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Abstract. We consider an optimal control problem that entails the minimization of a non-3
differentiable cost functional, fractional diffusion as state equation and constraints on the control4
variable. We provide existence, uniqueness and regularity results together with first order optimality5
conditions. In order to propose a solution technique, we realize fractional diffusion as the Dirichlet-6
to-Neumann map for a nonuniformly elliptic operator and consider an equivalent optimal control7
problem with a nonuniformly elliptic equation as state equation. The rapid decay of the solution8
to this problem suggests a truncation that is suitable for numerical approximation. We propose a9
fully discrete scheme: piecewise constant functions for the control variable and first–degree tensor10
product finite elements for the state variable. We derive a priori error estimates for the control and11
state variables.12
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1. Introduction. In this work we shall be interested in the design and analysis16

of a numerical technique to approximate the solution to a nondifferentiable optimal17

control problem involving the fractional powers of a uniformly elliptic second order18

operator; control constraints are also considered. To make matters precise, let Ω be19

a bounded and open convex polytopal subset of Rn with n ≥ 1. Given s ∈ (0, 1) and20

a desired state ud : Ω→ R, we define the nondifferentiable cost functional21

(1) J(u, z) =
1

2
‖u− ud‖2L2(Ω) +

σ

2
‖z‖2L2(Ω) + ν‖z‖L1(Ω),22

where σ and ν are positive parameters. We shall thus be concerned with the following23

nondifferentiable optimal control problem: Find24

(2) min J(u, z)25

subject to the fractional state equation26

(3) Lsu = z in Ω,27

and the control constraints28

(4) a ≤ z(x′) ≤ b a.e. x′ ∈ Ω.29

The operator Ls, with s ∈ (0, 1), is a spectral fractional power of the second order,30

linear, symmetric, and uniformly elliptic operator31

(5) Lw = −divx′(A(x′)∇x′w) + c(x′)w,32

supplemented with homogeneous Dirichlet boundary conditions; 0 ≤ c ∈ L∞(Ω)33

and A ∈ C0,1(Ω,GL(n,R)) is symmetric and positive definite. The control bounds34
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2 E. OTÁROLA, A.J. SALGADO

a, b ∈ R and, since we are interested in the nondifferentiable scenario, we assume that35

a < 0 < b [11, Remark 2.1].36

The design of numerical techniques for the optimal control problem (2)–(4) is37

mainly motivated by the following considerations:38

• Fractional diffusion has recently become of great interest in the applied sciences and39

engineering: practitioners claim that it seems to better describe many processes.40

For instance, mechanics [3], biophysics [6], turbulence [12], image processing [18],41

nonlocal electrostatics [20] and finance [23]. It is then natural the interest in efficient42

approximation schemes for problems that arise in these areas and their control.43

• The objective functional J contains an L1(Ω)–control cost term that leads to44

sparsely supported optimal controls; a desirable feature, for instance, in the op-45

timal placement of discrete actuators [31]. This term is also relevant in settings46

where the control cost is a linear function of its magnitude [36].47

We must immediately comment that in this manuscript we will adopt the spec-48

tral definition for the fractional powers of the operator L; see equation (8) below.49

This definition and the one based on the well–known point–wise integral formula [22,50

Section 1.1] do not coincide. In fact, as shown in [26], their difference is positive51

and positivity preserving. The study of solution techniques for problems involving52

both approaches to fractional diffusion is a relatively new but rapidly growing area53

of research, and thus it is impossible to provide a complete overview of the available54

results and limitations. We restrict ourselves to referring the interested reader to [5]55

for an up–to–date survey.56

An essential difficulty in the analysis of (3) and in the study of numerical tech-57

niques to approximate the solution to this problem is that Ls is a nonlocal operator58

[8, 9, 27, 32]. A possible approach to this issue is given by the extension of Caffarelli59

and Silvestre in Rn [8] and its extensions to bounded domains by Cabré and Tan [7]60

and Stinga and Torrea [32]; see also [9]. Fractional powers of L can be realized as an61

operator that maps a Dirichlet boundary condition to a Neumann condition via an62

extension problem on the semi–infinite cylinder C = Ω × (0,∞). Therefore, we shall63

use this extension result to rewrite the fractional state equation (3) as follows:64

(6) − div (yαA∇U ) + yαcU = 0 in C, U = 0 on ∂LC,
∂U

∂να
= dsz on Ω× {0},65

where ∂LC = ∂Ω × [0,∞) is the lateral boundary of C, α = 1 − 2s ∈ (−1, 1), ds =66

2αΓ(1− s)/Γ(s) and the conormal exterior derivative of U at Ω× {0} is67

(7)
∂U

∂να
= − lim

y→0+
yαUy;68

the limit being understood in the distributional sense [8, 9, 32]. Finally, the matrix69

A ∈ C0,1(C,GL(n + 1,R)) is defined by A(x′, y) = diag{A(x′), 1}. We will call y70

the extended variable and the dimension n + 1 in Rn+1
+ the extended dimension of71

problem (6). As noted in [8, 9, 32], Ls and the Dirichlet-to-Neumann operator of (6)72

are related by73

dsLsu = ∂αν U in Ω× {0}.74

The analysis of optimal control problems involving a functional that contains an75

L1(Ω)–control cost term has been previously considered in a number of works. The76

article [31] appears to be the first to provide an analysis when the state equation77

is a linear elliptic PDE: the author utilizes a regularization technique that involves78
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SPARSE CONTROL 3

an L2(Ω)–control cost term, analyzes optimality conditions, and studies the conver-79

gence properties of a proposed semismooth Newton method. These results were later80

extended in [37], where the authors obtain rates of convergence with respect to a81

regularization parameter. Subsequently, in [11], the authors consider a semilinear82

elliptic PDE as state equation and analyze second order optimality conditions. Si-83

multaneously, the numerical analysis based on finite element techniques has also been84

developed in the literature. We refer the reader to [37], where the state equation is a85

linear elliptic PDE and to [10, 11] for extensions to the semilinear case. The common86

feature in these references, is that, in contrast to (3), the state equation is local. To87

the best of our knowledge, this is the first work addressing the analisys and numerical88

approximation of (2)–(4).89

The main contribution of this work is the design and analysis of a solution tech-90

nique for the fractional optimal control problem (2)–(4). We overcome the nonlocality91

of Ls by using the extension (6): we realize the state equation (3) by (6), so that92

our problem can be equivalently written as: Minimize J(U |y=0, z) subject to the ex-93

tended state equation (6) and the control constraints (4); the extended optimal control94

problem. We thus follow [1, 2] and propose the following strategy to solve our original95

control problem (2)–(4): given a desired state ud, employ the finite element techniques96

of [27] and solve the equivalent optimal control problem. This yields an optimal con-97

trol z : Ω → R and an optimal extended state U : C → R. Setting u(x′) = U (x′, 0)98

for all x′ ∈ Ω, we obtain the optimal pair (u, z) that solves (2)–(4).99

The outline of this paper is as follows. In section 2 we introduce notation, define100

fractional powers of elliptic operators via spectral theory, introduce the functional101

framework that is suitable to analyze problems (3) and (6) and recall elements from102

convex analysis. In section 3, we study the fractional optimal control problem. We103

derive existence and uniqueness results together with first order necessary and suf-104

ficient optimality conditions. In addition, we study the regularity properties of the105

optimal variables. In section 4 we analyze the extended optimal control problem. We106

begin with the numerical analysis for our optimal control problem in section 5, where107

we introduce a truncated problem and derive approximation properties of its solution.108

