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THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES
IN LIPSCHITZ DOMAINS AND UNDER SINGULAR FORCING*

ENRIQUE OTAROLA' AND ABNER J. SALGADO#

Abstract. We show the well posedness of the Poisson and Stokes problems on weighted spaces
over general Lipschitz domains. For a particular range of p, we consider those weights in the Muck-
enhoupt class A, that have no singularities in a neighborhood of the boundary of the domain.

Key words. Lipschitz domains, Muckenhoupt weights, weighted a priori estimates, elliptic
equations, Stokes equations.
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1. Introduction. Let d € {2,3} and Q be a bounded domain of R? with Lip-
schitz boundary 92. Notice that we do not assume that 2 is convex. The purpose
of this work is to study the well posedness of the Dirichlet problem for the Poisson
equation

(1) — Au = F in ), u =0 on 09,
and the Stokes problem
(2) —Au+Vr=—divF, divu=g, in Q, u =0 on 012,

where we allow the data F' and (F, g), respectively to be singular.

The main technical tool that will allow us to assert certain degree of either reg-
ularity or integrability on the singular data and solutions, is the theory of weighted
spaces [20, 7]. This has been carried out with a large degree of success for smooth
domains. On the other hand, to the best of our knowledge, in the case of, possibly
convex, polytopes very little has been done in this direction. For instance, [6] proves a
weighted Helmholtz decomposition on convex polytopes that is equivalent to the well
posedness of (1). However, as described in [8], the argument presented there has a
flaw. This was corrected in [8] for convex polytopes, and it is our intention here to, at
least partially, remove the convexity assumption and study also the Stokes problem
(2). We will obtain well posedness on weighted spaces, for a class of weights that do
not have singularities or degeneracies near the boundary.

Our presentation will be organized as follows. Some preliminaries will be discussed
in Section 2; where we will introduce the class of weights we shall operate with.
The Poisson problem (1) will be studied in Section 3 along with some immediate
applications of its well posedness. Finally, the Stokes problem (2) will be analyzed in
Section 4.

2. Preliminaries. We will make repeated use of weighted Lebesgue and Sobolev
spaces when the weight belongs to a Muckenhoupt class A,. We refer the reader to
[22, 21, 7, 13] for the basic facts about Muckenhoupt classes and the ensuing weighted
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2 E. OTAROLA A.J. SALGADO

spaces. Here we only mention that a standard example of a Muckenhoupt weight is
the distance to a lower dimensional object; see [2]. In particular, if z € Q and we
define the weight

3) @, (z) = |z — 2|7

then w, € A, provided that « € (—d,d(p — 1)).

It is important to notice that in the example above, since z € (), there is a
neighborhood of 02 where the weight @, has no degeneracies or singularities. In
fact, it is continuous and strictly positive. This observation allows us to define a
restricted class of Muckenhoupt weights for which our results will hold. The following
definition is motivated by [9, Definition 2.5].

DEFINITION 1 (class A4,(2)). Let Q C R? be a Lipschitz domain. For p € (1, 0)
we say that w € A, belongs to A,(Q) if there is an open set G C Q, and positive
constants € > 0 and w; > 0 such that:

1. {z € Q: dist(z,00) < e} CG,

2. we C(G), and B
3. w; <w(x) for allx € G.

We shall follow the convention that w will denote a weight in the class A,,, whereas
w one in the class A, ().
We shall also make use of the fact that if p € (1,00), p’ = p/(p—1) is its conjugate

exponent, and w € A,, then ' := w™?/? € A, with [w’ A, = [w]a,, where we set

w1 (L)

and the supremum is taken over all balls B.

The ideas we will use to prove our well posedness results will, mainly, follow those
used to prove [9, Theorem 5.2]. Essentially, owing to the fact that w € A,(Q) is a
regular function on a layer near the boundary of €2, we will use well posedness on
weighted spaces for smooth domains in the interior and an unweighted result near
the boundary and then patch these together. To be able to separate these two pieces
we define cutoff functions 9;,vs € CE(RY), ¥; + s = 1 in Q with the following
properties:

e ¢); =1 in a neighborhood of Q\ G,

e 1); =0 in a neighborhood of 012, and

e setting €); to be the interior of suppv;, then 9Q; € C1:1.

