where C(ds,µ) depends only on ds and the parameter µ and is defined in (4.32).
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Proof. The proof of the estimate (4.42) repeats the arguments developed in the proof of Theorem 4.3.
We analyze the local efficiency of the indicator EV defined in (4.39). To do this, we let z′ ∈ N (TΩ ).
Employing the fact that ηz′ solves problem (4.38) and recalling that r̄ denotes the optimal control, we
arrive at

E2
V (V̄ , Z̄;Cz′) = az′(ηz′ ,ηz′) = 〈r̄,ηz′〉+ 〈Z̄− r̄,ηz′〉−az′(V̄ ,ηz′).

Invoking the trace estimate (4.4) with constant CtrΩ
6 d

− 1
2

s , the fact that v̄ solves problem (3.4) and the
Cauchy-Schwarz inequality, we obtain

E2
V (V̄ , Z̄;Cz′)6

(
d−1

s ‖∇(v̄−V̄ )‖L2(yα ,Cz′ )
+d
− 1

2
s ‖r̄− Z̄‖L2(Sz′ )

)
‖∇ηz′‖L2(yα ,Cz′ )

,

which, in light of (4.39), immediately yields the desired result

EV (V̄ , Z̄;Cz′)6 d−1
s ‖∇(v̄−V̄ )‖L2(yα ,Cz′ )

+d
− 1

2
s ‖r̄− Z̄‖L2(Sz′ )

.

The efficiency analysis for the terms EP and EZ follow similar arguments. For brevity we skip the
proof. �

REMARK 4.2 (strong efficiency) We remark that that the lower bound (4.42) implies a strong concept
of efficiency: it is free of any oscillation term and the involved constant C(ds,µ) is known and given by
(4.32). The relative size of the local error indicator dictates mesh refinement regardless of fine structure
of the data. The analysis is valid for the family of anisotropic meshes TY and allows the nonuniformly
coefficients involved in problems (3.4) and (3.6).

We now proceed to analyze the reliability properties of the anisotropic and computable error indica-
tor Eocp defined in (4.37). To achieve this, we introduce the so-called data oscillation. Given a function
f ∈ L2(Ω) and z′ ∈ N (TΩ ), we define the local oscillation of the function f as

osc( f ;Sz′) := hs
z′‖ f − fz′‖L2(Sz′ )

, (4.43)

where, hz′ = min{hK : K 3 z′} and fz′ |K ∈ R is the average of f over K, i.e.,

fz′ |K :=
 

K
f . (4.44)

The global data oscillation is then defined as

osc( f ;TΩ ) :=

(
∑

z′∈N (TΩ )

osc( f ;Sz′)
2

) 1
2

. (4.45)

To present our results in a concise manner, we define D = (ud , trΩ V̄ ) and

osc(D;Sz′) := osc(ud ;Sz′)+osc(trΩ V̄ ;Sz′). (4.46)

We define osc(D;TΩ ) accordingly. We also define the total error indicator

E (V̄ , P̄, Z̄;Cz′) :=
(
Eocp(V̄ , P̄, Z̄;Cz′)

2 +osc(D;Sz′)
2) 1

2 ∀z′ ∈ N (TΩ ). (4.47)

This indicator will be used to mark elements for refinement in the AFEM proposed in section 5. The
following remark is then necessary.
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REMARK 4.3 (marking) We comment that, in contrast to Cascón et al. (2008), the proposed AFEM
will utilize the total error indicator, namely the sum of energy error and oscillation, for marking. This
could be avoided if Eocp(V̄ , P̄, Z̄;Cz′) > Cosc(ud ;Sz′) for C > 0. While this property is trivial for the
residual estimator with C = 1, it is in general false for other families of estimators such as the one we
are proposing in this work. We refer to Cascón et al. (2008) for a thorough discussion on this matter.

Let KTΩ
= {Sz′ : z′ ∈ N (TΩ )} and, for any M ⊂KTΩ

, we set MY = M × (0,Y ) and

E (V̄ , P̄, Z̄;MY ) :=

 ∑
Sz′∈M

E (V̄ , P̄, Z̄;Cz′)
2

1/2

, (4.48)

where, we recall that Cz′ = Sz′× (0,Y ). With these ingredients at hand, we present the following result.

