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1. Introduction. Nonlocal models have recently become of great interest to the
applied sciences and engineering. This is mainly due to the fact that operators fea-
turing nonlocal interactions better describe many processes, for instance, anomalous
diffusion phenomena, for which where classical integer order differential operators fail
to provide an accurate description. More specifically, they arise in applications such
as stochastic jump processes [17, 49], material science (e.g. subsurface flow where
nonlocal porous media models accurately describe the physical process) [5, 6, 44],
image processing [25, 35], finance [33, 46], fluids [12, 29, 36], population dynamics [30]
and cardiology [39].

Fractional operators are a particular class of nonlocal operators. When solving
fractional partial differential equations (PDEs), even linear ones, several modeling
and computational challenges arise. As an example, the computational cost required
by the solution of a linear fractional PDE can be prohibitively expensive, especially
in two- or three-dimensional domains. This is due to the fact that, contrary to the
case of local PDEs, points in a domain interact with every other point in the space,
due to the nonlocal nature of the operator that allows for infinite range interactions.
This clearly creates computational challenges as the discretized problems are hard to
assemble and solve.

Furthermore, it is often the case that the mathematical model is not exact, e.g.
source terms or coefficients may be unknown or subject to uncertainty. However, in
the case when limited data or a priori information is available, one can resort to the
solution of a control or inverse problem to recover the unknown parameters and define
a more accurate, data-driven, mathematical model.

Among available data we may have sparse and/or noisy measurements of the state
of the system or of an output of interest that we would like to match. In this work we
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2 Optimal control of the integral fractional Laplacian

address the problem of finding an input function (e.g. a distributed source term) such
that the corresponding solution is as close a possible to a target state; for now, we
do not consider any uncertainty in the data. We propose to solve an optimal control
problem where the cost functional quantifies the misfit between the target and the
predicted output of interest, the constraint is the fractional differential equation, and
the control is a distributed source term.

PDE-constrained optimization problems involving fractional and nonlocal equa-
tions are not new in the literature; we mention, e.g., the works by Antil and Otárola
[4], Otárola [41], and D’Elia and Gunzburger [18, 19]. In [4], the authors consider a
linear-quadratic optimal control problem for the spectral definition of the fractional
Laplacian; control constraints are also considered. The authors also propose and
study solution techniques to approximate the underlying solution. In [18] the authors
consider an optimal control problem for a general nonlocal diffusion operator with fi-
nite range interactions. In the current work, with a similar formulation, we consider a
linear-quadratic optimal control problem involving the integral definition of the frac-
tional Laplace operator, which we simply refer to as the integral fractional Laplacian;
in this case, as previously mentioned, the interactions can be infinite. It is important
to note that the integral and spectral definitions of the fractional Laplace operator
do not coincide. In fact, as shown in [38], their difference is positive and positivity
preserving. This, in particular, implies that the boundary behavior of the solutions
to basic problems involving the aforementioned definitions are different [11, 16, 26].

In this work, we design and analyze efficient solution techniques for a linear-
quadratic optimal control problem involving the integral fractional Laplacian. To
make matters precise, for n ≥ 1, we let Ω ⊂ Rn be an open bounded domain with
Lipschitz boundary ∂Ω. Given s ∈ (0, 1) and a desired state ud : Ω → R, we define
the cost functional

eq:cost_functionaleq:cost_functional (1.1) J(u, z) :=
1

2
‖u− ud‖2L2(Ω) +

α

2
‖z‖2L2(Ω),

where α > 0 denotes the so-called regularization parameter. Let f : Ω→ R be a fixed
function. We consider the following optimal control problem: Find

eq:mineq:min (1.2) min J(u, z)

subject to the fractional state equation

eq:state_equationeq:state_equation (1.3) (−∆)su = f + z in Ω, u = 0 in Ωc,

with s ∈ (0, 1) and Ωc = Rn \ Ω, and the control constraints

eq:control_constraintseq:control_constraints (1.4) a ≤ z(x) ≤ b a.e. x ∈ Ω;

the control bounds a, b ∈ R are such that a < b.
For functions defined over the whole space Rn, the integral fractional Laplacian

(−∆)s can be naturally defined via the Fourier transform as follows:

eq:Fouriereq:Fourier (1.5) F((−∆)sw)(ξ) = |ξ|2sF(w)(ξ).

Equivalently, (−∆)s can be defined by means of the following pointwise formula

(1.6) (−∆)sw(x) = C(n, s) p.v

∫
Rn

w(x)− w(y)

|x− y|n+2s
dy, C(n, s) =

22ssΓ(s+ n
2 )

πn/2Γ(1− s)
,
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where p.v stands for the Cauchy principal value and C(n, s) is a positive normalization
constant that depends only on n and s [20, equation (3.2)] and is introduced to
guarantee that the symbol of the resulting operator is |ξ|2s. We refer the reader
to [32, Section 1.1] and [20, Proposition 3.3] for a proof of the equivalence of these
two definitions. Note that, as previously mentioned, there exist other non-equivalent
definitions of the fractional Laplacian on bounded domains, e.g. the regional fractional
Laplacian, the spectral fractional Laplacian, etc. We refer the reader to [7, 38, 45] for
a comprehensive description and study.

The rest of the paper is organized as follows. In section 2 we introduce some
notation that will be useful throughout the paper. In section 3 we formulate the
optimal control problem for the integral fractional Laplacian with Dirichlet volume
constraints. We also prove the well-posedness of the formulation, derive optimality
conditions and derive regularity estimates for the optimal variables. Section 4 is
devoted to the study of discretization techniques to solve the fractional optimal control
problem. In section 4.1 we review the a priori error analysis developed in [1] for the
state equation. In section 4.2 we propose a semidiscrete scheme for the control problem
and derive a priori error estimates for the approximation of the control variable.
In section 4.3 we propose a fully discrete scheme for the fractional optimal control
problem and derive error estimates for the approximation of the state and control
variables. In section 5 we report results of two-dimensional numerical tests that
illustrate the theory and demonstrate the efficient solution of the discretized fractional
control problem.

sec:notation
2. Notation and preliminaries. Throughout this work Ω is an open bounded

domain of Rn (n ≥ 1) with Lipschitz boundary ∂Ω that satisfies the exterior ball
condition. We will denote by Ωc the complement of Ω. The relation a . b indicates
that a ≤ Cb with a constant C that does not depend on neither a and b but it might
depend on s and Ω. The value of C might change at each occurrence. If X and Y are
normed spaces, we write X ↪→ Y to denote that X is continuously embedded in Y.

2.1. Function spaces. For any s ≥ 0, we define Hs(Rn), the Sobolev space of
order s over Rn, by [47, Definition 15.7]

Hs(Rn) :=
{
v ∈ L2(Rn) : (1 + |ξ|2)s/2F(v) ∈ L2(Rn)

}
.

With the space Hs(Rn) at hand, we define H̃s(Ω) as the closure of C∞0 (Ω) in Hs(Rn)
and note that it can be equivalently characterized by [37, Theorem 3.29]

(2.1) H̃s(Ω) = {v|Ω : v ∈ Hs(Rn), supp v ⊂ Ω}.

When ∂Ω is Lipschitz H̃s(Ω) is equivalent to Hs(Ω) = [L2(Ω), H1
0 (Ω)]s, the real

interpolation between L2(Ω) and H1
0 (Ω) for s ∈ (0, 1) and to Hs(Ω) ∩ H1

0 (Ω) for

s ∈ (1, 3/2) [37, Theorem 3.33]. We denote by H−s(Ω) the dual space of H̃s(Ω) and
by 〈·, ·〉 the duality pair between these two spaces. We also define the bilinear form

eq:bilinear_formeq:bilinear_form (2.2) A(v, w) =
C(n, s)

2

∫∫
Rn×Rn

(v(x)− v(y))(w(x)− w(y))

|x− y|n+2s
dxdy,

and denote by ‖ · ‖s the norm that A(·, ·) induces, which is just a multiple of the
Hs(Rn)-seminorm:

‖v‖s = A(v, v)
1
2 =

√
C(n, s)

2
|v|Hs(Rn).
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2.2. The state equation. Let f ∈ H−s(Ω). The weak formulation of the state

equation (1.3) reads as follows: Find u ∈ H̃s(Ω) such that

eq:weak_state_equationeq:weak_state_equation (2.3) A(u, v) = 〈f + z, v〉 ∀v ∈ H̃s(Ω).

