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1. Introduction. Let d ∈ {2, 3} and Ω be a bounded domain of Rd with Lip-10

schitz boundary ∂Ω. Notice that we do not assume that Ω is convex. The purpose11

of this work is to study the well posedness of the Dirichlet problem for the Poisson12

equation13

(1) −∆u = F in Ω, u = 0 on ∂Ω,14

and the Stokes problem15

(2) −∆u +∇π = −div F, div u = g, in Ω, u = 0 on ∂Ω,16

where we allow the data F and (F, g), respectively to be singular.17

The main technical tool that will allow us to assert certain degree of either reg-18

ularity or integrability on the singular data and solutions, is the theory of weighted19

spaces [20, 7]. This has been carried out with a large degree of success for smooth20

domains. On the other hand, to the best of our knowledge, in the case of, possibly21

convex, polytopes very little has been done in this direction. For instance, [6] proves a22

weighted Helmholtz decomposition on convex polytopes that is equivalent to the well23

posedness of (1). However, as described in [8], the argument presented there has a24

flaw. This was corrected in [8] for convex polytopes, and it is our intention here to, at25

least partially, remove the convexity assumption and study also the Stokes problem26

(2). We will obtain well posedness on weighted spaces, for a class of weights that do27

not have singularities or degeneracies near the boundary.28

Our presentation will be organized as follows. Some preliminaries will be discussed29

in Section 2; where we will introduce the class of weights we shall operate with.30

The Poisson problem (1) will be studied in Section 3 along with some immediate31

applications of its well posedness. Finally, the Stokes problem (2) will be analyzed in32

Section 4.33

2. Preliminaries. We will make repeated use of weighted Lebesgue and Sobolev34

spaces when the weight belongs to a Muckenhoupt class Ap. We refer the reader to35

[22, 21, 7, 13] for the basic facts about Muckenhoupt classes and the ensuing weighted36
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2 E. OTÁROLA A.J. SALGADO

spaces. Here we only mention that a standard example of a Muckenhoupt weight is37

the distance to a lower dimensional object; see [2]. In particular, if z ∈ Ω and we38

define the weight39

(3) $z(x) = |x− z|α,40

then $z ∈ Ap provided that α ∈ (−d, d(p− 1)).41

It is important to notice that in the example above, since z ∈ Ω, there is a42

neighborhood of ∂Ω where the weight $z has no degeneracies or singularities. In43

fact, it is continuous and strictly positive. This observation allows us to define a44

restricted class of Muckenhoupt weights for which our results will hold. The following45

definition is motivated by [9, Definition 2.5].46

Definition 1 (class Ap(Ω)). Let Ω ⊂ Rd be a Lipschitz domain. For p ∈ (1,∞)47

we say that $ ∈ Ap belongs to Ap(Ω) if there is an open set G ⊂ Ω, and positive48

constants ε > 0 and $l > 0 such that:49

1. {x ∈ Ω : dist(x, ∂Ω) < ε} ⊂ G,50

2. $ ∈ C(Ḡ), and51

3. $l ≤ $(x) for all x ∈ Ḡ.52

We shall follow the convention that ω will denote a weight in the class Ap, whereas53

$ one in the class Ap(Ω).54

We shall also make use of the fact that if p ∈ (1,∞), p′ = p/(p−1) is its conjugate55

exponent, and ω ∈ Ap, then ω′ := ω−p
′/p ∈ Ap′ with [ω′]Ap′ = [ω]Ap

, where we set56

[ω]Ap = sup
B

( 
B

ω

)( 
B

ω′
)p/p′

57

and the supremum is taken over all balls B.58

The ideas we will use to prove our well posedness results will, mainly, follow those59

used to prove [9, Theorem 5.2]. Essentially, owing to the fact that $ ∈ Ap(Ω) is a60

regular function on a layer near the boundary of Ω, we will use well posedness on61

weighted spaces for smooth domains in the interior and an unweighted result near62

the boundary and then patch these together. To be able to separate these two pieces63

we define cutoff functions ψi, ψ∂ ∈ C∞0 (Rd), ψi + ψ∂ ≡ 1 in Ω̄ with the following64

properties:65

• ψi ≡ 1 in a neighborhood of Ω \ G,66

• ψi ≡ 0 in a neighborhood of ∂Ω, and67

• setting Ωi to be the interior of suppψi, then ∂Ωi ∈ C1,1.68

Note that, without loss of generality, we can assume that ∂G is Lipschitz. Observe69

also that supp∇ψi ∪ (supp∇ψ∂ ∩ Ω) ⊂ Ḡ.70

Finally, the relation A . B will mean that A ≤ cB for a nonessential constant c71

that might change at each occurrence.72

3. The Poisson problem. Let us now study problem (1). We begin by stating73

our definition of weak solution. Namely, for p ∈ (1,∞) and $ ∈ Ap(Ω), given F ∈74

