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This dissertation presents a decisive advance in the numerical solution and

analysis of fractional diffusion, a relatively new but rapidly growing area of research.

We exploit the cylindrical extension proposed and investigated by X. Cabré and J.

Tan, in turn inspired by L. Caffarelli and L. Silvestre, to replace the intricate integral

formulation of (−∆)su = f , 0 < s < 1, in a bounded domain Ω, by the local elliptic

PDE in one higher dimension y

div(yα∇U ) = 0 in Ω× (0,∞) (α = 1− 2s) U = 0 on ∂Ω× (0,∞),

with variable coefficient yα; f enters as a natural boundary condition at y = 0.

Inspired in the aforementioned localization results, we propose a simple strategy to

study discretization and solution techniques for problems involving fractional powers

of elliptic operators. We develop a complete and rigorous a priori and interpolation

error analyses. We also design and study an efficient solver, and develop a suitable

a posteriori error analysis. We conclude showing the flexibility of our approach by

analyzing a fractional space-time parabolic equation.
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Chapter 1: Introduction

Recently, a great deal of attention has been paid to the study of fractional and

nonlocal operators, both from the point of view of pure mathematical research as well

as motivated by several interesting applications where they constitute a fundamental

part of the modeling and simulation of complex phenomena that span vastly different

length scales.

Fractional and nonlocal operators can be found in a number of applications

such as boundary control problems [73], finance [45, 165], electromagnetic fluids

[122], image processing [85], materials science [20], optimization [73], porous media

flow [59], turbulence [16], peridynamics [147], nonlocal continuum field theories [74]

and others. From this it is evident that the particular type of operator appearing in

applications can widely vary and that a unified analysis of their discretizations might

be well beyond our reach. A more modest, but nevertheless quite ambitious, goal is

to develop an analysis and approximation of a model operator that is representative

of a particular class: the fractional powers of the Dirichlet Laplace operator, which

for convenience we will simply call the fractional Laplacian.

The study of boundary value problems involving the fractional Laplacian is

important in physical applications where long range or anomalous diffusion is con-
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sidered. For instance, in the flow in porous media, it is used when modeling the

transport of particles that experience very large transitions arising from high hetero-

geneity and very long spatial autocorrelation; see [22]. In the theory of stochastic

processes, the fractional Laplacian is the infinitesimal generator of a stable Lévy

process; see [25].

To make matters precise, in this work we shall be concerned with the following

problem. Let Ω be an open and bounded subset of Rn (n ≥ 1), with boundary ∂Ω.

Given s ∈ (0, 1) and a smooth enough function f , find u such that
(−∆)su = f, in Ω,

u = 0, on ∂Ω.

(1.1)

Our approach, however, is by no means particular to the fractional Laplacian. It can

also be applied to a general second order, symmetric and uniformly elliptic operator;

see Section 3.6 and Chapter 7.

One of the main difficulties in the study of problem (1.1) is that the fractional

Laplacian is a nonlocal operator; see [115, 43, 41]. To localize it, Caffarelli and

Silvestre showed in [43] that any power of the fractional Laplacian in Rn can be

realized as an operator that maps a Dirichlet boundary condition to a Neumann-type

condition via an extension problem on the upper half-space Rn+1
+ . For a bounded

domain Ω, the result by Caffarelli and Silvestre has been adapted in [44, 35, 155],

thus obtaining an extension problem which is now posed on the semi-infinite cylinder
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C = Ω× (0,∞). This extension is the following mixed boundary value problem:

div (yα∇U ) = 0, in C,

U = 0, on ∂LC,

∂U

∂να
= dsf, on Ω× {0},

(1.2)

where ∂LC = ∂Ω× [0,∞) denotes the lateral boundary of C, and

∂U

∂να
= − lim

y→0+
yαUy, (1.3)

is the the so-called conormal exterior derivative of U with ν being the unit outer

normal to C at Ω× {0}. The parameter α is defined as

α = 1− 2s ∈ (−1, 1). (1.4)

Finally, ds is a positive normalization constant which depends only on s; see [43]

for details. We will call y the extended variable and the dimension n + 1 in Rn+1
+

the extended dimension of problem (1.2). The limit in (1.3) must be understood in

the distributional sense; see [35, 41, 43] for more details. As noted in [43, 44, 155],

the fractional Laplacian and the Dirichlet-to-Neumann operator of problem (1.2)

are related by

ds(−∆)su =
∂U

∂να
in Ω.

Using the aforementioned ideas, we propose the following simple strategy to

find the solution of (1.1): given a sufficiently smooth function f we solve (1.2), thus

obtaining a function U : (x′, y) ∈ C 7→ U (x′, y) ∈ R. Setting u : x′ ∈ Ω 7→ u(x′) =

U (x′, 0) ∈ R, we obtain the solution of (1.1).
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The main purpose of this dissertation is then the study of efficient discretiza-

tion and solution techniques for problems involving fractional powers of elliptic

operators based on the simple strategy described above, which is in turn inspired in

the breakthrough by L. Caffarelli and L. Silvestre [43] to localize fractional powers

of elliptic operators. Before proceeding with the thesis outine and its specific contri-

butions, it is instructive to compare our proposed technique with those advocated

in the literature.

1.1 State of the art

In this section, we review the state of the art involving numerical techniques to

approximate problems involving fractional powers of elliptic operators.

In contrast to wavelets [99, 154], the use of finite element methods (FEM) is

less understood. In fact, the integral formulation of fractional diffusion is notoriously

difficult from the numerical standpoint, even in 1D [134], due to the presence of a

kernel with non-integrable singularity.

An alternative approximation technique is based on the spectral decomposi-

tion of the operator −∆. For a general Lipschitz domain Ω ⊂ Rn (n > 1), we

may think about an algorithm for solving problem (1.1) inspired in this technique.

However, to have a sufficiently good approximation, this requires the solution of a

large number of eigenvalue problems which, in general, is very time consuming. In

[103, 104] the authors studied computationally problem (1.1) in the one-dimensional

case and introduced the so-called matrix transference technique (MTT). Basically,
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MTT computes a spatial discretization of the fractional Laplacian by first finding

a matrix approximation, A, of the Laplace operator (via finite differences or finite

elements) and then computing the s-th power of this matrix. This requires diagonal-

ization of A which, again, amounts to the solution of a large number of eigenvalue

problems. For the case Ω = (0, 1)2 and s ∈ (1/2, 1), [164] applies the MTT tech-

nique and avoids diagonalization of A by writing a numerical scheme in terms of the

product of a function of the matrix and a vector, f(A)b, where b is a suitable vector.

This product is then approximated by a preconditioned Lanczos method. Under

the same setting, the work [40] makes a computational comparison of three tech-

niques for the computation of f(A)b: the contour integral method, extended Krylov

subspace methods and the pre-assigned poles and interpolation nodes method.

Recently two other papers that deal with the discretization of fractional pow-

ers of elliptic operators have appeared; [29] and [63]. Inspired in our work, and

while this dissertation was in progress, Bonito and Pasciak developed in [29] an al-

ternative approach, which is based on the integral formulation of fractional powers

of self-adjoint operators [27, Chapter 10.4]. This yields a sequence of easily par-

allelizable uncoupled elliptics PDEs, and leads to quasi-optimal error estimates in

the L2-norm instead on the energy norm provided Ω is convex and f ∈ H2−2s(Ω).

The results of Bonito and Pasciak, however, are not easy to extend to the energy

norm, nor to time dependent problems and they are not suited for the treatment

of nonlinear problems, which is something that can be somewhat easily achieved

with our techniques [130]. The work by del Teso and Vázquez [63] studies the ap-

proximation of the α-harmonic extension problem, via a finite difference technique.
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The authors consider a truncation of the Caffarelli-Silvestre extension problem to

a n + 1–rectangular domain in Rn+1
+ . This yields a truncation error decaying poly-

nomially in each variable, not exponentially. The standard finite difference is done

via a formal Taylor error analysis, which assumes sufficient but perhaps inconsistent

regularity; no regularity results are presented for the authors. In contrast, this the-

sis examines the requisite regularity of the underlying problem, develops a general

interpolation theory for anisotropic meshes, and applies it to fractional diffusion. It

also addresses several related numerical issues as explained below.

1.2 Thesis outline and contributions

We develop PDE solution techniques for problems involving fractional powers of

the Laplace operator in a bounded domain Ω with Dirichlet boundary conditions,

i.e., (−∆)su = f . To overcome the inherent difficulty of nonlocality, we exploit

the cylindrical extension proposed and investigated by X. Cabré and J. Tan [42],

which is in turn inspired in the breakthrough by L. Caffarelli and L. Silvestre [43].

This leads to the (local) elliptic PDE (1.2) in one higher dimension y, with variable

coefficient yα, α = 1−2s, which either degenerates (s < 1/2) or blows up (s > 1/2).

In order to study problems (1.1) and (1.2), we first introduce in Chapter 2

an appropiate notation and we recall some basic function spaces and functional

analysis theory. Next, to approximate the solution of (1.2), we propose and analyze

a discretization scheme, which is based on first degree tensor product finite elements

and gives rise to the first contribution of this dissertation:
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1. A PDE approach to fractional diffusion in general domains: a priori error

analysis. Motivated by the rapid decay of the solution of problem (1.2), in

Chapter 3, we propose a truncation that is suitable for numerical approxima-

tion. We discretize this truncation using first degree tensor product finite ele-

ments, and we derive a priori error estimates in weighted Sobolev spaces. For

quasi-uniform meshes, these estimates exhibit optimal regularity but subopti-

mal order. We derive an almost-optimal a priori error analysis which combines

asymptotic properties of Bessel functions with polynomial interpolation theory

on weighted Sobolev spaces. The latter is valid for tensor product elements

which may be graded in Ω and exhibit a large aspect ratio in y (anisotropy)

to fit the behavior of U (x, y) with x ∈ Ω, y > 0; this extends prior work of

R. Durán and A. Lombardi [70]. The derived estimate is quasi-optimal in

both order and regularity. We present numerical experiments to illustrate the

method’s performance.

The discussion in this chapter is mainly based on the reference [129]:

R.H. Nochetto, E. Otárola, and A.J. Salgado. A PDE approach to fractional

diffusion in general domains: a priori error analysis. arXiv:1302.0698. Submit-

ted to Foundations of Computational Mathematics, 2013

2. Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces

and applications.

Upon realizing that the weight yα belongs to the class A2 of Muckemhoupt

weights, we have been able to extend the interpolation theory of Chapter 3

7



to a general one in a Muckenhoupt weighted Sobolev space setting. This

is of interest not only for the solution of problem (1.2) but also for that of

nonuniformly elliptic problems in general. This brings to numerical analysis

techniques and methods developed within harmonic analysis to deal with, for

instance, maximal functions, Calderon Zygmund operators and weighted norm

inequalities. This might serve as a starting point for the numerical analysis

on homogeneous spaces.

In chapter 4, we develop a constructive piecewise polynomial approximation

theory in weighted Sobolev spaces with Muckenhoupt weights for any poly-

nomial degree. The main ingredients to derive optimal error estimates for

an averaged Taylor polynomial are a suitable weighted Poincaré inequality, a

cancellation property and a simple induction argument. We also construct a

quasi-interpolation operator, built on local averages over stars, which is well

defined for functions in L1. We derive optimal error estimates for any polyno-

mial degree on simplicial shape regular meshes. On rectangular meshes, these

estimates are valid under the condition that neighboring elements have compa-

rable size, which yields optimal anisotropic error estimates over n-rectangular

domains. The interpolation theory extends to cases when the error and func-

tion regularity require different weights. We conclude with three applications:

nonuniformly elliptic boundary value problems, elliptic problems with singular

sources, and fractional powers of elliptic operators.
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The discussion in this chapter is mainly based on the reference [132]:

R.H. Nochetto, E. Otárola, and A.J. Salgado. Piecewise polynomial interpola-

tion in Muckenhoupt weighted Sobolev spaces and applications. arXiv:1402.1916.

Submitted to Numerische Mathematik, 2014

3. Multilevel methods.

Our PDE approach leads to the local problem (1.2). This advantage over integral

techniques, however, comes at the expense of incorporating one more dimension

to the problem, thereby raising the question of computational efficiency.

It is known that multilevel methods are among the most efficient techniques for

the solution of discretized PDE. In Chapter 5 we study their applicability to

(1.2), and develop a nearly uniformly convergent multilevel method. Our point

of departure is the framework of Xu and Zikatanov [163] along with [160]. In

view of the overwhelming evidence given in Chapter 3 that meshes must be highly

anisotropic, we design a multilevel method with line smoothers in the y direction.

Numerical experiments reveal a competitive performance of our method. Inspired

in the interpolation theory developed in Chapter 4, we also develop and analyze

multilevel methods for nonuniformly elliptic equations, deriving a nearly uniform

convergence result.

We must point out that, in complete analogy to the unweighted case, removing

the very weak (in fact logarithmical) dependence of the contraction factor in a

multilevel method on the dimension of the problem, would require very fine prop-

erties of multilevel decompositions of functions in certain Muckenhoupt weighted
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Besov spaces (see [101, 100, 135]).

The discussion in this chapter is mainly based on the reference [52]:

L. Chen, R.H. Nochetto, E. Otárola, and A.J. Salgado. Multigrid methods for

nonuniformly elliptic operators. arXiv:1403.4278. Submitted to Mathematics of

Computations, 2014

4. A PDE approach to fractional diffusion: a posteriori error estimators and adap-

tivity. Since the coefficient yα in (1.2) either degenerates for s < 1/2 or blows up

for s > 1/2, the usual residual estimators do not apply; integration by parts fails!

In chapter 6, inspired in [14, 125], we deal with the natural anisotropy of the mesh

in the extended variable y and the nonuniform coefficient yα, upon considering

local problems on cylindrical stars. The solutions of these local problems allow

us to define a computable and anisotropic a posteriori error estimator which is

equivalent to the error up to oscillations terms. In order to derive such a result,

a computationally implementable geometric condition needs to be imposed on

the mesh, which does not depend on the exact solution of problem (1.2). This

approach is of value not only for (1.2), but in general for anisotropic problems

since rigorous anisotropic a posteriori error estimators are not available in the

literature.

5. A PDE approach to space-time fractional parabolic problems.

In contrast to [29], our approach seems to be flexible enough to study other prob-

lems with fractional diffusion in space. One such problem is solution techniques

for evolution equations with fractional diffusion and fractional time derivative.
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We study solution techniques for evolution equations with fractional diffusion and

fractional time derivative. The fractional time derivative, in the sense of Caputo,

is discretized by a first order scheme and analyzed in a general Hilbert space

setting. We show discrete stability estimates which yield an energy estimate

for evolution problems with fractional time derivative. The spatial fractional

diffusion is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic

problem posed on a semi-infinite cylinder in one more spatial dimension. We

write our evolution problem as a quasi-stationary elliptic problem with a dynamic

boundary condition, and we analyze it in the framework of weighted Sobolev

spaces. The rapid decay of the solution to this problem suggests a truncation

that is suitable for numerical approximation. We propose and analyze a first

order semi-implicit fully-discrete scheme to discretize the truncation: first degree

tensor product finite elements in space and first order discretization in time. We

prove stability and a near optimal a priori error estimate of the numerical scheme,

in both order and regularity.

The discussion in this chapter is mainly based on the reference [131]:

R.H. Nochetto, E. Otárola, and A.J Salgado. A pde approach to space-time frac-

tional parabolic problems. Submitted to SIAM Journal on Numerical Analysis,

2014
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Chapter 2: Notations and Preliminaries

The purpose of this chapter is to establish the notation that shall be used in the

subsequent chapters.

Throughout this work, Ω is an open, bounded and connected subset of Rn,

with n ≥ 1. The boundary of Ω is denoted by ∂Ω. Unless specified otherwise, we

will assume that ∂Ω is Lipschitz.