Since A is continuous and coercive in H̃s(Ω), the Lax-Milgram lemma implies that
problem (2.3) admits a unique solution that satisfies the stability estimate

eq:stabilityeq:stability (2.4) ‖u‖s . ‖f + z‖H−s(Ω).
sec:optimal_control

3. The fractional optimal control problem. In this section, we analyze the
fractional optimal control problem (1.2)–(1.4). We derive existence and uniqueness
results together with first order necessary and sufficient optimality conditions and
regularity estimates.

For J defined in (1.1), the fractional optimal control problem reads as follows:
Find min J(u, z) subject to the state equation (2.3) and the control constraints (1.4).
The set of admissible controls is defined by

(3.1) Zad := {w ∈ L2(Ω) : a ≤ w(x) ≤ b a.e. x ∈ Ω},

which is a nonempty, bounded, closed, and convex subset of L2(Ω).
As it is customary in optimal control theory [34, 48], to analyze (1.2)–(1.4), we

introduce the so-called control-to-state operator.
Definition 3.1 (control-to-state map). S : L2(Ω) 3 z 7→ u(z) ∈ H̃s(Ω), where

u(z) solves (2.3), is called the fractional control to state operator.
We notice that S is affine. In fact,

eq:affineeq:affine (3.2) Sz = S0z + ψ0,

where S0z denotes the solution to (2.3) with f ≡ 0 and ψ0 solves (2.3) with z ≡ 0;
the operator S0 is linear. We also notice that S is self-adjoint and, in light of the
estimate (2.4), it is a continuous operator. In view of the continuous embeddings

H−s(Ω) ↪→ L2(Ω) ↪→ H̃s(Ω) [37, Theorem 3.27], we may also consider S acting from
L2(Ω) onto itself. For simplicity, we keep the notation S.

An optimal fractional state-control pair is defined as follows.
Definition 3.2 (optimal fractional state-control pair). A state-control pair

(ū(z̄), z̄) ∈ H̃s(Ω)× Zad is called optimal for problem (1.2)–(1.4) if ū(z̄) = Sz̄ and

J(ū(z̄), z̄) ≤ J(u(z), z)

for all (u(z), z) ∈ H̃s(Ω)× Zad such that u(z) = Sz.

The existence and uniqueness of an optimal state–control pair is as follows.

Theorem 3.3 (existence and uniqueness). The fractional optimal control problem

(1.2)–(1.4) has a unique solution (ū, z̄) ∈ H̃s(Ω)× Zad.
Proof. By definition of S, problem (1.2)–(1.4) reduces to the following quadratic

optimization problem: Minimize

eq:reduced_cost_functionaleq:reduced_cost_functional (3.3) j(z) :=
1

2
‖Sz − ud‖2L2(Ω) +

α

2
‖z‖2L2(Ω)

over the set Zad. Since α > 0, it is immediate that the functional j is strictly convex.
In addition, since S is continuous, j is weakly lower semicontinuous. On the other
hand, the set Zad is weakly sequentially compact. The assertion thus follows from
employing the direct method of the calculus of variations [15, Theorem 5.51].
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3.1. First order optimality conditions. To provide first order necessary and
sufficient optimality conditions, we introduce the so-called adjoint state.

Definition 3.4 (fractional adjoint state). The solution p = p(z) ∈ H̃s(Ω) of

eq:weak_adjoint_equationeq:weak_adjoint_equation (3.4) A(v, p) = 〈u− ud, v〉 ∀v ∈ H̃s(Ω)

is called the fractional adjoint state associated to u = u(z).def:adjoint_state
The following theorem proves necessary and sufficient optimality conditions for

the optimal control problem (1.2)–(1.4).
Theorem 3.5 (first order optimality conditions). z̄ ∈ Zad is the optimal control

of problem (1.2)–(1.4) if and only if it satisfies the variational inequality

eq:variational_inequalityeq:variational_inequality (3.5) (p̄+ αz̄, z − z̄)L2(Ω) ≥ 0

for every z ∈ Zad, where p̄ = p̄(z̄) solves (3.4) with u replaced by ū = Sz̄.
Proof. A classical result [48, Lemma 2.21] guarantees that z̄ ∈ Zad minimizes the

reduced cost functional j, defined as in (3.3), if and only if

eq:first_optimaleq:first_optimal (3.6) (j′(z̄), z − z̄)L2(Ω) ≥ 0

for every z ∈ Zad. By standard arguments, we conclude that j is Fréchet differentiable
and we rewrite (3.6) as

(Sz̄ − ud,S0(z − z̄))L2(Ω) + α(z̄, z − z̄)L2(Ω) ≥ 0 ∀z ∈ Zad,

where S0 is defined in (3.2) [48, Theorem 2.20]. Notice that S0 is self-adjoint. We can
thus utilize Definition 3.4 to conclude that S0(Sz̄−ud)+αz̄ = p̄+αz̄. This concludes
the proof.

3.2. Regularity of the optimal control. In order to derive a priori error
estimates for the solution techniques that we will propose in section 4.2 and 4.3, it
is fundamental to study the regularity properties of the optimal variables associated
to (1.2)–(1.4). To accomplish this task, we introduce the projection operator proj :
L1(Ω)→ Zad, which is defined by

eq:projection_formulaeq:projection_formula (3.7) proj[a,b](v)(x) = min{b,max{a, v(x)}} for all x ∈ Ω,

where a and b are in R. With this nonlinear operator at hand, the arguments developed
in [48, Section 2.8] allow us to conclude the following result: If α > 0 and p̄ is given
by Definition 3.4, then the variational inequality (3.5) is equivalent to the following
projection formula:

eq:projection_formula_controleq:projection_formula_control (3.8) z̄(x) = proj[a,b]

(
− 1

α
p̄(x)

)
.

3.2.1. Regularity results on smooth domains. We now state a regularity
result for the state equation (2.3) that is instrumental to derive regularity estimates
for the optimal control variables.

Proposition 3.6 (regularity of u on smooth domains). Let s ∈ (0, 1) and Ω be
a domain such that ∂Ω ∈ C∞. If f + z ∈ Hr(Ω), for some r ≥ −s, then the solution
u of problem (2.3) belongs to Hs+ϑ(Ω), where ϑ = min{s + r, 1/2 − ε} and ε > 0 is
arbitrarily small. In addition, the following estimate holds:

eq:regularity_state_smootheq:regularity_state_smooth (3.9) ‖u‖Hs+ϑ(Ω) . ‖f + z‖Hr(Ω),
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where the hidden constant depends on the domain Ω, n, s, and ϑ.pro:state_regularity_smooth
Proof. See [26].
The following example shows that, even when ∂Ω is smooth, smoothness of

the right hand side f + z does not ensure that solutions are any smoother than
Hs+1/2−ε(Ω) [24, 42]: Consider Ω = B(0, 1) ⊂ Rn and f + z ≡ 1, then the solution
to (2.3) is given by

eq:exampleeq:example (3.10) u(x) =
Γ(n2 )

22sΓ(n+2s
2 )Γ(1 + s)

(
1− |x|2

)s
+
,

where t+ = max{t, 0}.
With the regularity estimates of Theorem 3.8 at hand, we now proceed to inves-

tigate the regularity properties of the optimal control variable z̄ when ∂Ω ∈ C∞.
Theorem 3.7 (regularity of z̄ on smooth domains). Let ud ∈ Hλ(Ω) with λ =

min{1− 2s, 1
2 − s− ε} and f ∈ Hβ(Ω) with β = max{−s, 1

2 − 3s− ε} where ε > 0 is
arbitrarily small. Then z̄ ∈ Hγ(Ω) with γ = min{1, 1

2 + s− ε}. In addition, we have
that

eq:reg_control_smooth2eq:reg_control_smooth2 (3.11) ‖z̄‖Hγ(Ω) . ‖f‖Hβ(Ω) + ‖z̄‖L2(Ω) + ‖ud‖Hλ(Ω),

where the hidden constant depends on Ω, n, and s.thm:reg_control_smooth
Proof. We begin by noticing that, since the right-hand sides of the state and

adjoint equations, namely, f + z̄ and ū− ud, respectively, belong to H−s(Ω), we have
that ū, p̄ ∈ Hs(Ω). This, on the basis of a nonlinear operator interpolation result as
in [47, Lemma 28.1] combined with [31, Theorem A.1] and formula (3.8), implies that
z̄ ∈ Hs(Ω).

We now consider the following cases.