Section 6 is devoted to the design and analysis of a numerical scheme to approximate109

the solution to the control problem (2)–(4): we derive a priori error estimates for the110

optimal control variable and the state.111

2. Notation and Preliminaries. In this work Ω is a bounded and open convex112

polytopal subset of Rn (n ≥ 1) with boundary ∂Ω. The difficulties inherent to curved113

boundaries could be handled with the arguments developed in [29] but this would114

only introduce unnecessary complications of a technical nature.115

We follow the notation of [1, 27] and define the semi–infinite cylinder with base116

Ω and its lateral boundary, respectively, by C = Ω × (0,∞) and ∂LC = ∂Ω × [0,∞).117

For Y > 0, we define the truncated cylinder CY = Ω× (0,Y ) and ∂LCY accordingly.118

Throughout this manuscript we will be dealing with objects defined on Rn and119

Rn+1. It will thus be important to distinguish the extended (n+1)–dimension, which120

will play a special role in the analysis. We denote a vector x ∈ Rn+1 by x = (x′, y)121

with x′ ∈ Rn and y ∈ R.122

In what follows the relation A . B means that A ≤ cB for a nonessential constant123

whose value might change at each occurrence.124

2.1. Fractional powers of second order elliptic operators. We proceed to125

briefly review the spectral definition of the fractional powers of the second order elliptic126

operator L, defined in (5). To accomplish this task we invoke the spectral theory for127
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4 E. OTÁROLA, A.J. SALGADO

L, which yields the existence of a countable collection of eigenpairs {(λk, ϕk)}k∈N ⊂128

R+ ×H1
0 (Ω) such that129

Lϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, k ∈ N.130

In addition, {ϕk}k∈N is an orthonormal basis of L2(Ω) and an orthogonal basis of131

H1
0 (Ω). Fractional powers of L, are thus defined by132

(8) Lsw :=

∞∑
k=1

λskwkϕk ∀w ∈ C∞0 (Ω), s ∈ (0, 1), wk =

ˆ
Ω

wϕk dx′.133

Invoking a density argument, the previous definition can be extended to134

(9) Hs(Ω) =

{
w =

∞∑
k=1

wkϕk ∈ L2(Ω) : ‖w‖2Hs(Ω) :=

∞∑
k=1

λsk|wk|2 <∞

}
.135

This space corresponds to [L2(Ω), H1
0 (Ω)]s [24, Chapter 1]. Consequently, if s ∈ ( 1

2 , 1),136

Hs(Ω) can be characterized by137

Hs(Ω) = {w ∈ Hs(Ω) : w = 0 on ∂Ω} ,138

and, if s ∈ (0, 1
2 ), then Hs(Ω) = Hs(Ω) = Hs

0(Ω). If s = 1
2 , the space H 1

2 (Ω)139

corresponds to the so-called Lions–Magenes space [33, Lecture 33]. When deriving140

regularity results for the optimal variables of problem (2)–(4), it will be important to141

characterize the space Hs(Ω) for s ∈ (1, 2]. In fact, we have that, for such a range of142

values of s, Hs(Ω) = Hs(Ω) ∩H1
0 (Ω); see [17].143

For s ∈ (0, 1) we denote by H−s(Ω) the dual of Hs(Ω). With this notation,144

Ls : Hs(Ω)→ H−s(Ω) is an isomorphism.145

2.2. Weighted Sobolev spaces. The localization results of [8, 9, 32] require146

us to deal with a nonuniformly elliptic equation posed on the semi–infinite cylinder C.147

To analyze such an equation, it is instrumental to consider weighted Sobolev spaces148

with the weight yα (−1 < α < 1 and y ≥ 0). We thus define149

(10)
◦
H1
L(yα, C) =

{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
.150

For α ∈ (−1, 1) we have that the weight |y|α belongs to the so–called Muckenhoupt151

class A2(Rn+1), see [25, 35]. Consequently,
◦
H1
L(yα, C), endowed with the norm152

(11) ‖w‖H1(yα,C) :=
(
‖w‖L2(yα,C) + ‖∇w‖L2(yα,C)

) 1
2153

is a Hilbert space [35, Proposition 2.1.2] and smooth functions are dense [35, Corollary154

2.1.6]; see also [19, Theorem 1]. We recall the following weighted Poincaré inequality :155

(12) ‖w‖L2(yα,C) . ‖∇w‖L2(yα,C) ∀w ∈
◦
H1
L(yα, C)156

[27, ineq. (2.21)]. We thus have that ‖∇w‖L2(yα,C) is equivalent to (11) in
◦
H1
L(yα, C).157

For w ∈ H1(yα, C), we denote by trΩ w its trace onto Ω × {0}, and we recall ([27,158

Prop. 2.5])159

(13) trΩ
◦
H1
L(yα, C) = Hs(Ω), ‖ trΩ w‖Hs(Ω) . ‖w‖ ◦H1

L(yα,C).160
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SPARSE CONTROL 5

2.3. Convex functions and subdifferentials. Let E be a real normed vector161

space. Let η : E → R∪{∞} be convex and proper, and let v ∈ E with η(v) <∞. By162

convexity of η and the fact that η(v) <∞ we conclude that the graph of η can always163

be minorized by a hyperplane. If η is not differentiable at v, then a useful substitute164

for the derivative is a subgradient, which is nothing but the slope of a hyperplane165

that minorizes the graph of η and is exact at v. In other words, a subgradient of η at166

v is a continuous linear functional v∗ on E that satisfies167

(14) 〈v∗, w − v〉 ≤ η(w)− η(v) ∀w ∈ E,168

where 〈·, ·〉 denotes the duality pairing between E∗ and E. We immediately remark169

that a function may admit many subgradients at a point of nondifferentiability. The170

set of all subgradients of η at v is called the subdifferential of η at v and is denoted171

by ∂η(v). Moreover, by convexity, the subdifferential ∂η(v) 6= ∅ for all points v in the172

interior of the effective domain of η. Finally, we mention that the subdifferential is173

monotone, i.e.,174

(15) 〈v∗ − w∗, v − w〉 ≥ 0 ∀v? ∈ ∂η(v), ∀w? ∈ ∂η(w).175

We refer the reader to [14, 30] for a thorough discussion on convex analysis.176

3. The fractional optimal control problem. In this section we analyze the177

fractional optimal control problem (2)–(4). We derive existence and uniqueness results178

together with first order necessary and sufficient optimality conditions. In addition, in179

section 3.2, we derive regularity results for the optimal variables that will be essential180

for deriving error estimates for the scheme proposed in section 6.181

For J defined as in (2), the fractional optimal control problem reads: Find182

min J(u, z) subject to (3) and (4). The set of admissible controls is defined by183