The set of locally integrable functions on Ω is denoted by L1
loc(Ω). The

Lebesgue measure of a measurable subset E ⊂ Rn is denoted by |E|. The mean

value of a locally integrable function f over a set E is

 
E

f dx =
1

|E|

ˆ
E

f dx.

For a multi-index κ = (κ1, . . . , κn) ∈ Nn we denote its length by |κ| = κ1 +

· · ·+ κn, and, if x ∈ Rn, we set xκ = xκ1
1 . . . xκnn ∈ R, and

Dκ =
∂κ1

∂xκ1
1

. . .
∂κn

∂xκnn
.

Given p ∈ (1,∞), we denote by p′ the dual Lebesgue number, namely the real

number such that 1/p+ 1/p′ = 1, i.e., p′ = p/(p− 1).

If X and Y are topological vector spaces, we write X ↪→ Y to denote that X

is continuously embedded in Y . We denote by X ′ the dual of X. If X is normed,

12



we denote by ‖ · ‖X its norm. The relation a . b indicates that a ≤ Cb, with a

constant C that does not depend on either a or b, the value of C might change at

each occurrence.

In order to study the so called α-harmonic extension problem (1.2), we define

the semi-infinite cylinder

C = Ω× (0,∞), (2.1)

and its lateral boundary

∂LC = ∂Ω× [0,∞). (2.2)

Given Y > 0, we define the truncated cylinder

CY = Ω× (0,Y ). (2.3)

The lateral boundary ∂LCY is defined accordingly.

Throughout our discussion we will be dealing with objects defined in Rn+1

and it will be convenient to distinguish the extended dimension, as it plays a special

role. A vector x ∈ Rn+1, will be denoted by

x = (x1, . . . , xn, xn+1) = (x′, xn+1) = (x′, y),

with xi ∈ R for i = 1, . . . , n+ 1, x′ ∈ Rn and y ∈ R. The upper half-space in Rn+1

will be denoted by

Rn+1
+ = {x = (x′, y) : x′ ∈ Rn y ∈ R, y > 0} .

Let γ, z ∈ Rn, the binary operation ◦ : Rn × Rn → Rn is defined by

γ ◦ z = (γ1z1, γ2z2, · · · , γnzn) ∈ Rn. (2.4)

13



2.1 Fractional Sobolev spaces

Let us recall some fractional Sobolev spaces; for details the reader is referred to

[66, 120, 123, 156]. For 0 < s < 1, we introduce the so-called Gagliardo-Slobodeckĭı

seminorm

|w|2Hs(Ω) =

ˆ
Ω

ˆ
Ω

|w(x′1)− w(x′2)|2
|x′1 − x′2|n+2s

dx′1 dx′2.

The Sobolev space Hs(Ω) of order s is defined by

Hs(Ω) =
{
w ∈ L2(Ω) : |w|Hs(Ω) <∞

}
, (2.5)

which equipped with the norm

‖u‖Hs(Ω) =
(
‖u‖2

L2(Ω) + |u|2Hs(Ω)

)1
2
,

is a Hilbert space. An equivalent construction of Hs(Ω) is obtained by restricting

functions in Hs(Rn) to Ω (cf. [156, Chapter 34]). The space Hs
0(Ω) is defined as the

closure of C∞0 (Ω) with respect to the norm ‖ · ‖Hs(Ω), i.e.,

Hs
0(Ω) = C∞0 (Ω)

Hs(Ω)
. (2.6)

If the boundary of Ω is smooth, an equivalent approach to define fractional

Sobolev spaces is given by interpolation in [120, Chapter 1]. Set H0(Ω) = L2(Ω),

then Sobolev spaces with real index 0 ≤ s ≤ 1 can be defined as interpolation spaces

of index θ = 1− s for the pair [H1(Ω), L2(Ω)], that is

Hs(Ω) =
[
H1(Ω), L2(Ω)

]
θ
. (2.7)
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Analogously, for s ∈ [0, 1]\{1
2
}, the spaces Hs

0(Ω) are defined as interpolation spaces

of index θ = 1− s for the pair [H1
0 (Ω), L2(Ω)], in other words

Hs
0(Ω) =

[
H1

0 (Ω), L2(Ω)
]
θ
, θ 6= 1

2
. (2.8)

The space [H1
0 (Ω), L2(Ω)]1

2
is the so-called Lions-Magenes space,

H
1
2
00(Ω) =

[
H1

0 (Ω), L2(Ω)
]

1
2
,

which can be characterized as

H
1
2
00(Ω) =

{
w ∈ H

1
2 (Ω) :

ˆ
Ω

w2(x′)

dist(x′, ∂Ω)
dx′ <∞

}
, (2.9)

see [120, Theorem 11.7]. Moreover, we have the strict inclusion H
1/2
00 (Ω) $ H

1/2
0 (Ω)

because 1 ∈ H
1/2
0 (Ω) but 1 /∈ H

1/2
00 (Ω). If the boundary of Ω is Lipschitz, the

characterization (2.9) is equivalent to the definition via interpolation, and definitions

(2.7) and (2.8) are also equivalent to definitions (2.5) and (2.6), respectively. To

see this, it suffices to notice that when Ω = Rn these definitions yield identical

spaces and equivalent norms; see [4, Chapter 7]. Consequently, using the well-

known extension result of Stein [151] for Lipschitz domains, we obtain the asserted

equivalence (see [4, Chapter 7] for details).

When the boundary of Ω is Lipschitz, the space C∞0 (Ω) is dense in Hs(Ω) if

and only if s ≤ 1
2
, i.e., Hs

0(Ω) = Hs(Ω). If s > 1
2
, we have that Hs

0(Ω) is strictly

contained in Hs(Ω); see [120, Theorem 11.1]. In particular, we have the inclusions

H
1/2
00 (Ω) $ H

1/2
0 (Ω) = H1/2(Ω).

15



2.2 Weighted Sobolev spaces

We now introduce the class of Muckenhoupt weighted Sobolev spaces and refer to

[79, 102, 108, 158] for details. We start with the definition of a weight.

Definition 2.1 (weight) A weight is a function ω ∈ L1
loc(Rn) such that ω(x) > 0

for a.e. x ∈ Rn.

Every weight induces a measure, with density ω dx, over the Borel sets of Rn.

For simplicity, this measure will also be denoted by ω. For a Borel set E ⊂ Rn we

define ω(E) =
´
E
ω dx .

We recall the definition of Muckenhoupt classes; see [79, 126, 158].

Definition 2.2 (Muckenhoupt class Ap) Let ω be a weight and 1 < p <∞. We

say ω ∈ Ap(Rn) if there exists a positive constant Cp,ω such that

sup
B

( 
B

ω

)( 
B

ω1/(1−p)
)p−1

= Cp,ω <∞, (2.10)

where the supremum is taken over all balls B in Rn. In addition,

A∞(Rn) =
⋃
p>1

Ap(Rn), A1(Rn) =
⋂
p>1

Ap(Rn).

If ω belongs to the Muckenhoupt class Ap(Rn), we say that ω is an Ap-weight, and

we call the constant Cp,ω in (2.10) the Ap-constant of ω.

Remark 2.3 (characterization of the A1-class) A useful characterization of the

A1-Muckenhoupt class is given in [152]: ω ∈ A1(RN) if and only if

sup
B

‖ω−1‖L∞(B)

|B|

ˆ
B

ω = C1,ω <∞. (2.11)
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A classical example is the function |x|γ, which is an Ap-weight if and only if

−n < γ < n(p − 1). Another important example is d(x) = d(x, ∂Ω)α, where for

x ∈ Ω, d(x, ∂Ω) denotes the distance from the point x to the boundary ∂Ω. The

function d belongs to A2(Rn) if and only if −n < α < n. This function is used to

define weighted Sobolev spaces which are important to study Poisson problems with

singular sources; see [6, 60].

Throughout this work, we shall use some properties of the Ap-weights which,

for completeness, we state and prove below.

Proposition 2.1 (properties of the Ap-class) Let 1 < p <∞, and ω ∈ Ap(Rn).

Then, we have the following properties:

(i) ω−1/(p−1) ∈ L1
loc(Rn).

(ii) Cp,ω ≥ 1.

(iii) If 1 < p < r <∞, then Ap(Rn) ⊂ Ar(Rn), and Cr,ω ≤ Cp,ω.

(iv) ω−1/(p−1) ∈ Ap′(Rn) and, conversely, ω−1/(p′−1) ∈ Ap(Rn). Moreover,

Cp′,ω−1/(p−1) = C1/(p−1)
p,ω .

(v) The Ap-condition is invariant under translations and isotropic dilations, i.e.,

the weights x 7→ ω(x + b) and x 7→ ω(Ax), with b ∈ Rn and A = a · I with

a ∈ R, both belong to Ap(Rn) with the same Ap-constant as ω.

Proof: Properties (i) and (iv) follow directly from the definition of the Mucken-

houpt class Ap(Rn) given in (2.10). By writing 1 = ω1/pω−1/p and the Hölder
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inequality, we obtain that for every ball B ⊂ Rn,

1 =

 
B

ω1/pω−1/p ≤
( 

B

ω

)1/p( 
B

ω−1/(p−1)

)(p−1)/p

,

which proves (ii). Using the Hölder inequality again, we obtain

( 
B

ω1/(1−r)
)r−1

≤
( 

B

ω1/(1−p)
)p−1

,

which implies (iii). Finally, to prove property (v) we denote ω̄(x) = ω(Ax+b), and

let Br be a ball of radius r in Rn. Using the change of variables y = Ax + b, we

obtain

 
Br

ω̄(x) dx =
1

an|Br|

ˆ
Bar

ω(y) dy, (2.12)

which, since an|Br| = |Bar|, proves (v). �

From the Ap-condition and Hölder’s inequality follows that an Ap-weight sat-

isfies the so-called strong doubling property. The proof of this fact is standard and

presented here for completeness; see [158, Proposition 1.2.7] for more details.

Proposition 2.2 (strong doubling property) Let ω ∈ Ap(Rn) with 1 < p < ∞

and let E ⊂ Rn be a measurable subset of a ball B ⊂ Rn. Then

ω(B) ≤ Cp,ω

( |B|
|E|

)p
ω(E). (2.13)

Proof: Since E ⊂ Rn is measurable, we have that

|E| ≤
(ˆ

E

ω dx

)1/p(ˆ
E

ω−p
′/p dx

)1/p′

≤ ω(E)1/p|B|1/p′
( 

B

ω−p
′/p

)1/p′

≤ C1/p
p,ω ω(E)1/p|B|1/p′

( 
B

ω

)−1/p

= C1/p
p,ω

(
ω(E)

ω(B)

)1/p

|B|.
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This completes the proof. �

In particular, every Ap-weight satisfies a doubling property, i.e., there exists a

positive constant C such that

ω(B2r) ≤ Cω(Br). (2.14)

for every ball Br ⊂ Rn. The infimum over all constants C, for which (2.14) holds,

is called the doubling constant of ω. The class of Ap-weights was introduced by

B. Muckenhoupt [126], who proved that the Ap-weights are precisely those for which

the Hardy-Littlewood maximal operator is bounded from Lp(ω,Rn) to Lp(ω,Rn),

when 1 < p <∞. We now define weighted Lebesgue spaces as follows.

Definition 2.4 (weighted Lebesgue spaces) Let ω ∈ Ap, and let Ω ⊂ Rn be an

open and bounded domain. For 1 < p < ∞, we define the weighted Lebesgue space

Lp(ω,Ω) as the set of measurable functions u on Ω equipped with the norm

‖u‖Lp(ω,Ω) =

(ˆ
Ω

|u|pω
)1/p

. (2.15)

An immediate consequence of ω ∈ Ap(Rn) is that functions in Lp(ω,Ω) are

locally summable which, in fact, only requires that ω−1/(p−1) ∈ L1
loc(Rn).

Proposition 2.3 (Lp(ω,Ω) ⊂ L1
loc(Ω)) Let Ω be an open set, 1 < p <∞ and ω be

a weight such that ω−1/(p−1) ∈ L1
loc(Ω). Then, Lp(ω,Ω) ⊂ L1

loc(Ω).

Proof: Let u ∈ Lp(ω,Ω), and let B ⊂ Ω be a ball. By Hölder’s inequality, we have

ˆ
B

|u| =
ˆ
B

|u|ω1/pω−1/p ≤
(ˆ

B

|u|pω
)1/p(ˆ

B

ω−1/(p−1)

)(p−1)/p

. ‖u‖Lp(ω,Ω),
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which concludes the proof. �

Notice that when Ω is bounded we have Lp(ω,Ω) ↪→ L1(Ω). In particular,

Proposition 2.3 shows that it makes sense to talk about weak derivatives of functions

in Lp(ω,Ω). We define weighted Sobolev spaces as follows.

Definition 2.5 (weighted Sobolev spaces) Let ω be an Ap-weight with 1 < p <

∞, Ω ⊂ Rn be an open and bounded domain and m ∈ N. The weighted Sobolev

space Wm
p (ω,Ω) is the set of functions u ∈ Lp(ω,Ω) such that for any multi-index

κ with |κ| ≤ m, the weak derivatives Dκu ∈ Lp(ω,Ω), with seminorm and norm

|u|Wm
p (ω,Ω) =

∑
|κ|=m

‖Dκu‖pLp(ω,Ω)

1/p

, ‖u‖Wm
p (ω,Ω) =

(∑
j≤m

|u|p
W j
p (ω,Ω)

)1/p

,

respectively. We also define
◦
Wm
p (ω,Ω) as the closure of C∞0 (Ω) in Wm

p (ω,Ω).

Without any restriction on the weight ω, the space Wm
p (ω,Ω) may not be

complete. However, when ω−1/(p−1) is locally integrable in Rn, Wm
p (ω,Ω) is a Banach

space; see [109]. Properties of weighted Sobolev spaces can be found in classical refe-

rences like [102, 108, 158]. It is remarkable that most of the properties of classical

Sobolev spaces have a weighted counterpart and it is more so that this is not because

of the specific form of the weight but rather due to the fact that the weight ω belongs

to the Muckenhoupt class Ap; see [79, 87, 126]. In particular, we have the following

results (cf. [158, Proposition 2.1.2, Corollary 2.1.6] and [87, Theorem 1]) .

Proposition 2.4 (properties of weighted Sobolev spaces) Let Ω ⊂ Rn be an

open and bounded domain, 1 < p < ∞, ω ∈ Ap(Rn) and m ∈ N. The spaces

Wm
p (ω,Ω) and

◦
Wm
p (ω,Ω) are complete, and Wm

p (ω,Ω)∩C∞(Ω) is dense in Wm
p (ω,Ω).
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Chapter 3: Algorithm design and a priori error analysis

3.1 Introduction

The purpose of this work is the study of solution techniques for problems involving

fractional powers of symmetric coercive elliptic operators in a bounded domain with

Dirichlet boundary conditions. These operators can be realized as the Dirichlet to

Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder,

which we analyze in the framework of weighted Sobolev spaces. Motivated by the

rapid decay of the solution of this problem, we propose a truncation that is suitable

for numerical approximation. We discretize this truncation using first degree tensor

product finite elements. We derive a priori error estimates in weighted Sobolev

spaces. The estimates exhibit optimal regularity but suboptimal order for quasi-

uniform meshes. For anisotropic meshes, instead, they are quasi-optimal in both

order and regularity. We present numerical experiments to illustrate the method’s

performance.