Note that, without loss of generality, we can assume that dG is Lipschitz. Observe
also that supp V; U (supp Viby N Q) C G.

Finally, the relation A < B will mean that A < ¢B for a nonessential constant ¢
that might change at each occurrence.

3. The Poisson problem. Let us now study problem (1). We begin by stating
our definition of weak solution. Namely, for p € (1,00) and w € A,(), given F €
WP (e, Q) we seek for u € W, (w, ) such that

(4) /QVuV<p = (F,p), VYo eCyr).

Where by (-, -) we denoted the duality pairing between W 1P (7, Q) and Wol’p/ (@', Q).
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THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES 3

We will need two existence and uniqueness results for problem (4). The first one
deals with the well posedness of (4) on weighted spaces and C! domains. For a proof
we refer the reader to [4, Theorem 2.5].

THEOREM 2 (well posedness for C! domains). Let QC R? be a bounded C*
domain, p € (1,00) and w € A,. Then, for every F € W~1P(w,Q) there is a unique
u e WyP(w,Q) that is a weak solution to (4) and, moreover, it satisfies

(5) ||VU||LP(M7Q) S ||FHW*1=P(w,Q)a
where the hidden constant depends on €2, [w]a,, and p, but it is independent of F'.

Remark 3 (Theorem 2). Theorem 2 deserves the following comments:

e The definition of solution of (4) used in [4] assumes only that u € W, "' (Q); see the
statement of Theorem 2.5 in this reference. Under this assumption, the estimate
(5) of Theorem 2 (which is (2-13) of [4]) implies, using Conclusion i) of Corollary 1
of [10], that u € Wy P (ww, Q) so that our solutions coincide.

o [4, Theorem 2.5] assumes that (1) has a source term of the form F = —divf with
f € LP(w, ). However, as we will do below in Corollary 9, from such a result
inf-sup conditions, and consequently well posedness, can be derived.

The second result deals with the well posedness of (4) on Lipschitz domains. This
result can be found in [15, Theorem 2] and [16, Theorem 0.5].

THEOREM 4 (well posedness for Lipschitz domains). Let QC R? be a bounded
Lipschitz domain. There exists

o NERSE
Pr=Vy g=o

depending solely on the Lipschitz constant of 92 such that, if po = p, and p € (po,p1),
then for every F € W=1P(Q) there is a unique u € Wy'P(Q) that is a weak solution
to (4) and, moreover, it satisfies

IVullLe) S 1Fllw-10()
where the hidden constant depends on ), and p, but it is independent of F.
We are now in position to state the well posedness of (4).

THEOREM 5 (well posedness on weighted spaces for Lipschitz domains).  Let
QC R? be a bounded Lipschitz domain. There is py satisfying (6), such that, if po = p,
p € (po,p1), and @ € Ay(Q). Then, for every F € W=1P(w, Q) there is a unique
u € Wyt (w,Q) that is a weak solution to (4) and, moreover, it satisfies

(7) IVullLe (@0 S 1FIlw-1r@.0)

where the hidden constant depends on ), [w]a , and p, but it is independent of F.

p?
Before proving this result, we first establish a preliminary a priori estimate.
LEMMA 6 (Garding—like inequality). Let 2, p and w be as in Theorem 5. If

uwe WyP(w, Q) is a weak solution of (4), then it satisfies

IVullLe(@,0) S I Fllw-1rw,0) + lullre ),

where the hidden constant depends on G, p and [w]a,, but it is independent of F.

