
Chapter 1
Optimization of a fractional differential equation

Enrique Otárola and Abner J. Salgado

Abstract We consider a linear quadratic optimization problem where the state is governed by a fractional
ordinary differential equation. We also consider control constraints. We show existence and uniqueness of an
optimal state-control pair and propose a method to approximate it. Due to the low regularity of the solution to
the state equation, rates of convergence cannot be proved unless problematic assumptions are made. Instead,
we appeal to the theory of Γ -convergence to show the convergence of our scheme.

1.1 Introduction

In recent years a lot of attention has been paid to the study of nonlocal problems, of which fractional dif-
ferential equations represent an instance. This is motivated by the fact that fractional derivatives are better
suited for capturing long range interactions, as well as memory effects. For instance, they have been used to
describe anomalous transport phenomena [9, 10], option pricing [6], porous media flow [5] and viscoelastic
materials [8]; to name a few. It is only natural then, from the purely mathematical as well as the practical
points of view, to try to optimize systems that are governed by these equations. In previous work [4] we dealt
with a constrained optimization problem where the state is governed by a differential equation that presented
nonlocal features in time as well as in space. The subtleties of each one of these features required extensive
technicalities that we feel obscured many of the unique features that optimization of fractional differential
equations contains. For this reason, our main objective in this note is to present a detailed study for the case
where the state is governed by a time-fractional ordinary differential equation.

Let us be precise in our considerations. Given m,n ≥ 1, a final time T > 0, a desired state ud ∈
L2(0,T ;Rm), and a regularization parameter µ > 0, we define the cost functional as

J(u,z) =
1
2

ˆ T

0

(
|C u−ud |2m +µ|z|2n

)
dt, (1.1)
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where we denote the Euclidean norm in Rs by | · |s and C ∈Mm×n; Mm×n denotes the set of all m–by–n
matrices. The variable u is called the state, while the variable z is the control. The control and state are
related by the so-called state equation, which we now describe. Given an initial condition u0 ∈Rn, a forcing
function f : (0,T ]→ Rn, a symmetric positive definite matrix A ∈Mn×n, the state equation reads

dγ

t u+A u = f + z, t ∈ (0,T ], u(0) = u0. (1.2)

Here, γ ∈ (0,1) and dγ

t denotes the so-called left–sided Caputo fractional derivative of order γ , which is
defined by [18, 27]

dγ

t v(t) =
1

Γ (1− γ)

ˆ t

0

1
(t−ζ )γ

v̇(ζ )dζ , (1.3)

where by v̇ we denote the usual derivative and Γ is the Gamma function.
The problem we shall be concerned with is to find (ŭ, z̆) such that

J(ŭ, z̆) = minJ(u,z) (1.4)

subject to the state equation (1.2) and the control constraints

a� z� b. (1.5)

Here a,b ∈ Rn which we assume satisfy that a � b. The relation v � w means that, for all i = 1, . . . ,n, we
have vi ≤ wi.

To our knowledge, the first work that was devoted to the study of (1.4) is [2] where a formal Lagrangian
formulation is discussed and optimality conditions formally derived. The author of this work also presents
a numerical scheme based on shifted Legendre polynomials. However, there is no analysis of the optimality
conditions or numerical scheme. Other discretizations schemes using finite elements [3], rational approxima-
tions [29], spectral methods [23, 31, 32] or other techniques have been considered. Most of these works do
not provide a rigorous justification or analysis of their schemes, and the ones that do obtain error estimates
under rather strong regularity assumptions of the state variable; namely they require that ü ∈ L∞(0,T ;Rn)
which is rather problematic; see Theorem 2 below. In contrast, in this work we carefully describe the regu-
larity properties of the state equation, and on the basis of them provide convergence (without rates) of the
numerical scheme we propose.

Throughout our discussion we will follow standard notation and terminology. When we deviate from the
norm, we introduce the notation in the course of our exposition. The rest of this work is organized as fol-
lows: Basic facts about fractional derivatives and integrals are presented in Section 1.1.1. We study the state
equation in Section 1.2; where we construct the solution to problem (1.2), study its regularity and present a
somewhat new point of view for a classical scheme — the so-called L1 scheme. More importantly, we use
the right regularity to obtain rates of convergence; an issue that has been largely ignored in the literature.
With these ingredients at hand we proceed, in Section 1.3, to analyze the optimization problem (1.4); we
show existence and uniqueness of an optimal state-control pair and propose a scheme to approximate it. We
employ a piecewise linear (in time) approximation of the state and a piecewise constant approximation of
the control. While not completely necessary for the analysis, we identify the discrete adjoint problem and
use it to derive discrete optimality conditions. Finally, we show the strong convergence of the discrete opti-
mal control to the continuous one. Owing to the reduced regularity of the solution to the state equation this
convergence, however, cannot have rates.
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1.1.1 Fractional derivatives and integrals

We begin by recalling some fundamental facts about fractional derivatives and integrals. The left–sided
Caputo fractional derivative is defined in (1.3). The right–sided Caputo fractional derivative of order γ is
given by [18, 27]:

dγ

T−tv(t) =−
1

Γ (1− γ)

ˆ T

t

1
(ζ − t)γ

v̇(ζ )dζ . (1.6)

For v ∈ L1(0,T ), the left Riemann-Liouville fractional integral of order σ ∈ (0,1) is defined by

Iσ
t [v](t) =

1
Γ (σ)

ˆ t

0

1
(t−ζ )1−σ

v(ζ )dζ ; (1.7)

see [27, Section 2]. Young’s inequality for convolutions immediately yields that, for p> 1, Iσ
t is a continuous

operator from Lp(0,T ) into itself. More importantly, a result by Flett [11] shows that

v ∈ L logL(0,T ) =⇒ Iσ
t [v] ∈ L

1
1−σ (0,T ). (1.8)

We refer the reader to [19] for the definition of the Orlicz space L logL(0,T ). This observation will be
very important in subsequent developments. Notice finally that, if v ∈W 1

1 (0,T ), then we have that dγ

t v(t) =
I1−γ

t [v̇](t).
The generalized Mittag-Leffler function with parameters α > 0 and β ∈ R is defined by

Eα,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
, z ∈ C. (1.9)

We refer the reader to [13] for an account of the principal properties of the Mittag-Leffler function.