The outline of this chapter is as follows. We recall the definition of the frac-

tional Laplacian on a bounded domain via spectral theory in § 3.1.1 and in § 3.1.2

we introduce the functional framework that is suitable for the study of problems

(1.1) and (1.2). We discuss the Caffarelli-Silvestre extension in § 3.1.3. In addition,
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in § 3.1.5 we study regularity of the solution to (1.2) via the asymptotic estimates

fiven in § 3.1.4. The numerical analysis of (1.1) begins in § 3.2. Here we introduce

a truncation of problem (1.2) and study some properties of its solution. Having

understood the truncation we proceed, in § 3.3, to study its finite element approx-

imation. We prove interpolation estimates in weighted Sobolev spaces, under mild

shape regularity assumptions that allow us to consider anisotropic elements in the

extended variable y. Based on the regularity results of § 3.1.5 we derive, in § 3.4, a

priori error estimates for quasi-uniform meshes which exhibit optimal regularity but

suboptimal order. To restore optimal decay, we resort to the so-called principle of

error equidistribution and construct graded meshes in the extended variable y. They

in turn capture the singular behavior of the solution to (1.2) and allow us to prove

a quasi-optimal rate of convergence with respect to both regularity and degrees of

freedom. In § 3.5, to illustrate the method’s performance and theory, we provide

several numerical experiments. Finally, in § 3.6 we show that our developments

apply to general second order, symmetric and uniformly elliptic operators.

3.1.1 The fractional Laplace operator

It is important to mention that there is no unique way of defining a nonlocal operator

related to the fractional Laplacian in a bounded domain. A first possibility is to

suitably extend the functions to the whole space Rn and use Fourier transform

F((−∆)sw)(ξ′) = |ξ′|2sF(w)(ξ′).
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After extension, the following point-wise formula also serves as a definition of the

fractional Laplacian

(−∆)sw(x′) = Cn,sp.v.

ˆ
Rn

w(x′)− w(z′)

|x′ − z′|n+2s
dz′, (3.1)

where p.v. stands for the Cauchy principal value and Cn,s is a positive normalization

constant that depends only on n and s which is introduced to guarantee that the

symbol of the resulting operator is |ξ′|2s. For details we refer the reader to [41, 115,

66] and, in particular, to [115, Section 1.1] or [66, Proposition 3.3] for a proof of the

equivalence of these two definitions.

Even if we restrict ourselves to definitions that do not require extension, there

is more than one possibility. For instance, the so-called regional fractional Laplacian

([92, 28]) is defined by restricting the Riesz integral to Ω, leading to an operator

related to a Neumann problem. A different operator is obtained by using the spectral

decomposition of the Dirichlet Laplace operator −∆, see [35, 42, 44]. This approach

is also different to the integral formula (3.1). Indeed, the spectral definition depends

on the domain Ω considered, while the integral one at any point is independent of

the domain in which the equation is set. For more details see the discussion in [145].

The definition that we shall adopt is as in [35, 42, 44] and is based on the

spectral theory of the Dirichlet Laplacian ([78, 84]) as we summarize below.

We define −∆ : L2(Ω) → L2(Ω) with domain Dom(−∆) = {v ∈ H1
0 (Ω) :

∆v ∈ L2(Ω)}. This operator is positive, unbounded, closed and its inverse is com-

pact. This implies that the spectrum of the operator −∆ is discrete, positive and

accumulates at infinity. Moreover, there exist {λk, ϕk}k∈N ⊂ R+ ×H1
0 (Ω) such that
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{ϕk}k∈N is an orthonormal basis of L2(Ω) and, for k ∈ N,
−∆ϕk = λkϕk, in Ω,

ϕk = 0, on ∂Ω.

(3.2)

Consequently, {ϕk}k∈N is an orthogonal basis of H1
0 (Ω) and ‖∇x′ϕk‖L2(Ω) =

√
λk.

With this spectral decomposition at hand, fractional powers of the Dirichlet

Laplacian (−∆)s can be defined for u ∈ C∞0 (Ω) by

(−∆)su =
∞∑
k=1

ukλ
s
kϕk, (3.3)

where the coefficients uk are defined by uk =
´

Ω
uϕk. Therefore, if f =

∑∞
k=1 fkϕk,

and (−∆)su = f , then uk = λ−sk fk for all k ≥ 1.

By density the operator (−∆)s can be extended to the Hilbert space

Hs(Ω) =

{
w =

∞∑
k=1

wkϕk ∈ L2(Ω) : ‖w‖2
Hs(Ω) =

∞∑
k=1

λsk|wk|2 <∞
}
.

The theory of Hilbert scales presented in [120, Chapter 1] shows that

[
H1

0 (Ω), L2(Ω)
]
θ

= Dom(−∆)
s
2 ,

where θ = 1− s. This implies the following characterization of the space Hs(Ω),

Hs(Ω) =



Hs(Ω), s ∈ (0, 1
2
),

H
1/2
00 (Ω), s = 1

2
,

Hs
0(Ω), s ∈ (1

2
, 1).

(3.4)

We denote by H−s(Ω) the dual space of Hs(Ω) for 0 < s < 1.
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3.1.2 Weighted Sobolev spaces

To exploit the Caffarelli-Silvestre extension [43], or its variants [35, 42, 44], we need

to deal with a nonuniformly elliptic equation on Rn+1
+ . To this end, we consider

weighted Sobolev spaces, with the specific weight |y|α with α ∈ (−1, 1); see section

2.2.

Let D ⊂ Rn+1 be an open set and α ∈ (−1, 1). We define the weighted spaces

L2(D, |y|α) and H1(D, |y|α) according to Definitions 2.4 and 2.5 respectively. The

space H1(D, |y|α) is equipped with the norm

‖w‖H1(D,|y|α) =
(
‖w‖2

L2(D,|y|α) + ‖∇w‖2
L2(D,|y|α)

)1
2
. (3.5)

Notice that taking α = 0 in the definition above, we obtain the classical H1(D).

Properties of this weighted Sobolev space can be found in classical references

like [102, 108]. It is remarkable that most of the properties of classical Sobolev spaces

have a weighted counterpart not so because of the specific form of the weight but

rather due to the fact that the weight |y|α belongs to the so-called Muckenhoupt class

A2(Rn+1); see [79, 87, 126]. Since α ∈ (−1, 1) it is immediate that |y|α ∈ A2(Rn+1),

which implies the following important result; see Proposition 2.4.

Proposition 3.1 (Properties of weighted Sobolev spaces) Let D ⊂ Rn+1 be

an open set and α ∈ (−1, 1). Then H1(D, |y|α), equipped with the norm (7.12), is a

Hilbert space. Moreover, the set C∞(D) ∩H1(D, |y|α) is dense in H1(D, |y|α).

Remark 3.1 (Weighted L2 vs L1) If D is a bounded domain and α ∈ (−1, 1)
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then, L2(D, |y|α) ⊂ L1(D). Indeed, since |y|−α ∈ L1
loc(Rn+1),

ˆ
D
|w| =

ˆ
D
|w||y|α/2|y|−α/2 ≤

(ˆ
D
|w|2|y|α

)1
2
(ˆ
D
|y|−α

)1
2

. ‖w‖L2(D,|y|α).

The following result is given in [108, Theorem 6.3]. For completeness we

present here a version of the proof on the truncated cylinder CY , which will be

important for the numerical approximation of problem (1.2).

Proposition 3.2 (Embeddings in weighted Sobolev spaces) Let Ω be a bounded

domain in Rn and Y > 0. Then

H1(CY ) ↪→ H1(CY , y
α), for α ∈ (0, 1), (3.6)

and

H1(CY , y
α) ↪→ H1(CY ), for α ∈ (−1, 0). (3.7)

Proof: Let us prove (3.6), the proof of (3.7) being similar. Since α > 0 we have

yα ≤ Y α, whence yαw2 ≤ Y αw2 and yα|∇w|2 ≤ Y α|∇w|2 a.e. on CY for all w ∈

H1(CY ). This implies ‖w‖H1(CY ,yα) ≤
√

2Y α/2‖w‖H1(CY ), which is (3.6). �

Define

◦
H1
L(C, yα) =

{
w ∈ H1(yα; C) : w = 0 on ∂LC

}
. (3.8)

This space can be equivalently defined as the set of measurable functions w : C → R

such that w ∈ H1(Ω × (s, t)) for all 0 < s < t < ∞, w = 0 on ∂LC and for which

the following seminorm is finite

‖w‖2
◦
H1
L(C,yα)

=

ˆ
C
yα|∇w|2; (3.9)
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see [44]. As a consequence of the usual Poincaré inequality, for any k ∈ Z and any

function w ∈ H1(Ω× (2k, 2k+1)) with w = 0 on ∂Ω× (2k, 2k+1), we have

ˆ
Ω×(2k,2k+1)

yαw2 ≤ CΩ

ˆ
Ω×(2k,2k+1)

yα|∇w|2, (3.10)

where CΩ denotes a positive constant that depends only on Ω. Summing up over

k ∈ Z, we obtain the following weighted Poincaré inequality :

ˆ
C
yαw2 .

ˆ
C
yα|∇w|2. (3.11)

Hence, the seminorm (3.9) is a norm on
◦
H1
L(C, yα), equivalent to (7.12).

For a function w ∈ H1(C, yα), we shall denote by trΩ w its trace onto Ω×{0}. It

is well known that trΩ H
1(C) = H1/2(Ω); see [4, 156]. In the subsequent analysis we

need a characterization of the trace of functions in H1(C, yα). For a smooth domain

this was given in [42, Proposition 1.8] for s = 1/2 and in [44, Proposition 2.1] for any

s ∈ (0, 1) \ {1
2
}. However, since the eigenvalue decomposition (3.3) of the Dirichlet

Laplace operator holds true on a Lipschitz domain, we are able to extend this trace

characterization to such domains. In summary, we have the following result.

Proposition 3.3 (Characterization of trΩ

◦
H1
L(C, yα)) Let Ω ⊂ Rn be a bounded

Lipschitz domain. The trace operator trΩ satisfies trΩ

◦
H1
L(C, yα) = Hs(Ω) and

‖ trΩ v‖Hs(Ω) . ‖v‖ ◦H1
L(C,yα)

∀ v ∈ ◦
H1
L(C, yα),

where the space Hs(Ω) is defined in (3.4) and α = 1− 2s.
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3.1.3 The Caffarelli-Silvestre extension problem

It has been shown in [43] that any power of the fractional Laplacian in Rn can be

determined as an operator that maps a Dirichlet boundary condition to a Neumann-

type condition via an extension problem posed on Rn+1
+ . For a bounded domain, an

analogous result has been obtained in [42] for s = 1
2
, and in [35, 44, 155] for any

s ∈ (0, 1).

Let us briefly describe these results. Consider a function u defined on Ω. We

define the α-harmonic extension of u to the cylinder C, as the function U that solves

the boundary value problem

div(yα∇U ) = 0, in C,

U = 0, on ∂LC,

U = u, on Ω× {0}.

(3.12)

From Proposition 3.3 and the Lax Milgram lemma we can conclude that this problem

has a unique solution U ∈ ◦
H1
L(C, yα) whenever u ∈ Hs(Ω). We define the Dirichlet-

to-Neumann operator Γα,Ω : Hs(Ω)→ H−s(Ω)

u ∈ Hs(Ω) 7−→ Γα,Ω(u) =
∂U

∂να
∈ H−s(Ω),

where U solves (3.12) and ∂U
∂να

is given in (1.3). The space H−s(Ω) can be charac-

terized as the space of distributions h =
∑

k hkϕk such that
∑

k |hk|2λ−sk <∞. The

fundamental result of [43], see also [44, Lemma 2.2], is stated below.

Theorem 3.2 (Caffarelli–Silvestre extension) If s ∈ (0, 1) and u ∈ Hs(Ω),
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then

ds(−∆)su = Γα,Ω(u),

in the sense of distributions. Here α = 1− 2s and ds is given by

ds = 21−2sΓ(1− s)
Γ(s)

. (3.13)

It seems remarkable that the constant ds does not depend on the dimension.

This was proved originally in [43] and its precise value appears in several references,

for instance [35, 41].

The relation between the fractional Laplacian and the extension problem is

now clear. Given f ∈ H−s(Ω), a function u ∈ Hs(Ω) solves (1.1) if and only if its

α-harmonic extension U ∈ ◦
H1
L(C, yα) solves (1.2).

If u =
∑

k ukϕk, then, as shown in the proofs of [44, Proposition 2.1] and [35,

Lemma 2.2], U can be expressed as

U (x) =
∞∑
k=1

ukϕk(x
′)ψk(y), (3.14)

where the functions ψk solve
ψ′′k +

α

y
ψ′k − λkψk = 0, in (0,∞),

ψk(0) = 1, lim
y→∞

ψk(y) = 0.

(3.15)

If s = 1
2
, then clearly ψk(y) = e−

√
λky (see [42, Lemma 2.10]). For s ∈ (0, 1) \ {1

2
}

instead (cf. [44, Proposition 2.1])

ψk(y) = cs

(√
λky
)s
Ks(
√
λky),

where Ks denotes the modified Bessel function of the second kind (see [1, Chap-

ter 9.6]). Using the condition ψk(0) = 1, and formulas for small arguments of the
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function Ks (see for instance § 3.1.4) we obtain

cs =
21−s

Γ(s)
.

The function U ∈ ◦
H1
L(C, yα) is the unique solution of

ˆ
C
yα∇U · ∇φ = ds〈f, trΩ φ〉H−s(Ω)×Hs(Ω), ∀φ ∈ ◦

H1
L(C, yα), (3.16)

where 〈·, ·〉H−s(Ω)×Hs(Ω) denotes the duality pairing between Hs(Ω) and H−s(Ω) which,

in light of Proposition 3.3 is well defined for all f ∈ H−s(Ω) and φ ∈ ◦
H1
L(C, yα). This

implies the following equalities (see [44, Proposition 2.1] for s ∈ (0, 1) \ {1
2
} and [42,

Proposition 2.1] for s = 1
2
):

‖U ‖2
◦
H1
L(C,yα)

= ds‖u‖2
Hs(Ω) = ds‖f‖2

H−s(Ω). (3.17)

Notice that for s = 1
2
, or equivalently α = 0, problem (3.16) reduces to the

weak formulation of the Laplace operator with mixed boundary conditions, which

is posed on the classical Sobolev space
◦
H1
L(C). Therefore, the value s = 1

2
becomes

a special case for problem (3.16). In addition, d1/2 = 1, and ‖U ‖ ◦
H1
L(C) = ‖u‖

H
1/2
00 (Ω)

.

At this point it is important to give a precise meaning to the Dirichlet boundary

condition in (1.1). For s = 1
2
, the boundary condition is interpreted in the sense of

the Lions–Magenes space. If 1
2
< s ≤ 1, there is a trace operator from Hs(Ω) into

L2(∂Ω) and the boundary condition can be interpreted in this sense. For 0 < s < 1/2

this interpretation is no longer possible and thus, for an arbitrary f ∈ H−s(Ω) the

boundary condition does not have a clear meaning. For instance, for every s ∈ (0, 1
2
),

f = (−∆)s1 ∈ H−s(Ω) and the solution to (1.1) for this right hand side is u = 1. If

f ∈ Hζ(Ω) with ζ > 1
2
−2s > −s, using that (−∆)s is a pseudo-differential operator
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of order 2s a shift-type result is valid, i.e., u ∈ H%(Ω) with % = ζ+2s > 1/2. In this

case, the trace of u on ∂Ω is well defined and the boundary condition is meaningful.

Finally, we comment that it has been proved in [44, Lemma 2.10], that if f ∈ L∞(Ω)

then the solution of (1.1) belongs to C0,κ(Ω) with κ ∈ (0,min{2s, 1}).

3.1.4 Asymptotic estimates

It is important to understand the behavior of the solution U of problem (1.2), given

by (3.14). Consequently, it becomes necessary to recall some of the main properties

of the modified Bessel function of the second kind Kν(z), ν ∈ R; see [1, Chapter

9.6] for (i)-(iv) and [124, Theorem 5] for (v):

(i) For ν > −1 , Kν(z) is real and positive.

(ii) For ν ∈ R, Kν(z) = K−ν(z).

(iii) For ν > 0,

lim
z↓0

Kν(z)
1
2
Γ(ν)

(
1
2
z
)−ν = 1. (3.18)

(iv) For k ∈ N, (
1

z

d

dz

)k
(zνKν(z)) = (−1)kzν−kKν−k(z).