W−1,p($,Ω) we seek for u ∈W 1,p
0 ($,Ω) such that75

(4)

ˆ
Ω

∇u∇ϕ = 〈F,ϕ〉, ∀ϕ ∈ C∞0 (Ω).76

Where by 〈·, ·〉 we denoted the duality pairing between W−1,p($,Ω) and W 1,p′

0 ($′,Ω).77
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THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES 3

We will need two existence and uniqueness results for problem (4). The first one78

deals with the well posedness of (4) on weighted spaces and C1 domains. For a proof79

we refer the reader to [4, Theorem 2.5].80

Theorem 2 (well posedness for C1 domains). Let Ω⊂ Rd be a bounded C181

domain, p ∈ (1,∞) and ω ∈ Ap. Then, for every F ∈ W−1,p(ω,Ω) there is a unique82

u ∈W 1,p
0 (ω,Ω) that is a weak solution to (4) and, moreover, it satisfies83

(5) ‖∇u‖Lp(ω,Ω) . ‖F‖W−1,p(ω,Ω),84

where the hidden constant depends on Ω, [ω]Ap
, and p, but it is independent of F .85

Remark 3 (Theorem 2). Theorem 2 deserves the following comments:86

• The definition of solution of (4) used in [4] assumes only that u ∈W 1,1
0 (Ω); see the87

statement of Theorem 2.5 in this reference. Under this assumption, the estimate88

(5) of Theorem 2 (which is (2-13) of [4]) implies, using Conclusion i) of Corollary 189

of [10], that u ∈W 1,p
0 ($,Ω) so that our solutions coincide.90

• [4, Theorem 2.5] assumes that (1) has a source term of the form F = −div f with91

f ∈ Lp($,Ω). However, as we will do below in Corollary 9, from such a result92

inf–sup conditions, and consequently well posedness, can be derived.93

The second result deals with the well posedness of (4) on Lipschitz domains. This94

result can be found in [15, Theorem 2] and [16, Theorem 0.5].95

Theorem 4 (well posedness for Lipschitz domains). Let Ω⊂ Rd be a bounded96

Lipschitz domain. There exists97

(6) p1 >

{
3 d = 3,

4 d = 2,
98

depending solely on the Lipschitz constant of ∂Ω such that, if p0 = p′1, and p ∈ (p0, p1),99

then for every F ∈ W−1,p(Ω) there is a unique u ∈ W 1,p
0 (Ω) that is a weak solution100

to (4) and, moreover, it satisfies101

‖∇u‖Lp(Ω) . ‖F‖W−1,p(Ω),102

where the hidden constant depends on Ω, and p, but it is independent of F .103

We are now in position to state the well posedness of (4).104

Theorem 5 (well posedness on weighted spaces for Lipschitz domains). Let105

Ω⊂ Rd be a bounded Lipschitz domain. There is p1 satisfying (6), such that, if p0 = p′1,106

p ∈ (p0, p1), and $ ∈ Ap(Ω). Then, for every F ∈ W−1,p($,Ω) there is a unique107

u ∈W 1,p
0 ($,Ω) that is a weak solution to (4) and, moreover, it satisfies108

(7) ‖∇u‖Lp($,Ω) . ‖F‖W−1,p($,Ω),109

where the hidden constant depends on Ω, [$]Ap
, and p, but it is independent of F .110

Before proving this result, we first establish a preliminary a priori estimate.111

Lemma 6 (G̊arding–like inequality). Let Ω, p and $ be as in Theorem 5. If112

u ∈W 1,p
0 ($,Ω) is a weak solution of (4), then it satisfies113

‖∇u‖Lp($,Ω) . ‖F‖W−1,p($,Ω) + ‖u‖Lp(G),114

where the hidden constant depends on G, p and [$]Ap
, but it is independent of F .115
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4 E. OTÁROLA A.J. SALGADO

Proof. Let ui = uψi ∈W 1,p
0 ($,Ωi) and ϕ ∈ C∞0 (Ωi) then116

(8)

ˆ
Ωi

∇ui∇ϕ =

ˆ
Ωi

∇u∇ (ψiϕ)−
ˆ

Ωi

ϕ∇u∇ψi +

ˆ
Ωi

u∇ψi∇ϕ

=

ˆ
Ωi

∇u∇ (ψiϕ) +

ˆ
G
udiv (ϕ∇ψi) +

ˆ
G
u∇ψi∇ϕ,

117

where we used that supp∇ψi ⊂ Ḡ. This identity shows that ui is a weak solution to118