THEOREM 4.6 (global upper bound) Let (v̄, p̄, r̄) ∈
◦

H1
L(y

α ,CY )×
◦

H1
L(y

α ,CY )×Zad be the solution to
the optimality system associated with the truncated optimal control problem defined in subsection 3.2
and (V̄ , P̄, Z̄) ∈ V(TY )×V(TY )×Zad(TΩ ) its numerical approximation defined in subsection 3.3. If
(4.14) and (Chen et al., 2016, Conjecture 5.28) hold, then

‖∇(v̄−V̄ )‖L2(yα ,CY )+‖∇(p̄− P̄)‖L2(yα ,CY )+‖r̄− Z̄‖L2(Ω) . E (V̄ , P̄, Z̄;TY ), (4.49)

where the hidden constant is independent of the continuous and discrete optimal variables and the size
of the elements in the meshes TΩ and TY .

Proof. The proof of the estimate (4.49) follows closely the arguments developed in the proof of
Theorem 4.2; the difference being the use of the computable error indicator Eocp instead of the ideal
estimator Eocp. We start by bounding the error in the control approximation. Defining r̃= Π(− 1

µ
trΩ P̄),

estimate (4.17) implies that

‖r̄− Z̄‖L2(Ω) 6 ‖r̄− r̃‖L2(Ω)+EZ(Z̄, P̄;TΩ ). (4.50)

To control the remainder term, we invoke (4.20) with q defined by (4.19) and write

µ‖r̄− r̃‖2
L2(Ω) 6 (trΩ (p̄−q), r̃− r̄)L2(Ω)+(trΩ (q− P̄), r̃− r̄)L2(Ω) = I+ II. (4.51)

To control the term II, we invoke the fact that P̄, solution of problem (3.15), corresponds to the Galerkin
approximation of q, solution of problem (4.19). This, in view of (Chen et al., 2015, Theorem 5.37),
yields

|II|6 µ

4
‖r̃− r̄‖2

L2(Ω)+C
(
E2

P(P̄,V̄ ;N (TΩ ))+osc2(D;TΩ )
)
, (4.52)

where C denotes a positive constant and osc is defined by (4.43) and (4.45).
To control the term I, we write I= I1+I2 := (trΩ (p̄−w), r̃− r̄)L2(Ω)+(trΩ (w−q), r̃− r̄)L2(Ω), where

w is defined as the solution to (4.22). Step 3 in the proof of Theorem 4.2 implies that I1 6 0. To control
the term I2, we invoke (4.25) and write

|I2|. ‖∇(w−q)‖L2(yα ,CY )‖r̃− r̄‖L2(Ω) . ‖ trΩ (ṽ−V̄ )‖L2(Ω)‖r̃− r̄‖L2(Ω). (4.53)

We now write ṽ− V̄ = (ṽ− v∗)− (v∗ − V̄ ), where v∗ solves (4.26), and estimate each contribution
separately. First, stability of (4.26) yields

‖ trΩ (ṽ− v∗)‖L2(Ω) . EZ(Z̄, P̄;TΩ ). (4.54)
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Second, since V̄ corresponds to the Galerkin approximation of v∗, (Chen et al., 2015, Theorem 5.37)
implies the estimate

‖ trΩ (v∗−V̄ )‖L2(Ω) . ‖∇(v∗−V̄ )‖L2(yα ,CY ) . EV (V̄ , Z̄;N (TΩ )). (4.55)

This, in view of (4.53) and (4.54), implies that

|I2|6
µ

4
‖r̃− r̄‖2

L2(Ω)+C
(
E2

V (V̄ , Z̄;N (TΩ ))+E2
Z(Z̄, P̄;TΩ )

)
,

where C denotes a positive constant. Since I1 6 0, a similar estimate holds for I = I1+ I2. This estimate,
in conjunction with the previous bound, and the estimates (4.50), (4.52) and (4.51) imply that

‖r̃− r̄‖2
L2(Ω) . E2

ocp(V̄ , P̄, Z̄;TY )+osc2(D;TΩ ).

The estimates for the terms ‖∇(v̄− V̄ )‖L2(yα ,CY ) and ‖∇(p̄− P̄)‖L2(yα ,CY ) follow similar arguments
to the ones elaborated in the steps 4 and 5 of the proof of Theorem 4.2. For brevity we skip the details.
�

REMARK 4.4 (Conjecture 5.28 in Chen et al. (2016)) Examining the proof of Theorem 4.6, we realize
that the key steps where (Chen et al., 2015, Theorem 5.37) is invoked are (4.51) and (4.55). The results
of (Chen et al., 2015, Theorem 5.37) are valid under the assumption of the existence of an operator Mz′

that verify the conditions stipulated in (Chen et al., 2015, Conjecture 5.28). The construction of the
operator Mz′ is an open problem. The numerical experiments of (Chen et al., 2016, section 6) provide
consistent computational evidence of the existence of Mz′ with the requisite properties.