This manuscript is for review purposes only.
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4 E. OTAROLA A.J. SALGADO

Proof. Let u; = u); € Wy P (w, ;) and ¢ € C§°(;) then
/ Vu; Vo = / VuV (¥;p) — / eVuV; +/ uViy; Vo
(8)
= / VuV (¥;p) + / udiv (V) + / uV; Vo,
Q; g g

where we used that supp V1/; C G. This identity shows that u; is a weak solution to
(4) over Q; € CY! with right hand side F; defined by

(Fe) = (Fog) + [ udiv(@9u) + [ uvuve
Consequently, invoking the estimate of Theorem 2 we can obtain that

IVuillLe (.0 S | Fillw-1r(w,00)-

Now, using the fact that w, when restricted to G is uniformly positive and bounded
we can estimate

Jg lull Vel
IFillw 10,0 S IFllw-10(m,0) + sup g
0£peWE? (w’,Q;) HV‘F’HLP/(w’,Qi)
U
P J lullel
oz pews (w ) IV AL @.0)
SIFlw-1r(w,0) + llullzrg)-
Combining the previous two bounds allows us to conclude
(9) IVUillLr (w0 S IFllw-1p(@0) + [[ullLeg)-

Define now uy = upg € T/VO1 P(G). Similar computations, but using now Theorem 4
for the Lipschitz domain G allow us to conclude

VuallLe gy S 1Fllw-1r(w,0) + llullrg)

so that, using the uniform boundedness and positivity of @ over G we conclude

(10) IVuallLr(w,g) S 1Fllw 12 (w,0) + lullzrg)-

Since u = u; + ug, an application of the triangle inequality, and estimates (9) and
(10) yield the desired bound. |

We are now in position to begin proving Theorem 5 with the uniqueness result.

LEMMA 7 (uniqueness). Let Q C R? be a bounded Lipschitz domain. There is
p1 satisfying (6) such that, whenever p € [2,p1), and w € Ap(Q2) we have that if
ue WyP(w,Q) solves (4) with F =0, then u = 0.

Proof. We begin by observing that the assumptions imply that w is a solution of
—Au = 0 in D'(;). Thus, we obtain that u € W27 (Q;) for every r € (1,00), [12,
Theorem 9.15]; notice that 9Q; € C1l. Further, similar computations to the ones
that led to (8) reveal that, for all ¢ € C§°(€;), we have

/Q vuiw‘ < V0l

This manuscript is for review purposes only.
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THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES 5

where the hidden constant depends on r and w. This shows that ¢ — fQ Vu;Vy

defines an element of W =17 (€2;) so that, by Theorem 4, we obtain that u; € Wy 2(Q;).
Since we are assuming that w € A,(Q2), and, p > 2, we also have that uy €
Wyt (w,G) = Wy P(G) = Wy(G) so that, to conclude

u=u; + up € W A(Q).

This allows us to set ¢ = w in the condition to obtain that Vu = 0 almost everywhere
and, thus, v = 0. O

Remark 8 (alternative proof). Uniqueness can also be obtained as follows. Since
ue WyP(w,Q) € Wy (Q) then we have, in particular, that u € L*(€2) and that

/ ulAp =0 VYo e C5(Q).
Q

Now, from this we infer that u is a.e. equal to a C?(Q) and harmonic function. To
see this, we note that, if p. is a radial mollifier, then for e sufficiently small we have
that ¢ * p. € C5°(2) and, thus,

/(U*pe)As@ = /uA(w*pe) =0.

Since u * p. € C(Q2), we can then invoke [14, Theorem 1.16] to conclude that ux p, is
harmonic in €. This, by [14, Theorem 1.6] implies that u x p, satisfies the mean value

property
u*pe(x):][ U*Pe:f u*xpe Vo €, Br(x)7 BR(‘T)CQ'
Br(z) Br(z)

Define, for all z €  and any r such that B,(z) C Q

u(x) = ]ér(x) u.

Notice that @ is continuous, u % p. — u for every z € Q and in Li (), and u = 4
almost everywhere. Since @ satisfies the mean value property, then [14, Theorem 1.8]

yields that @ € C?() and is harmonic. As a consequence u; = uth; € Wy>(Q). |

We thank the anonymous reviewer for suggesting this alternative proof.
Having shown uniqueness we can finally prove Theorem 5.