(16) Zad := {z ∈ L2(Ω) : a ≤ z(x′) ≤ b a.e. x′ ∈ Ω},184

which is a nonempty, bounded, closed, and convex subset of L2(Ω). Since we are185

interested in the nondifferentiable scenario, we assume that a and b are real constants186

that satisfy the property a < 0 < b [11, Remark 2.1]. The desired state ud ∈ L2(Ω)187

while σ and ν are both real and positive parameters.188

As it is customary in optimal control theory [24, 34], to analyze (2)–(4), we189

introduce the so–called control to state operator.190

Definition 1 (fractional control to state map). The map S : L2(Ω) 3 z 7→ u(z) ∈191

Hs(Ω), where u(z) solves (3), is called the fractional control to state map.192

This operator is linear and bounded from L2(Ω) into Hs(Ω) [9, Lemma 2.2]. In193

addition, since Hs(Ω) ↪→ L2(Ω), we may also consider S acting from L2(Ω) into itself.194

With this operator at hand, we define the optimal fractional state–control pair.195

Definition 2 (optimal fractional state-control pair). A state–control pair (ū, z̄) ∈196

Hs(Ω)× Zad is called optimal for (2)–(4) if ū = Sz̄ and197

J(ū, z̄) ≤ J(u, z)198

for all (u, z) ∈ Hs(Ω)× Zad such that u = Sz.199

With these elements at hand, we present an existence and uniqueness result.200

Theorem 3 (existence and uniqueness). The fractional optimal control problem201

(2)–(4) has a unique optimal solution (ū, z̄) ∈ Hs(Ω)× Zad.202
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6 E. OTÁROLA, A.J. SALGADO

Proof. Define the reduced cost functional203

(17) f(z) := J(Sz, z) =
1

2
‖Sz− ud‖2L2(Ω) +

σ

2
‖z‖2L2(Ω) + ν‖z‖L1(Ω).204

In view of the fact that S is injective and continuous, it is immediate that f is strictly205

convex and weakly lower semicontinuous. The fact that Zad is weakly sequentially206

compact allows us to conclude [34, Theorem 2.14].207

3.1. First order optimality conditions. The reduced cost functional f is a208

proper strictly convex function. However, it contains the L1(Ω)–norm of the control209

variable and therefore it is not nondifferentiable at 0 ∈ L2(Ω). This leads to some210

difficulties in the analysis and discretization of (2)–(4), that can be overcome by using211

some elementary convex analysis [14, 30]. With this we shall obtain explicit optimality212

conditions for problem (2)–(4). We begin with the following classical result; see, for213

instance, [30, Chapter 4].214

Lemma 4. Let f be defined as in (17). The element z̄ ∈ Zad is a minimizer of f215

over Zad if and only if there exists a subgradient λ? ∈ ∂f(z̄) such that216

(λ?, z− z̄)L2(Ω) ≥ 0217

for all z ∈ Zad.218

In order to explore the previous optimality condition, we introduce the following219

ingredients.220

Definition 5 (fractional adjoint state). For a given control z ∈ Zad, the frac-221

tional adjoint state p ∈ Hs(Ω), associated to z, is defined as p = S(Sz− ud).222

We also define the convex and Lipschitz function ψ : L1(Ω) → R by ψ(z) :=223

‖z‖L1(Ω) — the nondifferentiable component of the cost functional f — and224

(18) ϕ : L2(Ω)→ R, z 7→ ϕ(z) :=
1

2
‖Sz− ud‖2L2(Ω) +

σ

2
‖z‖2L2(Ω),225

the differentiable component of f . Standard arguments yield that ϕ is Fréchet differ-226

entiable with ϕ′(z) = S(Sz − ud) + σz [34, Theorem 2.20]. Now, invoking Definition227

5, we obtain that, for z ∈ Zad, we have228

(19) ϕ′(z) = p + σz.229

It is rather standard to see that λ ∈ ∂ψ(z) if and only if the relations230

(20) λ(x′) = 1, z(x′) > 0, λ(x′) = −1, z(x′) < 0, λ(x′) ∈ [−1, 1], z(x′) = 0231

hold for a.e. x′ ∈ Ω. With these ingredients at hand, we obtain the following necessary232

and sufficient optimality conditions for our optimal control problem; see also [11,233

Theorem 3.1] and [37, Lemma 2.2].234

Theorem 6 (optimality conditions). The pair (ū, z̄) ∈ Hs(Ω)×Zad is optimal for235

problem (2)–(4) if and only if ū = Sz̄ and z̄ satisfies the variational inequality236

(21)
(
p̄ + σz̄ + νλ̄, z− z̄

)
L2(Ω)

≥ 0 ∀z ∈ Zad,237

where p̄ = S(Sz̄− ud) and λ̄ ∈ ∂ψ(z̄).238
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Proof. Since the convex function ϕ is Fréchet differentiable we immediately have239

that ∂ϕ(z̄) = ϕ′(z̄) [30, Proposition 4.1.8]. We thus apply the sum rule [30, Proposition240

4.5.1] to conclude, in view of the fact that ψ is convex, that ∂f(z̄) = ϕ′(z̄) + ν∂ψ(z̄).241

This, combined with Lemma 4 and (19) imply the desired variational inequality (21).242

To present the following result we introduce, for a, b ∈ R, the projection formula243

Proj[a,b] w(x′) := min {b,max {a,w(x′)}} .244

Corollary 7 (projection formulas). Let z̄, ū, p̄ and λ̄ be as in Theorem 6. Then,245

we have that246

z̄(x′) = Proj[a,b]

(
− 1

σ

(
p̄(x′) + νλ̄(x′)

))
,(22)247

z̄(x′) = 0 ⇔ |p̄(x′)| ≤ ν,(23)248

λ̄(x′) = Proj[−1,1]

(
−1

ν
p̄(x′)

)
.(24)249

250

Proof. See [11, Corollary 3.2].251

Remark 8 (sparsity). We comment that property (23) implies the sparsity of the252

optimal control z̄. We refer the reader to [31, Section 2] for a thorough discussion on253

this matter.254

3.2. Regularity estimates. Having obtained conditions that guarantee the ex-255

istence and uniqueness for problem (2)–(4), we now study the regularity properties256

of its optimal variables. This is important since, as it is well known, smoothness and257

rate of approximation go hand in hand. Consequently, any rigorous study of an ap-258

proximation scheme must be concerned with the regularity of the optimal variables.259