Case 1. s ≥ 1/4: Notice that, in view of the assumption on ud, we have that
ū − ud ∈ Hη(Ω), where η = min{s, λ} = λ. By Proposition 3.6, we conclude that
p̄ ∈ Hξ(Ω), where ξ = s + ϑ1 and ϑ1 = min{s + λ, 1/2 − ε}. By invoking, again,
[47, Lemma 28.1], [31, Theorem A.1], and formula (3.8), we conclude that z̄ ∈ Hκ(Ω)
with κ = min{1, ξ}.

Notice that, if s ∈ [1/4, 1/2 + ε), we have that 1 − 2s > 1/2 − s − ε and thus
that λ = 1/2 − s − ε. Consequently, ϑ1 = 1/2 − ε and ξ = s + ϑ1 = s + 1/2 − ε. As
a result, we have obtained that z̄ ∈ Hs+1/2−ε(Ω) with ε > 0 being arbitrarily small.
On the other hand, if s ≥ 1/2 + ε, then 1− 2s ≤ 1/2− s− ε. This yields λ = 1− 2s.
Consequently, ϑ1 = min{1 − s, 1/2 − ε} = 1 − s, which implies that ξ = s + ϑ1 = 1.
We have thus obtained that z̄ ∈ H1(Ω).

Case 2. 1/8 ≤ s < 1/4: Notice that, since β = 1/2 − 3s − ε < s, we obtain that
f + z̄ ∈ Hβ(Ω). We can thus apply Proposition 3.6 to conclude that ū ∈ Hι(Ω) with
ι = s + ϑ2 and ϑ2 = min{s + β, 1/2 − ε}. Notice that ι = 1/2 − s − ε = λ. Since
ud ∈ Hλ(Ω), we thus have that ū − ud ∈ Hλ(Ω). Therefore, by Proposition 3.6,
p̄ ∈ Hs+ϑ3(Ω), where ϑ3 = min{s + λ, 1/2 − ε} = 1/2 − ε. By invoking, again, [47,
Lemma 28.1], [31, Theorem A.1], and formula (3.8), we obtain that z̄ ∈ Hs+1/2−ε(Ω),
where ε > 0 is arbitrarily small.

Case 3. 0 < s < 1/8: Since z̄ ∈ Hs(Ω), we have that f + z̄ ∈ Hδ(Ω), where
δ = min{s, 1/2 − 3s − ε} = s. We thus invoke Proposition 3.6 to conclude that
ū ∈ Hs+ϑ4(Ω), where ϑ4 = min{s + δ, 1/2 − ε} = min{2s, 1/2 − ε} = 2s. Notice
that, in view of the assumption ud ∈ Hλ(Ω) with λ = 1/2 − s − ε, we conclude that
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ū− ud ∈ H2s(Ω). We apply again [47, Lemma 28.1], [31, Theorem A.1], and formula
(3.8) to conclude that z̄ ∈ Hs+ϑ5(Ω), where ϑ5 = min{3s, 1/2− ε}.

Case 3.1. 1/6 ≤ s < 1/8: In this case 3s > 1/2 − ε, and then ϑ5 = 1/2 − ε.
Consequently, z̄ ∈ Hs+1/2−ε(Ω) with ε > 0 being arbitrarily small.

Case 3.2. 0 < s < 1/6: On the basis of the arguments previously developed,
a bootstrap argument allows us to conclude that z̄ ∈ Hs+1/2−ε(Ω) with ε > 0 being
arbitrarily small.

In all the considered cases, the estimate 3.11 follows from stability estimates for
state and adjoint equations and the nonlinear operator interpolation result of [47,
Lemma 28.1] combined with [31, Theorem A.1] and formula (3.8). This concludes the
proof.

The following result follows immediately.
Corollary 3.8 (regularity of ū and p̄ on smooth domains). Let s ∈ (0, 1). Under

the framework of Theorem 3.7 we have that ū ∈ Hs+1/2−ε(Ω) and p̄ ∈ Hs+1/2−ε(Ω)
for every ε > 0.thm:reg_state_smooth

As the example previously described, which involves (3.10) as exact solution,
shows, the regularity properties of the optimal variables ū and p̄ obtained in Corollary
3.8 cannot be improved.

3.2.2. Regularity results on Lipschitz domains. The following results es-
tablish regularity estimates in Hölder and Sobolev spaces for Lipschitz domains.

Proposition 3.9 (regularity of u on Lipschitz domains). Let s ∈ (0, 1) and Ω be
a bounded Lipschitz domain satisfying the exterior ball condition. If f + z ∈ L∞(Ω),
then the solution u of problem (2.3) belongs to Cs(Rn) and the following estimate
holds:

eq:regularity_stateeq:regularity_state (3.12) ‖u‖Cs(Rn) . ‖f‖L∞(Ω) + ‖z‖L∞(Ω),

where the hidden constant depends on Ω and s.pro:state_regularity_1
Proof. See [43, Proposition 1.1].
Proposition 3.10 (regularity of u on Lipschitz domains). Let s ∈ (0, 1) and Ω

be a bounded Lipschitz domain satisfying the exterior ball condition. If s ∈ (0, 1/2), let

f+z ∈ C 1
2−s(Ω); if s = 1/2, let f+z ∈ L∞(Ω); and if s ∈ (1/2, 1), let f+z ∈ Cβ(Ω)

for some β > 0. Then, for every ε > 0, the solution u of problem (2.3) belongs to
Hs+1/2−ε(Ω) and satisfies the estimate

eq:regularity_state_12eq:regularity_state_12 (3.13) ‖u‖Hs+1/2−ε(Ω) . ‖f + z‖?,

where ‖ ·‖? denotes the C
1
2−s(Ω), L∞(Ω) or Cβ(Ω)-norm, correspondingly to whether

s is smaller, equal or grater than 1/2. The hidden constant depends on the domain
Ω, the dimension n, and the parameter s, and blows up when ε→ 0.pro:state_regularity_12

Proof. See [1, Propositions 3.6 and 3.11].
We now proceed to investigate the regularity properties of the optimal control

variable z̄ when Ω is a bounded Lipschitz domain that satisfies the exterior ball
condition. We begin with the case s ∈ (0, 1

4 ).
Theorem 3.11 (regularity of z̄ on Lipschitz domains: s ∈ (0, 1

4 )). Let f ∈ L∞(Ω)

and ud ∈ L∞(Ω). If s ∈ (0, 1
4 ), then we have that z̄ ∈ Cs(Ω). In addition, we have

the estimate

‖z̄‖Cs(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖L∞(Ω),
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where the hidden constant depends on Ω and s.thm:reg_control_0
Proof. Since the right-hand side f+z̄ of the state equation (2.3) belongs to L∞(Ω),

Proposition 3.9 allows us to conclude that ū ∈ Cs(Rn). Thus, since ud ∈ L∞(Ω), we
can apply Proposition 3.9, again, to conclude that p̄ ∈ Cs(Ω). The projection formula
(3.7) and [31, Theorem A.1] allow us to conclude that z̄ ∈ Cs(Ω).

Theorem 3.12 (regularity of z̄ on Lipschitz domains: s ∈ [ 1
4 ,

1
2 )). Let f ∈ L∞(Ω)

and ud ∈ C1/2−s(Ω). If s ∈ [ 1
4 ,

1
2 ), then we have that, for every ε > 0, the optimal

control z̄ ∈ Hs+1/2−ε(Ω). In addition, we have the estimate

‖z̄‖Hs+1/2−ε(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖C1/2−s(Ω),

where the hidden constant depends on Ω, n, and s, and blows up when ε→ 0.thm:reg_control_1
Proof. In view of the fact that f + z̄ belongs to L∞(Ω), we can apply the results

of Proposition 3.9 to obtain that ū ∈ Cs(Rn) and that

eq:u_Cs_1eq:u_Cs_1 (3.14) ‖ū‖Cs(Rn) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω).

Now, notice that, since s ∈ [1/4, 1/2), the following trivial inequality holds: 1/2−s ≤
s. This, the estimate (3.14), and the assumption on the desired state ud reveal that
ū− ud ∈ C1/2−s(Ω). We are thus in position to apply the results of Proposition 3.10
to obtain that, for every ε > 0, the optimal adjoint variable p̄ belongs to Hs+1/2−ε(Ω).
In addition, we have the estimate

‖p̄‖Hs+1/2−ε(Ω) . ‖ū‖C1/2−s(Ω) + ‖ud‖C1/2−s(Ω).