1.2 The state equation

In this section we construct the solution to (1.2), thus showing its existence and uniqueness. This shall be of
uttermost importance not only when showing the existence and uniqueness of solutions to our optimization
problem, but when we deal with the discretization, as we will study the smoothness of u. To shorten notation,
in this section we set

g = f + z.

1.2.1 Solution representation and regularity

Let us now construct the solution to (1.2) and review its main properties. We will adapt the arguments of
[25] to our setting. Since the matrix A is symmetric and positive definite, it is orthogonally diagonalizable;
meaning that there are {λk,ξk}n

k=1 ⊂ R+×Rn such that

A ξk = λkξk, ξk ·ξl = δk,l .
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This, in particular, implies that the vectors {ξk}n
k=1 form an orthonormal basis of Rn. Moreover, for any

vector v ∈ Rn, we can define |v|2A = v ·A v, which turns out to be a norm that satisfies

λ1|v|2n ≤ |v|2A ≤ λn|v|2n, ∀v ∈ Rn. (1.10)

We set

‖v‖2
L2

A (0,T ;Rn)
=

ˆ T

0
|v|2A dt. (1.11)

With these properties of the matrix A at hand we propose the following solution ansatz

u(t) =
n

∑
k=1

uk(t)ξk, uk(t) = u(t) ·ξk, (1.12)

where the coefficients uk(t) satisfy

dγ

t uk(t)+λkuk(t) = gk(t), t ∈ (0,T ], uk(0) = u0,k, (1.13)

for k ∈ {1, · · · ,n}. Here, gk(t) = g(t) ·ξk and u0,k = u0 ·ξk. The importance of this orthogonal decomposition
lies in the fact that we have reduced problem (1.2) to a decoupled system of equations. The theory of frac-
tional ordinary differential equations [27] gives, for k ∈ {1, · · · ,n}, a unique function uk satisfying problem
(1.13). In addition, standard considerations, which formally entail taking the Laplace transform of (1.13),
yield that

uk(t) = Eγ,1(−λktγ)u0,k +

ˆ t

0
(t−ζ )γ−1Eγ,γ(−λk(t−ζ )γ)gk(ζ )dζ . (1.14)

We refer the reader to [24, 25, 26] for details. This representation shall prove rather useful to describe the
existence, uniqueness and regularity of u. To concisely state it, let us define

U= {w ∈ L2(0,T ;Rn) : dγ

t u ∈ L2(0,T ;Rn)}. (1.15)

With this notation, we have the following result; see [25] for a proof.

Theorem 1 (existence and uniqueness). Assume that g ∈ L2(0,T ;Rn). Problem (1.2) has a unique solution
u ∈ U, given by (1.12) and (1.14). Moreover, the following a priori estimate holds

I1−γ

t
[
|u|2n
]
(T )+‖u‖2

L2
A (0,T ;Rn)

. Λ
2
γ (u0,g), (1.16)

where, for v ∈ Rn and h ∈ L2(0,T ;Rn) we have

Λ
2
γ (v,h) = I1−γ

t
[
|v|2n
]
(T )+‖h‖2

L2(0,T ;Rn). (1.17)

In this estimate, the hidden constant is independent of u0, g and u.

Having obtained conditions that guarantee the existence and uniqueness for (1.2) we now study its regu-
larity. This is important since, as it is well known, smoothness and rate of approximation go hand in hand.
This is exactly the content of direct and converse theorems in approximation theory [1, 16]. Consequently,
any rigorous study of an approximation scheme must be concerned with the regularity of the solution. This,
we believe, is an issue that for this problem has been largely ignored in the literature since, simply put, the
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solution to (1.2) is not smooth. Let us now follow [24, 25] and elaborate on this matter. The essence of
the issue is already present in the case n = 1 so that (1.14) is the solution. Let us, to further simplify the
discussion, set g≡ 0 and u0 = 1. In this case, the solution verifies the following asymptotic estimate

u(t) = Eγ,1(−λ tγ) = 1− λ

Γ (1+ γ)
tγ +O(t2γ), t ↓ 0.

If this is the case we then expect that, as t ↓ 0, u̇(t)≈ tγ−1 and ü(t)≈ tγ−2. Notice that, since γ ∈ (0,1), the
function ω1(t) = tγ−1 belongs to L logL(0,T ) but ω1 /∈ L1+ε(0,T ) for any ε > γ(1+ γ)−1. Similarly, the
function ω2(t) = tγ−2 is not Lebesgue integrable, but

ˆ T

0
tσ |ω2(t)|2 dt =

ˆ T

0
tσ+2(γ−2) dt < ∞⇒ σ > 3−2γ,

which implies that ω2 belongs to the weighted Lebesgue space L2(tσ ;0,T ), where σ > 3− 2γ > 1. The
considerations given above tell us that we should expect the following:

u̇ ∈ L logL(0,T ;Rn) ü ∈ L2(tσ ;0,T ;Rn), σ > 3−2γ. (1.18)

The justification of this heuristic is the content of the next result. For a proof, we refer the reader to [25,
Theorem 8].

Theorem 2 (regularity). Assume that g ∈ H2(0,T ;Rn). Then u, the solution to (1.2), satisfies (1.18) and,
for t ∈ (0,T ], we have the following asymptotic estimate(ˆ T

0
ζ

σ |ü(ζ )|2n dζ

)1/2

+ t1−γ

∣∣∣∣u̇(t)− 1
t
(u(t)−u(0))

∣∣∣∣
n
. |u0|n +‖g‖H2(0,T ;Rn),

where σ > 3−2γ . The hidden constant is independent of t but blows up as γ ↓ 0+.

Remark 1 (extensions). Under the correct framework, the conclusion of Theorem 2 can be extended to the
case where A is an operator acting on a Hilbert space H and equation (1.2) is understood in a Gelfand
triple V ↪→H ↪→ V ′; see [25] for details.

1.2.2 Discretization of the state equation

Now that we have studied the state equation and the regularity properties of its solution u, we proceed to
discretize it. To do so, we denote by K ∈ N the number of time steps. We define the (uniform) time step
τ = T/K > 0 and set tk = kτ for k = 0, . . . ,K . We denote the time partition by T = {tk}Kk=0. We define
the space of continuous and piecewise linear, over the partition T , functions as follows:

U(T ) =
{

W ∈C([0,T ];Rn) : W |(tk,tk+1] ∈ P1(Rn),k = 0, . . . ,K −1
}
. (1.19)

We also define the space of piecewise constant functions

Z(T ) =
{

W ∈ BV (0,T ;Rn) : W |(tk,tk+1] ∈ P0(Rn),k = 0, . . . ,K −1
}
, (1.20)
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and the L2(0,T ;Rn)-orthogonal projection onto Z(T ), that is, the operator ΠT : L2(0,T ;Rn)→ Z(T )
defined by ˆ T

0
(r−ΠT r) ·Zτ dt = 0 ∀Zτ ∈ Z(T ).