Here, on the the basis of a bootstraping argument inspired by [1, 2], we obtain such260

regularity results.261

Theorem 9 (regularity results for z̄ and λ̄). If ud ∈ H1−s(Ω), then the optimal262

control for problem (2)–(4) satisfies that z̄ ∈ H1
0 (Ω). In addition, the subgradient λ̄,263

given by (24), satisfies that λ̄ ∈ H1
0 (Ω).264

Proof. We begin the proof by observing that, by definition, since z̄ ∈ Zad ⊂ L2(Ω)265

we have that266

(25) ū ∈ H2s(Ω), p̄ ∈ Hκ(Ω), κ = min{4s, 1 + s, 2}.267

Since the domain Ω is convex, the space Hδ(Ω), for δ ∈ (0, 2], was characterized in268

Section 2.1. We now consider the following cases:269

Case 1, s ∈
[

1
4 , 1
)
: We immediately obtain that p̄ ∈ H1

0 (Ω). This, in view of the270

projection formula (24) and [21, Theorem A.1] implies that λ̄ ∈ H1
0 (Ω); notice that271

formula (24) preserves boundary values. Now, since both functions p̄ and λ̄ belong to272

H1
0 (Ω), an application, again, of [21, Theorem A.1] and the projection formula (22),273

for z̄, implies that z̄ ∈ H1
0 (Ω). We remark that, in view of the assumption a < 0 < b,274

the formula (22) also preserves boundary values.275

Case 2, s ∈
(
0, 1

4

)
: We now begin the bootstrapping argument like that in [1, Lemma276

3.5]. In this case, (25) implies that p̄ ∈ H4s(Ω). This, on the basis of a nonlinear277

operator interpolation result as in [1, Lemma 3.5], that follows from [33, Lemma278
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28.1], guarantees that λ̄ ∈ H4s(Ω). We notice, once again, that formula (24) preserves279

boundary values. Similar arguments allow us to derive that z̄ ∈ H4s(Ω).280

Case 2.1, s ∈
[

1
8 ,

1
4

)
: Since z̄ ∈ H4s(Ω), we conclude that ū ∈ H6s(Ω) and that281

p̄ ∈ Hε(Ω), where ε = min{8s, 1 + s}. We now invoke that s ∈
[

1
8 ,

1
4

)
to deduce that282

p̄ ∈ H1
0 (Ω). This, in view of (24), implies that λ̄ ∈ H1

0 (Ω), which in turns, and as a283

consequence of (22), allows us to derive that z̄ ∈ H1
0 (Ω).284

Case 2.2, s ∈
(
0, 1

8

)
: As in Case 2.1 we have that p̄ ∈ H8s(Ω). We now invoke,285

again, a nonlinear operator interpolation argument to conclude that λ̄ ∈ H8s(Ω) and286

then that z̄ ∈ H8s(Ω). These regularity results imply that ū ∈ H10s(Ω) and then that287

p̄ ∈ Hι(Ω), where ι = min{12s, 1 + s}.288

Case 2.2.1, s ∈
(

1
12 ,

1
8

]
: We immediately obtain that p̄ ∈ H1

0 (Ω). This im-289

plies that λ̄ ∈ H1
0 (Ω), and thus that z̄ ∈ H1

0 (Ω).290

Case 2.2.2, s ∈
(
0, 1

12

]
: We proceed as before.291

After a finite number of steps we can thus conclude that, for any s ∈ (0, 1), λ̄ and292

z̄ belong to H1
0 (Ω). This concludes the proof.293

As a by-product of the proof of the previous theorem, we obtain the following294

regularity result for the optimal state and optimal adjoint state.295

Corollary 10 (regularity results for ū and p̄). If ud ∈ H1−s(Ω), then ū ∈ Hl(Ω),296

where l = min{1 + 2s, 2} and p̄ ∈ H$(Ω), where $ = min{1 + s, 2}.297

4. The extended optimal control problem. In this section we invoke the298

localization results of [8, 9, 32] to circumvent the nonlocality of the operator Ls in the299

state equation (3). We follow [1] and consider the equivalent extended optimal control300

problem: Find min{J(trΩ U , z) : U ∈
◦
H1
L(yα, C), z ∈ Zad} subject to the extended301

state equation:302

(26) U ∈
◦
H1
L(yα, C) : a(U , φ) = (z, trΩ φ)L2(Ω) ∀φ ∈

◦
H1
L(yα, C),303

where, for all w, φ ∈
◦
H1
L(yα, C), the bilinear form a is defined by304

(27) a(w, φ) =
1

ds

ˆ
C
yα (A(x′, y)∇w · ∇φ+ c(x′)wφ) dx.305

To describe the optimality conditions we introduce the extended adjoint problem:306

(28) P ∈
◦
H1
L(yα, C) : a(φ,P) = (trΩ U − ud, trΩ φ)L2(Ω) ∀φ ∈

◦
H1
L(yα, C).307

The optimality conditions in this setting now read as follows: the pair (Ū , z̄) ∈308
◦
H1
L(yα, C)× Zad is optimal if and only if Ū = U (z̄) solves (26) and309

(29) (trΩ P̄ + σz̄ + νλ̄, z− z̄)L2(Ω) ≥ 0 ∀z ∈ Zad,310

where P̄ = P̄(z̄) ∈
◦
H1
L(yα, C) solves (28) and λ̄ ∈ ∂ψ(z̄) .311

Then we have that trΩ Ū = ū and trΩ P̄ = p̄, where ū ∈ Hs(Ω) solves (3) and312

p̄ ∈ Hs(Ω) is as in Definition 5. This implies the equivalence of the fractional and313

extended optimal control problems; see also [1, Theorem 3.12].314
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5. The truncated optimal control problem. The state equation (26) of the315

extended optimal control problem is posed on the infinite domain C and thus it cannot316

be directly approximated with finite element–like techniques. However, the result of317

Proposition 11 below shows that the optimal extended state Ū decays exponentially318

in the extended variable y. This suggests to truncate C to CY = Ω × (0,Y ), for a319

suitable truncation parameter Y , and seek solutions in this bounded domain.320

Proposition 11 (exponential decay). For every Y ≥ 1, the optimal state Ū =321

Ū (z̄) ∈
◦
H1
L(yα, C), solution to problem (26), satisfies322

(30) ‖∇Ū ‖L2(yα,Ω×(Y ,∞)) . e−
√
λ1Y /2‖z̄‖H−s(Ω),323

where λ1 denotes the first eigenvalue of the operator L.324

Proof. See [27, Proposition 3.1].325

This motivates the truncated optimal control problem: Find min{J(trΩ v, r) : v ∈326
◦
H1
L(yα, CY ), r ∈ Zad} subject to the truncated state equation:327