In view of the projection formula (3.7) and [31, Theorem A.1], a nonlinear operator
interpolation result as in [47, Lemma 28.1] allow us to conclude that, for every ε > 0,
z̄ ∈ Hs+1/2−ε(Ω), with the estimate

‖z̄‖Hs+1/2−ε(Ω) . ‖p̄‖Hs+1/2−ε(Ω) . ‖ū‖C1/2−s(Ω) + ‖ud‖C1/2−s(Ω).

This, in view of (3.14), concludes the proof.
We now consider the case s ∈ ( 1

2 , 1).
Theorem 3.13 (regularity of z̄ on Lipschitz domains: s ∈ ( 1

2 , 1)). Let f ∈ L∞(Ω)
and ud ∈ Cβ(Ω), for some β > 0. If s ∈ ( 1

2 , 1), then we have that the optimal control
z̄ belongs to H1(Ω). In addition, we have the estimate

‖z̄‖H1(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖Cγ(Ω),

where γ = min{β, s}, and the hidden constant depends on Ω, n, and s, and blows up
when ε→ 0.thm:reg_control_2

Proof. We begin the proof by applying the results of Proposition 3.9 to conclude
that ū ∈ Cs(Rn), with the estimate

eq:aux_u_Cseq:aux_u_Cs (3.15) ‖ū‖Cs(Rn) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω).

In view of the assumptions, we conclude that ū− ud ∈ Cγ(Ω), where γ = min{β, s}.
We can thus invoke the results of Proposition 3.10 to conclude that, for every ε > 0,
we have that p̄ ∈ Hs+1/2−ε(Ω), with the estimate

‖p̄‖Hs+1/2−ε(Ω) . ‖ū‖Cγ(Ω) + ‖ud‖Cγ(Ω).
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The regularity property for the optimal control follows thus from (3.7), [31, Theorem
A.1] and [47, Lemma 28.1]. In fact, we have that z̄ ∈ H1(Ω), with the estimate

‖z̄‖H1(Ω) . ‖ū‖Cγ(Ω) + ‖ud‖Cγ(Ω)

. ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖Cγ(Ω),

where, to obtain the last estimate, we have used (3.15). This concludes the proof.
Similar arguments to the ones elaborated in the proofs of Theorems 3.12 and 3.13

allow us to obtain regularity estimates for the case s = 1
2 . For brevity, we present the

following result and skip the details.
Theorem 3.14 (regularity of z̄ on Lipschitz domains: s = 1

2). Let f and ud ∈
L∞(Ω). If s = 1

2 , then we have that, for every ε > 0, the optimal control z̄ ∈ H1−ε(Ω),
with the estimate

‖z̄‖H1−ε(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖L∞(Ω),

where the hidden constant depends on Ω, n, and s, and blows up when ε→ 0.thm:reg_control_3

The following regularity result will be instrumental for the error analysis that we
will perform.

Lemma 3.15 (regularity of z̄ on Lipschitz domains: s ∈ [ 1
4 , 1)). Let f ∈ L∞(Ω)

and ud ∈ L∞(Ω). In addition, for s ∈ [1/4, 1/2), let ud ∈ Cβ(Ω) for some β > 0.
Then,

eq:regularity_z_as_rhseq:regularity_z_as_rhs (3.16) z̄ ∈


C1/2−s(Ω), s ∈ [ 1

4 ,
1
2 ),

L∞(Ω), s = 1
2 ,

Cs(Ω), s ∈ ( 1
2 , 1).

Proof. The case s = 1
2 follows immediately from the fact that z̄ ∈ Zad.

If s ∈ ( 1
2 , 1), we can apply Proposition 3.9, since ū − ud ∈ L∞(Ω), to conclude

that p̄ ∈ Cs(Rn). This, in view of the projection formula (3.7) reveals that z ∈ Cs(Ω).
If s ∈ [ 1

4 ,
1
2 ), an application of Proposition 3.9, again, yields p̄ ∈ Cs(Ω). This

implies that p̄ ∈ C1/2−s(Ω) for s ∈ [ 1
4 ,

1
2 ). The projection formula (3.7) allows us to

conclude.
sec:approximation

4. Approximation of the fractional control problem. In this section, we
introduce and analyze two solution techniques to approximate the solution to the
fractional optimal control problem (1.2)–(1.4). Before proceeding with the design
and analysis of the proposed methods, it is instructive to review the numerical ap-
proximation of the state equation (1.3) developed in [1]. We briefly report such results
in the following section.

subsec:fem_state

4.1. A finite element method for the state equation. We start with some
terminology and describe the construction of the underlying finite element spaces. Let
T = {T} be a conforming partition of Ω into simplices T with size hT = diam(T ),
and set hT = maxT∈T hT . We denote by T the collection of conforming and shape
regular meshes that are refinements of an initial mesh T0. By shape regular we mean
that there exists a constant σ > 1 such that max{σT : T ∈ T } ≤ σ for all T ∈ T.
Here σT = hT /ρT denotes the shape coefficient of T , where ρT is the diameter of the
largest ball that can be inscribed in T [10, 14, 22].



10 Optimal control of the integral fractional Laplacian

Given a mesh T ∈ T, we define the finite element space of continuous piecewise
polynomials of degree one as

eq:defFESpaceeq:defFESpace (4.1) V(T ) =
{
vT ∈ C0(Ω) : vT |T ∈ P1(T ) ∀T ∈ T , vT = 0 on ∂Ω

}
.

Note that discrete functions are trivially extended by zero to Ωc and that we enforce
a classical homogeneous Dirichlet boundary condition at the degrees of freedom that
are located at the boundary of Ω. As Proposition 3.9 states, the solutions of state and
adjoint equations are in the Hölder space Cs (Rn). Therefore their boundary trace is
zero on ∂Ω. The finite element approximation of the state equation (2.3) is then the
unique solution to the following discrete problem: Find uT ∈ V(T ) such that

eq:weak_state_discreteeq:weak_state_discrete (4.2) A(uT , vT ) = 〈f + z, vT 〉 ∀vT ∈ V(T ),

Note that discrete functions are trivially extended by zero to Ωc. From this formu-
lation it follows that uT is the projection (in the energy norm) of u onto V(T ).
Consequently, we have a Céa-like best approximation result

(4.3) ‖u− uT ‖s = inf
vT ∈V(T )

‖u− vT ‖s.

4.1.1. Error estimates on quasi-uniform meshes. Localization results for
fractional seminorms [23] and local stability and approximation properties for the
Scott-Zhang interpolation operator [13] are the key ingredients to provide an a priori
error analysis. We present the following a priori error estimate in energy norm [1,
Theorem 4.7].

Proposition 4.1 (energy error estimate for quasi–uniform meshes). Let u ∈prop:HsstateQuasiUniform

H̃s(Ω) be the solution to (2.3), and let uT ∈ V(T ) be the solution to the discrete
problem (4.2). If T is quasi–uniform, then, under the hypotheses of Proposition
3.10, we have the error estimate

eq:energy_estimateeq:energy_estimate (4.4) ‖u− uT ‖s . h
1
2

T | log hT |‖f + z‖?,

where the hidden constant depends on Ω, s, and σ; ‖·‖? denotes the C
1
2−s(Ω), L∞(Ω)

or Cβ(Ω)-norm, correspondingly to whether s is smaller, equal or grater than 1/2.
The following a priori error estimate in L2(Ω) can be derived following the arguments
of [9, Proposition 4.3]; see [8, Proposition 3.8].

Proposition 4.2 (L2-error estimate for quasi–uniform meshes). Let u ∈ H̃s(Ω)prop:L2stateQuasiUniform
be the solution to (2.3), and let uT ∈ V(T ) be the solution to the discrete problem
(4.2). If T is quasi–uniform, then, under the hypotheses of Proposition 3.6, we have
the error estimate

eq:L2estimatereq:L2estimater (4.5) ‖u− uT ‖L2(Ω) . hϑ+β
T ‖f + z‖Hr(Ω),

where ϑ = min{s+ r, 1/2− ε}, β = min{s, 1/2− ε} and ε > 0 may be taken arbitrarily
small. In addition, the hidden constant depends on Ω, s, n, ϑ, and σ and blows up
when ε→ 0.