(4) over Ωi ∈ C1,1 with right hand side Fi defined by119

〈Fi, ϕ〉 := 〈F,ψiϕ〉+

ˆ
G
udiv (ϕ∇ψi) +

ˆ
G
u∇ψi∇ϕ.120

Consequently, invoking the estimate of Theorem 2 we can obtain that121

‖∇ui‖Lp($,Ωi) . ‖Fi‖W−1,p($,Ωi).122

Now, using the fact that $, when restricted to G is uniformly positive and bounded123

we can estimate124

‖Fi‖W−1,p($,Ωi) . ‖F‖W−1,p($,Ω) + sup
06=ϕ∈W 1,p′

0 ($′,Ωi)

´
G |u||∇ϕ|

‖∇ϕ‖Lp′ ($′,Ωi)

125

+ sup
06=ϕ∈W 1,p′

0 ($′,Ωi)

´
G |u||ϕ|

‖∇ϕ‖Lp′ ($′,Ωi)

126

. ‖F‖W−1,p($,Ω) + ‖u‖Lp(G).127128

Combining the previous two bounds allows us to conclude129

(9) ‖∇ui‖Lp($,Ωi) . ‖F‖W−1,p($,Ω) + ‖u‖Lp(G).130

Define now u∂ = uψ∂ ∈W 1,p
0 (G). Similar computations, but using now Theorem 4131

for the Lipschitz domain G allow us to conclude132

‖∇u∂‖Lp(G) . ‖F‖W−1,p($,Ω) + ‖u‖Lp(G)133

so that, using the uniform boundedness and positivity of $ over G we conclude134

(10) ‖∇u∂‖Lp($,G) . ‖F‖W−1,p($,Ω) + ‖u‖Lp(G).135

Since u = ui+u∂ , an application of the triangle inequality, and estimates (9) and136

(10) yield the desired bound.137

We are now in position to begin proving Theorem 5 with the uniqueness result.138

Lemma 7 (uniqueness). Let Ω ⊂ Rd be a bounded Lipschitz domain. There is139

p1 satisfying (6) such that, whenever p ∈ [2, p1), and $ ∈ Ap(Ω) we have that if140

u ∈W 1,p
0 ($,Ω) solves (4) with F = 0, then u = 0.141

Proof. We begin by observing that the assumptions imply that u is a solution of142

−∆u = 0 in D′(Ωi). Thus, we obtain that u ∈ W 2,r(Ωi) for every r ∈ (1,∞), [12,143

Theorem 9.15]; notice that ∂Ωi ∈ C1,1. Further, similar computations to the ones144

that led to (8) reveal that, for all ϕ ∈ C∞0 (Ωi), we have145 ∣∣∣∣ˆ
Ωi

∇ui∇ϕ
∣∣∣∣ . ‖∇ϕ‖Lr′ (Ωi)

146
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THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES 5

where the hidden constant depends on r and u. This shows that ϕ 7→
´

Ωi
∇ui∇ϕ147

defines an element of W−1,r(Ωi) so that, by Theorem 4, we obtain that ui ∈W 1,2
0 (Ωi).148

Since we are assuming that $ ∈ Ap(Ω), and, p ≥ 2, we also have that u∂ ∈149

W 1,p
0 ($,G) = W 1,p

0 (G) ↪→W 1,2
0 (G) so that, to conclude150

u = ui + u∂ ∈W 1,2
0 (Ω).151

This allows us to set ϕ = u in the condition to obtain that ∇u = 0 almost everywhere152

and, thus, u = 0.153

Remark 8 (alternative proof). Uniqueness can also be obtained as follows. Since154

u ∈W 1,p
0 ($,Ω) ⊂W 1,1

0 (Ω) then we have, in particular, that u ∈ L1(Ω) and that155

ˆ
Ω

u∆ϕ = 0 ∀ϕ ∈ C∞0 (Ω).156

Now, from this we infer that u is a.e. equal to a C2(Ω) and harmonic function. To157

see this, we note that, if ρε is a radial mollifier, then for ε sufficiently small we have158

that ϕ ? ρε ∈ C∞0 (Ω) and, thus,159

ˆ
(u ? ρε)∆ϕ =

ˆ
u∆(ϕ ? ρε) = 0.160

Since u ? ρε ∈ C(Ω), we can then invoke [14, Theorem 1.16] to conclude that u ? ρε is161

harmonic in Ω. This, by [14, Theorem 1.6] implies that u ? ρε satisfies the mean value162

property163

u ? ρε(x) =

 
Br(x)

u ? ρε =

 
BR(x)

u ? ρε ∀x ∈ Ω, Br(x), BR(x) ⊂ Ω.164

Define, for all x ∈ Ω and any r such that Br(x) ⊂ Ω165

ū(x) =

 
Br(x)

u.