(31) v ∈
◦
H1
L(yα, CY ) : aY (v, φ) = (r, trΩ φ)L2(Ω) ∀φ ∈

◦
H1
L(yα, CY ),328

where329
◦
H1
L(yα, CY ) =

{
w ∈ H1(yα, CY ) : w = 0 on ∂LCY ∪ Ω× {Y }

}
,330

and for all w, φ ∈
◦
H1
L(yα, CY ), the bilinear form aY is defined by331

(32) aY (w, φ) =
1

ds

ˆ
CY

yα (A(x′, y)∇w · ∇φ+ c(x′)wφ) dx.332

To formulate optimality conditions we introduce the truncated adjoint problem:333

(33) p ∈
◦
H1
L(yα, CY ) : aY (φ, p) = (trΩ v − ud, trΩ φ)L2(Ω) ∀φ ∈

◦
H1
L(yα, CY ).334

With this adjoint problem at hand, we present necessary and sufficient optimality335

conditions for the truncated optimal control problem: the pair (v̄, r̄) ∈
◦
H1
L(yα, CY )×336

Zad is optimal if and only if v̄ = v̄(̄r) solves (31) and337

(34) (trΩ p̄+ σr̄ + νt̄, r − r̄)L2(Ω) ≥ 0 ∀r ∈ Zad,338

where p̄ = p̄(̄r) ∈
◦
H1
L(yα, CY ) solves (33) and t̄ ∈ ∂ψ(̄r) .339

We now introduce the following auxiliary problem:340

(35) R ∈
◦
H1
L(yα, C) : a(φ,R) = (trΩ v̄ − ud, trΩ φ)L2(Ω) ∀φ ∈

◦
H1
L(yα, C).341

The next result follows from [1, Lemma 4.6] and shows how (v̄(̄r), r̄) approximates342

(Ū (z̄), z̄).343

Theorem 12 (exponential convergence). If (Ū (z̄), z̄) and (v̄(̄r), r̄) are the opti-344

mal pairs for the extended and truncated optimal control problems, respectively, then345

(36) ‖r̄ − z̄‖L2(Ω) . e−
√
λ1Y /4 (‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
,346

and347

(37) ‖ trΩ(Ū − v̄)‖Hs(Ω) . e−
√
λ1Y /4 (‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
.348
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Proof. Set z = r̄ and r = z̄ in (29) and (34), respectively. Adding the obtained349

inequalities we arrive at the estimate350

σ‖z̄− r̄‖2L2(Ω) ≤ (trΩ(P̄ − p̄) + ν(λ̄− t̄), r̄ − z̄)L2(Ω).351

As a first step to control the right hand side of the previous expression, we recall352

that λ̄ ∈ ∂‖z̄‖L1(Ω) and t̄ ∈ ∂‖r̄‖L1(Ω) so that, by (15),353

ν(λ̄− t̄, r̄ − z̄)L2(Ω) ≤ 0.354

Consequently,355

(38) σ‖z̄− r̄‖2L2(Ω) ≤ (trΩ(P̄ − p̄), r̄ − z̄)L2(Ω).356

To control the right hand side of the previous expression, we add and subtract357

the adjoint state P (̄r) as follows:358

σ‖z̄− r̄‖2L2(Ω) ≤ (trΩ(P̄ −P (̄r)), r̄ − z̄)L2(Ω) + (trΩ(P (̄r)− p̄), r̄ − z̄)L2(Ω) = I + II.359

Let us now bound I. Notice that P̄ −P (̄r) ∈
◦
H1
L(yα, C) solves360

a(φP , P̄ −P (̄r)) = (trΩ(Ū −U (̄r)), trΩ φP)L2(Ω) ∀φP ∈
◦
H1
L(yα, C).361

On the other hand, we also observe that Ū −U (̄r) ∈
◦
H1
L(yα, C) solves362

a(Ū −U (̄r), φU ) = (z̄− r̄, trΩ φU )L2(Ω) ∀φU ∈
◦
H1
L(yα, C).363

Setting φU = P̄ −P (̄r) and φP = U (̄r)− Ū we immediately conclude that I ≤ 0.364

To control the term II we write P̄ (̄r)− p̄ = (P̄ (̄r)−R)+(R− p̄), where R solves365

(35). The first term is controlled in view of the trace estimate (13), the well–posedness366

of problem (35) and an application of the estimate [27, Theorem 3.5]:367

(39) ‖ trΩ(P (̄r)−R)‖L2(Ω) . ‖ trΩ(U (̄r)− v̄(̄r))‖L2(Ω) . e−
√
λ1Y /4‖r̄‖L2(Ω).368

Similar arguments yield: ‖ trΩ(R − p̄)‖L2(Ω) . e−
√
λ1Y /4(‖r̄‖L2(Ω) + ‖ud‖L2(Ω)). In369

view of (38), a collection of these estimates allow us to obtain (36).370

The estimate (37) follows from similar arguments upon writing Ū − v̄(̄r) =371 (
Ū (z̄)−U (̄r)

)
+ (U (̄r)− v̄(̄r)) . In fact, using the trace estimate (13), the well–372

posedness of problem (26), and the estimate (36) we obtain that373

‖ trΩ(Ū −U (̄r))‖Hs(Ω) . ‖∇(Ū −U (̄r))‖L2(yα,C) . ‖z̄− r̄‖H−s(Ω)374

. e−
√
λ1Y /4 (‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
.375376

The control of the term ‖ trΩ(U (̄r)− v̄(̄r))‖Hs(Ω) follows from a direct application of377

the result of [27, Theorem 3.5]. Combining these estimates we arrive at the desired378

estimate (37). This concludes the proof.379

We now state projection formulas and regularity results for the optimal variables380

r̄ and t̄, together with a sparsity property for r̄.381
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Corollary 13 (projection formulas). Let the variables r̄, v̄, p̄ and t̄ be as in the382

variational inequality (34). Then, we have that383

r̄(x′) = Proj[a,b]

(
− 1

σ
(trΩ p̄(x

′) + νt̄(x′))

)
,(40)384

r̄(x′) = 0 ⇔ | trΩ p̄(x
′)| ≤ ν,(41)385

t̄(x′) = Proj[−1,1]

(
−1

ν
trΩ p̄(x

′)

)
.(42)386

387

Proof. See [11, Corollary 3.2].388

Proposition 14 (regularity results for r̄ and t̄). If ud ∈ H1−s(Ω), then the trun-389

cated optimal control r̄ ∈ H1
0 (Ω). In addition, the subgradient t̄, given by (42), satisfies390

that t̄ ∈ H1
0 (Ω).391

Proof. The proof is an adaption of the techniques elaborated in the proof of [29,392