Proof of Theorem 5. Consider first p € [2,p1) and assume that (7) is false. If that
is the case, then it is possible to find sequences (uy, F)) € Wol’p(w, Q) x WP (e, Q)
such that they satisfy (4) with ||Vug|Le(w,0) = 1, but Fr, — 0 in W 1P(w,Q), as
k — oo. By passing to a, not relabeled, subsequence we can assume that up — u €
WP (w,Q) and that this limit satisfies (4) for F' = 0, so that, by Lemma 7, we have
that u = 0. On the other hand, the compact embedding of Wy *(w, ) into L?(w, ©2)
shows that uj, — 0 in LP(w, ), so that |ul[z»g) = 0. Consequently, using Lemma 6,
we have that

1= ||VurllLe(w,0) S 1Fellw-1rw,0) + JuellLe@) — 0, k1 oo,

which is a contradiction.

This manuscript is for review purposes only.
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6 E. OTAROLA A.J. SALGADO

With the a priori estimate (7) at hand we can now show existence of a solution

u € VVOL]D(W,Q)7 in the case p € [2,p1), by an approximation argument. Indeed,

given ' € W~1P(m, Q) we construct a sequence Fj, € C*°(Q) such that Fj, — F in

W~=1P(x,Q). Theorem 4 then guarantees the existence of a unique u, € W, ()

that solves (4) with right hand side Fj. To be able to pass to the limit with (7) it is

then necessary to show that uy € Wy " (ww, Q):

e Since @ € A,(2), then ux, € WHP(w, G).

e Since w € A,, we invoke the reverse Hélder inequality [7, Theorem 5.4], and
conclude the existence of v > 0 such that w!'™ € L!(;). Now, given that
F, € C*(Q), we can invoke [12, Theorem 8.10] to obtain that u; € W"2(Q;)
with r so large that, by Sobolev embedding, the right hand side of the inequality

1/(1+7) v/ (1+7)
/ w|Vug|P < (/ w““’) (/ Vuk|p(1+“f)/'7>
Q; Q; Q;
is finite.

This shows that uy € Wol’p(w, Q) and, thus, existence of a solution.
Having proved the result for p € [2,p1), the assertion for p € (po,2) follows by
duality. 0

3.1. Application. Well posedness with Dirac sources. Let us discuss some
applications of our main result. An immediate corollary is the following.

COROLLARY 9 (inf-sup condition). Let QC R? be a bounded Lipschitz domain.
There is p1, depending solely on the Lipschitz constant of 05), that satisfies (6), and
such that, if po = py, p € (po,p1), and w € A,(Q), we thus have, for every v €
Wyt (w, ), that
Jo VoVuw

IVl w.0) S sup o
0761U€W5’p/ (=’ Q) vaHLP/ (w’,2)

where the hidden constant is independent of v.

Proof. Given v € Wy*(w, ) we observe that w|Vu|P~2Ve € L¥ (=, Q) so that
the functional F,, = — div(w|Vo[P~2Vv) € W17 (@, Q) with
-1
Vol oy S I90IE5L .

By Theorem 5 there is a unique function w, € W, ”* ’(w’, ) that solves (4) with right
hand side F,, i.e.,

/vaVgo:/va\p_ZVvVap Vo € Wyt (w, ),
Q Q

with the corresponding estimate. Thus, setting ¢ = v the assertion follows. O

The inf-sup condition of Corollary 9 allows us to then establish the well posedness
of the Poisson problem with Dirac sources on weighted spaces.

COROLLARY 10 (well posedness). Let QC R, with d € {2,3}, be a bounded Lip-
schitz domain and z € Q. Then, for « € (d —2,d), and w, defined as in (3), there is
a unique u € Wou(wz, Q) that is a weak solution of

—Au =4, in Q, u =0 on 9.

This manuscript is for review purposes only.
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THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES 7

Proof. Notice that, since a € (d — 2,d) C (—d,d) and z € Q, we have that w, €
A3(Q). In light of Corollary 9 we only need to prove then that 6, € W~12(w,, ),
but this follows from [17, Lemma 7.1.3] when « € (d — 2, d); see also [1, Theorem 2.3].
This concludes the proof. 0

3.2. A weighted Helmholtz decomposition on Lipschitz domains. As
the results of [9, 10] show, in the study of the Stokes problem (2) it is sometimes
necessary to have a weighted decomposition of the spaces LP(zo, §2), where the weight
is adapted to the singularity of F. Here we show such a decomposition for a Lipschitz
domain and for a weight of class A, ().