4.1.2. Error estimates on graded meshes. When s ∈ (1/2, 1) and n = 2,
the singular behavior of the solution exhibited by the regularity estimates in weighted
Sobolev spaces of [1] can be compensated by using a priori adapted meshes. The latter,
that are graded near the boundary of the domain and allow for an improvement on the
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priori error estimate (4.4), are constructed as follows. In addition to shape regularity,
we assume that the meshes T have the following property: Given a mesh parameter
h > 0 and µ ∈ [1, 2] every element T ∈ T satisfies

eq:graded_mesheseq:graded_meshes (4.6) hT ≈ C(σ)hµ if T ∩ ∂Ω 6= ∅, hT ≈ C(σ)hdist(T, ∂Ω)(µ−1)/µ if T ∩ ∂Ω = ∅,

where C(σ) depends only on the shape regularity constant σ of the mesh T . We
notice that µ relates the mesh parameter h to the number of degrees of freedom, N ,
as follows:

(4.7) N ≈ h−2
T if µ ∈ (1, 2), N ≈ h−2

T | log hT | if µ = 2.

The optimal choice for the parameter is µ = 2 and the following error estimate can
be derived [1, Theorem 4.11].

Proposition 4.3 (energy error estimate for graded meshes). Let Ω ⊂ R2 and

s ∈ (1/2, 1). Let u ∈ H̃s(Ω) be the solution to (2.3), and let uT ∈ V(T ) be the solution
to the discrete problem (4.2). If T satisfies (4.6) with µ = 2 and f + z ∈ C1−s(Ω)
then, we have the error estimate

eq:energy_estimate_gradedeq:energy_estimate_graded (4.8) ‖u− uT ‖s . | logN |N− 1
2 ‖f + z‖C1−s(Ω),

where the hidden constant depends on σ and blows up when s→ 1/2.
subsec:va

4.2. A semidiscrete scheme: the variational approach. In this section,
we propose a semidiscrete scheme for the fractional optimal control problem that is
based on the so-called variational discretization approach. This approach, that was
introduced by Hinze in [27], discretizes only the state space; the control space Zad is
not discretized. The scheme induces a discretization of the optimal control variable
by projecting the optimal discrete adjoint state into the admissible control set.

The aforementioned semidiscrete scheme reads as follows: Find min J(uT , g) sub-
ject to the discrete state equation

eq:weak_state_discrete_vaeq:weak_state_discrete_va (4.9) A(uT , vT ) = 〈f + g, vT 〉 ∀vT ∈ V(T ),

and the control constraints g ∈ Zad. For notational convenience, we will refer to the
previously defined problem as the semidiscrete optimal control problem.

To perform an error analysis, we introduce the control-to-state operator ST :
Zad 3 g 7→ uT ∈ V(T ) where ST g = uT (g) solves (4.9). We notice that ST is an
affine and continuous operator. In fact, ST g = ST,0 g + ψT , where ST,0g denotes
the solution to (4.9) with f ≡ 0 and ψT solves (4.9) with g ≡ 0; ST,0 is a linear and
continuous operator.

As in section 3, we denote by (ūT , ḡ) ∈ V(T )× Zad an optimal pair solving the
semidiscrete optimal control problem.

We now state the existence and uniqueness results together with first order opti-
mality conditions.

Theorem 4.4 (existence, uniqueness and optimality conditions). The semidis-
crete optimal control problem has a unique optimal solution (ūT , ḡ) ∈ V(T ) × Zad.
In addition, the first order optimality condition

eq:variational_inequality_vaeq:variational_inequality_va (4.10) (p̄T + αḡ, g − ḡ)L2(Ω) ≥ 0 ∀g ∈ Zad

is necessary and sufficient.
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Proof. The proof follows standard arguments [48]. For brevity, we skip the details.

We define the optimal adjoint state p̄T = p̄T (ḡ) as the solution to

eq:weak_adjoint_discrete_vaeq:weak_adjoint_discrete_va (4.11) A(vT , p̄T ) = 〈ūT − ud, vT 〉 ∀vT ∈ V(T ).

With these ingredients at hand, we proceed to derive an a priori error analysis
for the semidiscrete optimal control problem. The proof is inspired by the arguments
developed by Hinze in [28]. Since, in our case, the optimal control and state variables
exhibit reduced regularity properties, that are dictated by Theorem 3.7 and Corollary
3.8, we present a detailed proof.

Theorem 4.5 (variational approach: error estimate). Let s ∈ (0, 1) and ud ∈
H1/2−s−ε(Ω), for every ε > 0. Let (ū, z̄) and (ūT , ḡ) be the solutions to the continuous
and semidiscrete optimal control problems, respectively. If T is quasi–uniform, then,
under the framework of Theorem 3.7, we have the error estimate

eq:error_estimate_control_vaeq:error_estimate_control_va (4.12) ‖z̄ − ḡ‖L2(Ω) . h
1/2+β−ε
T

(
‖ū‖Hs+1/2−ε(Ω) + ‖ud‖H1/2−s−ε(Ω) + ‖z̄‖Hγ(Ω)

)
,

where β = min{s, 1/2 − ε}, γ = min{s + 1/2 − ε, 1}, and ε > 0 is arbitrarily small.
The hidden constant depends on Ω, s, and n and blows up when ε→ 0.

Proof. Set z = ḡ and g = z̄ in the variational inequalities (3.5) and (4.10),
respectively and add the obtained inequalities to arrive at the estimate

eq:va_basic_estimateeq:va_basic_estimate (4.13) α‖z̄ − ḡ‖2L2(Ω) ≤ (p̄− p̄T , ḡ − z̄)L2(Ω).

We now write p̄ = p̄(z̄) = S0(Sz̄−ud) and p̄T = p̄T (ḡ) = ST,0(ST ḡ−ud), where
S and ST denote the continuous and semidiscrete control-to-state maps, respectively.
With these relations at hand we can thus rewrite the estimate (4.13) as

α‖z̄ − ḡ‖2L2(Ω) ≤ (S0(Sz̄ − ud)− ST,0(ST ḡ − ud), ḡ − z̄)L2(Ω).

Adding and subtracting the term ST,0Sz̄, we obtain that

α‖z̄ − ḡ‖2L2(Ω) ≤ ((S0 − ST,0)Sz̄ + ST,0Sz̄ − ST ,0ST ḡ + (ST,0 − S0)ud, ḡ − z̄)L2(Ω).

We now add and subtract ST,0ST z̄ to conclude that

eq:va_basic_estimate_vaeq:va_basic_estimate_va (4.14) α‖z̄ − ḡ‖2L2(Ω) ≤ ((S0 − ST,0)Sz̄, ḡ − z̄)L2(Ω) + (ST,0(S− ST )z̄, ḡ − z̄)L2(Ω)

(ST,0ST (z̄ − ḡ), ḡ − z̄)L2(Ω) + ((ST,0 − S0)ud, ḡ − z̄)L2(Ω) =: I + II + III + IV.

Thus, it suffices to control the terms I, II, III, and IV. We begin with the control
of I. To accomplish this task, we first notice that, since Sz̄ = ū, Corollary 3.8 implies
that Sz̄ ∈ Hs+1/2−ε(Ω) for every ε > 0. We can thus invoke the error estimate (4.5)
with r = s+ 1/2− ε to conclude that

|I| . hϑ1+β
T ‖ū‖Hs+1/2−ε(Ω)‖z̄ − ḡ‖L2(Ω),

where ϑ1 = min{2s + 1/2 − ε, 1/2 − ε} and β = min{s, 1/2 − ε}. We notice that
ϑ1 = 1/2− ε, and thus that ϑ1 + β = 1/2 + β − ε. The control of the term IV follows
exactly the same arguments upon exploiting the assumption ud ∈ H1/2−s−ε(Ω). To
estimate II, we follow similar arguments and use the continuity of the discrete operator
ST . Finally, we control the term III as follows:

III = (ST (z̄ − ḡ),ST ,0(ḡ − z̄))L2(Ω) = −‖ST ,0(ḡ − z̄)‖2L2(Ω) ≤ 0.
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The desired estimate (4.12) follows from replacing the estimates we obtained for
I, II, III, and IV into (4.14). This concludes the proof.