We remark that ΠT satisfies
‖r−ΠT r‖L2(0,T ;Rn) . τ‖ṙ‖L2(0,T ;Rn), (1.21)

where the hidden constant is independent of r and τ .
For a function φ ∈BV ([0,T ],Rn) we set φ k = φ(tk−) and φ τ = {φ k}Kk=0, which can be uniquely identified

with either an element of U(T ) or Z(T ) by the procedures we describe now. To φ τ we associate φ̄ τ ∈Z(T )
defined by

φ̄
τ(0) = φ

0, φ̄
τ |(tk,tk+1](t) = φ

k+1, k = 0, . . . ,K −1. (1.22)

We also associate φ̂ τ ∈ U(T ) via

φ̂
τ(0) = 0, φ̂

τ |(tk,tk+1](t) =
tk+1− t

τ
φ

k +
t− tk

τ
φ

k+1, k = 0, . . . ,K −1. (1.23)

Notice that
‖φ̂ τ‖L∞(0,T ;Rn) = ‖φ̄ τ‖L∞(0,T ;Rn) = ‖φ τ‖`∞(Rn)

and that

‖φ̄ τ‖2
L2(0,T ;Rn) = τ

K

∑
k=1
|φ k|2n.

Finally, for a sequence φ τ we also define, for k = 0, . . . ,K −1,

dφ
k+1 = τ

˙̂
φ

τ |(tk,tk+1] = φ
k+1−φ

k, (1.24)

which can understood as a mapping d : U(T )→ Z(T ).
Having introduced this notation, we propose to discretize (1.2) by a collocation method over U(T ). In

other words, we seek for Ûτ ∈ U(T ) such that

Ûτ(0) = u0, (1.25)

and, for every k = 0, . . .K −1, it satisfies

dγ

t Ûτ(tk+1)+A Ûτ(tk+1) = ΠT g(tk+1). (1.26)

Remark 2 (derivation of the scheme). In the literature (1.26) is commonly referred to as the L1-scheme
[15, 20, 21, 28]; even though it is not presented this way. Nevertheless, let us show that this is equivalent to
the methods presented in the literature. To see the relation, it is sufficient to compute the value of dtŴ τ(tk+1).
By definitions (1.3), (1.23) and (1.24), we obtain that

dγ

t Ŵ τ(tk+1) =
1

Γ (1− γ)

ˆ tk+1

0

1
(tk+1−ζ )γ

˙̂W τ(ζ )dζ

=
τ−1

Γ (1− γ)

k

∑
j=0

dW j+1
ˆ t j+1

t j

1
(tk+1−ζ )γ

dζ =
k

∑
j=0

ak
jdW j+1,

(1.27)
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where the coefficients ak
j satisfy

ak
j =

τ−1

Γ (1− γ)

ˆ t j+1

t j

1
(tk+1−ζ )γ

dζ =
τ−1

Γ (2− γ)

[
(tk+1− t j)

1−γ − (tk+1− t j+1)
1−γ
]

=
τ−γ

Γ (2− γ)

[
(k+1− j)1−γ − (k− j)1−γ

]
.

(1.28)

Here, in the last step, we used that the time step is uniform and of size τ . The fact that the time step is
uniform also implies that

ak
k− j =

τ−γ

Γ (2− γ)

[
( j+1)1−γ − j1−γ

]
= ak+ j

k ,

so that, after the change of indices m = k− j, we obtain

dγ

t Ŵ τ(tk+1) =
τ−γ

Γ (2− γ)

k

∑
m=0

bmdW k+1−m

=
τ−γ

Γ (2− γ)

(
b0W k+1 +

k

∑
m=1

(bm−bm−1)W k+1−m−bkW 0

)
,

(1.29)

with bm = (m+1)1−γ −m1−γ . The expression above is what is commonly referred to as the L1 scheme.

1.2.2.1 Stability

Let us discuss the stability of scheme (1.26) as originally detailed in [25, Section 3.2.2]. We begin by ex-
ploring the properties of the coefficients ak

j.

Lemma 1 (properties of ak
j). Assume that the time step is given by τ > 0. For every k = 0, . . . ,K −1 and

j = 0, . . . ,k, the coefficients ak
j, defined in (1.28), satisfy

0 < ak
j, ak

j < ak
j+1, ak+1

j < ak
j.

Moreover ak
k = τ−γ/Γ (2− γ).

Proof. The positivity of the coefficients follows from the fact that, for j = 0, . . . ,k and ζ ∈ (t j, t j+1), we have
that tk+1−ζ > 0. We now show that the coefficients are increasing in the lower index. In fact, an application
of the mean value theorem yields

ak
j =

1
Γ (1− γ)

 t j+1

t j

dζ

(tk+1−ζ )γ
=

1
Γ (1− γ)

1
(tk+1−ζ j)γ

for some ζ j ∈ (t j, t j+1). Since the function ζ 7→ (tk+1− ζ )−γ is increasing for ζ < tk+1, we conclude that
ak

j < ak
j+1. To show that the coefficients are decreasing in the upper index we note that

tk+1 > tk =⇒ 1
(tk+1−ζ )γ

<
1

(tk−ζ )γ
,
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so that ak+1
j < ak

j. Finally, we note that

ak
k =

1
Γ (1− γ)

 tk+1

tk

dζ

(tk+1−ζ )γ
=

τ−γ

Γ (2− γ)
.

This concludes the proof.

With the results of Lemma 1 at hand, we can now show stability of the scheme.

Theorem 3 (stability). For every K ∈ N, the scheme (1.26) is unconditionally stable and satisfies

I1−γ

t
[
|Ūτ |2n

]
(T )+‖Ūτ‖2

L2
A (0,T ;Rn)

. Λ
2
γ (u0,g),

where the hidden constant is independent of u0, g, Ūτ and K ; and Λγ is defined in (1.17).