166

Notice that ū is continuous, u ? ρε → ū for every x ∈ Ω and in L1
loc(Ω), and u = ū167

almost everywhere. Since ū satisfies the mean value property, then [14, Theorem 1.8]168

yields that ū ∈ C2(Ω) and is harmonic. As a consequence ui = uψi ∈W 1,2
0 (Ω).169

We thank the anonymous reviewer for suggesting this alternative proof.170

Having shown uniqueness we can finally prove Theorem 5.171

Proof of Theorem 5. Consider first p ∈ [2, p1) and assume that (7) is false. If that172

is the case, then it is possible to find sequences (uk, Fk) ∈W 1,p
0 ($,Ω)×W−1,p($,Ω)173

such that they satisfy (4) with ‖∇uk‖Lp($,Ω) = 1, but Fk → 0 in W−1,p($,Ω), as174

k → ∞. By passing to a, not relabeled, subsequence we can assume that uk ⇀ u ∈175

W 1,p
0 ($,Ω) and that this limit satisfies (4) for F = 0, so that, by Lemma 7, we have176

that u = 0. On the other hand, the compact embedding of W 1,p
0 ($,Ω) into Lp($,Ω)177

shows that uk → 0 in Lp($,Ω), so that ‖u‖Lp(G) = 0. Consequently, using Lemma 6,178

we have that179

1 = ‖∇uk‖Lp($,Ω) . ‖Fk‖W−1,p($,Ω) + ‖uk‖Lp(G) → 0, k ↑ ∞,180

which is a contradiction.181

This manuscript is for review purposes only.



6 E. OTÁROLA A.J. SALGADO

With the a priori estimate (7) at hand we can now show existence of a solution182

u ∈ W 1,p
0 ($,Ω), in the case p ∈ [2, p1), by an approximation argument. Indeed,183

given F ∈ W−1,p($,Ω) we construct a sequence Fk ∈ C∞(Ω) such that Fk → F in184

W−1,p($,Ω). Theorem 4 then guarantees the existence of a unique uk ∈ W 1,p
0 (Ω)185

that solves (4) with right hand side Fk. To be able to pass to the limit with (7) it is186

then necessary to show that uk ∈W 1,p
0 ($,Ω):187

• Since $ ∈ Ap(Ω), then uk ∈W 1,p($,G).188

• Since $ ∈ Ap, we invoke the reverse Hölder inequality [7, Theorem 5.4], and189

conclude the existence of γ > 0 such that $1+γ ∈ L1(Ωi). Now, given that190

Fk ∈ C∞(Ω), we can invoke [12, Theorem 8.10] to obtain that uk ∈ W r,2(Ωi)191

with r so large that, by Sobolev embedding, the right hand side of the inequality192

ˆ
Ωi

$|∇uk|p ≤
(ˆ

Ωi

$1+γ

)1/(1+γ)(ˆ
Ωi

|∇uk|p(1+γ)/γ

)γ/(1+γ)

193

is finite.194

This shows that uk ∈W 1,p
0 ($,Ω) and, thus, existence of a solution.195

Having proved the result for p ∈ [2, p1), the assertion for p ∈ (p0, 2) follows by196

duality.197

3.1. Application. Well posedness with Dirac sources. Let us discuss some198

applications of our main result. An immediate corollary is the following.199

Corollary 9 (inf–sup condition). Let Ω⊂ Rd be a bounded Lipschitz domain.200

There is p1, depending solely on the Lipschitz constant of ∂Ω, that satisfies (6), and201

such that, if p0 = p′1, p ∈ (p0, p1), and $ ∈ Ap(Ω), we thus have, for every v ∈202

W 1,p
0 ($,Ω), that203

‖∇v‖Lp($,Ω) . sup
06=w∈W 1,p′

0 ($′,Ω)

´
Ω
∇v∇w

‖∇w‖Lp′ ($′,Ω)