5. Numerical Experiments

In this section we conduct a numerical example that illustrates the performance of the proposed error
estimator. To accomplish this task, we formulate an adaptive finite element method (AFEM) based on
the following iterative loop:

SOLVE→ ESTIMATE→MARK→ REFINE (5.1)

5.1 Design of AFEM

We proceed to describe the four modules in (5.1)

• SOLVE: Given TY , we compute (Ȳ , P̄, Z̄)∈V(TY )×V(TY )×Zad(TΩ ), the solution to the fully
discrete optimal control problem defined in subsection 3.3:

(Ȳ , P̄,Ū) = SOLVE(TY ).

To solve the minimization problem, we have used the projected BFGS method with Armijo line
search; see Kelley (1999). The optimization algorithm is terminated when the `2-norm of the
projected gradient is less or equal to 10−5.

• ESTIMATE: Once a discrete solution is obtained, we compute, for each z′ ∈ N (TΩ ), the local
error indicator (4.37), which reads

Eocp(V̄ , P̄, Z̄;Cz′) = EV (V̄ , Z̄;Cz′)+EP(P̄,V̄ ;Cz′)+EZ(Z̄, P̄;Sz′),
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where the indicators EV , EP, EZ are defined by (4.39), (4.41) and (4.12), respectively. We then
compute the oscillation term (4.46) and construct the total error indicator (4.47):

{E (V̄ , P̄, Z̄;Sz′)}Sz′∈KTΩ

= ESTIMATE(V̄ , P̄, Z̄;TY ),

where KTΩ
= {Sz′ : z′ ∈ N (TΩ )}. For notational convenience, and in view of the fact that

Cz′ = Sz′ × (0,Y ) we replaced Cz′ by Sz′ in the previous formula.

• MARK: Using the so–called Dörfler marking strategy Dörfler (1996) (bulk chasing strategy) with
parameter θ with θ ∈ (0,1], we select a set

M = MARK
(
{E (V̄ , P̄, Z̄;Sz′)}Sz′∈KTΩ

,(V̄ , P̄, Z̄)
)
⊂KTΩ

of minimal cardinality that satisfies

E ((V̄ , P̄, Z̄),M )> θE ((V̄ , P̄, Z̄),KTΩ
).

• REFINEMENT: We generate a new mesh T ′
Ω

by bisecting all the elements K ∈ TΩ contained
in M based on the newest-vertex bisection method Nochetto et al. (2009); Nochetto & Vesser
(2011). We choose the truncation parameter as Y = 1+ 1

3 log(#T ′
Ω
) to balance the approximation

and truncation errors (Nochetto et al., 2015, Remark 5.5). The mesh I ′Y is constructed by the
rule (3.10), with a number of degrees of freedom M sufficiently large so that (4.14) holds. This is
attained by first creating a partition I ′Y with M ≈ (#T ′

Ω
)1/n and checking (4.14). If this condition

is violated, we increase the number of points until we get the desired result. The new mesh

T ′
Y = REFINE(M ),

is obtained as the tensor product of T ′
Ω

and I ′Y .

5.2 Implementation

The AFEM (5.1) is implemented within the MATLAB software library iFEM Chen (2009). All matrices
have been assembled exactly. The right hand sides are computed by a quadrature formula which is
exact for polynomials of degree 4. All linear systems were solved using he multigrid method with line
smoother introduced and analyzed in Chen et al. (2016).

To compute the solution ηz′ to the discrete local problem (4.38) we proceed as follow: we loop
around each node z′ ∈ N (TΩ ), collect data about the cylindrical star Cz′ and assemble the small linear
system (4.38). This linear system is solved by the built-in direct solver of MATLAB. To compute the
solution θz′ to the discrete local problem (4.40), we proceed similarly. All integrals involving only the
weight and discrete functions are computed exactly, whereas those also involving data functions are
computed element-wise by a quadrature formula which is exact for polynomials of degree 7.