Proof. Multiply (1.26), by 2Uk+1 to obtain

2dγ

t Ûτ(tk+1) ·Uk+1 +2|Uk+1|2A ≤ 2|ΠT gk+1|n|Uk+1|n, (1.30)

where on the right hand side we applied the Cauchy Schwartz inequality; | · |A is defined in Section 1.2.1.
We thus use (1.10), together with Young’s inequality to say that

2dγ

t Ûτ(tk+1) ·Uk+1 + |Uk+1|2A ≤ λ
−1
1 |ΠT gk+1|2n.

We now invoke (1.27) and deduce that

dγ

t Ûτ(tk+1) ·Uk+1 = ak
k|Uk+1|2n +

k−1

∑
j=0

ak
jU

j+1 ·Uk+1−
k

∑
j=1

ak
jU

j ·Uk+1−ak
0U0 ·Uk+1

= ak
k|Uk+1|2n +

k

∑
j=1

(ak
j−1−ak

j)U
j ·Uk+1−ak

0U0 ·Uk+1.

With this at hand (1.30) reduces to

2ak
k|Uk+1|2n + |Uk+1|2A ≤ λ

−1
1 |ΠT gk+1|2n +2

k

∑
j=1

(ak
j−ak

j−1)U
j ·Uk+1 +2ak

0U0 ·Uk+1.

Since, as stated in Lemma 1, we have that ak
j−ak

j−1 > 0 we estimate

2
k

∑
j=1

(ak
j−ak

j−1)U
j ·Uk+1 ≤

k

∑
j=1

(ak
j−ak

j−1)(|U j|2n + |Uk+1|2n)

=
k

∑
j=1

(ak
j−ak

j−1)|U j|2n +(ak
k−ak

0)|Uk+1|2n,

which can be used to obtain that

ak
k|Uk+1|2n +

k

∑
j=1

ak
j−1|U j|2n + |Uk+1|2A ≤ λ

−1
1 |ΠT gk+1|2n +ak

0|u0|2n +
k

∑
j=1

ak
j|U j|2n. (1.31)
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Notice now that, since ak
j are defined as in (1.28) and bm = (m+1)1−γ −m1−γ , for every j = 0, . . . ,k we

have

ak
j =

τ−γ

Γ (2− γ)
bk− j.

Thus, the change of indices m = k+1− j on the left hand side and l = k− j on the right hand side of (1.31),
respectively, yields

τ−γ

Γ (2− γ)

k

∑
m=0

bm|Uk+1−m|2n + |Uk+1|2A ≤ λ
−1
1 |ΠT gk+1|2n +ak

0|u0|2n +
τ−γ

Γ (2− γ)

k−1

∑
l=0

bl |Uk−l |2n,

where the sum on the right hand side vanishes for k = 0. Multiply by τ and add over k to obtain

τ1−γ

Γ (2− γ)

K −1

∑
k=0

bk|UK −k|2n +‖Ūτ‖2
L2

A (0,T ;Rn)
≤ λ

−1
1 ‖ΠT g‖2

L2(0,T ;Rn)+ τ|u0|2n
K −1

∑
k=0

ak
0, (1.32)

where ‖Ūτ‖L2
A (0,T ;Rn) is defined by (1.11). Notice now that, since the time step is uniform,

τ

K −1

∑
k=0

ak
0 =

τ1−γ

Γ (2− γ)

K −1

∑
k=0

bk =
T 1−γ

Γ (2− γ)
= I1−γ

t [1](T ). (1.33)

We now analyze the first term on the left hand side of (1.32): changing indices via l +1 = K − k gives

τ1−γ

Γ (2− γ)

K −1

∑
k=0

bk|UK −k|2n =
τ1−γ

Γ (2− γ)

K −1

∑
l=0

bK −l−1|U l+1|2n =
K −1

∑
l=0

τaK −1
l |U l+1|2n

=
1

Γ (1− γ)

K −1

∑
l=0

ˆ tl+1

tl

1
(tK −ζ )γ

|Ūτ(ζ )|2n dζ = I1−γ

t
[
|Ūτ |2n

]
(T ).

(1.34)

Inserting (1.33) and (1.34) in (1.32), and using that ΠT is a projection yields the result.

1.2.2.2 Consistency and error estimates

Let us now discuss the consistency of scheme (1.26). This will allow us to obtain error estimates. Clearly
it suffices to control the difference dγ

t (u− ūτ). The following formal estimate has been shown in many
references; see, for instance, [20, 21]. The proof, essentially, is a Taylor expansion argument.

Proposition 1 (consistency for smooth functions) Let w ∈C2([0,T ];Rn), then

‖dγ

t (w− w̄τ)‖L∞(0,T ;Rn) . τ
2−γ ,

where the hidden constant depends on ‖w‖C2([0,T ];Rn) but is independent of τ .

We must immediately point out that this estimate cannot be used in the analysis of (1.2). The reason
behind this lies in Theorem 2 which shows that, in general, the solution to the state equation is not twice
continuously differentiable. For this reason, in [25] a new consistency estimate, that takes into account the
correct regularity of the solution, has been developed. This is the content of the next result.
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Theorem 4 (consistency). Let u solve (1.2). In the setting of Theorem 2 we have that, for any θ < 1
2 ,

‖dγ

t (u− ūτ)‖L2(0,T ;Rn) . τ
θ

(
|u0|n +‖g‖H2(0,T ;Rn)

)
,

where the hidden constant is independent of τ but blows up as θ ↑ 1
2 .

For a proof of this result we refer the reader to [25, Section 3.2.1]. We just comment that it consists of a
combination of the fine regularity results of Theorem 2, weighted estimates and the mapping properties of
the fractional integral operator I1−γ

t detailed in Section 1.1.1. Let us, however, show how from this we obtain
an error estimate.

Corollary 1 (error estimates) Let u solve (1.2) and Uτ solve (1.26). In the setting of Theorem 2 we have
that, for any θ < 1

2 ,

I1−γ

t
[
|ūτ −Ūτ |2n

]
(T )+‖ūτ −Ūτ‖2

L2
A (0,T ;Rn)

. τ
2θ

(
|u0|n +‖g‖H2(0,T ;Rn)

)2
,

where the hidden constant is independent of τ and the data, but blows up as θ ↑ 1
2 .

Proof. Define eτ = uτ −Uτ . Subtracting (1.2) and (1.25)–(1.26) at t = tk+1 yields êτ(0) = 0 and, for k =
0, . . . ,K −1

dγ

t êτ(tk+1)+A êτ(tk+1) = dγ

t (û
τ −u)(tk+1)+(g−ΠT g)(tk+1).