Proposition 4.1] and the bootstrapping argument of Theorem 9.393

We conclude this section with regularity results for the traces of the optimal state394

and adjoint state.395

Corollary 15 (regularity results for trΩ v̄ and trΩ p̄). If ud ∈ H1−s(Ω), then396

trΩ v̄ ∈ Hl(Ω), where l = min{1+2s, 2} and trΩ p̄ ∈ H$(Ω), where $ = min{1+s, 2}.397

398

6. Approximation of the fractional control problem. In this section we399

design and analyze a numerical technique to approximate the solution of the optimal400

control problem (2)–(4). In order to make this contribution self–contained, we briefly401

review the finite element method proposed and developed for the state equation (3)402

in [27].403

6.1. A finite element method for the state equation. We follow [27, Sec-404

tion 4] and let TΩ = {K} be a conforming triangulation of Ω into cells K (simplices405

or n–rectangles). We denote by TΩ the collection of all conforming refinements of406

an original mesh T0, and assume that the family TΩ is shape regular [13, 16]. If407

TΩ ∈ TΩ, we define hTΩ
= maxK∈TΩ

hK . We construct a mesh TY over CY as the408

tensor product triangulation of TΩ ∈ TΩ and IY , where the latter corresponds to a409

partition of the interval [0,Y ] with mesh points:410

(43) yk =

(
k

M

)γ
Y , k = 0, · · · ,M,411

with γ = 3/(1−α) = 3/(2s) > 1. We notice that each discretization of the truncated412

cylinder CY depends on the truncation parameter Y . We denote by T the set of all such413

anisotropic triangulations TY . The following weak shape regularity condition is valid:414

there is a constant µ such that, for all TY ∈ T, if T1 = K1 × I1, T2 = K2 × I2 ∈ TY415

have nonempty intersection, then hI1/hI2 ≤ µ, where hI = |I| [15, 27]. The main416

motivation for considering elements as in (43) is to compensate the rather singular417

behavior of U , solution to problem (26). We refer the reader to [27] for details.418

For TY ∈ T, we define the finite element space419

(44) V(TY ) =
{
W ∈ C0(C̄Y ) : W |T ∈ P1(K)⊗ P1(I), ∀T ∈ TY , W |ΓD = 0

}
,420

where ΓD = ∂LCY ∪ Ω × {Y } is the Dirichlet boundary. When the base K of an421

element T = K × I is a simplex, the set P1(K) is P1(K). If K is a cube, P1(K)422
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12 E. OTÁROLA, A.J. SALGADO

stands for Q1(K). We also define423

U(T ) = trΩ V(TY ),424

i.e., a P1 finite element space over the mesh TΩ. Finally, we assume that every TY ∈ T425

is such that, M ≈ #T
1/n

Ω so that, since #TY = M #TΩ, we have #TY ≈Mn+1.426

The Galerkin approximation of (31) is defined as follows:427

(45) V ∈ V(TY ) : aY (V,W ) = (r, trΩW )L2(Ω) ∀W ∈ V(TY ),428

where aY is defined in (32). We present [27, Theorem 5.4] and [27, Corollary 7.11].429

Theorem 16 (error estimates). If U (r) ∈
◦
H1
L(yα, C) solves (26) with z replaced430

by r ∈ H1−s(Ω), then431

(46) ‖∇(U (r)− V )‖L2(yα,C) . | log(#TY )|s(#TY )−1/(n+1)‖r‖H1−s(Ω),432

provided Y ≈ | log(#TY )|. Alternatively, if u(r) denotes the solution to (3) with r as433

a forcing term, then434

(47) ‖u(r)− trΩ V ‖Hs(Ω) . | log(#TY )|s(#TY )−1/(n+1)‖r‖H1−s(Ω).435

6.2. A fully discrete scheme for the fractional optimal control problem.436

In section 4 we replaced the original fractional optimal control problem (2)–(4) by an437

equivalent one that involves the local state equation (26) and is posed on the semi–438

infinite cylinder C = Ω × (0,∞). We then considered a truncated version of this,439

equivalent, control problem that is posed on the bounded cylinder CY = Ω × (0,Y )440

and showed that the error committed in the process is exponentially small. In light441

of these results, in this section we propose a fully discrete scheme to approximate the442

solution to (2)–(4): piecewise constant functions to approximate the control variable443

and, for the state variable, first–degree tensor product finite elements, as described in444

section 6.1.445

We begin by defining the set of discrete controls, and the discrete admissible set446

Z(TΩ) = {Z ∈ L∞(Ω) : Z|K ∈ P0(K) ∀K ∈ TΩ} ,447

Zad(TΩ) = Zad ∩ Z(TΩ),448449

where Zad is defined in (16). Thus, the fully discrete optimal control problem reads450

as follows: Find min J(trΩ V,Z) subject to the discrete state equation451

(48) aY (V,W ) = (Z, trΩW )L2(Ω) ∀W ∈ V(TY ),452

and the discrete control constraints Z ∈ Zad(TΩ). We recall that the functional J and453

the discrete space V(TY ) are defined by (1) and (44), respectively.454

We denote by (V̄ , Z̄) ∈ V(TY ) × Zad(TΩ) the optimal state–control pair solving455

the fully discrete optimal control problem; existence and uniqueness of such a pair456

being guaranteed by standard arguments. We thus define, in view of [8, 27],457

(49) Ū := trΩ V̄ ,458

to obtain a discrete approximation (Ū , Z̄) ∈ U(TΩ) × Zad(TΩ) of the optimal pair459

(ū, z̄) ∈ Hs(Ω) × Zad that solves our original optimal control problem (2)–(4). We460

recall that U(TΩ) = trΩ V(TY ): a standard P1 finite element space over the mesh TΩ.461
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Remark 17 (locality). The main advantage of the fully discrete optimal control462

problem is its local nature: it involves the local problem (48) as state equation.463

To present optimality conditions we define the optimal adjoint state:464

(50) P̄ ∈ V(TY ) : aY (W, P̄ ) = (trΩ V̄ − ud, trΩW )L2(Ω) ∀W ∈ V(TY ).465

We provide first order necessary and sufficient optimality conditions for the fully466

discrete optimal control problem: the pair (V̄ , Z̄) ∈ V(TY ) × Zad(TΩ) is optimal if467

and only if V̄ = V̄ (Z̄) solves (48) and468

(51) (trΩ P̄ + σZ̄ + νΛ̄, Z − Z̄)L2(Ω) ≥ 0 ∀Z ∈ Zad(TΩ),469

where P̄ = P̄ (Z̄) ∈ V(TY ) solves (50) and Λ̄ ∈ ∂ψ(Z̄).470

We now explore the properties of the discrete optimal variables. By definition we471

have ∂ψ(Z̄) ⊂ Z(TΩ)∗ and, consequently, Λ̄ ∈ ψ(Z̄) can be identified with an element472

of Z(TΩ) that verifies473

(52) Λ̄|K = 1, Z̄|K > 0, Λ̄|K = −1, Z̄|K < 0, Λ̄|K ∈ [−1, 1], Z̄|K = 0,474

for every K ∈ TΩ. Consequently, by setting Z = ZK ∈ P0(K), that satisfies a ≤475

ZK ≤ b, in (51) we arrive at476 ∑
K∈TΩ

(ˆ
K

trΩ P̄ dx′ + |K|
(
σZ̄|K + νΛ̄|K

)) (
ZK − Z̄|K

)
≥ 0.477

This discrete variational inequality implies the discrete projection formula478

(53) Z̄|K = Proj[a,b]