We introduce some notation. For p € (1,00) and a weight w € A,(Q2), the space
of solenoidal functions is

L) y(@,Q) = {v e L?(w,Q) : divv =0} .
The space of gradients is
Gl (w, Q) = {VU ‘v E Wol’p(w,Q)}.
We wish to show the decomposition
(11) L?(w,Q) = Lg)N(w, ) @ G (w, )

with a continuous projection Pp o : LP(w,Q) — L y(w,Q) such that ker P o =
G, (=, Q).

COROLLARY 11 (weighted Helmholtz decomposition I). Let Q, p1, p and w be
as in Theorem 5. Then, the decomposition (11) holds.

Proof. Let f € LP(w, Q). By Theorem 5 there is a unique u € W, *(ww, Q) that
solves (4) with F' = divf. Setting f = (f — Vu) + Vu gives, by uniqueness and the
estimate on Vu, the desired decomposition. 0

3.3. Variable coefficients. We conclude the discussion on the Dirichlet prob-
lem (1) by showing how, from Theorem 5, we can assert the well posedness of a
problem with variable coefficients, thus obtaining a weighted version of Meyers’ result
[18]. Namely, let A € L*(Q) be a matrix—valued coefficient such that:

e For almost every x € Q, A(zx) is symmetric,
e There are constants \, A € R with 0 < A < A such that, for almost every x € €,

NEP? < ETA()E < AE)P VE R,

where | - | denotes the Euclidean norm in R9,
Let Q € R? be a bounded Lipschitz domain, p € (1,00), and @ € A,(f2). Given
F € W=tP(w,Q), the purpose of this section is to study the well posedness of the
following problem: find v € W, ?(Q) such that

(12) /Q VeTAVY = (F,0) Ve € C(Q).

As it is well known, even in the unweighted case, problem (12) is not generally
well posed for p # 2. This heavily depends on the behavior of A; see [18]. More

specifically it depends on the quantity
A
(13) o4) = 5

The following result is inspired by [3, Proposition 1].

This manuscript is for review purposes only.
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8 E. OTAROLA A.J. SALGADO

THEOREM 12 (well posedness with variable coefficients for Lipschitz domains).
Let Q C R? be a bounded Lipschitz domain, and p and w be as in Theorem 5. There
is oo such that, if o(A) > o, the problem (12) is well posed and it has the estimate

IVUllLr(w,0) S 1Flw-12(z,0)

where the hidden constant depends on Q, p, [w]a, and o(A), but it is independent of
F.

Proof. For p in the indicated range, Theorem 5 shows that the mapping T :=
—A : WyP(w,Q) - WP(w, Q) is invertible. In other words, there is a constant
C(A,p, ™) such that

||T71||L(w—l,p(w7g),W5’P(w,Q)) < C(A,p,w).

Define S : WyP(w, Q) — W 'P(w, Q) via

1
(Sw, @) :/ —VpTAVw.
oA
Notice that 1
[Swllw-1.0(w,0) < X”AvaLP(w,Q) < | Vullur (w0

which implies

||S||L(ngp(w,ﬂ),wflm(w,ﬂ)) <1

Let now Q =T — S : WyP(w,Q) = W~'2(w,Q) and notice that

(Qu, ) = /Q VT <I iA) Vuw

where 7 is the identity matrix. This implies that

1
19Uy oy = [ {A: 2 e o (7= 74) |

But, the conditions on A imply that, for almost every x € ,

L= () .

1
M<Ax) AT = 0=<I- K,A(x) =< (1-0(A)Z,
where < means an inequality in the spectral sense. From this we conclude that
1
maX{A:)\EU(I—AA>} <1-—p(A).
We have now that

HT_IQH[:(W&"’(W,Q)) < C(A7p7 w)(l - Q(A))7

and, since S = T — Q = T(I — T7'Q), we have that S is invertible, provided
C(A,p, w)(1l— g( )) < 1 which holds if
(A) > =1 #
Q IQO - O(A, p7 w) .