Since ēτ(0) = 0, the stability estimate of Theorem 3 then yields

I1−γ

t
[
|ēτ |2n

]
(T )+‖ēτ‖2

L2
A (0,T ;Rn)

. ‖dγ

t (u− ūτ)‖2
L2(0,T ;Rn)+‖g−ΠT g‖2

L2(0,T ;Rn).

The consistency estimate of Theorem 4 gives a control of the first term. Finally, owing to the regularity of g,
we have that ‖g−ΠT g‖L2(0,T ;Rn) . τ; see (1.21). This implies the result.

1.2.3 Numerical illustration

It is natural to wonder whether the reduced rate of convergence given in Corollary 1 is nothing but a conse-
quence of the methods of proof. Here we show, by means of some computational examples, that while the
rate τθ might not be sharp it is not possible to obtain the rate of convergence suggested by Proposition 1.

Let us set n = 1, T = 1, λ = 1
2 , u0 = 1 and g = 0. From (1.14) we then obtain that the solution to the state

equation (1.2) is given by

u(t) = Eγ,1

(
−1

2
tγ

)
.

We implemented, in an in-house code, the scheme (1.25)–(1.26) and used it to approximate this function. We
measured the L2(0,T ) norm of the error, where we implemented the Mittag-Leffler function following [14].
Integration was carried out using a composite Gaussian rule with three (3) nodes; increasing the number of
nodes produced no significant difference in the results.

The rates of convergence for various values of γ ∈ (0,1) are presented in Figure 1.2.3. As we can see,
Corollary 1 is not sharp, but consistent with the experimental orders. More importantly, the rates suggested
by Proposition 1 are not obtained.
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Fig. 1.1 Experimental rates of convergence for the solution of (1.2) using (1.25)–(1.26). We have set n = 1, T = 1, λ = 1
2 ,

u0 = 1 and g = 0. The figures show the computed rates of convergence with respect to the time step for γ = 0.3 (top left),
γ = 0.5 (top right) and γ = 0.8 (bottom). We observe that the rate of convergence τ2−γ is never attained.

1.3 The optimization problem

Having studied the state equation, we can proceed with the study of the constrained optimization prob-
lem (1.4)–(1.5). We will show existence and uniqueness of a solution, along with a numerical technique to
approximate it. We will also discuss the convergence properties of the proposed approximation scheme.

1.3.1 Existence and uniqueness

To precisely state the constrained optimization problem, we begin by defining the set of admissible controls

Zad =
{

z ∈ L2(0,T ;Rn) : a� ζ (t)� b, a.e. t ∈ (0,T )
}
, (1.35)

which is, under the assumption that a� b, a nonempty, closed, convex and bounded subset of L2(0,T ;Rn).
Now, as the conclusion of Theorem 1 asserts, for any z ∈ L2(0,T ;Rn) there is a unique u = u(z) ∈ U that

solves (1.2). This uniquely defines an affine continuous mapping S : L2(0,T ;Rn)→ U ⊂ L2(0,T ;Rn) by
the rule u =Sz, where u solves (1.2). With these tools at hand we can show the existence and uniqueness of
a state-control pair, i.e., a pair (ŭ, z̆) ∈ U×Zad such that ŭ =Sz̆ and satisfies (1.4)–(1.5). The proof of the
following result is standard and we include it just for the sake of completeness.

Theorem 5 (existence and uniqueness). The optimization problem: Find (u,z) such that satisfies (1.4) sub-
ject to (1.2) and (1.5) has a unique solution (ŭ, z̆) ∈ U×Zad.

Proof. The control to state operator S allows us to introduce the so-called reduced cost functional:

J (z) := J(Sz,z) =
1
2

ˆ T

0

(
|CSz−ud |2m +µ|z|2n

)
dt,

and to equivalently state the problem as: minimize J over Zad. Since µ > 0 and S is affine the reduced cost
J is strictly convex. Owing to the continuity of S we have that J is continuous as well. Existence and
uniqueness then follow from direct methods [7, 22].
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1.3.2 Discretization

We now proceed to discretize the optimization problem (1.4)–(1.5). We will do so by a piecewise constant
approximation of the control and a piecewise linear continuous approximation of the state. We will follow
the notation of Section 1.2.2 and, additionally, define

Zad(T ) = Z(T )∩Zad.

Once again, Zad(T ) is a nonempty, convex and closed subset of Z(T ). Notice also that, since a,b are time
independent ΠT Zad ⊂ Zad(T ).

We also define the discrete cost functional JT : U(T )×Z(T )→ R by

JT (Ûτ ,Zτ) =
1
2

ˆ T

0

(
|C Ūτ − ūτ

d |2m +µ|Zτ |2n
)

dt,

where U(T ) and Z(T ) are defined in (1.19) and (1.20), respectively. We immediately comment that, by an
abuse of notation, we defined ūτ

d ⊂ Rm as the sequence of values uk
d =

ffl tk+1
tk

ud dt. In other words, we are
modifying the cost by replacing the desired state ud by its piecewise constant approximation ūτ

d . Additionally,
we have replaced Ûτ by its piecewise constant counterpart Ūτ ∈ Z(T ). For these reasons,

JT (Ûτ ,Zτ) 6= J(Ûτ ,Zτ).

We propose the following discretization of the state equation (1.2): Given Zτ ∈ Z(T ), find Ûτ ∈ U(T )
such that Ûτ(0) = u0 and, for all k = 0, . . . ,K −1, we have

dγ

t Ûτ(tk+1)+A Ûτ(tk+1) = ΠT f (tk+1)+Zτ(tk+1), (1.36)

where dγ

t is defined in (1.3) and ΠT corresponds to the L2(0,T ;Rn)-orthogonal projection onto Z(T ). We
remark that (1.36) is nothing but discretization (1.25)–(1.26) of the state equation, where the variable z is
already piecewise constant in time. Since f +Zτ ∈ L2(0,T ;Rn) we can invoke Theorem 3 to conclude that
problem (1.36) is stable for all τ > 0.