Remark 4.1 (variational approach). The key advantage of the variational dis-
cretization approach is that delivers an optimal quadratic rate of convergence for the
error approximation of the control variable [28, Theorem 2.4]. The analysis relies on
the following assumption [28, Assumption 2.3]:

‖(S− ST )z‖L2(Ω) . h2
T ‖z‖L2(Ω),

which, in turn, relies on the H2(Ω)-regularity of the optimal state variable ū. In our
problem, the regularity properties exhibited by ū are limited. In fact, Corollary 3.8
reveals that ū ∈ Hs+1/2−ε(Ω) for every ε > 0. As (3.10) shows, this is the case even
when ∂Ω is smooth. This reduced regularity feature is responsible for the suboptimal
order of convergence in the error estimate (4.12).

subsec:fd
4.3. A fully discrete scheme. In this section, we propose and analyze a fully

discrete scheme to approximate the solution of the fractional optimal control problem
(1.2)–(1.4) by using piecewise constant discretization for the approximation of the
control variable and piecewise linear discretization for the approximation of the state
variable. To be precise, to discretize the control, we introduce the finite element space
of piecewise constant functions over T

(4.15) W(T ) =
{
vT ∈ L∞(Ω) : vT |T ∈ P0(T ) ∀T ∈ T

}
,

and the space of discrete admissible controls

(4.16) Zad(T ) = Zad ∩W(T ).

With this notation at hand, we propose the following fully discrete approximation
of the optimal control problem (1.2)–(1.4): Find min J(uT , zT ) subject to the discrete
state equation

eq:weak_state_discrete2eq:weak_state_discrete2 (4.17) A(uT , vT ) = 〈f + zT , vT 〉 ∀vT ∈ V(T ),

and the control constraints zT ∈ Zad(T ), where J , A, and V(T ) are defined as in
(1.1), (2.2), and (4.1), respectively. For notational convenience, we will refer to the
previously defined problem as the fully discrete optimal control problem.

We define the discrete control-to-state operator ST : Zad(T ) 3 zT 7→ uT ∈
V(T ), where ST zT = uT solves (4.17). We also define the optimal adjoint state p̄T

as the solution to

eq:weak_adjoint_discreteeq:weak_adjoint_discrete (4.18) A(vT , p̄T ) = (ūT − ud, vT )L2(Ω) ∀vT ∈ V(T ).

We present the following result.
Theorem 4.6 (existence, uniqueness and optimality conditions). The fully dis-

crete optimal control problem has a unique optimal solution (ūT , z̄T ) ∈ V(T ) ×
Zad(T ). In addition, the first order optimality condition

eq:variational_inequality_discreteeq:variational_inequality_discrete (4.19) (p̄T + αz̄T , zT − z̄T )L2(Ω) ≥ 0 ∀zT ∈ Zad(T )

is necessary and sufficient.
Proof. The proof follows standard arguments [48]. For brevity, we skip the details.
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4.3.1. Auxiliary estimates and variables. Since it is instrumental in the
analysis that we perform, we introduce the L2(Ω)-orthogonal projection operator [22,
Section 1.6.3]

eq:orthogonal_projectioneq:orthogonal_projection (4.20) ΠT : L2(Ω)→W(T ), (v −ΠT v, vT )L2(Ω) = 0 ∀vT ∈W(T ).

An important property is that ΠT Zad ⊂ Zad(T ). In addition, for 1 ≤ p ≤ ∞,
κ ∈ (0, 1], and v ∈Wκ,p(Ω), we have the error estimate [22, Proposition 1.135]

eq:estimate_projectioneq:estimate_projection (4.21) ‖v −ΠT v‖Lp(Ω) . hκT |v|Wκ,p(Ω).

In what follows we introduce two auxiliary variables that are also instrumental
to perform an error analysis for the fully discrete optimal control problem. First,

eq:qeq:q (4.22) qT ∈ V(T ) : A(vT , qT ) = (ū− ud, vT )L2(Ω) ∀vT ∈ V(T ).

Second,

eq:req:r (4.23) rT ∈ V(T ) : A(vT , rT ) = (uT (z̄)− ud, vT )L2(Ω) ∀vT ∈ V(T ),

where uT (z̄) ∈ V(T ) solves the discrete problem (4.2) with z replaced by z̄.

4.3.2. A priori error estimates on smooth domains. We now derive error
estimates for the fully discrete optimal control problem when ∂Ω is smooth.

Theorem 4.7 (error estimate for smooth domains on quasi–uniform meshes).
Let s ∈ (0, 1) and ud ∈ H1/2−s−ε(Ω), for ε > 0 arbitrarily small. Let (ū, z̄) andthm:L2controlQuasiUniform
(ūT , z̄T ) be the solutions to the continuous and fully discrete optimal control prob-
lems, respectively. Let ∂Ω be a smooth domain and T be quasi–uniform. Under the
framework of Theorem 3.7, we have the following error estimates: If s > 1/2, then

eq:error_estimate_controleq:error_estimate_control (4.24) ‖z̄ − z̄T ‖L2(Ω) . h1−ε
T

(
‖ū‖H1/2−s−ε(Ω) + ‖ud‖H1/2−s−ε(Ω) + ‖z̄‖H1(Ω)

)
and if s ≤ 1/2, then

eq:error_estimate_control_s005eq:error_estimate_control_s005 (4.25)

‖z̄ − z̄T ‖L2(Ω) . h
s+ 1

2−ε
T

(
‖ū‖H1/2−s−ε(Ω) + ‖ud‖H1/2−s−ε(Ω) + ‖z̄‖Hs+1/2−ε(Ω)

)
.

In both estimates the hidden constants depend on Ω, n, and s.thm:error_estimate
Proof. We proceed in four steps.

Step 1. We begin this step by observing that, since Zad(T ) ⊂ Zad, we are allow to
set z = z̄T in the optimality condition (3.5). On the other hand, we set zT = ΠT z̄ ∈
Zad(T ) in (4.19); ΠT denotes the L2(Ω)-orthogonal projection operator defined in
(4.20). Adding the obtained inequalities, we arrive at the estimate

eq:I+IIeq:I+II (4.26) α‖z̄− z̄T ‖L2(Ω) ≤ (p̄− p̄T , z̄T − z̄)L2(Ω) +(p̄T +αz̄T ,ΠT z̄− z̄)L2(Ω) =: I+II.

Step 2. We bound I. To accomplish this task, we write p̄− p̄T = (p̄−qT )+(qT − p̄T ),
where qT is defined as in (4.22) and first estimate the term involving p̄ − qT . Since
qT can be seen as the finite element approximation of p̄ within the space V(T ), we
can thus invoke the a priori error estimate (4.5) with r = 1/2− s− ε to conclude the
estimate

eq:pminusqeq:pminusq (4.27) ‖p̄− qT ‖L2(Ω) . hϑ1+β
T

(
‖ū‖H1/2−s−ε(Ω) + ‖ud‖H1/2−s−ε(Ω)

)
,
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where ϑ1 = 1/2 − ε, β = min{s, 1/2 − ε}, and ε > 0 being arbitrarily small. Notice
that Corollary 3.8 guarantees that ū ∈ Hs+1/2−ε(Ω). Thus ū ∈ H1/2−s−ε(Ω) and, by
assumption, ū− ud ∈ H1/2−s−ε(Ω) for every ε > 0.

To control the term qT − p̄T , we write qT − p̄T = (qT − rT ) + (rT − p̄T ), where
rT is defined as in (4.23). Next, notice that rT − p̄T ∈ V(T ) solves

eq:aux1eq:aux1 (4.28) A(vT , rT − p̄T ) = (uT (z̄)− ūT , vT )L2(Ω) ∀vT ∈ V(T ).

On the other hand, uT (z̄)− ūT ∈ V(T ) solves

eq:aux2eq:aux2 (4.29) A(uT (z̄)− ūT , vT ) = (z̄ − z̄T , vT )L2(Ω) ∀vT ∈ V(T ).

Consequently, by setting vT = rT − p̄T ∈ V(T ) in (4.29) and vT = ūT − uT (z̄) ∈
V(T ) in (4.28), we conclude that

eq:negative_signeq:negative_sign (4.30) (rT −p̄T , z̄T −z̄)L2(Ω) = A(ūT −uT (z̄), rT −p̄T ) = −‖ūT −uT (z̄)‖2L2(Ω) ≤ 0.

It thus suffices to estimate qT − rT . To accomplish this task, we notice that

qT − rT ∈ V(T ) : A(vT , qT − rT ) = (ū− uT (z̄), vT )L2(Ω) ∀vT ∈ V(T ).

We invoke a stability argument and the a priori error estimate (4.5) with r = γ =
min{s+ 1/2− ε, 1} to conclude that

eq:qminusreq:qminusr (4.31) ‖qT − rT ‖L2(Ω) . ‖ū− uT (z̄)‖L2(Ω) . hϑ2+β
T ‖z̄‖Hγ(Ω),

where ϑ2 = min{s + γ, 1/2 − ε}, and β = min{s, 1/2 − ε}. The fact that z̄ ∈ Hγ(Ω)
follows from Theorem 3.7.