This manuscript is for review purposes only.
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THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES 9

If that is the case, then

||Sfl|| . 1p < C(A,pﬂﬂ)
LV WD) = T 08, p, @) (1~ o{A))

which by linearity implies that (12) has a unique solution with the estimate

T AT CO(Apw)(1—o(A) T T

VvllLe (w,0

The theorem is thus proved. 0

3.4. The Neumann problem. We briefly comment that, with the same tech-
niques, our result can be transferred to the case of Neumann boundary conditions.
For that, all that is needed is the analogues to Theorems 2 and 4 to carry out our
considerations.

THEOREM 13 (well posedness of the Neumann problem in Lipschitz domains).
Let QC RY be a bounded Lipschitz domain. There is py that satisfies (6), such that if
Po =Py, p € (Po,p1), and w € A,(RQ). then, for every £ € LP(w, Q) there is a unique
u € WhP(w, Q) /R such that

/ VuVep = / fVp, VoW (w,Q)
Q Q

with the estimate
HVUHLP(m,Q) < HfHLP(w,Q)a
where the hidden constant depends on 2, [w]a, and p, but it is independent of f.

Proof. All that is needed are the analogues of Theorems 2 and 4 to be able to
proceed as before. For that, we use [10, Theorem 3] and [15, Theorem 2], respectively.d

This immediately allows us to obtain a different Helmholtz decomposition, where
we exchange the boundary conditions from the space of gradients into the space of
solenoidal fields. Indeed, if given w € A,(f2), we define

L p(w,Q) = {v e L\(w,Q):divv=0,v-n =0},
where we denote by n the outer normal to 2 and
GR(@,Q) ={Vv:ive W"P(w,0)},

then we can assert the following.

COROLLARY 14 (weighted Helmholtz decomposition II). In the setting of Theo-
rem 13 we have the following decomposition
(14) LP(w,Q)) = Lg’D(w, Q) @ GR (w, Q).

Proof. Repeat the proof of Corollary 11 but using now Theorem 13. ]

4. The Stokes problem. With techniques similar to the ones used to prove
Theorem 5 we can prove the well posedness of the Stokes problem (2) with singular
data F and g. We begin by remarking that, owing to the boundary conditions on u,
we must necessarily have

/ g=0.
Q

This manuscript is for review purposes only.
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10 E. OTAROLA A.J. SALGADO

Thus our notion of weak solution will be the following. For p € (1,00) and w € A4,(Q),
given F € LP(w,Q) and g € LP(w,Q)/R we seek for a pair (u,7) € W*(w, Q) x
LP(w, ) /R such that for all (¢, q) € CF(Q2) x C§°(R2) we have

(15) /(Vquo—wdivgo):/FVgo, /divuq:/gq.
Q Q Q Q

In order to derive the well posedness of the Stokes problem (15) with singular
data F and g we will need two auxiliary results. The first one deals with its well
posedness on weighted spaces and C'' domains. For a proof of this result we refer the
reader to [5, Lemma 3.2].

THEOREM 15 (well posedness of Stokes for C! domains). Let Q be a bounded C*
domain, p € (1,00) and w € A,. Then, for every F € LP(w, ) and g € LP(w,Q)/R
there is a unique (u,7) € WP (w, Q) x LP(w,Q)/R that is a weak solution to (15)
and, moreover, it satisfies

IVullLew,0) + I7lleew.0)/r S IFlLewo) + 19lLr w0

where the hidden constant depends on Q, [w]a
data F and g.

and p, but it is independent of the

p’

The second second result previously mentioned deals with the well posedness of
the Stokes problem (15) when 2 is a Lipschitz domain. As in the case of the Poisson
problem it is necessary now to restrict the range of exponents p. However, to our
knowledge, the optimal range is not available and we refer the reader to [19, Theorem
1.1.5] for a proof of the following result and Figure 1 of this reference for a depiction
of the allowed range of exponents for d = 2 and d = 3.