We thus define the discrete optimization problem as follows: Find ( ˘̂Uτ , Z̆τ) ∈ U(T )×Zad(T ) such that

JT ( ˘̂Uτ , Z̆τ) = minJT (Ûτ ,Zτ) (1.37)

subject to (1.36). Let us briefly comment on the existence and uniqueness of a minimizer, which closely
follows Theorem 5. Indeed, for every z ∈ L2(0,T ;Rn) there exists a unique Ûτ ∈ U(T ) that solves (1.36)
with data ΠT z. This uniquely defines a map ST : L2(0,T ;Rn)→U(T ), which we call the discrete control
to state map. We can then define the reduced cost as

Z(T ) 3 Zτ 7→JT (Zτ) = JT (ŜT Zτ ,Zτ)

and proceed as in Theorem 5, by using the strict convexity of JT and the continuity of the affine map ST ,
which follows from Theorem 3.
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1.3.3 Discrete optimality conditions

Let us derive discrete optimality conditions. This is useful not only in the practical solution of the discrete
optimization problem (1.36)–(1.37), but it will help us in analyzing its convergence properties. As stated
before, problem (1.36)–(1.37) is equivalent to the following constrained optimization problem: Find Z̆τ ∈
Zad(T ) such that

JT (Z̆τ) = min{JT (Zτ) : Zτ ∈ Zad(T )} ,

i.e., a minimization problem over a closed, bounded and convex set. It is standard then (since JT is convex,
coercive and differentiable) that a necessary and sufficient condition for optimality is

DJT (Z̆τ)
[
Zτ − Z̆τ

]
≥ 0 ∀Zτ ∈ Zad(T ), (1.38)

where DJT (Z)[·] is the Gâteaux derivative of JT at the point Z. Let us now rewrite and simplify the
optimality condition (1.38) by introducing the so-called adjoint state that, as stated in [30, Chapter 1], is a
simple trick that is of unmost importance in optimal control theory.

For a given Ûτ ∈ U(T ) the adjoint is the function P̂τ ∈ U(T ) such that P̂τ(T ) = 0 and, for all k =
K −1, . . . ,0

dγ

T−t P̂
τ(tk)+A P̂τ(tk) = C ᵀ (C Ūτ(tk)− ūτ

d(tk)) , (1.39)

where dγ

T−t denotes the right sided Caputo fractional derivative of order γ defined in (1.6). The optimality
conditions are as follows.

Theorem 6 (optimality conditions). The pair ( ˘̂Uτ , Z̆τ) ∈U(T )×Zad(T ) solves (1.37) if and only if ˘̂Uτ =
ST Z̆τ and ˆ T

0

(
¯̆Pτ +µZ̆τ

)
·
(
Zτ − Z̆τ

)
dt ≥ 0 ∀Zτ ∈ Zad(T ), (1.40)

where P̆τ ∈ U(T ) solves (1.39) with data ˘̂Uτ .

Proof. We will obtain the result by showing that (1.40) is nothing but a restatement of (1.38). In fact, a
simple calculation reveals that, for any Θ τ ,Ψ τ ∈ Z(T ), we have

DJT (Θ τ)[Ψ τ ] =

ˆ T

0

[(
CST Θ τ − ūτ

d
)
·CST Ψ τ +µΘ

τ ·Ψ τ
]

dt.

Consequently, (1.38) can be equivalently rewritten as, for every Zτ ∈ Zad(T ),

ˆ T

0

[
C ᵀ
(
CST Z̆τ − ūτ

d

)
·ST (Zτ − Z̆τ)+µZ̆τ · (Zτ − Z̆τ)

]
dt ≥ 0. (1.41)

Let us focus our attention now on the first term inside the integral. Denote Uτ =ST Zτ and Ŭτ =ST Z̆τ .
Define Φτ :=Uτ −Ŭτ and notice that Φ̂τ ∈ U(T ) satisfies: Φ̂τ(0) = 0 and, for every k = 0, . . . ,K −1,

dγ

t Φ̂
τ(tk+1)+A Φ̂

τ(tk+1) = Zτ(tk+1)− Z̆τ(tk+1),

or, equivalently,
dγ

t Φ̂τ +A Φ̄
τ = Zτ − Z̆τ .



14 E. Otárola and A.J. Salgado

Multiply this equation by ¯̆Pτ and integrate to obtain

ˆ T

0

[
dγ

t Φ̂τ · ¯̆Pτ +A Φ̄
τ · ¯̆Pτ

]
dt =

ˆ T

0

(
Zτ − Z̆τ

)
· ¯̆Pτ dt.

Now, multiply (1.39) by Φ̄τ and integrate to obtain

ˆ T

0

[
dγ

T−t
ˆ̆Pτ · Φ̄τ +A ¯̆Pτ · Φ̄τ

]
dt =

ˆ T

0
C ᵀ
(
C ¯̆Uτ − ūτ

d

)
· Φ̄τ dt.

Subtract these last two identities. Upon remembering the definition of Φτ we thus obtain

ˆ T

0

[
dγ

t Φ̂τ · ¯̆Pτ − dγ

T−t
ˆ̆Pτ · Φ̄τ

]
dt =

ˆ T

0

[(
Zτ − Z̆τ

)
· ¯̆Pτ −C ᵀ

(
C ¯̆Uτ − ūτ

d

)
·ST (Zτ − Z̆τ)

]
dt,

where we have used that the matrix A is symmetric. Notice that the last term in this expression is nothing
but the first term on the left hand side of (1.41). In other words, if we can show that

ˆ T

0
dγ

t Φ̂τ · ¯̆Pτ dt =
ˆ T

0
dγ

T−t
ˆ̆Pτ · Φ̄τ dt (1.42)

we obtain the result.
To show this we realize that, since we are dealing with piecewise constants, we can equivalently rewrite

the left hand side of this identity as

ˆ T

0
dγ

t Φ̂τ · ¯̆Pτ dt = τ

K −1

∑
k=0

P̆k+1 · dγ

t Φ̂
τ(tk+1) =

τ1−γ

Γ (2− γ)

K −1

∑
k=0

P̆k+1 ·
k

∑
m=0

bmdΦ
k+1−m,

where we used (1.29).
In a similar manner to the computations of Remark 2 we can obtain that

dγ

T−t
ˆ̆P(tk) =−

K −1

∑
j=k

a j
kdP̆ j+1 =− τ−γ

Γ (2− γ)

K −1

∑
j=k

b j−kdP̆ j+1,

consequently ˆ T

0
dγ

T−t
ˆ̆Pτ · Φ̄τ dt =

τ1−γ

Γ (2− γ)

K

∑
k=1

Φ
k ·

K −1

∑
j=k

b j−kdP̆ j+1.