204

where the hidden constant is independent of v.205

Proof. Given v ∈ W 1,p
0 ($,Ω) we observe that $|∇v|p−2∇v ∈ Lp

′
($′,Ω) so that206

the functional Fv = − div($|∇v|p−2∇v) ∈W−1,p′($′,Ω) with207

‖Fv‖W−1,p′ ($′,Ω) . ‖∇v‖
p−1
Lp($,Ω).208

By Theorem 5 there is a unique function wv ∈W 1,p′

0 ($′,Ω) that solves (4) with right209

hand side Fv, i.e.,210

ˆ
Ω

∇wv∇ϕ =

ˆ
Ω

$|∇v|p−2∇v∇ϕ ∀ϕ ∈W 1,p
0 ($,Ω),211

with the corresponding estimate. Thus, setting ϕ = v the assertion follows.212

The inf–sup condition of Corollary 9 allows us to then establish the well posedness213

of the Poisson problem with Dirac sources on weighted spaces.214

Corollary 10 (well posedness). Let Ω⊂ Rd, with d ∈ {2, 3}, be a bounded Lip-215

schitz domain and z ∈ Ω. Then, for α ∈ (d− 2, d), and $z defined as in (3), there is216

a unique u ∈W 1,2
0 ($z,Ω) that is a weak solution of217

−∆u = δz in Ω, u = 0 on ∂Ω.218

This manuscript is for review purposes only.



THE POISSON AND STOKES PROBLEMS ON WEIGHTED SPACES 7

Proof. Notice that, since α ∈ (d− 2, d) ⊂ (−d, d) and z ∈ Ω, we have that $z ∈219

A2(Ω). In light of Corollary 9 we only need to prove then that δz ∈ W−1,2($z,Ω),220

but this follows from [17, Lemma 7.1.3] when α ∈ (d−2, d); see also [1, Theorem 2.3].221

This concludes the proof.222

3.2. A weighted Helmholtz decomposition on Lipschitz domains. As223

the results of [9, 10] show, in the study of the Stokes problem (2) it is sometimes224

necessary to have a weighted decomposition of the spaces Lp($,Ω), where the weight225

is adapted to the singularity of F. Here we show such a decomposition for a Lipschitz226

domain and for a weight of class Ap(Ω).227

We introduce some notation. For p ∈ (1,∞) and a weight $ ∈ Ap(Ω), the space228

of solenoidal functions is229

Lpσ,N ($,Ω) = {v ∈ Lp($,Ω) : div v = 0} .230

The space of gradients is231

Gp
D($,Ω) =

{
∇v : v ∈W 1,p

0 ($,Ω)
}
.232

We wish to show the decomposition233

(11) Lp($,Ω) = Lpσ,N ($,Ω)⊕Gp
D($,Ω)234

with a continuous projection Pp,$ : Lp($,Ω) → Lpσ,N ($,Ω) such that kerPp,$ =235

Gp
D($,Ω).236

Corollary 11 (weighted Helmholtz decomposition I). Let Ω, p1, p and $ be237

as in Theorem 5. Then, the decomposition (11) holds.238

Proof. Let f ∈ Lp($,Ω). By Theorem 5 there is a unique u ∈ W 1,p
0 ($,Ω) that239

solves (4) with F = div f . Setting f = (f − ∇u) + ∇u gives, by uniqueness and the240

estimate on ∇u, the desired decomposition.241

3.3. Variable coefficients. We conclude the discussion on the Dirichlet prob-242

lem (1) by showing how, from Theorem 5, we can assert the well posedness of a243

problem with variable coefficients, thus obtaining a weighted version of Meyers’ result244

[18]. Namely, let A ∈ L∞(Ω) be a matrix–valued coefficient such that:245

• For almost every x ∈ Ω, A(x) is symmetric,246

• There are constants λ,Λ ∈ R with 0 < λ ≤ Λ such that, for almost every x ∈ Ω,247

λ|ξ|2 ≤ ξᵀA(x)ξ ≤ Λ|ξ|2 ∀ξ ∈ Rd,248

where | · | denotes the Euclidean norm in Rd.249

Let Ω ⊂ Rd be a bounded Lipschitz domain, p ∈ (1,∞), and $ ∈ Ap(Ω). Given250

F ∈ W−1,p($,Ω), the purpose of this section is to study the well posedness of the251

following problem: find v ∈W 1,p
0 (Ω) such that252

(12)

ˆ
Ω

∇ϕᵀA∇v = 〈F,ϕ〉 ∀ϕ ∈ C∞0 (Ω).253

As it is well known, even in the unweighted case, problem (12) is not generally254

well posed for p 6= 2. This heavily depends on the behavior of A; see [18]. More255

specifically it depends on the quantity256

(13) %(A) =
λ

Λ
.257

The following result is inspired by [3, Proposition 1].258

This manuscript is for review purposes only.