In particular, for k = 1 and k = 2, respectively, we have

d

dz
(zνKν(z)) = −zνKν−1(z) = −zνK1−ν(z), (3.19)

and

d2

dz2
(zνKν(z)) = zνK2−ν(z)− zν−1K1−ν(z). (3.20)

31



(v) For z > 0, zmin{ν,1/2}ezKν(z) is a decreasing function.

As an application we obtain the following important properties of the function

ψk, defined in (3.15). First, for s ∈ (0, 1), properties (ii), (iii) and (iv) imply

lim
y↓0+

yαψ′k(y)

dsλsk
= −1, (3.21)

Property (v) provides the following asymptotic estimate for s ∈ (0, 1) and y ≥ 1:

|yαψk(y)ψ′k(y)| ≤ C(s)λsk

(√
λky
)∣∣∣s−1

2

∣∣∣
e−2
√
λky. (3.22)

Multiplying the differential equation of problem (3.15) by yαψk(y) and integrating

by parts yields

ˆ b

a

yα
(
λkψk(y)2 + ψ′k(y)2

)
dy = yαψk(y)ψ′k(y)|ba , (3.23)

where a and b are real and positive constants.

Let us conclude this section with some remarks on the asymptotic behavior of

the function U that solves (3.16). Using (3.14) we obtain

U (x)|y=0 =
∞∑
k=1

ukϕk(x
′)ψk(0) =

∞∑
k=1

ukϕk(x
′) = u(x′).

For s ∈ (0, 1), using formula (3.21) together with (3.3), we arrive at

∂U

∂να
(x′, 0) = − lim

y↓0
yαUy(x

′, y) = dsf(x′), on Ω× {0}. (3.24)

Notice that, if s = 1
2
, then α = 0, d1/2 = 1 and thus (3.24) reduces to

∂U

∂ν

∣∣∣∣
Ω×{0}

= f(x′).
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For s ∈ (0, 1) \ {1
2
} the asymptotic behavior of the second derivative Uyy as y ≈ 0+

is a consequence of (3.20) applied to the function ψk(y). For s = 1
2

the behavior

follows from ψk(y) = e−
√
λky. In conclusion, for y ≈ 0+, we have

Uyy ≈ y−α−1 for s ∈ (0, 1) \ {1
2
}, Uyy ≈ 1 for s = 1

2
. (3.25)

3.1.5 Regularity of the solution

Since we are interested in the approximation of the solution of problem (3.16),

and this is closely related to its regularity, let us now study the behavior of its

derivatives. According to (3.24), Uy ≈ y−α for y ≈ 0+. This clearly shows the

necessity of introducing the weight, as this behavior, together with the exponential

decay given by (v) of § 3.1.4, imply that Uy ∈ L2(C, yα) \ L2(C) for s ∈ (0, 1/4].

However, the situation with second derivatives is much more delicate. To see

this, let us first argue heuristically and compute how these derivatives scale with y.

From the asymptotic formula (3.25), we see that, for 0 < δ � 1 and s ∈ (0, 1)\{1
2
},

ˆ
Ω×(0,δ)

yα |Uyy|2 dx′ dy ≈
ˆ δ

0

yαy−2−2α dy =

ˆ δ

0

y−2−α dy, (3.26)

which, since α ∈ (−1, 1) \ {0}, does not converge. However,

ˆ
Ω×(0,δ)

yβ |Uyy|2 dx dy ≈
ˆ δ

0

yβ−2−2α dy,

converges for β > 2α + 1, hinting at the fact that U ∈ H2(C, yβ) \H2(C, yα). The

following result makes these considerations rigorous.

Theorem 3.3 (Global regularity of the α-harmonic extension) Let the data

f ∈ H1−s(Ω), where H1−s(Ω) is defined in (3.4) for s ∈ (0, 1). Let U ∈ ◦
H1
L(C, yα)
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solve (3.16) with f as data. Then, for s ∈ (0, 1) \ {1
2
}, we have

‖∆x′U ‖2
L2(C,yα) + ‖∂y∇x′U ‖2

L2(C,yα) = ds‖f‖2
H1−s(Ω), (3.27)

‖Uyy‖L2(C,yβ) . ‖f‖L2(Ω), (3.28)

with β > 2α + 1. For the special case s = 1
2
, we obtain

‖U ‖H2(C) . ‖f‖H1/2(Ω).

Remark 3.4 (Compatibility of f) It is possible to interpret the result of The-

orem 3.3 as follows. Consider s ∈ (1
2
, 1), or equivalently α ∈ (−1, 0). Then the

conormal exterior derivative condition for U gives us that Uy ≈ −dsy−αf as y ≈ 0+

on Ω × {0}, which in turn implies that Uy → 0 as y → 0+ on Ω × {0}. This is

compatible with U = 0 on ∂LC since this implies Uy = 0 on ∂LC. Consequently,

we do not need any compatibility condition on the data f ∈ H1−s(Ω) to avoid a

jump on the derivative Uy. On the other hand, when α ∈ (0, 1), we have that, for a

general f , Uy 9 0 as y → 0+ on Ω×{0}. To compensate this behavior we need the

data f to vanish at the boundary ∂Ω at a certain rate. This condition is expressed

by the requirement f ∈ H1−s
0 (Ω).

Proof of Theorem 3.3. Let us first consider s = 1
2
. In this case (3.16) reduces

to the Poisson problem with mixed boundary conditions. In general, the solution

of a mixed boundary value problem is not smooth, even for C∞ data. The singular

behavior occurs near the points of intersection between the Dirichlet and Neumann

boundary. For instance, the solution w =
√
r sin(θ/2) of ∆w = 0 in R2

+, with

wx2 = 0 for {x1 < 0, x2 = 0} and w = 0 for {x1 ≥ 0, x2 = 0} does not belong
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to H2(R2
+). To obtain more regular solutions, a compatibility condition between

the data, the operator and the boundary must be imposed (see, for instance, [141]).

Since in our case we have the representation (3.14), we can explicitly compute the

second derivatives and, using that {ϕk}k∈N is an orthonormal basis of L2(Ω) and

{ϕk/
√
λk}k∈N of H1

0 (Ω), it is not difficult to show that f ∈ H1/2
00 (Ω) implies U ∈

H2(C), and ‖U ‖H2(C) . ‖f‖H1/2
00 (Ω)

.

In the general case s ∈ (0, 1) \ {1
2
}, i.e., α ∈ (−1, 1) \ {0}, using (3.23) as well

as the asymptotic properties (3.21) and (3.22), we obtain

‖∆x′U ‖2
L2(C,yα) + ‖∂y∇x′U ‖2

L2(C,yα) =
∞∑
k=1

u2
kλk

ˆ ∞
0

yα
(
λkψk(y)2 + ψ′k(y)2

)
dy

= ds

∞∑
k=1

u2
kλ

1+s
k = ds

∞∑
k=1

f 2
kλ

1−s
k = ds‖f‖2

H1−s(Ω),

which is exactly the regularity estimate given in (3.27). To obtain the regularity

estimate on Uyy we, again, use the exact representation (3.14) and properties of

Bessel functions to conclude that any derivative with respect to the extended variable

y is smooth away from the Neumann boundary Ω × {0}. By virtue of (3.15) we

deduce that the following partial differential equation holds in the strong sense

div(yα∇U ) = 0⇐⇒ Uyy = −∆x′U −
α

y
Uy. (3.29)

Consider sequences {ak = 1/
√
λk}k≥1, {bk}k≥1 and {δk}k≥1 with 0 < δk ≤ ak ≤ bk.

Using (3.14) we have, for k ≥ 1,

‖Uyy‖2
L2(C,yβ) =

∞∑
k=1

u2
k

(
lim
δk↓0

ˆ ak

δk

yβ|ψ′′k(y)|2 dy + lim
bk↑∞

ˆ bk

ak

yβ|ψ′′k(y)|2 dy

)
(3.30)

Let us now estimate the first integral on the right hand side of (3.30). Formulas
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(3.20) and (3.18) yield

lim
δk↓0

ˆ ak

δk

yβ|ψ′′k(y)|2 dy = c2
sλ

2−β/2−1/2
k lim

δk↓0

ˆ 1

√
λkδk

zβ
∣∣∣∣ d2

dz2
(zsKs(z))

∣∣∣∣2 dz

. c2
sλ

2−β/2−1/2
k lim

δk↓0

ˆ 1

√
λkδk

zβ−2−2α dz ≈ λ
2−β/2−1/2
k

(3.31)

where the integral converges because β > 2α + 1. Let us now look at the second

integral. Using property (v) of the modified Bessel functions, we have

lim
bk↑∞

ˆ bk

ak

yβ|ψ′′k(y)|2 dy = c2
sλ

2−β/2−1/2
k lim

bk↑∞

ˆ √λkbk
1

zβ
∣∣∣∣ d2

dz2
(zsKs(z))

∣∣∣∣2 dz

. c2
sλ

2−β/2−1/2
k .

(3.32)

Replacing (3.31) and (3.32) into (3.30), and using that uk = λ−sk fk, we deduce

‖Uyy‖2
L2(C,yβ) .

∞∑
k=1

λ
2−β/2−1/2−2s
k f 2

k ≤ ‖f‖2
L2(Ω),

because 2− 2s− β
2
− 1

2
= 1

2
(1 + 2α− β) < 0. This concludes the proof. �

For the design of graded meshes later in § 3.4.2 we also need the following

local regularity result in the extended variable.

Theorem 3.5 (Local regularity of the α-harmonic extension) Let C(a, b) :=

Ω× (a, b) for 0 ≤ a < b ≤ 1. The solution U ∈ ◦
H1
L(C, yα) of (3.16) satisfies for all

a, b

‖∆x′U ‖2
L2(C(a,b),yα) + ‖∂y∇x′U ‖2

L2(C(a,b),yα) . (b− a) ‖f‖2
H1−s(Ω), (3.33)

and, with δ := β − 2α− 1 > 0,

‖Uyy‖2
L2(C(a,b),yβ) .

(
bδ − aδ

)
‖f‖2

L2(Ω). (3.34)
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Proof: To derive (3.33) we proceed as in Theorem 3.3. Since 0 ≤ a < b ≤ 1,

property (iii) of § 3.1.4, together with (3.21) imply that

|yαψk(y)ψ′k(y)| . λsk.

This, together with (3.23) and the property uk = λ−sk fk, allows us to conclude

‖∆x′U ‖2
L2(C(a,b),yα) + ‖∂y∇x′U ‖2

L2(C(a,b),yα) =
∞∑
k=1

u2
kλk

ˆ b

a

yα
(
λkψk(y)2 + ψ′k(y)2

)
dy

. (b− a)
∞∑
k=1

u2
kλ

1+s
k = (b− a)‖f‖2

H1−s(Ω).

To prove (3.34) we observe that the same argument used in (3.31) gives

ˆ b

a

yβ |ψ′′k(y)|2 dy . λ
2−β/2−1/2
k

(
bδ − aδ

)
,

whence

‖Uyy‖2
L2(C(a,b),yα) .

(
bδ − aδ

) ∞∑
k=1

f 2
kλ

2−β/2−1/2−2s
k .

(
bδ − aδ

)
‖f‖2

L2(Ω),

because 2− 2s− β
2
− 1

2
< 0. �

Remark 3.6 (Domain and data regularity) The results of Theorem 3.3 and

Theorem 3.5 are meaningful only if f ∈ H1−s(Ω) and the domain Ω is such that

‖w‖H2(Ω) . ‖∆x′w‖L2(Ω), ∀w ∈ H2(Ω) ∩H1
0 (Ω),

holds. In the analysis that follows we will, without explicit mention, make this

assumption. Let us, however, remark that our method works even when these

conditions are not satisfied. We refer to § 3.5.3 for an illustration of that case.
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3.2 Truncation

The solution U of problem (3.16) is defined on the infinite domain C and, conse-

quently, it cannot be directly approximated with finite element-like techniques. In

this section we will show that U decays sufficiently fast – in fact exponentially – in

the extended direction. This suggests truncating the cylinder C to CY , for a suitably

defined Y . The exponential decay is the content of the next result.

Proposition 3.4 (Exponential decay) For every Y ≥ 1, the solution U of (3.16)

satisfies

‖∇U ‖L2(Ω×(Y ,∞),yα) . e−
√
λ1Y /2‖f‖H−s(Ω). (3.35)

Proof: Recall that if u ∈ Hs(Ω) has the decomposition u =
∑

k ukϕk(x
′), the

solution U ∈ ◦
H1
L(C, yα) to (3.16) has the representation U =

∑
k ukϕ(x′)ψk(y),

where the functions ψk solve (3.15).

Consider s = 1
2
. In this case ψk(y) = e−

√
λky. Using the fact that {ϕk}∞k=1 are

eigenfunctions of Dirichlet Laplacian on Ω, orthonormal in L2(Ω) and orthogonal in

H1
0 (Ω) with ‖∇x′ϕk‖L2(Ω) =

√
λk, we get

ˆ ∞
Y

ˆ
Ω

|∇U |2 =

ˆ ∞
Y

ˆ
Ω

(
|∇x′U |2 + |∂yU |2

)
=
∞∑
k=1

λ
1
2
k |uk|2e−2

√
λkY ≤ e−2

√
λ1Y ‖u‖2

H1/2(Ω).

Since ‖u‖H1/2(Ω) = ‖f‖H−1/2(Ω), this implies (3.35).

Consider now s ∈ (0, 1) \ {1
2
} and ψk(y) = cs

(√
λky
)s
Ks(
√
λky). To be able

to argue as before, we need the estimates on Ks and its derivative for sufficiently
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large arguments discussed in § 3.1.4. In fact, using (3.22) and (3.23), we obtain

ˆ ∞
Y

ˆ
Ω

yα|∇U |2 =

ˆ ∞
Y

yα
ˆ

Ω

(
|∇x′U |2 + |∂yU |2

)
=
∞∑
k=1

|uk|2
ˆ ∞

Y
yα
(
λkψk(y)2 + ψ′k(y)2

)
dy

=
∞∑
k=1

|uk|2yαψk(y)ψ′k(y)

∣∣∣∣∣
∞

Y

. e−
√
λ1Y ‖u‖2

Hs(Ω).

Again, since ‖u‖Hs(Ω) = ‖f‖H−s(Ω) we get (3.35). �

Expression (3.35) motivates the approximation of U by a function v that

solves 

div(yα∇v) = 0, in CY ,

v = 0, on ∂LCY ∪ Ω× {Y },

∂v

∂να
= dsf, on Ω× {0},

(3.36)

with Y sufficiently large. Problem (3.36) is understood in the weak sense, i.e., we

define the space

◦
H1
L(CY , y

α) =
{
v ∈ H1(C, yα) : v = 0 on ∂LCY ∪ Ω× {Y }

}
,

and seek for v ∈ ◦
H1
L(CY , y

α) such that

ˆ
CY

yα∇v · ∇φ = ds〈f, trΩ φ〉, ∀φ ∈ ◦
H1
L(CY , y

α). (3.37)

Existence and uniqueness of v follows from the Lax-Milgram lemma.

Remark 3.7 (Zero extension) For every Y > 0 we have the embedding

◦
H1
L(CY , y

α) ↪→ ◦
H1
L(C, yα). (3.38)

To see this, it suffices to consider the extension by zero for y > Y .
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The next result shows the approximation properties of v, solution of (3.37) in

CY .