We can invoke now the results of [4, Appendix A] to conclude that the identity (1.42) holds. The theorem
is thus proven.

Remark 3 (discrete fractional integration by parts). Notice that, during the course of the proof of Theorem 6
we showed that, whenever V̂ τ ,Ŵ τ ∈U(T ) satisfy V̂ τ(0) = 0 and Ŵ τ(T ) = 0, then they satisfy the following
discrete fractional integration by parts

ˆ T

0
dγ

t V̂ τ ·W̄ τ dt =
ˆ T

0
dγ

T−tŴ τ ·V̄ τ dt.
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This identity shall prove useful in the sequel.

Remark 4 (projection). The solution to the variational inequality (1.40) can be accomplished rather easily.
Indeed, since all the involved functions belong to Z(T ), it suffices to consider one time interval, say (tk−1, tk],
where we must have (

P̆k +µZ̆k
)
·
(

Zk− Z̆k
)
≥ 0.

From this it immediately follows that

Z̆k = Pr
[a,b]

(
−1
µ

P̆k
)
,

where, for w ∈ Rn, we define Pr[a,b] w as the projection onto the cube [a,b] = {x ∈ Rn : a� x� b}, which
can be easily accomplished by the formula

Pr
[a,b]

wi = max{ai,min{bi,wi}} , i = 1, . . . ,n.

This is the main advantage of considering piecewise constant approximations of the control and a modified
cost. Other variants might yield a better approximation, but at the cost of a more involved solution scheme.

1.3.4 Convergence

Let us now discuss the convergence of our approximation scheme. The main issue here is that since, even
for a smooth f , the right hand side of (1.36) belongs only to L2(0,T ;Rn) we cannot invoke the results
of Corollary 1 to establish a rate of convergence. Notice, additionally, that we modified the cost, one of
the reasons being that this led us to the simplifications detailed in Remark 4. These two issues force us to
contempt ourselves with showing convergence without rates.

We begin by noticing that, for any z ∈ L2(0,T ;Rn) we have that ST z = S̊T z+ V̂ τ , where V̂ τ ∈ U(T )
satisfies

V̂ τ(0) = u0, dγ

t V̂ τ(tk+1)+A V̂ τ(tk+1) = f (tk+1), k = 0, . . . ,K −1,

and the linear, continuous, operator S̊T is the solution operator for the scheme: Find Ûτ
0 ∈ U(T ) such that

Ûτ
0 (0) = 0 and, for k = 0, . . . ,K −1,

dγ

t Ûτ
0 (tk+1)+A Ûτ

0 (tk+1) = ΠT z(tk+1). (1.43)

Let us describe the properties of V̂ τ .

Proposition 2 (properties of V̂ τ ) Assume that f ∈ L2(0,T ;Rn), then the family {V̂ τ}T converges, as K →
∞, in L2(0,T ;Rn) to v ∈ U, which solves

dγ

t v+A v = f , t ∈ (0,T ], v(0) = u0.

Proof. The claimed result is obtained by a simple density argument, combined with stability of the con-
tinuous and discrete state equations. Let ε > 0. Since f ∈ L2(0,T ;Rn) there is a fε ∈ H2(0,T ;Rn) such
that

‖ f − fε‖L2(0,T ;Rn) <
ε

4C1
,
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where by C1 we denote the constant in inequality (1.16). Denote by vε the solution to

dγ

t vε +A vε = fε , t ∈ (0,T ], v(0) = u0.

The smoothness of fε allows us to invoke Theorem 2 to assert that the regularity estimates (1.18), with v
replaced by vε , hold. In addition, invoking Theorem 1, we get that

‖v− vε‖L2
A (0,T ;Rn) ≤C1Λγ(0, f − fε) =C1‖ f − fε‖L2(0,T ;Rn) <

ε

4
.

Let us now approximate vε via the scheme (1.26), over a mesh T where K remains to be chosen. In
doing so we obtain a function V̂ τ

ε ∈ U(T ). Moreover, since vε verifies the assumptions of Theorem 2, we
invoke Corollary 1 to conclude that

‖v̄ε −V̄ τ
ε ‖L2

A (0,T ;Rn) ≤C2τ
θ ,

where C2 denotes a positive constant that depends on ‖ fε‖H2(0,T ;Rn). However, since ε is fixed, we can
choose K so that

C2τ
θ <

ε

4
=⇒ ‖v̄ε −V̄ τ

ε ‖L2(0,T ;Rn) <
ε

4
.

The last ingredient is to observe that the difference V τ
ε −V τ solves (1.25)–(1.26) with zero initial condition

and right hand side ΠT ( f − fε). We then invoke the stability of the scheme, stated in Theorem 3, to obtain

‖V̄ τ
ε −V̄ τ‖L2

A (0,T ;Rn) ≤C1Λγ(0,ΠT ( f − fε))≤C1‖ f − fε‖L2(0,T ;Rn) <
ε

4
,

where we used that ΠT is a projection.
Combine these observations to conclude that

‖v−V̄ τ‖L2
A (0,T,Rn) ≤ ‖v− vε‖L2

A (0,T ;Rn)+‖vε − v̄ε‖L2
A (0,T ;Rn)+‖v̄ε −V̄ τ

ε ‖L2
A (0,T ;Rn)

+‖V̄ τ
ε −V̄ τ‖L2

A (0,T ;Rn) <
3ε

4
+‖vε − v̄ε‖L2

A (0,T ;Rn).

Conclude by noticing that, since vε → v, after possibly taking an even larger K we can assert

‖vε − v̄ε‖L2
A (0,T ;Rn) <

ε

4
.

This concludes the proof.

The main consequence of this statement arises when we use the decomposition of ST in the reduced
cost. Namely, we get

JT (Zτ) =
1
2

ˆ T

0

[
|C S̊T Zτ −W̄ τ |2n +µ|Zτ |2n

]
dt,

for W τ = uτ
d −V τ , i.e., the discrete desired state changes and, moreover, W τ → ud − v in L2(0,T ;Rn) as

K → ∞. All these considerations allow us to reduce the problem to the case when u0 = 0 and f ≡ 0 so that
the discrete control to state map is a linear operator.