(
− 1

σ

[
1

|K|

ˆ
K

trΩ P̄ dx′ + νΛ̄|K
])

.479

On the basis of (52) and (53) we have that [11, Section 4]480

Z̄|K = 0 ⇔ 1

|K|

∣∣∣∣ˆ
K

trΩ P̄ dx′
∣∣∣∣ ≤ ν ∀K ∈ TΩ481

and that482

(54) Λ̄|K = Proj[−1,1]

(
− 1

ν|T |

ˆ
K

trΩ P̄ dx′
)
∀K ∈ TΩ.483

It will be useful, for the error analysis of the fully discrete optimal control problem,484

to introduce the L2-orthogonal projection ΠTΩ onto Z(TΩ), which is defined as follows485

[13, 16]:486

(55) ΠTΩ
: L2(Ω)→ Z(TΩ), (r −ΠTΩ

r, Z) = 0 ∀Z ∈ Z(TΩ).487

We recall the following properties of ΠTΩ
.488

1. Stability: For all r ∈ L2(Ω), we have the bound ‖ΠTΩr‖L2(Ω) . ‖r‖L2(Ω).489

2. Approximation property: If r ∈ H1(Ω), we have the error estimate490

(56) ‖r −ΠTΩ
r‖L2(Ω) . hTΩ

‖r‖H1(Ω)491

where hTΩ
is defined as in Section 6.1; see [16, Lemma 1.131 and Proposition492

1.134].493
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If r ∈ L2(Ω), (55) immediately yields ΠTΩ
r|K = (1/|K|)

´
K
r dx′. Consequently494

(57) ΠTΩ
Zad ⊂ Zad(TΩ).495

We now introduce two auxiliary adjoint states. The first one is defined as the496

solution to: Find Q ∈ V(TY ) such that497

(58) aY (W,Q) = (trΩ v̄ − ud, trΩW )L2(Ω) ∀W ∈ V(TY ).498

The second one solves:499

(59) R ∈ V(TY ) : aY (W,R) = (trΩ V (̄r)− ud, trΩW )L2(Ω) ∀W ∈ V(TY ),500

where V (̄r) corresponds to the solution to problem (48) with Z replaced by r̄.501

With these ingredients at hand we now proceed to derive an a priori error analysis502

for the fully discrete optimal control problem.503

Theorem 18 (fully discrete scheme: error estimates). Let (v̄, r̄) ∈
◦
H1
L(yα, CY )×504

Zad be the optimal pair for the truncated optimal control problem of section 5, and let505

(V̄ , Z̄) ∈ V(TY )×Zad(TΩ) be the solution to the fully discrete optimal control problem506

of section 6. If ud ∈ H1−s(Ω), then507

(60) ‖r̄ − Z̄‖L2(Ω) . | log(#TY )|2s(#TY )
− 1
n+1

(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
,508

and509

(61) ‖ trΩ(v̄ − V̄ )‖Hs(Ω) . | log(#TY )|2s(#TY )
− 1
n+1

(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
,510

where the hidden constants in both inequalities are independent of the discretization511

parameters and the continuous and discrete optimal variables.512

Proof. We proceed in five steps.513

Step 1. We observe that since Zad(TΩ) ⊂ Zad, we are allowed to set r = Z̄ in the514

variational inequality (34). This yields the inequality515

(trΩ p̄+ σr̄ + νt̄, Z̄ − r̄)L2(Ω) ≥ 0.516

On the other hand, in view of (57), we can set Z = ΠTΩ r̄ in (51) and conclude that517

(trΩ P̄ + σZ̄ + νΛ̄,ΠTΩ r̄ − Z̄)L2(Ω) ≥ 0.518

Since t̄ ∈ ∂ψ(̄r) and Λ̄ ∈ ∂ψ(Z̄), (14) gives that the previous inequalities are equivalent519

to the following ones:520

(trΩ p̄+ σr̄, Z̄ − r̄)L2(Ω) + ν(ψ(Z̄)− ψ(̄r)) ≥ 0,(62)521

(trΩ P̄ + σZ̄,ΠTΩ
r̄ − Z̄)L2(Ω) + ν(ψ(ΠTΩ

r̄)− ψ(Z̄)) ≥ 0.(63)522523

We recall that ψ(w) = ‖w‖L1(Ω). Invoking the fact that ΠTΩ
is defined as in (55), we524

conclude that ψ(ΠTΩ
r̄) ≤ ψ(̄r), and thus (ψ(Z̄)−ψ(̄r)) + (ψ(ΠTΩ

r̄)−ψ(Z̄)) ≤ 0. The525

latter and the addition of the inequalities (62) and (63) imply that526

(trΩ p̄+ σr̄, Z̄ − r̄)L2(Ω) + (trΩ P̄ + σZ̄,ΠTΩ
r̄ − Z̄)L2(Ω) ≥ 0,527
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which yields the basic error estimate528

(64)
σ‖r̄ − Z̄‖2L2(Ω) ≤ (trΩ(p̄− P̄ ), Z̄ − r̄)L2(Ω) + (trΩ P̄ + σZ̄,ΠTΩ

r̄ − r̄)L2(Ω)

= I + II.
529

Step 2. The goal of this step is to control the term I in (64). To accomplish this530

task, we use the auxiliary adjoint states Q and R defined as the solutions to problems531

(58) and (59), respectively, and write532

(65)

I = (trΩ(p̄−Q), Z̄ − r̄)L2(Ω) + (trΩ(Q−R), Z̄ − r̄)L2(Ω)

+ (trΩ(R− P̄ ), Z̄ − r̄)L2(Ω)

=: I1 + I2 + I3.

533

To bound the term I1 we realize that Q, defined as the solution to (58), is nothing534

but the Galerkin approximation of the optimal adjoint state p̄. Consequently, an535

application of the error estimate of [28, Proposition 28] yields536

(66) ‖ trΩ(p̄− Q̄)‖L2(Ω) . | logN |2sN−
1+s
n+1

(
‖ trΩ v̄‖H1−s(Ω) + ‖ud‖H1−s(Ω)

)
,537

where N = #TY . We note that the H1−s(Ω)–norm of trΩ v̄ is uniformly controlled in538

view of Corollary 15.539

We now bound the term I2. To accomplish this task, we invoke the trace estimate540

(13), a stability estimate for the discrete problem that Q − R solves and the error541

estimate of [28, Proposition 28]. In fact, these arguments allow us to obtain542

(67)
‖ trΩ(Q−R)‖L2(Ω) . ‖∇(Q−R))‖L2(yα,CY ) . ‖ trΩ(v̄ − V (̄r))‖H−s(Ω)

. ‖ trΩ(v̄ − V (̄r))‖L2(Ω) . | logN |2sN−
1+s
n+1 ‖r̄‖H1−s(Ω).