Lemma 3.8 (Exponential convergence in Y ) For any positive Y ≥ 1, we have

‖∇(U − v)‖L2(CY ,yα) . e−
√
λ1Y /4‖f‖H−s(Ω). (3.39)

Proof: Given φ ∈ ◦
H1
L(CY , y

α) denote by φe its extension by zero to C. By Re-

mark 3.7, φe ∈
◦
H1
L(C, yα). Take φe and φ as test functions in (3.16) and (3.37),

respectively. Subtract the resulting expressions to obtain

ˆ
CY

yα(∇U −∇v) · ∇φ = 0 ∀φ ∈ ◦
H1
L(CY , y

α),

which implies that v is the best approximation of U in
◦
H1
L(CY , y

α), i.e.,

‖∇(U − v)‖L2(CY ,yα) = inf
φ∈
◦
H1
L(CY ,yα)

‖∇(U − φ)‖L2(CY ,yα). (3.40)

Let us construct explicitly a function φ0 ∈
◦
H1
L(CY , y

α) to use in (3.40). Define

ρ(y) =



1, 0 ≤ y ≤ Y /2,

2

Y
(Y − y), Y /2 < y < Y ,

0, y ≥ Y .

(3.41)

Notice that ρ ∈ W 1
∞(0,∞), |ρ(y)| ≤ 1 and |ρ′(y)| ≤ 2/Y for all y > 0. Set

φ0(x′, y) = U (x′, y)ρ(y) for x′ ∈ Ω and y > 0. A straightforward computation

shows

|∇ ((1− ρ)U ) |2 ≤ 2
(
|ρ′|2|U |2 + (1− ρ)2|∇U |2

)
≤ 2

(
4

Y 2
U 2 + |∇U |2

)
,
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so that

‖∇(U − φ0)‖2
L2(CY ,yα) ≤ 2

(
4

Y 2

ˆ Y

Y /2

ˆ
Ω

yα|U |2 +

ˆ Y

Y /2

ˆ
Ω

yα|∇U |2
)
. (3.42)

To estimate the first term on the right hand side of (3.42) we use the Poincaré

inequality (3.10) over a dyadic partition that covers the interval [Y /2,Y ] (see the

derivation of (7.14) in § 3.1.2), to obtain

ˆ Y

Y /2
yα

ˆ
Ω

|U |2 .
ˆ Y

Y /2
yα

ˆ
Ω

|∇U |2. (3.43)

To bound the second integral in (3.42) we use (3.23) as in the proof of Proposi-

tion 3.4:

ˆ Y

Y /2
yα

ˆ
Ω

|∇U |2 =
∞∑
k=1

|uk|2yαψk(y)ψ′k(y)

∣∣∣∣∣
Y

Y /2

. e−
√
λ1Y /2‖f‖2

H−s(Ω).

Inserting these estimates into (3.40) implies (3.39). �

The following result is a direct consequence of Lemma 3.8.

Remark 3.9 (Stability) Let Y ≥ 1, then

‖∇v‖L2(CY ,yα) . ‖f‖H−s(Ω). (3.44)

Indeed, by the triangle inequality

‖∇v‖L2(CY ,yα) ≤ ‖∇(v −U )‖L2(CY ,yα) + ‖∇U ‖L2(CY ,yα) .
(
e−
√
λ1Y /4 + 1

)
‖f‖H−s(Ω).

The previous two results allow us to show a full approximation estimate.

Theorem 3.10 (Global exponential estimate) Let Y ≥ 1, then

‖∇(U − v)‖L2(C,yα) . e−
√
λ1Y /4‖f‖H−s(Ω). (3.45)
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In particular, for every ε > 0, let

Y0 =
2√
λ1

(
logC + 2 log

1

ε

)
,

where C depends only on s and Ω. Then, for Y ≥ max{Y0, 1}, we have

‖∇(U − v)‖L2(C,yα) ≤ ε‖f‖H−s(Ω). (3.46)

Proof: Extending v by zero outside of CY we obtain

‖∇(U − v)‖2
L2(C,yα) = ‖∇(U − v)‖2

L2(CY ,yα) + ‖∇U ‖2
L2(Ω×(Y ,∞),yα).

Hence Lemma 3.8 and Proposition 3.4 imply

‖∇(U − v)‖2
L2(C,yα) ≤ Ce−

√
λ1Y /2‖f‖2

H−s(Ω) ≤ ε2‖f‖2
H−s(Ω), (3.47)

for all Y ≥ max{Y0, 1}. �

3.3 Finite element discretization and interpolation estimates

In this section we prove error estimates for a piecewise Q1 interpolation operator on

anisotropic elements in the extended variable y. We consider elements of the form

T = K × I, where K ⊂ Rn is an element isoparametrically equivalent to the unit

cube [0, 1]n, via a Q1 mapping and, I ⊂ R is an interval. The anisotropic character

of the mesh TY = {T} will be given by the family of intervals I.

The error estimates are derived in the weighted Sobolev spaces L2(CY , y
α)

and H1(CY , y
α), and they are valid under the condition that neighboring elements

have comparable size in the extended (n + 1)–dimension (see [70]). This is a mild
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assumption that includes general meshes which do not satisfy the so-called shape-

regularity assumption, i.e., mesh refinements for which the quotient between outer

and inner diameter of the elements does not remain bounded (see [39, Chapter 4]).

Anisotropic or narrow elements are elements with disparate sizes in each direc-

tion. They arise naturally when approximating solutions of problems with a strong

directional-dependent behavior since, using anisotropy, the local mesh size can be

adapted to capture such features. Examples of this include boundary layers, shocks

and edge singularities (see [70, 71]). In our problem, anisotropic elements are es-

sential in order to capture the singular/degenerate behavior of the solution U to

problem (3.16) at y ≈ 0+ given in (3.24). These elements will provide optimal error

estimates, which cannot be obtained using shape-regular elements.

Error estimates for weighted Sobolev spaces have been obtained in several

works; see, for instance, [8, 21, 70]. The type of weight considered in [8, 21] is

related to the distance to a point or an edge, and the type of quasi-interpolators

are modifications of the well known Clément [58] and Scott-Zhang [143] operators.

These works are developed in 3D and 2D respectively, and the analysis developed

in [8] allows for anisotropy. Our approach follows the work of Durán and Lombardi

[70], and is based on a piecewise Q1 averaged interpolator on anisotropic elements.

It allows us to obtain anisotropic interpolation estimates in the extended variable y

and in weighted Sobolev spaces, using only that |y|α ∈ A2(Rn+1), the Muckenhoupt

class A2 of Definition 2.2. We develop a general interpolation theory for weights of

class Ap with 1 < p <∞ in Chapter 4; see also [132].
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3.3.1 Finite element discretization

Let us now describe the discretization of problem (3.36). To avoid technical diffi-

culties we assume that the boundary of Ω is polygonal. The difficulties inherent to

curved boundaries could be handled, for instance, with the methods of [23] (see also

[106, 107]). Let TΩ = {K} be a mesh of Ω made of isoparametric quadrilaterals

K in the sense of Ciarlet [56] and Ciarlet and Raviart [57]. In other words, given

K̂ = [0, 1]n and a family of mappings {FK ∈ Q1(K̂)n} we have

K = FK(K̂) (3.48)

and

Ω̄ =
⋃

K∈TΩ

K, |Ω| =
∑
K∈TΩ

|K|.

The collection of triangulations is denoted by TΩ.

The mesh TΩ is assumed to be conforming or compatible, i.e., the intersection

of any two isoparametric elements K and K ′ in TΩ is either empty or a common

lower dimensional isoparametric element.

In addition, we assume that TΩ is shape regular (cf. [56, Chapter 4.3]). This

means that FK can be decomposed as FK = AK + BK , where AK is affine and BK

is a perturbation map and, if we define K̃ = AK(K̂), hK = diam(K̃), ρK as the

diameter of the largest sphere inscribed in K̃ and the shape coefficient of K as the

ratio σK = hK/ρK , then the following two conditions are satisfied:

(a) There exists a constant σΩ > 1 such that for all TΩ ∈ TΩ,

max {σK : K ∈ TΩ} ≤ σΩ.
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(b) For all K ∈ TΩ the mapping BK is Fréchet differentiable and

‖DBK‖L∞(K̂) = O(h2
K),

for all K ∈ TΩ and all TΩ ∈ TΩ.

As a consequence of these conditions, if hK is small enough, the mapping FK is

one-to-one, its Jacobian JFK does not vanish, and

JFK . hnK , ‖DFK‖L∞(K̂) . hK . (3.49)

The set TΩ is called quasi-uniform if for all TΩ ∈ TΩ,

max {ρK : K ∈ TΩ} . min {hK : K ∈ TΩ} .

In this case, we define hTΩ
= maxK∈T hK .

We define TY as a triangulation of CY into cells of the form T = K × I, where

K ∈ TΩ, and I denotes an interval in the extended dimension. Notice that each

discretization of the truncated cylinder CY depends on the truncation parameter

Y . The set of all such triangulations is denoted by T. In order to obtain a global

regularity assumption for T we assume the aforementioned conditions on TΩ, besides

the following weak regularity condition:

(c) There is a constant σ such that, for all TY ∈ T, if T1 = K1×I1, T2 = K2×I2 ∈ TY

have nonempty intersection, then

hI1
hI2
≤ σ,

where hI = |I|.
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Notice that the assumptions imposed on T are weaker than the standard shape-

regularity assumptions, since they allow for anisotropy in the extended variable (cf.

[70]). It is also important to notice that, given the Cartesian product structure of

the cells T ∈ TY , they are isoparametrically equivalent to T̂ = [0, 1]n+1. We will

denote the corresponding mappings by FT . Then,

FT : x̂ = (x̂′, ŷ) ∈ T̂ 7−→ x = (x′, y) = (FK(x̂′),FI(ŷ)) ∈ T = K × I,

where FK is the bilinear mapping defined in (3.48) for K and, if I = (c, d), FI(y) =

(y − c)/(d− c). From (3.49), we immediately conclude that

JFT . hnKhI , ‖DFT‖L∞(T̂ ) . hT , (3.50)

for all elements T ∈ TY where hT = max{hK , hI}.

Given TY ∈ T, we define the finite element space V(TY ) by

V(TY ) =
{
W ∈ C0(CY ) : W |T ∈ Q1(T ) ∀T ∈ TY , W |ΓD = 0

}
.

where ΓD = ∂LCY ∪Ω×{Y } is called the Dirichlet boundary. The Galerkin approx-

imation of (3.37) is given by the unique function VTY ∈ V(TY ) such that

ˆ
CY

yα∇VTY · ∇W = ds〈f, trΩW 〉, ∀W ∈ V(TY ). (3.51)

Existence and uniqueness of VTY follows from V(TY ) ⊂ ◦
H1
L(CY , y

α) and the Lax-

Milgram lemma.

We define the space U(TΩ) = trΩ V(TY ), which is nothing more than a Q1 finite

element space over the mesh TΩ. The finite element approximation of u ∈ Hs(Ω),

solution of (1.1), is then given by

UTΩ
= trΩ VTY ∈ U(TΩ), (3.52)
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and we have the following result.

Theorem 3.11 (Energy error estimate) Let v solve (3.37) with Y ≥ max{Y0, 1}.

If VTY ∈ V(TY ) solves (3.51) and UTΩ
∈ U(TΩ) is defined in (3.52), then we have

‖u− UTΩ
‖Hs(Ω) . ‖U − VTY ‖ ◦H1

L(C,yα)
, (3.53)

and

‖U − VTY ‖ ◦H1
L(C,yα)

. ε‖f‖H−s(Ω) + ‖v − VTY ‖ ◦H1
L(CY ,yα)

. (3.54)

Proof: Estimate (3.53) is just an application of the trace estimate of Proposi-

tion 3.3. Inequality (3.54) is obtained by the triangle inequality and (3.46). �

By Galerkin orthogonality

‖v − VTY ‖ ◦H1
L(CY ,yα)

= inf
W∈V(TY )

‖v −W‖ ◦
H1
L(CY ,yα)

.

Theorem 3.11 and Galerkin orthogonality imply that the approximation estimate

(3.54) depends on the regularity of U . To see this we introduce

ρ(y) =


1, 0 ≤ y < Y /2,

p, Y /2 ≤ y ≤ Y ,

(3.55)

where p is the unique cubic polynomial on [Y /2,Y ] defined by the conditions

p(Y /2) = 1, p(Y ) = 0, p′(Y /2) = 0 and p′(Y ) = 0. Notice that ρ ∈ W 2
∞(0,Y ),

|ρ(y)| ≤ 1, |ρ′(y)| . 1 and |ρ′′(y)| . 1. Set U0(x′, y) = ρ(y)U (x′, y) for x′ ∈ Ω

and y ∈ [0,Y ], and notice that U0 ∈
◦
H1
L(CY , y

α). With this construction at hand,
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repeating the arguments used in the proof of Lemma 3.8, we have that

‖∆x′U0‖L2(CY ,yα) . ‖∆x′U ‖L2(CY ,yα),

‖∂y∇x′U0‖L2(CY ,yα) . ‖∂y∇x′U ‖L2(CY ,yα) + ‖f‖H−s(Ω),

‖∂yyU0‖L2(CY ,yβ) . ‖∂yyU ‖L2(CY ,yβ) + ‖f‖H−s(Ω).

(3.56)

In addition, if we assume that there is an operator

ΠTY :
◦
H1
L(CY , y

α)→ V(TY ),

that is stable, i.e., ‖ΠTY w‖ ◦H1
L(CY ,yα)

. ‖w‖ ◦
H1
L(CY ,yα)

, for all w ∈ ◦
H1
L(CY , y

α), then the

following estimate holds

‖U − VTY ‖ ◦H1
L(C,yα)

. ε‖f‖H−s(Ω) + ‖U0 − ΠTY U0‖ ◦H1
L(CY ,yα)

. (3.57)

To see this, we use (3.54), together with Galerkin orthogonality and the stability of

the operator ΠTY , to obtain

‖U − VTY ‖ ◦H1
L(C,yα)

. ε‖f‖H−s(Ω) + ‖v − ΠTY v‖ ◦H1
L(CY ,yα)

. ε‖f‖H−s(Ω) + ‖v −U0‖ ◦H1
L(CY ,yα)

+ ‖U0 − ΠTY U0‖ ◦H1
L(CY ,yα)

.

The second term on the right hand side of the previous inequality is estimated as

in Lemma 3.8. We leave the details to the reader.

Estimates for U0 − ΠTY U0 on weighted Sobolev spaces are derived in §3.3.2.

Clearly, these depend on the regularity of U0 which, in light of (3.56), depends on

the regularity of U . For this reason, and to lighten the notation, we shall in the

sequel write U and obtain interpolation error estimates for it, even though U does

not vanish at y = Y .
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3.3.2 Interpolation estimates in weighted Sobolev spaces

Let us begin by introducing some notation and terminology. Given TY , we call N

the set of its nodes and N in the set of its interior and Neumann nodes. For each

vertex v ∈ N , we write v = (v′, v′′), where v′ corresponds to a node of TΩ, and

v′′ corresponds to a node of the discretization of the n + 1–dimension. We define

hv′ = min{hK : v′ is a vertex of K}, and hv′′ = min{hI : v′′ is a vertex of I}.

Given v ∈ N , the star or patch around v is defined as

ωv =
⋃
T3v

T,

and for T ∈ TY we define its patch as

ωT =
⋃
v∈T

ωv.

Let ψ ∈ C∞(Rn+1) be such that
´
ψ = 1 and D := suppψ ⊂ Br × (0, rY ),

where Br denotes the ball in Rn of radius r and centered at zero, and r ≤ 1/σΩ and

rY ≤ 1/σ. For v ∈ N in, we rescale ψ as

ψv(x) =
1

hnv′hv′′
ψ

(
x′ − v′

hv′
,
y − v′′

hv′′

)
,

and note that suppψv ⊂ ωv and
´
ωv
ψv = 1 for any interior and Neumann node v.

Remark 3.12 (Boundary conditions of Neumann type) For an interior node

v, it would be natural to consider Br × (−rY , rY ) as the support of the smooth

function ψ. However, for a Neumann node v, this choice would not provide the

important properties suppψv ⊂ ωv and
´
ωv
ψv = 1. In order to treat both types of
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nodes indistinctly in the subsequent analysis, we have considered suppψ ⊂ Br ×

(0, rY ).