8 E. OTÁROLA A.J. SALGADO

Theorem 12 (well posedness with variable coefficients for Lipschitz domains).259

Let Ω ⊂ Rd be a bounded Lipschitz domain, and p and $ be as in Theorem 5. There260

is %0 such that, if %(A) > %0, the problem (12) is well posed and it has the estimate261

‖∇v‖Lp($,Ω) . ‖F‖W−1,p($,Ω),262

where the hidden constant depends on Ω, p, [$]Ap and %(A), but it is independent of263

F .264

Proof. For p in the indicated range, Theorem 5 shows that the mapping T :=265

−∆ : W 1,p
0 ($,Ω) → W−1,p($,Ω) is invertible. In other words, there is a constant266

C(∆, p,$) such that267

‖T−1‖L(W−1,p($,Ω),W 1,p
0 ($,Ω)) ≤ C(∆, p,$).268

Define S : W 1,p
0 ($,Ω)→W−1,p($,Ω) via269

〈Sw,ϕ〉 =

ˆ
Ω

1

Λ
∇ϕᵀA∇w.270

Notice that271

‖Sw‖W−1,p($,Ω) ≤
1

Λ
‖A∇w‖Lp($,Ω) ≤ ‖∇w‖Lp($,Ω),272

which implies273

‖S‖L(W 1,p
0 ($,Ω),W−1,p($,Ω)) ≤ 1.274

Let now Q = T − S : W 1,p
0 ($,Ω)→W−1,p($,Ω) and notice that275

〈Qw,ϕ〉 =

ˆ
Ω

∇ϕᵀ

(
I − 1

Λ
A
)
∇w,276

where I is the identity matrix. This implies that277

‖Q‖L(W 1,p
0 ($,Ω),W−1,p($,Ω)) =

∥∥∥∥max

{
λ : λ ∈ σ

(
I − 1

Λ
A
)}∥∥∥∥

L∞(Ω)

.278

But, the conditions on A imply that, for almost every x ∈ Ω,279

λI � A(x) � ΛI =⇒ 0 � I − 1

Λ
A(x) � (1− %(A))I,280

where � means an inequality in the spectral sense. From this we conclude that281

max

{
λ : λ ∈ σ

(
I − 1

Λ
A
)}
≤ 1− %(A).282

We have now that283

‖T−1Q‖L(W 1,p
0 ($,Ω)) ≤ C(∆, p,$)(1− %(A)),284

and, since S = T − Q = T (I − T−1Q), we have that S is invertible, provided285

C(∆, p,$)(1− %(A)) < 1 which holds if286

%(A) > %0 = 1− 1

C(∆, p,$)
.287
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If that is the case, then288

‖S−1‖L(W−1,p($,Ω),W 1,p
0 ($,Ω)) ≤

C(∆, p,$)

1− C(∆, p,$)(1− %(A))
,289

which by linearity implies that (12) has a unique solution with the estimate290

‖∇v‖Lp($,Ω) ≤
1

Λ

C(∆, p,$)

1− C(∆, p,$)(1− %(A))
‖F‖W−1,p($,Ω).291

The theorem is thus proved.292

3.4. The Neumann problem. We briefly comment that, with the same tech-293

niques, our result can be transferred to the case of Neumann boundary conditions.294

For that, all that is needed is the analogues to Theorems 2 and 4 to carry out our295

considerations.296

Theorem 13 (well posedness of the Neumann problem in Lipschitz domains).297

Let Ω⊂ Rd be a bounded Lipschitz domain. There is p1 that satisfies (6), such that if298

p0 = p′1, p ∈ (p0, p1), and $ ∈ Ap(Ω). then, for every f ∈ Lp($,Ω) there is a unique299

u ∈W 1,p($,Ω)/R such that300

ˆ
Ω

∇u∇ϕ =

ˆ
Ω

f∇ϕ, ∀ϕ ∈W 1,p′($,Ω)301

with the estimate302

‖∇u‖Lp($,Ω) . ‖f‖Lp($,Ω),303

where the hidden constant depends on Ω, [$]Ap and p, but it is independent of f .304

Proof. All that is needed are the analogues of Theorems 2 and 4 to be able to305

proceed as before. For that, we use [10, Theorem 3] and [15, Theorem 2], respectively.306

This immediately allows us to obtain a different Helmholtz decomposition, where307

we exchange the boundary conditions from the space of gradients into the space of308

solenoidal fields. Indeed, if given $ ∈ Ap(Ω), we define309

Lpσ,D($,Ω) = {v ∈ Lp($,Ω) : div v = 0,v · n = 0} ,310

where we denote by n the outer normal to Ω and311

Gp
N ($,Ω) =

{
∇v : v ∈W 1,p($,Ω)