543

We remark that, in view of the results of Proposition 14, we have that r̄ ∈ H1
0 (Ω) ↪→544

H1−s(Ω) for s ∈ (0, 1).545

We now estimate the remaining term I3. To do this, we set W = V (̄r)−V̄ ∈ V(TY )546

as a test function in the problem that R− P̄ solves. This yields547

aY (V (̄r)− V̄ , R− P̄ ) = (trΩ(V (̄r)− V̄ ), trΩ(V (̄r)− V̄ ))L2(Ω).548

Similarly, by setting W = R − P̄ ∈ V(TY ) as a test function in the problem that549

V (̄r)− V̄ solves we arrive at550

aY (V (̄r)− V̄ , R− P̄ ) = (̄r − Z̄, trΩ(R− P̄ ))L2(Ω).551

Consequently,552

I3 = (trΩ(R− P̄ ), Z̄ − r̄)L2(Ω) = −‖ trΩ(V (̄r)− V̄ )‖2L2(Ω) ≤ 0.553

Step 3. In this step we bound the term II = (trΩ P̄ +σZ̄,ΠTΩ r̄− r̄)L2(Ω) in (64). We554

begin by rewriting II as follows:555

556

II = (trΩ p̄+ σr̄,ΠTΩ r̄ − r̄)L2(Ω) + (trΩ(P̄ ±R±Q− p̄),ΠTΩ r̄ − r̄)L2(Ω)557

+ σ(Z̄ − r̄,ΠTΩ r̄ − r̄)L2(Ω) = II1 + II2 + II3.558559
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The control of the first term, II1 follows from the definition (55) of ΠTΩ
, its approxi-560

mation property (56) and the regularity results of Propositions 14 and 15:561

II1 = (trΩ p̄+ σr̄ −ΠTΩ
(trΩ p̄+ σr̄),ΠTΩ

r̄ − r̄)L2(Ω)562

. h2
TΩ
‖ trΩ p̄+ σr̄‖H1(Ω)‖r̄‖H1(Ω).563564

We note that the H1(Ω)–norm of trΩ p̄ is uniformly controlled in view of the results565

of Corollary 15. The term II2 is bounded by employing the arguments of Step 3:566

trΩ(P̄ − R) is controlled in view of the trace estimate (13) and the stability of the567

problems that P̄ −R and V (̄r)− V̄ solve:568

‖ trΩ(P̄ −R)‖L2(Ω) . ‖ trΩ(V̄ − V (̄r))‖H−s(Ω) . ‖Z̄ − r̄‖L2(Ω).569

The terms trΩ(R−Q) and trΩ(Q− p̄) are bounded as in (67) and (66), respectively.570

The estimate for II3 is a trivial consequence of the Cauchy–Schwarz inequality.571

Step 4. The desired error bound (60) follows from collecting all estimates that we572

obtained in previous steps and recalling that hTΩ
≈ (#TY )−1/(n+1).573

Step 5. We finally derive estimate (61). A basic application of the triangle inequality574

yields575

‖ trΩ(v̄ − V̄ )‖Hs(Ω) ≤ ‖ trΩ(v̄ − V (̄r))‖Hs(Ω) + ‖ trΩ(V (̄r)− V̄ )‖Hs(Ω).576

The estimate for the term ‖ trΩ(v̄−V (̄r))‖Hs(Ω) follows by applying the error estimate577

(47). To control the remaining term ‖trΩ(V (̄r)− V̄ )‖Hs(Ω) we invoke a stability result578

and estimate (60). A collection of these estimates yields (61). This concludes the579

proof.580

As a consequence of the estimates of Theorems 12 and 18 we arrive at the com-581

pletion of the a priori error analysis for the fully discrete optimal control problem.582

Theorem 19 (fractional control problem: error estimates). Let (V̄ , Z̄) ∈ V(TY )×583

Zad(TΩ) be the optimal pair for the fully discrete optimal control problem of section584

6 and let Ū ∈ U(TΩ) be defined as in (49). If ud ∈ H1−s(Ω), then585

(68) ‖z̄− Z̄‖L2(Ω) . | log(#TY )|2s(#TY )
− 1
n+1

(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
,586

and587

(69) ‖ū− Ū‖Hs(Ω) . | log(#TY )|2s(#TY )
− 1
n+1

(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
,588

where the hidden constants in both inequalities are independent of the discretization589

parameters and the continuous and discrete optimal variables.590

Proof. To obtain the error estimate (68) we invoke the estimates (36) and (60).591

In fact, we have that592

‖z̄− Z̄‖L2(Ω) ≤ ‖z̄− r̄‖L2(Ω) + ‖r̄ − Z̄‖L2(Ω)593

.

(
e−
√
λ1Y /4 + | log(#TY )|2s(#TY )

− 1
n+1

)(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
.594

595

The election of the truncation parameter Y ≈ | log(#(TY ))| allows us to conclude; see596

[27, Remark 5.5] for details. Finally, to derive (69), we use that ū = trΩ Ū , Ū = trΩ V̄597
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and apply the estimates (37) and (61) as follows:598

‖ū− Ū‖Hs(Ω) ≤ ‖ū− trΩ v̄‖Hs(Ω) + ‖ trΩ v̄ − Ū‖Hs(Ω)599

.

(
e−
√
λ1Y /4 + | log(#TY )|2s(#TY )

− 1
n+1

)(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
.600

601

The fact that Y ≈ | log(#(TY ))| yields (69) and concludes the proof.602

Remark 20 (complexity). For ud ∈ H1−s(Ω) the error estimate (68) exhibits603

nearly–optimal linear order with respect to the total number of degrees of freedom604

#TY . However, the complexity of the method is superlinear with respect to #TΩ,605

the number of degrees of freedom in Ω. This can be cured with geometric grading in606

the extended variable and hp-methodology, as it has been recently developed in [4].607

In fact, if the latter solution technique is utilized to approximate the solutions to the608

state and adjoint equations, discarding logarithmic terms the following error estimate609

can be derived610

‖z̄− Z̄‖L2(Ω) . (#TΩ)−
1
n .611

This estimate exhibits near–optimal linear order with respect to #TΩ. Since the612

aforementioned method requires O(#TΩ log(#TΩ)) degrees of freedom, it is thus613

circumventing the fact that an extra dimension was incorporated to the resolution of614

the optimal control problem.615
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