Given a function w ∈ L2(CY , y
α) and a node v in N in we define, following

Durán and Lombardi [70], the regularized Taylor polynomial of first degree of w

about v as

Q1
vw(z) =

ˆ
P 1(x, z)ψv(x) dx =

ˆ
ωv

P 1(x, z)ψv(x) dx, (3.58)

where P 1 denotes the Taylor polynomial of degree 1 in the variable z of the function

w about the point x, i.e.,

P 1(x, z) = w(x) +∇w(x) · (z − x). (3.59)

As a consequence of Remark 3.1 and the fact that the averaged Taylor poly-

nomial is defined for functions in L1(CY ) (cf. [39, Proposition 4.1.12]), we conclude

that Q1
v is well defined for any function in L2(CY , y

α).

We define the averaged Q1 interpolant ΠTY w, as the unique piecewise Q1 func-

tion such that ΠTY w(v) = 0 if v lies on the Dirichlet boundary ΓD and ΠTY w(v) =

Q1
vw(v) if v ∈ N in. If φv denotes the Lagrange basis function associated with node

v, then

ΠTY w =
∑
v∈Nin

Q1w(v)φv.

There are two principal reasons to consider averaged interpolation. First,

we are interested in the approximation of singular functions and thus Lagrange

interpolation cannot be used since point-wise values become meaningless. In fact,

this motivated the introduction of averaged interpolation (see [58, 143]). In addition,
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averaged interpolation has better approximation properties when narrow elements

are used (see [2]).

Finally, for v ∈ N in, we define the weighted regularized average of w as

Q0
vw =

ˆ
w(x)ψv(x) dx =

ˆ
ωv

w(x)ψv(x) dx. (3.60)

3.3.2.1 Weighted Poincaré inequality

In order to obtain interpolation error estimates in L2(CY , y
α) and H1(CY , y

α), it

is instrumental to have a weighted Poincaré-type inequality. Weighted Poincaré

inequalities are particularly pertinent in the study of the nonlinear potential theory

of degenerate elliptic equations, see [79, 102]. If the domain is a ball and the weight

belongs to Ap, with 1 ≤ p < ∞, this result can be found in [79, Theorem 1.3 and

Theorem 1.5]. However, to the best of our knowledge, such a result is not available

in the literature for more general domains. For our specific weight we present here

a constructive proof, i.e., not based on a compactness argument. This allows us to

study the dependence of the constant on the domain.

Lemma 3.13 (Weighted Poincaré inequality I) Let ω ⊂ Rn+1 be bounded, star-

shaped with respect to a ball B, and diamω ≈ 1. Let χ ∈ C0 (ω̄) with
´
ω
χ = 1, and

ξα(y) := |a|y|+ b|α for a, b ∈ R. If w ∈ H1(ω, ξα(y)) is such that
´
ω
χw = 0, then

‖w‖L2(ω,ξα) . ‖∇w‖L2(ω,ξα), (3.61)

where the hidden constant depends only on χ, α and the radius r of B, but is

independent of both a and b.
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Proof: The fact that α ∈ (−1, 1) implies ξα ∈ A2(Rn+1) with a Muckenhoupt

constant C2,ξα in (2.10) uniform in both a and b. Define

w̃ = ξαw −
(ˆ

ω

ξαw

)
χ.

Clearly w̃ ∈ L1(ω) and it has vanishing mean value by construction.

Since
´
ω
χw = 0 we obtain

‖w‖2
L2(ω,ξα) =

ˆ
ω

ww̃ +

(ˆ
ω

ξαw

) ˆ
ω

χw =

ˆ
ω

ww̃. (3.62)

Consequently, given that ω is star shaped with respect to B, and ξα ∈ A2(Rn+1),

there exists F ∈ H1
0 (ω, ξα)n+1 such that −divF = w̃, and

‖F‖H1
0 (ω,ξ−1

α )n+1 . ‖w̃‖L2(ω,ξ−1
α ), (3.63)

where the hidden constant in (3.63) depends on r and the constant C2,ξα from

Definition 2.2 [72, Theorem 3.1].

Replacing w̃ by −divF in (3.62), integrating by parts and using (3.63), we get

‖w‖2
L2(ω,ξα) = −

ˆ
ω

w divF =

ˆ
ω

∇w · F . ‖∇w‖L2(ω,ξα)‖w̃‖L2(ω,ξ−1
α ). (3.64)

To estimate ‖w̃‖L2(ω,ξ−1
α ) we use the Cauchy-Schwarz inequality and the constant

C2,ξα from Definition 2.2 as follows:

‖w̃‖2
L2(ω,ξ−1

α )
≤ 2

(
1 +

ˆ
ω

ξα

ˆ
ω

χ2ξ−1
α

)
‖w‖2

L2(ω,ξα) . ‖w‖2
L2(ω,ξα).

Inserting the inequality above into (3.64), we obtain (3.61). �

We need a slightly more general form of the Poincaré inequality for the appli-

cations below. We now relax the geometric assumption on the domain ω and let the

vanishing mean property hold just in a subdomain.
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Corollary 3.14 (Weighted Poincaré inequality II) Let ω = ∪Ni=1ωi ⊂ Rn+1 be

a connected domain and each ωi be a star-shaped domain with respect to a ball Bi.

Let χi ∈ C0(ω̄i) and ξα be as in Lemma 3.13. If w ∈ H1(ω, ξα) and wi :=
´
ωi
wχi,

then

‖w − wi‖L2(ω,ξα) . ‖∇w‖L2(ω,ξα) ∀1 ≤ i ≤ N, (3.65)

where the hidden constant depends on {χi}Ni=1, α, the radius ri of Bi, and the amount

of overlap between the subdomains {ωi}Ni=1, but is independent of both a and b.

Proof: This is a consequence of Lemma 3.13 and [68, Theorem 7.1]. We sketch the

proof here for completeness. It suffices to deal with two subdomains, ω1, ω2, and the

overlapping region B = ω1 ∩ ω2. We observe that

‖w − w1‖L2(ω2,ξα) ≤ ‖w − w2‖L2(ω2,ξα) + ‖w1 − w2‖L2(ω2,ξα),

together with ‖w1 − w2‖L2(ω2,ξα) =
( ´

ω2
ξα´

B ξα

)1/2

‖w1 − w2‖L2(B,ξα) and

‖w1 − w2‖L2(B,ξα) . ‖w − w1‖L2(ω1,ξα) + ‖w − w2‖L2(ω2,ξα),

imply ‖w−w1‖L2(ω2,ξα) . ‖∇w‖L2(ω1∪ω2,ξα). This, combined with (3.61), gives (3.65)

for i = 1 with a stability constant depending on the ratio
´
ω2
ξα´

B ξα
. �

3.3.2.2 Weighted L2 interpolation estimates

Owing to the weighted Poincaré inequality of Corollary 3.14, we can adapt the

proof of [70, Lemma 2.3] to obtain interpolation estimates in the weighted L2-norm.

These estimates allow a disparate mesh-size on the extended direction, relative to
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the coordinate directions xi, i = 1, . . . , n, which may in turn be graded. This is the

principal difference with [70, Lemma 2.3] where, however, the domain must be a

cube.

Lemma 3.15 (Weighted L2-based interpolation estimates) Let v ∈ N in. Then,

for all w ∈ H1(ωv, y
α), we have

‖w −Q0
vw‖L2(ωv,yα) . hv′‖∇x′w‖L2(ωv,yα) + hv′′‖∂yw‖L2(ωv,yα), (3.66)

and, for all w ∈ H2(ωv, y
α) and j = 1, . . . , n+ 1, we have

‖∂xj(w −Q1
vw)‖L2(ωv,yα) . hv′

n∑
i=1

‖∂2
xjxi

w‖L2(ωv,yα) + hv′′‖∂2
xjy
w‖L2(ωv,yα), (3.67)

where, in both inequalities, the hidden constant depends only on α, σΩ, σ and ψ.

Proof: Define by Fv : (x′, y)→ (x̄′, ȳ) the scaling map

x̄′ =
x′ − v′

hv′
, ȳ =

y − v′′

hv′′
,

along with ωv = Fv(ωv) and w̄(x̄) = w(x). Define also Q̄0w̄ =
´
w̄ψ, where ψ has

been introduced in section 3.3.2. Since suppψ ⊂ ωv integration takes place only

over ωv, and
´
ωv
ψ = 1. Then, Q̄0w̄ satisfies Q̄0w̄ =

´
ωv
w̄ψ =

´
ωv
wψv = Q0

vw, and

ˆ
ωv

(Q̄0w̄ − w)ψ dx̄ = Q̄0w̄ −
ˆ
ωv

w̄ψ dx̄ = 0. (3.68)

Simple scaling, using the definition of the mapping Fv, yields

ˆ
ωv

yα|w −Q0
vw|2 dx = hnv′hv′′

ˆ
ωv

ξα|w̄ − Q̄0w̄|2 dx̄, (3.69)

where ξα(y) := |v′′ + ȳhv′′ |α. By shape regularity, the mesh sizes hv′ , hv′′ satisfy

1/2σ ≤ hv̄′′ ≤ 2σ and 1/2σΩ ≤ hv̄′ ≤ 2σΩ, respectively, and diamωv ≈ 1. In view
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of (3.68), we can apply Lemma 3.13 with the weight ξα and χ = ψ, to ω = ωv to

obtain

‖w̄ − Q̄0w̄‖L2(ω̄v,ξα) . ‖∇̄w̄‖L2(ω̄v,ξα),

where the hidden constant depends only on α, σΩ, σ and ψ, but not on v′′ and hv′′ .

Applying this to (3.69), together with a change of variables with F −1
v , we get (3.66).

The proof of (3.67) is similar. Notice that

Q1
vw(z) =

ˆ
ωv

(w(x) +∇w(x) · (z − x))ψv(x) dx

=

ˆ
ωv

(
w̄(x̄) + ∇̄w̄(x̄) · (z̄ − x̄)

)
ψ(x̄) dx̄ =: Q̄1w̄(z̄).

Since ∂z̄iw̄0(z̄) =
´
ωv
∂x̄iw̄(x̄)ψ(x̄) dx̄ is constant, we have the vanishing mean value

property ˆ
ωv

∂z̄i (w̄(z̄)− w̄0(z̄))ψ(z̄) dz̄ = 0.

Applying Lemma 3.13 to ∂x̄i (w̄(x̄)− w̄0(x̄)), and scaling with Fv we obtain (3.67).

�

By shape regularity, for all v ∈ N in and T ⊂ ωv, the quantities hv′ and hv′′

are equivalent to hK and hI , up to a constant that depends only on σΩ and σ,

respectively. This fact leads to the following result about interpolation estimates

in the weighted L2-norm on interior elements; we refer to § 3.3.2.4 for boundary

elements.

Theorem 3.16 (Stability and local interpolation in the weighted L2-norm)

For all T ∈ TY such that ∂T ∩ ΓD = ∅, and w ∈ L2(ωT , y
α) we have

‖ΠTY w‖L2(T,yα) . ‖w‖L2(ωT ,yα). (3.70)
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If, in addition, w ∈ H1(ωT , y
α)

‖w − ΠTY w‖L2(T,yα) . hv′‖∇x′w‖L2(ωT ,yα) + hv′′‖∂yw‖L2(ωT ,yα). (3.71)

The hidden constants in both inequalities depend only on σΩ, σ, ψ and α.

Proof: Let T ∈ TY be an element such that ∂T ∩ ΓD = ∅. Assume, for the

moment, that ΠTY is uniformly bounded as a mapping from L2(ωT , y
α) to L2(T, yα),

i.e., (3.70).

Choose a node v of T . Since Q1
vw is constant, we deduce ΠTY Q

1
vw = Q1

vw,

whence

‖w − ΠTY w‖L2(T,yα) = ‖(I − ΠTY )(w −Q1
vw)‖L2(T,yα) . ‖w −Q1

vw‖L2(ωT ,yα),

so that (3.71) follows from Corollary 3.14.

It remains to show the local boundedness (3.70) of ΠTY . By definition,

ΠTY w =

nT∑
i=1

Q1
vi

(vi)φvi ,

where {vi}nTi=1 denotes the set of interior vertices of T . By the triangle inequality

‖ΠTY w‖L2(T,yα) ≤
nT∑
i=1

‖Q1
vi
‖L∞(T )‖φvi‖L2(T,yα), (3.72)

so that we need to estimate ‖Q1
vi
‖L∞(T ). This follows from (3.58) along with,∣∣∣∣∣

ˆ
ωvi

wψvi

∣∣∣∣∣ ≤ ‖w‖L2(ωvi ,y
α)‖ψvi‖L2(ωvi ,y

−α), (3.73)

and, for ` = 1, . . . , n+ 1,∣∣∣∣∣
ˆ
ωvi

∂x`w(x)(z` − x`)ψvi(x) dx

∣∣∣∣∣ . ‖w‖L2(ωvi ,y
α)‖ψvi‖L2(ωvi ,y

−α). (3.74)
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We get (3.74) upon integration by parts, and noticing that ψvi = 0 on ∂ωvi , and

|zl − xl||∂xlψvi | . 1 for 1 ≤ l ≤ n+ 1. Replacing (3.73) and (3.74) in (3.72), we get

‖ΠTY w‖L2(T,yα) . ‖w‖L2(ωT ,yα)

nT∑
i=1

‖φvi‖L2(T,yα)‖ψvi‖L2(ωvi ,y
−α) . ‖w‖L2(ωT ,yα),

where the last inequality is a consequence of φvi and ψ being bounded in L∞(ωT ),

‖φvi‖L2(T,yα)‖ψvi‖L2(ωvi ,y
−α) . |ωvi|−1

(ˆ
ωvi

|y|α
ˆ
ωvi

|y|−α
)1/2

,

together with |y|α ∈ A2(Rn+1); see (2.10). �

3.3.2.3 Weighted H1 interior interpolation estimates

Here we prove interpolation estimates on the first derivatives for interior elements.

The, rather technical, proof is an adaption of [70, Theorem 2.5] to our particular

geometric setting. In contrast to [70, Theorem 2.5], we do not have the symmetries

of a cube. However, exploiting the Cartesian product structure of the elements

T = K× I, we are capable of handling the anisotropy in the extended variable y for

general shape-regular graded meshes TY . This is the content of the following result.

Theorem 3.17 (Stability and local interpolation: interior elements) Let T ∈

TY be such that ∂T ∩ ΓD = ∅. For all w ∈ H1(ωT , y
α) we have the stability bounds

‖∇x′ΠTY w‖L2(T,yα) . ‖∇x′w‖L2(ωT ,yα), (3.75)

‖∂yΠTY w‖L2(T,yα) . ‖∂yw‖L2(ωT ,yα), (3.76)

and, for all w ∈ H2(ωT , y
α) and j = 1, . . . , n+ 1 we have the error estimates

‖∂xj(w − ΠTY w)‖L2(T,yα) . hv′‖∇x′∂xjw‖L2(ωT ,yα) + hv′′‖∂y∂xjw‖L2(ωT ,yα). (3.77)
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Figure 3.1: A generic element T = K × I in three dimensions: a quadrilateral prism.

Proof: To exploit the particular structure of T , we label its vertices in an appropri-

ate way; see Figure 3.1 for the three-dimensional case. In general, if T = K × [a, b],

we first assign a numbering {vk}k=1,...,2n to the nodes that belong to K × {a}. If

(ṽ′, b) is a vertex in K × {b}, then there is a vk ∈ K × {a} such that ṽ′ = v′k, and

we set vk+2n = ṽ. We proceed in three steps.