}
,312

then we can assert the following.313

Corollary 14 (weighted Helmholtz decomposition II). In the setting of Theo-314

rem 13 we have the following decomposition315

(14) Lp($,Ω) = Lpσ,D($,Ω)⊕Gp
N ($,Ω).316

Proof. Repeat the proof of Corollary 11 but using now Theorem 13.317

4. The Stokes problem. With techniques similar to the ones used to prove318

Theorem 5 we can prove the well posedness of the Stokes problem (2) with singular319

data F and g. We begin by remarking that, owing to the boundary conditions on u,320

we must necessarily have321 ˆ
Ω

g = 0.322
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Thus our notion of weak solution will be the following. For p ∈ (1,∞) and $ ∈ Ap(Ω),323

given F ∈ Lp($,Ω) and g ∈ Lp($,Ω)/R we seek for a pair (u, π) ∈ W1,p
0 ($,Ω) ×324

Lp($,Ω)/R such that for all (ϕ, q) ∈ C∞0 (Ω)× C∞0 (Ω) we have325

(15)

ˆ
Ω

(∇u∇ϕ− π divϕ) =

ˆ
Ω

F∇ϕ,
ˆ

Ω

div uq =

ˆ
Ω

gq.326

In order to derive the well posedness of the Stokes problem (15) with singular327

data F and g we will need two auxiliary results. The first one deals with its well328

posedness on weighted spaces and C1 domains. For a proof of this result we refer the329

reader to [5, Lemma 3.2].330

Theorem 15 (well posedness of Stokes for C1 domains). Let Ω be a bounded C1331

domain, p ∈ (1,∞) and ω ∈ Ap. Then, for every F ∈ Lp(ω,Ω) and g ∈ Lp(ω,Ω)/R332

there is a unique (u, π) ∈ W1,p
0 (ω,Ω) × Lp(ω,Ω)/R that is a weak solution to (15)333

and, moreover, it satisfies334

‖∇u‖Lp(ω,Ω) + ‖π‖Lp(ω,Ω)/R . ‖F‖Lp(ω,Ω) + ‖g‖Lp(ω,Ω),335

where the hidden constant depends on Ω, [ω]Ap , and p, but it is independent of the336

data F and g.337

The second second result previously mentioned deals with the well posedness of338

the Stokes problem (15) when Ω is a Lipschitz domain. As in the case of the Poisson339

problem it is necessary now to restrict the range of exponents p. However, to our340

knowledge, the optimal range is not available and we refer the reader to [19, Theorem341

1.1.5] for a proof of the following result and Figure 1 of this reference for a depiction342

of the allowed range of exponents for d = 2 and d = 3.343

Theorem 16 (well posedness of Stokes for Lipschitz domains). Let Ω be a344

bounded Lipschitz domain. There exists ε = ε(d,Ω) ∈ (0, 1] such that if |p − 2| < ε,345

then for every F ∈ Lp(Ω) and g ∈ Lp(Ω)/R there is a unique (u, π) ∈ W1,p
0 (Ω) ×346

Lp(Ω)/R that is a weak solution to (15). In addition, this solution satisfies347

‖∇u‖Lp(Ω) + ‖π‖Lp(Ω)/R . ‖F‖Lp(Ω) + ‖g‖Lp(Ω),348

where the hidden constant depends on Ω, and p, but it is independent of the data F349

and g.350

The well posedness for the Stokes problem is then as follows.351

Theorem 17 (Stokes problem). Let Ω be a bounded Lipschitz domain, let ε be as352

in Theorem 16, p ∈ [2, 2 + ε), and $ ∈ Ap(Ω). If F ∈ Lp($,Ω) and g ∈ Lp($,Ω)/R,353

then there is a unique weak solution (u, π) ∈W1,p
0 ($,Ω)×Lp($,Ω)/R of (15) which354

satisfies355

(16) ‖∇u‖Lp($,Ω) + ‖π‖Lp($,Ω)/R . ‖F‖Lp($,Ω) + ‖g‖Lp($,Ω),356

where the hidden constant is independent of the data F and g.357

Proof. The proof will follow the same steps as the case of the Poisson problem:358