In view of Young’s inequality, the collection of the estimates (4.27), (4.30), and
(4.31) yield the estimate for the term I:

|I| ≤ Ch2(ϑ1+β)
T

(
‖ū‖2H1/2−s−ε(Ω) + ‖ud‖2H1/2−s−ε(Ω)

)
+ Ch

2(ϑ2+β)
T ‖z̄‖2Hγ(Ω) +

α

4
‖z̄ − z̄T ‖2L2(Ω),

where C denotes a positive constant. We note that, for s ∈ (0, 1), ϑ1 = 1/2 − ε and
ϑ2 = 1/2− ε. We can thus conclude the following estimates for the term I:

s ∈ [1/2, 1)⇒ β = 1/2− ε⇒ |I| . Ch
2(1−ε)
T ,(4.32)

s ∈ (0, 1/2)⇒ β = s⇒ |I| . Ch
2(s+1/2−ε)
T .(4.33)

Step 3. The goal of this step is to estimate the term II = (p̄T +αz̄T ,ΠT z̄ − z̄)L2(Ω).
To accomplish this task, we invoke definitions (4.22) and (4.23) and write

II = (p̄T +αz̄T ,ΠT z̄− z̄)L2(Ω) = (p̄+αz̄,ΠT z̄− z̄)L2(Ω) +α(z̄T − z̄,ΠT z̄− z̄)L2(Ω)

+ (p̄T − rT ,ΠT z̄− z̄)L2(Ω) + (rT ± qT − p̄,ΠT z̄− z̄)L2(Ω) =: II1 + II2 + II3 + II4.

To bound II1, we first invoke the definition of ΠT and notice that

eq:II_1eq:II_1 (4.34) II1 = (p̄+ αz̄ −ΠT (p̄+ αz̄),ΠT z̄ − z̄)L2(Ω).
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We can thus invoke the estimate (4.21) and the regularity results of Theorem 3.7 and
Corollary 3.8 to conclude that

(4.35) |II1| . h2γ
T ‖p̄+ αz̄‖Hγ(Ω)‖z̄‖Hγ(Ω),

where γ = min{s+ 1/2− ε, 1} with ε > 0 arbitrarily small.
To bound II2 we use, (4.21) and the regularity results of Theorem 3.7, again, and

Young’s inequality. We thus arrive at the estimate

(4.36) |II2| ≤ Ch2γ
T ‖z̄‖

2
Hγ(Ω) +

α

4
‖z̄ − z̄T ‖2L2(Ω),

where C denotes a positive constant and γ = min{s+ 1/2− ε, 1}.
To control II3 we invoke a stability estimate for the discrete problem (4.23) and

the error estimate (4.21). In fact, we have that

(4.37) |II3| . hγT ‖ūT − uT (z̄)‖L2(Ω)‖z̄‖Hγ(Ω) . hγT ‖z̄ − z̄T ‖L2(Ω)‖z̄‖Hγ(Ω),

To obtain the last inequality we have used a stability estimate for the discrete problem
(4.17).

The control of the term rT − qT follows from (4.31) while the one for qT − p̄
from the estimate (4.27).
Step 4. The desired estimates (4.24) and (4.25) follow from collecting all the estimates
we obtained in previous steps.

4.3.3. A priori error estimates on Lipschitz domains. To derive the error
estimates (4.24) and (4.25) we have used the a priori error estimate (4.5) that requires
that ∂Ω is smooth. In the following result we allow Ω to be a bounded Lipschitz
domain satisfying the exterior ball condition and obtain quasi-optimal error estimates,
in terms of approximation, for the control and state variables. To do this, we define

(4.38) Λ(z̄, f, ud) := ‖f + z̄‖C1−s(Ω) + ‖ud‖C1−s(Ω) + ‖z̄‖H1(Ω).

We present the following result.
Theorem 4.8 (error estimates for Lipschitz domains on graded meshes). Letthm:errorGraded

s ∈ (1/2, 1) and Ω be a bounded Lipschitz domain satisfying the exterior ball condition.
Let (ū, z̄) and (ūT , z̄T ) be the solutions to the continuous and fully discrete optimal
control problems, respectively. If T satisfies (4.6) with µ = 2, f ∈ C1−s(Ω), and
ud ∈ C1−s(Ω), then

eq:error_estimate_control2eq:error_estimate_control2 (4.39) ‖z̄ − z̄T ‖L2(Ω) . | logN |N− 1
2 Λ(z̄, f, ud)

and

eq:error_estimate_stateeq:error_estimate_state (4.40) ‖ū− ūT ‖s . | logN |N− 1
2 Λ(z̄, f, ud),

where N denotes the number of degrees of freeedom of T . In both estimates, thethm:error_estimate2
hidden constant depend on σ and blows up when s→ 1/2.

Proof. The proof follows closely the arguments developed in the proof of Theorem
4.7; the difference being the use of the error estimate (4.8) instead of (4.5). Since the
latter estimates require different assumptions on the problem data, we briefly report
the arguments.
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Step 1. We recall the estimate (4.26):

eq:I+II2eq:I+II2 (4.41) α‖z̄− z̄T ‖2L2(Ω) ≤ (p̄− p̄T , z̄T − z̄)L2(Ω) +(p̄T +αz̄T ,ΠT z̄− z̄)L2(Ω) =: I+II.

Step 2. The results of Proposition 3.9 imply that ū ∈ Cs(Ω) with the stability estimate
‖ū‖Cs(Ω) . ‖f+ z̄‖L∞(Ω). This, in view of the assumption ud ∈ C1−s(Ω), allows us to

conclude that ū−ud ∈ C1−s(Ω) for s ∈ (1/2, 1). Notice that ū−ud corresponds to the
right-hand side of the adjoint equation (3.4) and that qT denotes its finite element
approximation. We can thus conclude, on the basis of the error estimate (4.8), that

‖p̄− qT ‖L2(Ω) . | logN |N− 1
2 ‖ū− ud‖C1−s(Ω)

. | logN |N− 1
2

(
‖f + z̄‖L∞(Ω) + ‖ud‖C1−s(Ω)

)
.eq:pminusq2eq:pminusq2 (4.42)

The control of qT − p̄T follows from writing qT − p̄T = (qT − rT ) + (rT − p̄T ),
where rT is defined as in (4.23). Notice that (4.30) yields

eq:negative_sign2eq:negative_sign2 (4.43) (rT − p̄T , z̄T − z̄)L2(Ω) = −‖ūT − uT (z̄)‖2L2(Ω) ≤ 0.

Now, notice that, in view of (3.16), the optimal control z̄ ∈ Cs(Ω) when s ∈ (1/2, 1).
Consequently, for such an interval, f + z̄ ∈ C1−s(Ω). We thus invoke a stability
argument and the error estimate (4.8) to conclude that

eq:qminusr2eq:qminusr2 (4.44) ‖qT − rT ‖L2(Ω) . ‖ū− uT (z̄)‖s . | logN |N− 1
2 ‖f + z̄‖C1−s(Ω).

Step 3. As in the step 3 in the proof of Theorem 4.7, we write II = II1 +II2 +II3 +II4.
The estimate for II1 follows from (4.34) and the error estimate (4.21):

(4.45) |II1| . h2‖p̄+ αz̄‖H1(Ω)‖z̄‖H1(Ω),

where we have used that the mesh grading (4.6) implies that hT ≤ Ch for all T ∈ T .
Notice that, in view of the regularity estimates of Theorem 3.13 we have that ‖p̄‖H1(Ω)

and ‖z̄‖H1(Ω) are bounded. The estimate for the term II2 follows from the regularity
estimates of Theorem 3.13 and the error estimate (4.21):

(4.46) |II2| ≤ Ch2‖z̄‖2H1(Ω) +
α

4
‖z̄ − z̄T ‖2L2(Ω),

where C denotes a positive constant. The estimates for II3 and II4 follow form the
estimates derived for rT − qT and qT − p.
Step 4. The desired estimate (4.39) follows from collecting the estimates derived in
the previous steps.
Step 5. We derive the error estimates associated to the approximation of the optimal
state variable. We begin with the basic estimate

‖ū− ūT ‖s = ‖Sz̄ − ST z̄T ‖s
≤ ‖(S− ST )z̄‖s + ‖ST (z̄ − z̄T )‖s.

Notice that (3.16) guarantees that z̄ ∈ Cs(Ω) for s ∈ ( 1
2 , 1) and thus that z̄ ∈ C1−s(Ω).