THEOREM 16 (well posedness of Stokes for Lipschitz domains). Let Q be a
bounded Lipschitz domain. There exists € = e(d, Q) € (0,1] such that if |p — 2| < e,
then for every F € LP(Q) and g € LP(Q)/R there is a unique (u,7) € WP (Q) x
LP(Q)/R that is a weak solution to (15). In addition, this solution satisfies

IVullLe) + 17l o) r S IIFllLe) + 19llr @),
where the hidden constant depends on 0, and p, but it is independent of the data F
and g.

The well posedness for the Stokes problem is then as follows.

THEOREM 17 (Stokes problem). Let Q2 be a bounded Lipschitz domain, let € be as
in Theorem 16, p € [2,2+¢), and w € Ap(Q). IfF € L?(w, ) and g € LP(w,Q)/R,
then there is a unique weak solution (u,7) € WP (w, Q) x LP(w, Q) /R of (15) which
satisfies
(16) IVUllLr(w,0) + 17llr(w.0)/r S I1FlLe(w,0) + 19 2r .0
where the hidden constant is independent of the data F and g.

Proof. The proof will follow the same steps as the case of the Poisson problem:
e Gdrding inequality: We prove that if (u,7) € W™ (w, Q) x LP(w, Q) /R solves (15),
then we have

(17) IVullpr(w,0) + 17l r(w.0) S IFllLrw.0) + 19l 2e,0)
+ [ullLe gy + I7llw-1p (w00 + ITllw-1r(g)-
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Indeed, by using the cutoff function v; and defining u; := uy); and m; = 7;, we
observe that (u;,m;) € Wy (w, Q) x LP(w,Q;) solve (15) with

/QYFZ-VVJ:/QFV(LP?/%)+/QU®V¢ngo+éudiv(V1/}i®<p)+/g7r¢v¢i7

i

/ giq:/g¢iQ+/uv¢iQ»
Q; Q g

where ¢ € CF(£2;) and ¢ € C5°(£2;). Consequently, the estimates of Theorem 15
yield that

[VillLr (w0 + ITill L (w,0:) S 1FillLew,0.) + 19ill2r (w,00)
with

Jo, 9ia

T S 9llr =0 + llullue g
|q||Ll’/(w/,Qi)

lgillLe(w,0:) =  sup
0#g€C§° ()

and

Jo TV
IFillLe (.00 S IFlLe e + luli@ +  sup =9
ozpece (@) IVOllLr (@ a))

SIFlLe(w,0) + ullr @) + I7llw-12 (w0,

We now use the cutoff function 15 to define the functions up = upy € WH?(G)
and mg = mPy € LP(G). A similar calculation, together with Theorem 16 gives then
the desired bound for (ug,7s) and, thus, (17).

Uniqueness: We now prove that F = 0 and ¢ = 0 imply u = 0 and = = 0.
The argument is similar to Lemma 7. We first observe that, by [11, Theorem
IV.4.2] we have (u;, ;) € W27 (€;) x WhT(Q;) — W12(Q;) x L*(Q;). In addition
(up, m9) € WHP(w,G) x LP(w,G) — WH2(G) x L?(G).

A priori estimate (16): This is, once again, proved by contradiction. We assume
(16) is false so that exist sequences

(ug, ) € WiP(w,Q) x LP(w,Q)/R,  (Fi,g1) € LP(w,Q) x LP(w,Q)/R

such that ||V ||lLe (w,0) + |7k Lr (w,0) = 1 but that [[F||ze(w,0)+ |9kl Lr (w,0) — 0.
Extracting weakly convergent subsequences and using uniqueness we conclude that
the limits must be u = 0 and 7 = 0. However, by compactness and (17)

1= |VugllLr(w,0) + 17kl e (w,0)
S IFkllLrw,0) + 96l L (@,0) + [ukllLe ) + 1Tellw—10 (.0, + 17kllw-1000)
—0, kToo,

which is a contradiction.
Ezistence: Finally, we construct a solution by approximation. For that, it suffices
to invoke the interior regularity of [11, Theorem IV.4.2].

This concludes the proof. 0
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