1 Derivative ∂y in the extended dimension. We wish to obtain a bound for the

norm ‖∂y(w − ΠTY w)‖L2(T,yα). Since, w − ΠTY w = (w − Q1
v1
w) + (Q1

v1
w − ΠTY w)

and an estimate for the difference w − Q1
v1
w is given in Lemma 3.15, it suffices to

consider q := Q1
v1
w − ΠTY w ∈ Q1. Thanks to the special labeling of the nodes and

the tensor product structure of the elements, i.e., ∂yφvi+2n
= −∂yφvi , we get

∂yq =
2n+1∑
i=1

q(vi)∂yφvi =
2n∑
i=1

(q(vi)− q(vi+2n))∂yφvi ,

so that

‖∂yq‖L2(T,yα) ≤
2n∑
i=1

|q(vi)− q(vi+2n)|‖∂yφvi‖L2(T,yα). (3.78)

We now set i = 1 and proceed to estimate the difference |q(v1)− q(v1+2n)|.

By the definitions of ΠTY and q, we have ΠTY w(v1) = Q1
v1
w(v1), whence

δq(v1) := q(v1)− q(v1+2n) = Q1
v1+2n

w(v1+2n)−Q1
v1
w(v1+2n),

58



and by the definition (3.58) of the averaged Taylor polynomial we have

δq(v1) =

ˆ
ωv1+2n

P 1(x, v1+2n)ψv1+2n
(x) dx−

ˆ
ωv1

P 1(x, v1+2n)ψv1(x) dx. (3.79)

Recalling the operator�, introduced in (2.4), we notice that, for hv = (hv′ , hv′′)

and z ∈ Rn+1, the vector hv � z is uniformly equivalent to (hKz
′, hIz

′′) for all

T = K × I in the star ωv. Changing variables in (3.79) yields

δq(v1) =

ˆ (
P 1(v1+2n − hv1+2n

� z, v1+2n)− P 1(v1 − hv1 � z, v1+2n)
)
ψ(z) dz.

(3.80)

To estimate this expression define

θ = (0, θ′′) =
(

0, v′′1+2n − v′′1 + (hv′′1 − hv′′1+2n
)z′′
)
, (3.81)

and Fz(t) = P 1(v1 − hv1 � z + tθ, v1+2n). Using that v′1 = v′1+2n and hv′1 = hv′1+2n
,

we easily obtain

P 1(v1+2n − hv1+2n
� z, v1+2n)− P 1(v1 − hv1 � z, v1+2n) = Fz(1)− Fz(0).

Consequently,

δq(v1) =

ˆ ˆ 1

0

F ′z(t)ψ(z) dt dz =

ˆ 1

0

ˆ
F ′z(t)ψ(z) dz dt, (3.82)

and since ψ is bounded in L∞ and suppψ = D ⊂ B1× (−1, 1), we need to estimate

the integral

I(t) =

ˆ
D

|F ′z(t)| dz, 0 ≤ t ≤ 1.

Invoking the definitions of Fz and P 1(x, y), we deduce

F ′z(t) = ∇xP
1(v1 − hv1 � z + tθ, v1+2n) · θ,
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and

∇xP
1(x, v) = D2w(x) · (v− x).

Using these two expressions, we arrive at

I(t) ≤
ˆ
D

(∣∣∂2
yyw(v1 − hv1 � z + tθ)

∣∣ ∣∣v′′1+2n − v′′1 + hv′′1 z
′′ − tθ′′

∣∣
+ |∂y∇x′w(v1 − hv1 � z + tθ)| |v′1+2n − v′1 + hv′1z

′|
)
|θ′′| dz,

Now, since |z′|, |z′′| ≤ 1 and 0 ≤ t ≤ 1, we see that

|v′1+2n − v′1 + hv′1z
′| . hv′1 , |v′′1+2n − v′′1 + hv′′1 z

′′ − tθ′′| . hv′′1 .

Consequently,

I(t) .
ˆ
D

(∣∣∂2
yyw(v1 − hv1 � z + tθ)

∣∣h2
v′′1

+ |∂y∇x′w(v1 − hv1 � z + tθ)|hv′1hv′′1
)

dz.

Changing variables, via τ = v1 − hv1 � z + tθ, we obtain

I(t) .
ˆ
ωT

(
hv′′1
hn
v′1

∣∣∂2
yyw(τ)

∣∣+
1

hn−1
v′1

|∂y∇x′w(τ)|
)

dτ, (3.83)

because the support D of ψ is contained in B1/σΩ
×(−1/σY , 1/σY ), and so is mapped

into ωv1 ⊂ ωT . Notice also that hv′′1 . (1− t)hv′′1 + thv′′1+2n
. This implies

I(t) .

(
hv′′1
hn
v′1

‖∂2
yyw‖L2(ωT ,yα) +

1

hn−1
v′1

‖∇x′∂yw‖L2(ωT ,yα)

)
‖1‖L2(ωT ,y−α), (3.84)

which, together with (3.82), yields

|δq(v1)|‖∂yφv1‖L2(T,yα) .

(
hv′′1
hn
v′1

‖∂2
yyw‖L2(ωT ,yα) +

1

hn−1
v′1

‖∇x′∂yw‖L2(ωT ,yα)

)

· ‖1‖L2(ωT ,y−α)‖∂yφv1‖L2(T,yα). (3.85)
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Since |y|α ∈ A2(Rn+1), we have

‖1‖L2(ωT ,y−α)‖∂yφv1‖L2(T,yα) . hnv′1
1

hv′′1

(ˆ
I

y−α
)1

2
(ˆ

I

yα
)1

2

. hnv′1 .

Replacing this into (3.85), we obtain

|δq(v1)|‖∂yφv1‖L2(T,yα) . h′v1
‖∇x′∂yw‖L2(ωT ,yα) + hv′′1‖∂

2
yyw‖L2(ωT ,yα), (3.86)

which, in this case, implies (3.77).

We now proceed to estimate the differences |q(vi)− q(vi+2n)| in (3.78) for i =

2, . . . , 2n. We employ the arguments presented in [70, Theorem 2.5] in conjunction

with the techniques developed to get the estimate (3.86). We start by writing

q(vi)− q(vi+2n) = Q1
v1
w(vi)−Q1

vi
(vi)− (Q1

v1
w(vi+2n)−Q1

vi+2n
(vi+2n))

= Q1
v1
w(vi)−Q1

v1
w(vi+2n)− (Q1

vi
w(vi)−Q1

vi
w(vi+2n))

+ (Q1
vi+2n

(vi+2n)−Q1
vi
w(vi+2n)) = I − II + III.

Term III is identical to (3.79). The novelty here is the presence of terms I and

II which, in view of (3.58) and the fact that v′i = v′i+2n for i = 2, . . . , 2n, can be

rewritten as

I − II =

ˆ
ωv1

(v′′i − v′′i+2n)∂yw(x)ψv1(x) dx−
ˆ
ωvi

(v′′i − v′′i+2n)∂yw(x)ψvi(x) dx

= (v′′i − v′′i+2n)

ˆ
(∂yw(v1 − hv1 � z)− ∂yw(vi − hvi � z))ψ(z) dz.

To estimate this expression, we define ϑ = (v′1 − v′i − (hv′1 − hv′i)z
′, 0), and the

function Gz(t) = ∂yw(vi − hvi � z + tϑ). Then, by using v′′1 = v′′i and hv′′1 = hv′′i for

i = 2, . . . , 2n, we arrive at

I − II = (v′′i − v′′i+2n)

ˆ 1

0

ˆ
G′z(t)ψ(z) dz dt.
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Proceeding as in the case i = 1, we obtain

|I − II|‖∂yφvi‖L2(T,yα) . hv′i‖∂y∇x′w‖L2(ωT ,yα).

Collecting the estimates above for i = 2, . . . , 2n, we finally get

|q(vi)− q(vi+2n)|‖∂yφvi‖L2(T,yα) . hv′‖∂y∇x′w‖L2(ωT ,yα) + hv′′‖∂yyw‖L2(ωT ,yα).

This together with (3.86) implies the desired estimate (3.77) for j = n+ 1.

2 Derivatives ∇x′ in the domain Ω. To prove an estimate for ∇x′(w − ΠTY w) we

notice that, given a vertex v, the associated basis function φv can be written as

φv(x) = Λv′(x
′)µv′′(y), where Λv′ is the canonical Q1 basis function on the variable

x′ associated to the node v′ in the triangulation TΩ, and µv′′ corresponds to the

piecewise P1 basis function associated to the node v′′. Recall that, by construction,

the basis {Λi}2n

i=1 possesses the so-called partition of unity property, i.e.,

2n∑
i=1

Λv′i
(x′) = 1 ∀x′ ∈ K, =⇒

2n∑
i=1

∇x′Λv′i
(x′) = 0 ∀x′ ∈ K. (3.87)

This implies that, for every q ∈ Q1(T ),

∇x′q =
2n+1∑
i=1

q(vi)∇x′φvi =
2n∑
i=1

(
q(vi)µv′′i (y) + q(vi+2n)µv′′i+2n

(y)
)
∇x′Λv′i

(x′)

=
2n∑
i=1

[
(q(vi)− q(v1))µv′′i (y) + (q(vi+2n)− q(v1+2n))µv′′i+2n

(y)
]
∇x′Λv′i

(x′),

whence, for j = 1, . . . , n,

‖∂xjq‖L2(T,yα) .
2n∑
i=1

|q(vi)− q(v1)|‖µv′′i ∂xjΛv′i
‖L2(T,yα)

+
2n∑
i=1

|q(v1+2n)− q(vi+2n)|‖µv′′i+2n
∂xjΛv′i

‖L2(T,yα).

62



This expression shows that the same techniques developed for the previous step lead

to (3.77). In fact, we let q = Q1
v1
w−ΠTY w ∈ Q1 and estimate δq(vi) := q(vi)−q(v1)

and δq(vi+2n) := q(vi+2n)− q(v1+2n) for i = 2, . . . , 2n as follows; we deal with δq(vi)

only because the same argument applies to δq(vi+2n). Using (3.58) and changing

variables, we derive

δq(vi) = Q1
v1
w(vi)−Q1

vi
w(vi)

=

ˆ (
P 1(v1 − hv1 � z, vi)− P 1(vi − hvi � z, vi)

)
ψ(z) dz.

Defining the vector % := (%1, 0) = (v′1 − v′i + (h′v1
− h′vi)z′, 0) and Hz(t) := P (vi −

hvi � z + t%, vi) yields

δq(vi) =

ˆ 1

0

ˆ
H ′z(t)ψ(z) dz dt.

Since ψ is bounded in L∞ and suppψ ⊂ D, we next invoke the definitions of Hz

and the polynomial P , to deduce

ˆ
|H ′z(t)ψ(z)| dz .

ˆ
D

|∇x′∂xjw(vi − hvi � z + t%)||hv′iz
′ + t%1||%1| dz

+

ˆ
D

|∂y∂xjw(vi − hvi � z + t%)||hv′′i z
′′||%1| dz.

Arguing as with the estimate (3.86), and using the scaling result

‖1‖L2(ωT ,yα)‖µv′′i ∂xjΛv′i
‖L2(T,yα) . hn−1

v′i
hv′′i ,

we infer that

|δq(vi)|‖µv′′i ∂xjΛv′i
‖L2(T,yα) . hv′i‖∇x′∂xjw‖L2(ωT ,yα) + hv′′i ‖∂y∂xjw‖L2(ωT ,yα).

Finally, collecting the above estimates we obtain (3.77) for ∂xj with j = 1, . . . , n.
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3 Stability. It remains to prove (3.75) and (3.76). By the triangle inequality,

‖∂yΠTY w‖L2(T,yα) ≤ ‖∂y(w − ΠTY w)‖L2(T,yα) + ‖∂yw‖L2(T,yα),

so that it suffices to estimate the first term. Add and subtract Q1
v1
w,

‖∂y(w − ΠTY w)‖L2(T,yα) ≤ ‖∂y(w −Q1
v1
w)‖L2(T,yα) + ‖∂y(Q1

v1
w − ΠTY w)‖L2(T,yα).

(3.88)

Let us estimate the first term. The definition of ψv1 , together with |y|α ∈ A2(Rn+1)

implies ‖ψv1‖L2(ωv1 ,y
−α)‖1‖L2(ωv1 ,y

α) . 1, whence invoking the definition (3.58) of the

regularized Taylor polynomial Q1
v1
w yields

‖∂yQ1
v1
w‖L2(T,yα) ≤ ‖∂yw‖L2(ωv1 ,y

α),

and

‖∂y(w −Q1
v1
w)‖L2(T,yα) ≤ ‖∂yw‖L2(T,yα)+‖∂yQ1

v1
w‖L2(T,yα).‖∂yw‖L2(ωv1 ,y

α).
(3.89)

To estimate the second term of the right hand side of (3.88), we repeat the

steps used to obtain (3.77), starting from (3.79). We recall δq(vi) = q(vi)−q(vi+2n),

and we proceed to estimate δq(v1). Integrating by parts and using that ψvi = 0 on

∂ωvi , we get, for ` = 1, . . . , n+ 1,

ˆ
ωvi

∂x`w(x)(z` − x`)ψvi(x) dx =

ˆ
ωvi

w(x)ψvi(x) dx

−
ˆ
ωvi

w(x)(z` − x`)∂x`ψvi(x) dx,
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whence

δq(v1) = (n+ 2)

(ˆ
w(x)ψv1+2n

dx−
ˆ
w(x)ψv1 dx

)
−
ˆ
w(x)(v1+2n − x) · ∇ψv1+2n

(x) dx+

ˆ
w(x)(v1 − x) · ∇ψv1(x) dx

= I1 + I2.

(3.90)

To estimate I1 we consider the same change of variables used to obtain (3.80). Define

Gz(t) = (n+ 2) · w(v1 − hv1 � z + tθ), with θ as in (3.81), and observe that

I1 =

ˆ 1

0

ˆ
G′z(t)ψ(z) dz dt = (n+ 2)

ˆ 1

0

ˆ
∂yw(v1 − hv1 � z + tθ)θ′′ψ(z) dz dt.

Introducing the change of variables τ = v1 − hv1 � z + tθ, we obtain

|I1| .
ˆ
ωT

1

hn
v′1

|∂yw(τ)| dτ ≤ 1

hn
v′1

‖∂yw‖L2(ωT ,yα)‖1‖L2(ωT ,y−α). (3.91)

We now estimate I2. Changing variables,

I2 =

ˆ (
w(v1+2n − hv1+2n

� z)− w(v1 − hv1 � z)
)
z′ · ∇x′ψ(z) dz

+

ˆ (
w(v1+2n − hv1+2n

� z)z′′ − w(v1 − hv1 � z)(ϑ+ z′′)
)
∂yψ(z) dz

= I2,1 + I2,2,

where ϑ = (v′′1+2n − v′′1)/hv′′1 . Arguing as in the derivation of (3.91) we obtain

|I2,1|, |I2,2| .
ˆ
ωT

1

hn
v′1

|∂yw(τ)| dτ ≤ 1

hn
v′1

‖∂yw‖L2(ωT ,yα)‖1‖L2(ωT ,y−α). (3.92)

Inserting (3.91) and (3.92) in (3.90) we deduce

|δq(v1)| . 1

hn
v′1

‖∂yw‖L2(ωT ,yα)‖1‖L2(ωT ,y−α),
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whence

|δq(v1)|‖∂yφv1‖L2(T,yα) . ‖∂yw‖L2(ωT ,yα), (3.93)

because h−n
v′1
‖∂yφv1‖L2(ωT ,yα)‖1‖L2(ωT ,y−α) ≤ C. Replacing (3.93) in (3.78), we get

‖∂y(Q1
v1
w − ΠTY w)‖L2(T,yα) . ‖∂yw‖L2(ωT ,yα),

which, together with (3.88) and (3.89), imply the desired result (3.76) for i = 1. For

i = 2, . . . , 2n, the estimates for δq(vi) follow the same steps as in 1 . To prove the

stability bound (3.75) we proceed as in 2 to estimate the interpolation errors for

the x′-derivatives, but we skip the details. �

3.3.2.4 Weighted H1 boundary interpolation estimates

Let us now extend the interpolation estimates of § 3.3.2.2 and § 3.3.2.3 to elements

that intersect the Dirichlet boundary, where the functions to be approximated van-

ish. To do so, we start by adapting the results of [70, Theorem 3.1] to our particular

case.