We can thus apply the error estimate (4.8) to conclude that

‖(S− ST )z̄‖s . | logN |N− 1
2 ‖f + z̄‖C1−s(Ω),
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where the hidden constant depends on σ and blows up when s→ 1/2. We now invoke
the continuity of the discrete control-to-state map ST to conclude that

‖ST (z̄ − z̄T )‖s . | logN |N− 1
2 Λ(z̄, f, ud).

The collection of these estimates yield (4.8).
Remark 4.2 (quasi-optimal error estimate). Notice that the error estimates

(4.39) and (4.40) are quasi-optimal in terms of approximation.
sec:num_experiments

5. Numerical experiments. We present a series of numerical examples that
illustrate the performance of the fully discrete scheme proposed in section 4.3 for the
solution of the optimal control problem (1.2)–(1.4) and the sharpness of the derived
error estimates. We consider an example where Ω is smooth and another one where
we go beyond the theory and violate the assumption of exterior ball condition.

When solving equations involving the integral fractional Laplacian, two primary
issues need to be addressed:

• No closed form is available for the entries of the stiffness matrix, and hence
quadrature needs to be used for their evaluation. Particular care in the choice
of quadrature rules needs to be taken to handle the case of pairs of elements
that are either connected or close to each other. In order not to spoil the
solution, the quadrature error needs to be smaller than the error arising from
discretization.

• Due to the nonlocal interactions, straightforward assembly would lead to a
dense matrix representation of the fractional Laplacian. This would mean
that a single solve of state or adjoint equation would scale at best quadrat-
ically in the number of unknowns. Fortunately, the interactions of well-
separated clusters of unknowns can be approximated, using a panel clus-
tering approach, whereby the overall complexity of a matrix-vector product
is reduced to O(N (logN)

2n
). Again, error due to the approximation of the

operator needs to be controlled.
For a comprehensive treatment of both issues we refer the reader to [2, 3].

For the examples that we present in this section, the discrete equations (4.17)
and (4.18) are solved on the basis of multigrid solver, while to solve the minimization
problem, we use the BFGS algorithm [40].

5.1. Unit disc. We let n = 2, Ω = B(0, 1), and s ∈ (0, 1). We consider

(−∆)su = f in Ω, u = 0 in Ωc.

This problem has a family of known closed-form solutions when the right-hand side
reads, in polar coordinates, as follows:

fn,`(r, θ) = 22sΓ (1 + s)
2

(
s+ n+ `

s

)(
s+ n

s

)
r` cos (`θ)P (s,`)

n

(
2r2 − 1

)
,

where `, n ∈ N0. In fact, for `, n ∈ N0, the solution is given by

un,`(r, θ) = r` cos(`θ)P (s,`)
n (2r2 − 1)(1− r2)s+.

We refer the reader to [21] for details.
We set a = −0.9, b = 0.9, α = 10−1, ud = u0,1 + αf0,0, and f = f0,1 −

proj[a,b] (u0,0). The exact solution reads ū = u0,1, p̄ = −αu0,0 and

z̄ = proj[a,b] (u0,0) =

{
b r < ro :=

√
1− b1/s,

(1− r2)s r ≥ ro.
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Fig. 5.1: Finite element solutions for the optimal state ūT (left) and the optimal
control z̄T (right) for s = 0.7. We notice that the upper bound on the control is
active near the center of the domain.

fig:solutions0.7

5.1.1. Quasi-uniform meshes. We discretize Ω using a sequence of quasi-
uniform meshes and solve the control problem with the scheme of section 4.3 for
s ∈ {0.1, 0.2, . . . , 0.9}. In Figure 5.1 we present the finite element solutions for the
optimal state ūT and control z̄T , on the finest mesh (66k vertices, 131k elements),
for s = 0.7. Note that the upper bound on the control is active for r ≤ ro.

In Figures 5.2, we show experimental rates of convergence for the H̃s(Ω)-error of
the state variable, as well as the L2(Ω)-error of the control variable. We mention that

the aforementioned H̃s(Ω)-error can be computed as follows:

‖ū− ūT ‖2s = A(ū− ūT , ū− ūT ) = A(ū, ū)− 2A(ū, ūT ) +A(ūT , ūT )

= 〈f + z̄, ū〉 − 2〈f + z̄, ūT 〉+ 〈f + zT , ūT 〉
= 〈f + z̄, ū〉 − 2〈z̄, ūT 〉 − 〈f, ūT 〉+ 〈zT , ūT 〉,eq:numericalHseq:numericalHs (5.1)

where the first term can be evaluated analytically. We observe, from Figures 5.2, that
the rates of convergence predicted by Proposition 4.1 and Theorem 4.7 are attained:

we observe O(h
1/2−ε
T ) for the H̃s(Ω)-error of the state variable, and

O(h
s+1/2−ε
T ) and O(h1−ε

T ),

for the L2(Ω)-error of control variable when s ≤ 1/2 and s > 1/2, respectively.
Figure 5.3 displays the solution times for the discretized control problems. It can

be observed that the solve in fact scales as O
(
N(logN)4

)
.

5.1.2. Graded meshes. We discretize Ω using a family of graded meshes which
satisfy condition (4.6) with µ = 2. As an example, we present one of these meshes in
Figure 5.4. We solve the fractional optimal control problem for s = 0.75. In Figure 5.4,
we present the experimental orders of convergence for the H̃s(Ω)-error for the state
variable and the L2(Ω)-error for the control variable; both of them being displayed
versus the number of degrees of freedom N , where, we recall that, N = dimV(T ). It
can be observed that, as predicted by Theorem 4.8, the experimental errors decay as
O(| logN |N− 1

2 ); the latter being nearly-optimal in terms of approximation.
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Fig. 5.2: Left: Experimental rates of convergence for the H̃s(Ω)-error of the state
variable and the L2(Ω)-error of the control variable for n = 2, Ω = B(0, 1), and
s ∈ {0.1, 0.2, . . . , 0.9}. The experimental rates of convergence are in agreement with
the results of Proposition 4.1 and Theorem 4.7.
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Fig. 5.3: Solution time for the discretized control problem using BFGS for the mini-
mization problem and multigrid combined with panel clustering for the linear systems.
The solve scale as N(logN)4.
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Fig. 5.4: Left: Graded mesh satisfying condition (4.6) with µ = 2. Right: Experimen-

tal rates of convergence for the H̃s(Ω)-error for the state variable and the L2(Ω)-error
for the control variable. As predicted by Theorem 4.8, both experimental rates decay
as O(| logN |N− 1

2 ), which is nearly optimal in terms of approximation.

fig:graded

5.2. L-shaped domain. We now illustrate the case of a non-smooth domain by
solving the fractional optimal control problem on a family of quasi-uniform meshes
on the L-shaped domain Ω = [0, 2]2 \ [1, 2]2. Notice that Ω is Lipschitz but does not
satisfy the exterior ball condition.

We consider s = 0.75, ud = 1B((0.5,0.5),0.2)+1B((1.5,0.5),0.2)+1B((0.5,1.5),0.2), f = 1,
a = 0, b = 30, and α = 10−1. Since no analytical solution is available, we compute
errors with respect to a reference solution on a highly refined mesh (200k vertices,
400k elements, h = 2−8). The numerical solution for the control as well as computed

errors are shown in Figure 5.5. The speed-up of convergence in H̃s(Ω)- and L2(Ω)-
norm for larger number of unknowns is due to the fact that the reference solution is
used in their computation instead of the true solution.

6. Conclusion. In this paper we introduced an optimal control problem for the
integral form of the fractional Laplacian operator with the goal of determining the
optimal source term such that the nonlocal solution is as close as possible to a given
data. We performed a careful and detailed mathematical and numerical analysis
proving well-posedness of the control problem and establishing resularity estimates
and convergence results for two finite-dimensional approximations of the continuous
problem. Also, we provided several two-dimensional numerical results that illustrate
the theory and additional results on complex geometries that show applicability of
our approach to more realistic problems.

This work sets the ground for future research: as an example, one could consider
a different control variable such as a diffusion parameter or the fractional order itself.
The latter problem is very challenging both in terms of analysis (for different controls
the solution belongs to a different functional space) and computations (the matrix of
the discretized problem needs to be reassembled at each iteration of the optimization
algorithm).
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Fig. 5.5: Left: Finite element solution for the optimal control z̄T . Right: Experimen-
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Theorem 4.7: O(h
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T ) and O(h1−ε
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