• G̊arding inequality : We prove that if (u, π) ∈W1,p
0 ($,Ω)×Lp($,Ω)/R solves (15),359

then we have360
361

(17) ‖∇u‖Lp($,Ω) + ‖π‖Lp($,Ω) . ‖F‖Lp($,Ω) + ‖g‖Lp($,Ω)362

+ ‖u‖Lp(G) + ‖π‖W−1,p($,Ωi) + ‖π‖W−1,p(G).363364
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Indeed, by using the cutoff function ψi and defining ui := uψi and πi := πψi, we365

observe that (ui, πi) ∈W1,p
0 ($,Ωi)× Lp($,Ωi) solve (15) with366

ˆ
Ωi

Fi∇ϕ =

ˆ
Ω

F∇(ϕψi) +

ˆ
G

u⊗∇ψi∇ϕ+

ˆ
G

u div(∇ψi ⊗ϕ) +

ˆ
G
πϕ∇ψi,367

ˆ
Ωi

giq =

ˆ
Ω

gψiq +

ˆ
G

u∇ψiq,368

369

where ϕ ∈ C∞0 (Ωi) and q ∈ C∞0 (Ωi). Consequently, the estimates of Theorem 15370

yield that371

‖∇ui‖Lp($,Ωi) + ‖πi‖Lp($,Ωi) . ‖Fi‖Lp($,Ωi) + ‖gi‖Lp($,Ωi)372

with373

‖gi‖Lp($,Ωi) = sup
06=q∈C∞0 (Ωi)

´
Ωi
giq

‖q‖Lp′ ($′,Ωi)

. ‖g‖Lp($,Ω) + ‖u‖Lp(G)374

and375

‖Fi‖Lp($,Ωi) . ‖F‖Lp($,Ω) + ‖u‖Lp(G) + sup
06=ϕ∈C∞0 (Ωi)

´
G πϕ∇ψi

‖∇ϕ‖Lp′ ($′,Ωi)

376

. ‖F‖Lp($,Ω) + ‖u‖Lp(G) + ‖π‖W−1,p($,Ωi).377378

We now use the cutoff function ψ∂ to define the functions u∂ = uψ∂ ∈ W1,p(G)379

and π∂ = πψ∂ ∈ Lp(G). A similar calculation, together with Theorem 16 gives then380

the desired bound for (u∂ , π∂) and, thus, (17).381

• Uniqueness: We now prove that F = 0 and g = 0 imply u = 0 and π = 0.382

The argument is similar to Lemma 7. We first observe that, by [11, Theorem383

IV.4.2] we have (ui, πi) ∈W2,r(Ωi)×W 1,r(Ωi) ↪→W1,2(Ωi)×L2(Ωi). In addition384

(u∂ , π∂) ∈W1,p($,G)× Lp($,G) ↪→W1,2(G)× L2(G).385

• A priori estimate (16): This is, once again, proved by contradiction. We assume386

(16) is false so that exist sequences387

(uk, πk) ∈W1,p
0 ($,Ω)× Lp($,Ω)/R, (Fk, gk) ∈ Lp($,Ω)× Lp($,Ω)/R388

such that ‖∇uk‖Lp($,Ω)+‖πk‖Lp($,Ω) = 1 but that ‖Fk‖Lp($,Ω)+‖gk‖Lp($,Ω) → 0.389

Extracting weakly convergent subsequences and using uniqueness we conclude that390

the limits must be u = 0 and π = 0. However, by compactness and (17)391

1 = ‖∇uk‖Lp($,Ω) + ‖πk‖Lp($,Ω)392

. ‖Fk‖Lp($,Ω) + ‖gk‖Lp($,Ω) + ‖uk‖Lp(G) + ‖πk‖W−1,p($,Ωi) + ‖πk‖W−1,p(G)393

→ 0, k ↑ ∞,394395

which is a contradiction.396

• Existence: Finally, we construct a solution by approximation. For that, it suffices397

to invoke the interior regularity of [11, Theorem IV.4.2].398

This concludes the proof.399
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[21] R. H. Nochetto, E. Otárola, and A. J. Salgado, Piecewise polynomial interpolation in459
Muckenhoupt weighted Sobolev spaces and applications, Numer. Math., 132 (2016), pp. 85–460
130, http://dx.doi.org/10.1007/s00211-015-0709-6.461

[22] B. O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, vol. 1736 of Lec-462
ture Notes in Mathematics, Springer-Verlag, Berlin, 2000, http://dx.doi.org/10.1007/463
BFb0103908.464

This manuscript is for review purposes only.

http://dx.doi.org/10.1007/s00211-015-0709-6
http://dx.doi.org/10.1007/BFb0103908
http://dx.doi.org/10.1007/BFb0103908
http://dx.doi.org/10.1007/BFb0103908

	Introduction
	Preliminaries
	The Poisson problem
	Application. Well posedness with Dirac sources
	A weighted Helmholtz decomposition on Lipschitz domains
	Variable coefficients
	The Neumann problem

	The Stokes problem
	References