In this setting we can assert the strong convergence of S̊T and its adjoint, which will be a fundamental
tool in proving convergence.
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Lemma 2 (strong convergence). The family of solution operators {S̊T }T and of their adjoints
{
S̊T

?
}

T

is uniformly bounded in B(L2(0,T ;Rn)) and strongly convergent.

Proof. We begin by realizing that the uniform boundedness, in B(L2(0,T ;Rn)), of {S̊T }T is but a re-
statement of Theorem 3 and an application of the uniform boundedness principle [12, 17]. Moreover, the
error estimates of Corollary 1 are valid for a collection of right hand sides that is dense in L2(0,T ;Rn). This
means, by an argument similar to the one provided in Proposition 2, that for every z∈ L2(0,T ;Rn) the family
{S̊T z}T converges; see [12, Proposition 5.17].

Let us now prove the same statements for the family of adjoints. To do so we must first identify it. Let
z,η ∈ L2(0,T ;Rn) and Ûτ

0 solve (1.43). In addition, let P̂τ ∈U(T ) be the solution to (1.39) but with the right
hand side replaced by ΠT η . Multiply the aforementioned equations by P̄τ and Ūτ

0 , integrate and subtract to
obtain ˆ T

0

[
dγ

t Ûτ
0 · P̄

τ − dγ

T−t P̂τ ·Ūτ
0

]
dt =

ˆ T

0

[
ΠT z · P̄τ −ΠT η · S̊T z

]
dt

where we used that the matrix A is symmetric. We now invoke Remark 3 to conclude that the right hand
side of the previous expression vanishes, which implies that

ˆ T

0
z · S̊?

T η dt =
ˆ T

0
ΠT z · S̊?

T η dt =
ˆ T

0
ΠT η · S̊T zdt =

ˆ T

0
ΠT z · P̄τ dt =

ˆ T

0
z · P̄τ dt,

where the first and last equalities hold by the definition of ΠT . Since the last identity holds for every z ∈
L2(0,T ;Rn) we thus have that Pτ = S̊?

T η .
It now remains to realize that Pτ is a discretization of the problem

dγ

T−t p+A p = η , t ∈ [0,T ), p(T ) = 0.

Repeating the arguments that led to Theorem 3 and Corollary 1 we get that Pτ is a stable and consistent ap-
proximation, so we can, again, conclude the uniform boundedness and convergence of the family

{
S̊T

?
}

T
.

We are now ready to establish convergence of our scheme.

Theorem 7 (convergence). The family {Z̆τ}T of optimal controls is uniformly bounded and contains a
subsequence that converges strongly to z̆, the solution to (1.4).

Proof. Boundedness is a consequence of optimality. Indeed, if z0 ∈ Zad then

µ

2
‖Z̆τ‖2

L2(0,T ;Rn) ≤JT (Z̆τ)≤JT (ΠT z0). ‖z0‖2
L2(0,T ;Rn)+‖ud‖2

L2(0,T ;Rm),

where we used the continuity of ST and ΠT . This implies the existence of a (not relabeled) weakly con-
vergent subsequence.

To show convergence of this sequence to z̆ we invoke the theory of Γ -convergence [7], so that we must
verify three assumptions:

1. Lower bound: We must show that, whenever Zτ ⇀ z then J (z) ≤ liminfJT (Zτ). To do so, let η ∈
L2(0,T ;Rn) and notice that

ˆ T

0

[
ST Zτ −Sz

]
·η dt =

ˆ T

0

[
ST z−Sz

]
·η dt +

ˆ T

0
ST (Zτ − z) ·η dt = A+B.
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The pointwise convergence of {S̊T }T shows that A→ 0, while the pointwise convergence of the adjoints
shows that B→ 0. In conclusion, ST Zτ ⇀Sz. Now, owing to the weak lower semicontinuity of norms,
and the fact that ūτ

d → ud in L2(0,T ;Rm) we conclude

J (z)≤ liminfJT (Zτ).

2. Existence of a recovery sequence: We must show that, for every z ∈ Zad there is Zτ ∈ Zad(T ) such that
Zτ ⇀ z and J (z)≥ limsupJT (Zτ). To do so, it suffices to set Zτ = ΠT z. Indeed, we even have strong
convergence so that we can say ST ΠT z→Sz. Continuity of norms and the convergence of ūτ

d allow us
to conclude the inequality for the costs.

3. Equicoerciveness: We must show that, for every t ∈ R there is a weakly closed and weakly compact
K ⊂ L2(0,T ;Rn) such that, for all T , the t-sublevel set of JT is contained in Kt . To do so it suffices to
notice that

JT (Zτ)≥ µ

2
‖Zτ‖2

L2(0,T ;Rn).

Thus, invoking [7, Proposition 7.7] we can immediately conclude.

With these three ingredients we can now show convergence. Indeed, the lower bound inequality and
recovery sequence property allow us to say that

JT
Γ→J

so that minimizers of JT converge to minimizers of J . Equicoerciveness and the uniqueness of z̆ are
the conditions of the so-called fundamental lemma of Γ -convergence [7, Corollary 7.24] which allow us to
conclude that Z̆τ ⇀ z̆.

We finalize the proof by showing strong convergence. To do so we first note that, by [7, equation (7.32)],
we have JT (Z̆τ)→J (z̆). Therefore

1
2

ˆ T

0

[∣∣∣ST Z̆τ −Sz
∣∣∣2
n
+µ

∣∣∣ ¯̆Zτ − z̆
∣∣∣2
n

]2

dt = JT (Z̆τ)+J (z̆)−
ˆ T

0
ST Z̆τ · (Sz̆− ūτ

d) dt

+

ˆ T

0
ud · (Sz̆− ūτ

d) dt−µ

ˆ T

0
Z̆τ · z̆dt

→J (z̆)+J (z̆)−2J (z̆) = 0,

where we, again, used the convergence of the adjoint.
This concludes the proof of convergence.

We conclude by showing weak convergence of the state.

Corollary 2 (state convergence) In the setting of Theorem 7 we have that Ŭτ ⇀ ŭ in L2(0,T ;Rn).

Proof. This follows from the strong convergence of Z̆τ and of the adjoints S̊?
T . Indeed, let v ∈ L2(0,T ;Rn)

and notice that ˆ T

0
S̊T Z̆τ · vdt =

ˆ T

0
Z̆τ · S̊?

T vdt→
ˆ T

0
z̆ · S̊?vdt.

Since Ŭτ = S̊T Z̆τ +V τ we obtain the result by invoking Proposition 2.
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