For convenience, in the MARK step we change the estimator from star–wise to element–wise. To
acomplish this task, we first scale the nodal-wise estimator as E2

ocp(V̄ , P̄, Z̄;Cz′)/(#Sz′) and then, for each
element K ∈TΩ , we compute

E2
ocp(V̄ , P̄, Z̄;KY ) := ∑

z′∈K
E2

ocp(V̄ , P̄, Z̄;Cz′),
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where KY = K× (0,Y ). The scaling is introduced so that

∑
K∈TΩ

E2
ocp(V̄ , P̄, Z̄;KY ) = ∑

z′∈N (TΩ )

E2
ocp(V̄ , P̄, Z̄;Cz′).

The cell-wise data oscillation is now defined as

osc( f ;K)2 := h2s
K ‖ f − f̄K‖2

L2(K),

where f̄K denotes the average of f over the element K. This quantity is computed using a quadrature
formula which is exact for polynomials of degree 7.

5.3 L-shaped domain with incompatible data

For our numerical example we consider the worst possible scenario:

(D1) a= 0.1, b= 0.3. This implies that the optimal control z̄ 6∈H1−s(Ω) when s < 1
2 . We will refer to

the optimal control z̄ as incompatible datum for (3.4).

(D2) ud = 1. This element does not belong to H1−s(Ω) when s < 1
2 . Therefore, for s < 1

2 , ud is an
incompatible datum for problem (3.6).

(D3) Ω = (−1,1)2 \ (0,1)× (−1,0), i.e., the well known L-shaped domain; see Figure 2.

In view of (D1) and (D2), we conclude that the right hand sides of the state and adjoint equations,
problems (3.4) and (3.6), respectively, are incompatible for s < 1

2 . As discussed in (Nochetto et al.,
2015, section 6.3), at the level of the state equation, this results in lower rates of convergence when
quasi-uniform refinement of Ω is employed. In addition, we consider a situation where the domain Ω

is noncovex. As a result, the hypothesis of Theorem 3.17 does not hold and then it cannot be applied.
We set µ = 1, and we comment that we do not explicitly enforce the mesh restriction (4.14), which

shows that this is nothing but an artifact in our theory.
As Figure 1 illustrates, using our proposed AFEM driven by the error indicator (4.47), we can re-

cover the optimal rates of convergence (3.17)–(3.18) for all values of s considered: s = 0.2,0.4,0.6, and
s= 0.8. We remark, again, that we are operating under the conditions (D1)–(D3) and then Theorem 3.17
cannot be applied. Since, for s < 1

2 , the data is incompatible (D1)–(D2), the optimal and adjoint states
exhibit boundary layers. To capture them, our AFEM refines near the boundary; see Figure 2 (middle).
In contrast, when s > 1

2 such incompatibilities does not occur and then our AFEM focuses to resolve the
reentrant corner; see Figure 2 (right). The left panel in Figure 2 shows the initial mesh. We comment
that the middle and the right panels are obtained with 17 AFEM cycles.
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FIG. 1. Computational rate of convergence for our anisotropic AFEM with incompatible right hand sides for both the state
equation and the adjoint equation over an L–shaped domain (non-convex domain). We consider n = 2. Since the exact solution is
not known for this problem, we present the total error estimator with respect to the number of degrees of freedom. In all cases we
recover the optimal rate of convergence (#TY )

−1/3.

FIG. 2. The left panel shows the initial grid. The middle and right panels shows adaptive grids, obtained after 17 refinements, for
s = 0.2 and s = 0.8, respectively. We consider an L-shaped domain with incompatible right hand side for the state and adjoint
equations. As expected when s < 1

2 the incompatible data ( z̄,ud /∈ H1−s(Ω)) results in boundary layers for both the state and
the adjoint state. In order to capture them, our AFEM refines near the boundary. In contrast, when s > 1

2 the refinement is more
pronounced near the reentrant corner; the data z̄ and ud are compatible in this case.
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ARADA, N., CASAS, E. & TRÖLTZSCH, F. (2002) Error estimates for the numerical approximation of
a semilinear elliptic control problem. Comput. Optim. Appl., 23, 201–229.



24 of 27 REFERENCES

ATANACKOVIC, T., PILIPOVIC, S., STANKOVIC, B. & ZORICA, D. (2014) Fractional Calculus with
Applications in Mechanics: Vibrations and Diffusion Processes. John Wiley & Sons.
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CASCÓN, J. & NOCHETTO, R. (2012) Quasioptimal cardinality of AFEM driven by nonresidual esti-
mators. IMA J. Numer. Anal., 32, 1–29.

CHEN, L. (2009) iFEM: An integrated finite element methods package in matlab. Technical Report.
University of California at Irvine.
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