We consider, as in [70, Section 3], different cases according to the relative

position of the element T in TY . We define the three sets

C1 = {T ∈ TY : ∂T ∩ ΓD = ∅} ,

C2 = {T ∈ TY : ∂T ∩ ∂LCY 6= ∅} ,

C3 = {T ∈ TY : ∂T ∩ (Ω× {Y }) 6= ∅} .

The elements in C1 are interior, so the corresponding interpolation estimate is given

in Theorem 3.17. Interpolation estimates on elements in C3 are a direct consequence
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of [70, Theorem 3.1] and Theorem 3.18 below. This is due to the fact that, since

Y ≥ 1, the weight yα over C3 is no longer singular nor degenerate. It remains only

to provide interpolation estimates for elements in C2.

Theorem 3.18 (Weighted H1 interpolation estimates over elements in C2)

Let T ∈ C2 and w ∈ H1(ωT , y
α) vanish on ∂T ∩ ∂LCY . Then, we have the stability

bounds

‖∇x′ΠTY w‖L2(T,yα) . ‖∇x′w‖L2(ωT ,yα), (3.94)

‖∂yΠTY w‖L2(T,yα) . ‖∂yw‖L2(ωT ,yα), (3.95)

If, in addition, w ∈ H2(ωT , y
α), then, for j = 1, . . . , n+ 1,

‖∂xj(w − ΠTY w)‖L2(T,yα) . hv′‖∂xj∇x′w‖L2(ωT ,yα) + hv′′‖∂xjyw‖L2(ωT ,yα). (3.96)

Proof: For simplicity we present the proof in two dimensions. Let T = (0, a) ×

(0, b) ∈ C2 and let us label its vertices according to Figure 3.1: v1 = (0, 0), v2 =

(a, 0), v3 = (0, b), v4 = (a, b). Notice that this is the worst situation because over

such an element the weight becomes degenerate or singular; estimates over other

elements of C2 are simpler. We proceed now to exploit the symmetry of T . By the

definition of ΠTY we have

ΠTY w|T = Q1
v2

(v2)φv2 +Q1
v4

(v4)φv4 . (3.97)

The proofs of (3.94) and (3.95) are similar to Step 3 of Theorem 3.17. To show (3.96),

we write the local difference between a function and its interpolant as (w−ΠTY w)|T =

(w−Q1
v2
w)|T + (Q1

v2
w−ΠTY )|T . Proceeding as in the proof of Lemma 3.15, we can
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bound ∂xj(w − Q1
v2
w)|T for j = 1, 2, in the L2(T, yα)-norm, by the right hand side

of (3.96) because this is independent of the trace of w. It remains then to derive a

bound for (Q1
v2
w − ΠTY w)|T , for which we consider two separate cases.

1 Derivative in the extended direction. We use thatQ1
v2
∈ Q1, (3.97) and ΠTY w(v1) =

ΠTY w(v3) = 0, to write

∂y(Q
1
v2
− ΠTY w)|T =

(
Q1

v2
(v3)−Q1

v2
(v1)

)
∂yφv3 +

(
Q1

v2
(v4)−Q1

v4
(v4)

)
∂yφv4 .

Since w ≡ 0 on {0} × (0, b), then ∂yw ≡ 0 on {0} × (0, b). By the definition of the

Taylor polynomial P 1, given in (3.59), and the fact that v′1 = v′3, we obtain

Q1
v2

(v3)−Q1
v2

(v1) = (v′′3 − v′′1)

ˆ
ωv2

∂yw(x)ψv2(x) dx

= (v′′3 − v′′1)

ˆ
ωv2

ˆ x′

0

∂x′yw(σ, y)ψv2(x′, y) dσ dx′ dy.

Therefore

|Q1
v2

(v3)−Q1
v2

(v1)| . hv′′1hv′1‖∂x′yw‖L2(ωT ,yα)‖ψv2‖L2(ωT ,y−α)

. hv′′1hv′1

h
1
2
v′1

hv′2hv′′2

(ˆ b

0

y−α dy

)1
2

‖∂x′yw‖L2(ωT ,yα).

Since, in view of the weak shape regularity assumption on the mesh TY , hv′1 ≈ hv′2 ,

hv′′1 = hv′′2 , and yα ∈ A2(Rn+1
+ ), we conclude that

|Q1
v2

(v3)−Q1
v2

(v1)|‖∂yφv3‖L2(T,yα) .
hv′1
hv′′1

(ˆ b

0

y−α dy

ˆ b

0

yα dy

)1
2

×

× ‖∂x′yw‖L2(ωT ,yα)

. hv′1‖∂x′yw‖L2(ωT ,yα).

(3.98)
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Finally, to bound |Q1
v2

(v4)−Q1
v4

(v4)|, we proceed as in Step 1 of the proof of The-

orem 3.17, which is valid regardless of the trace of w, and deduce

|Q1
v2

(v4)−Q1
v4

(v4)|‖∂yφv3‖L2(T,yα) . hv′1‖∂x′yw‖L2(ωT ,yα) + hv′′1‖∂yyw‖L2(ωT ,yα).

This, in conjunction with the previous estimate, yields (3.96) for the derivative in

the extended direction.

2 Derivative in the x′ direction. To estimate ∂x′(Q
1
v2
− ΠTY w)|T we proceed as

in Theorem 3.17 and [70, Theorem 3.1], but we cannot exploit the symmetry of

the tensor product structure now. For brevity, we shall only point out the main

technical differences. Using, again, that (Q1
v2
− ΠTY w) ∈ Q1,

∂x′(Q
1
v2
− ΠTY w)|T = Q1

v2
(v1)∂x′φv1 +Q1

v2
(v3)∂x′φv3 + (Q1

v2
(v4)−Q1

v4
(v4))∂x′φv4

= Q1
v2

(v1)∂x′φv1 + (Q1
v2

(v4)−Q1
v2

(v3))∂x′φv4

− (Q1
v4

(v4)−Q1
v4

(v3))∂x′φv4 −Q1
v4

(v3)∂x′φv4

= J(Q1
v2
, Q1

v4
)∂x′φv4 +Q1

v2
(v1)∂x′φv1 −Q1

v4
(v3)∂x′φv4 ,

where

J(Q1
v2
, Q1

v4
) =

(
Q1

v2
(v4)−Q1

v2
(v3)

)
−
(
Q1

v4
(v4)−Q1

v4
(v3)

)
.

Define θ = (0, θ′′) = (0, v′′4 − v′′2 − (hv′′4 − hv′′2 )z′′), and rewrite J(Q1
v2
, Q1

v4
) as follows:

J(Q1
v2
, Q1

v4
) = (v′4 − v′3)

ˆ
D

(∂x′w(v2 − hv2 � z)− ∂x′w(v4 − hv4 � z))ψ(z) dz

= −(v′4 − v′3)

ˆ
D

ˆ 1

0

∂x′yw(v2 − hv2 � z + θt)θ′′ψ(z) dt dz,

where D = suppψ. Denote

I(t) =

ˆ
|∂x′yw(v2 − hv2 � z + θt)θ′′| dz.
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Using the change of variables z 7→ τ = v2 − hv2 � z + θt, results in

|I(t)| . 1

hv′2

ˆ
ωT

|∂x′yw(τ)|ψ(τ) dτ .
1

hv′2
‖∂x′yw‖L2(ωT ,yα)‖1‖L2(ωT ,y−α)

. h
−1

2
v′2
‖∂x′yw‖L2(ωT ,yα)

(ˆ b

0

y−α dy

)1
2

,

whence
∣∣J(Q1

v2
, Q1

v4
)
∣∣ . h

1
2
v′2
‖∂x′yw‖L2(ωT ,yα)

(´ b
0
y−α dy

)1
2
. This implies

‖J(Q1
v2
, Q1

v4
)∂x′φv4‖L2(T,yα) .

(ˆ b

0

y−α dy

)1
2
(ˆ b

0

yα dy

)1
2

‖∂x′yw‖L2(ωT ,yα)

. hv′′2‖∂x′yw‖L2(ωT ,yα),

which follows from the fact that yα ∈ A2(R+), and then (3.96) holds true.

The estimate of Q1
v2

(v1)∂x′φv2 exploits the fact that the trace of w vanishes on

∂LCY ; the same happens with Q1
v4

(v3)∂x′φv4 . In fact, we can write

Q1
v2

(v1) =

ˆ
ωv2

ˆ x′

0

(∂x′w(τ, y)− ∂x′w(x′, y))ψv2(x′, y) dτ dx′ dy

+

ˆ
ωv2

(∂yw(0, y)− ∂yw(x′, y)) yψv2(x′, y) dx′ dy.

To derive (3.96) we finally proceed as in the proofs of Theorem 3.17 and [70,

Theorem 3.1]. We omit the details. �

We now conclude with a result involving weighted L2 interpolation estimates

on boundary elements. As in the weighted H1 case, the elements in C1 are interior,

and then, the interpolation estimates are given by Theorem (3.16). It remains, to

analyze the interpolation estimates on the sets C2 and C3.

Theorem 3.19 (Weighted L2 interpolation estimates in C2 and C3) If T ∈

C2 ∪ C3 and w ∈ H1(ωT , y
α) vanish on ∂T ∩ ∂LCY and ∂T ∩ ({Ω} × Y ), then

‖w − ΠTY w‖L2(T,yα) . hv′‖∇x′w‖L2(ωT ,yα) + hv′′‖∂yw‖L2(ωT ,yα). (3.99)
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Proof: We consider T ∈ C2, and the same geometric setting as in the proof of

Theorem 3.18; we skip the case T ∈ C3 as in Theorem 3.18. We write the difference

w−ΠTY w|T = (w−Q1
v2

)|T + (Q1
v2
−ΠTY w)|T . Applying Lemma 3.15, we can bound

the term (w−Q1
v2

)|T in the L2(T, yα)-norm by the right hand side of (3.99). Then,

it suffices to estimate (Q1
v2
− ΠTY w)|T ∈ Q1(T ). Writing

(Q1
v2
− ΠTY w)|T = Q1

v2
(v1)φv1 +Q1

v2
(v3)φv3 + (Q1

v2
(v4)−Q1

v4
(v4))φv4 ,

and using the fact that the trace of w vanishes on ∂LCY , we see that

Q1
(v1) =

ˆ
ωv2

ˆ x′

0

∂x′w(σ, y)ψv2 dσ dx′ dy +

ˆ
ωv2

(v1 − x) · ∇w(x)ψv2(x) dx; (3.100)

the same argument holds for Q1
v2

(v3). On the other hand, we handle Q1
v2

(v4) −

Q1
v4

(v4) with the same techniques as in the proof of Theorem 3.17. �

3.4 Error estimates

The estimates of § 3.3.2.3 and § 3.3.2.4 are obtained under the local assumption that

w ∈ H2(ωT , y
α). However, the solution U of (3.16) satisfies Uyy ∈ L2(C, yβ) only

when β > 2α+1, according to Theorem 3.3. For this reason, in this section we derive

error estimates for both quasi-uniform and graded meshes. The estimates of § 3.4.1

for quasi-uniform meshes are quasi-optimal in terms of regularity but suboptimal

in terms of order. The estimates of § 3.4.2 for graded meshes are, instead, quasi-

optimal in both regularity and order. Mesh anisotropy is able to capture the singular

behavior of the solution and restore optimal decay rates.

71



3.4.1 Quasi-uniform meshes

We start with a simple one dimensional case (n = 1) and assume that we need

to approximate over the interval [0,Y ] the function w(y) = y1−α. Notice that

wy(y) ≈ y−α as y ≈ 0+ has the same behavior as the derivative in the extended

direction of the α-harmonic extension U .

Given M ∈ N we consider the uniform partition of the interval [0,Y ]

yk =
k

M
Y , k = 0, . . . ,M. (3.101)

and the corresponding elements Ik = [yk, yk+1] of size hk = h = Y /M for k =

0, . . . ,M − 1.

We can adapt the definition of ΠTY of § 3.3.2 to this setting, and bound the

local interpolation errors Ek = ‖∂y(w−ΠTY w)‖L2(Ik,yα). For k = 2, . . . ,M − 1, since

y ≥ h and α < 2α + 1 < β, (3.77) implies

E2
k . h2

ˆ
ωIk

yα|wyy|2 dy . h2+α−β
ˆ
ωIk

yβ|wyy|2 dy, (3.102)

because
(
y
h

)α ≤ ( y
h

)β
. The estimate for E2

0 + E2
1 follows from from the stability of

the operator ΠTY (3.76) and (3.95):

E2
0 + E2

1 .
ˆ 3h

0

yα|wy|2 . h1−α, (3.103)

because w(y) ≈ y−α as y ≈ 0+. Using (3.102) and (3.103) in conjunction with

2 + α− β < 1− α, we obtain a global interpolation estimate

‖∂y(w − ΠTY w)‖L2((0,Y ),yα) . h(2+α−β)/2. (3.104)
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These ideas can be extended to prove an error estimate for U on uniform

meshes.

Theorem 3.20 (Error estimate for quasi-uniform meshes) Let U solve (3.16),

and VTY be the solution of (3.51), constructed over a quasi-uniform mesh of size h.

If f ∈ H1−s(Ω) and Y ≈ | log h|, then for all ε > 0

‖∇(U − VTY )‖L2(CY ,yα) . hs−ε‖f‖H1−s(Ω), (3.105)

where the hidden constant blows up if ε tends to 0.

Proof: Use first Theorem 3.10 and Theorem 3.11, combined with (3.57), to reduce

the approximation error to the interpolation error of U . Repeat next the steps

leading to (3.102)–(3.103), but combining the interpolation estimates of Theorems

3.17 and 3.18 with the regularity results of Theorem 3.3, which are valid because

f ∈ H1−s(Ω). �

Remark 3.21 (Sharpness of (3.105) for s 6= 1
2
) According to (3.24) and (3.27),

∂yU ≈ y−α, and this formally implies ∂yU ∈ Hs−ε(C, yα) for all ε > 0 provided

f ∈ H1−s(Ω). In this sense (3.105) appears to be sharp with respect to regularity

even though it does not exhibit the optimal rate. We verify this argument via a

simple numerical illustration for dimension n = 1. We let Ω = (0, 1), s = 0.2, right

hand side f = π2s sin(πx), and note that u(x) = sin(πx), and the solution U to

(1.2) is

U (x, y) =
21−sπs

Γ(s)
sin(πx)Ks(πy).
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Figure 3.2: Computational rate of convergence (#TY )−s/(n+1) for quasi-uniform meshes

TY , with s = 0.2 and n = 1.

Figure 3.2 shows the rate of convergence for the H1(CY , y
α)-seminorm. Estimate

(3.105) predicts a rate of h−0.2−ε. We point out that for the α-harmonic extension

we are solving a two dimensional problem and, since the mesh TY is quasi-uniform,

#TY ≈ h−2. In other words the rate of convergence, when measured in terms of

degrees of freedom, is (#TY )−0.1−ε, which is what Figure 3.2 displays.

Remark 3.22 (Case s = 1
2
) Estimate (3.105) does not hold for s = 1

2
. In this case

there is no weight and the scaling issues in (3.102) are no longer present, so that

Ek . h‖v‖H2(Ik). We thus obtain the optimal error estimate

‖∇(U − VTY )‖L2(CY ) . h‖f‖
H

1/2
00 (Ω)

.

3.4.2 Graded meshes

The estimate (3.105) can be written equivalently

‖∇(U − VTY )‖L2(CY ,yα) . (#TY )−
s−ε
n+1‖f‖H1−s(Ω),
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for quasi-uniform meshes in dimension n+ 1. We now show how to compensate the

singular behavior in the extended variable y by anisotropic meshes and restore the

optimal convergence rate −1/(n+ 1).

As in § 3.4.1 we start the discussion in dimension n = 1 with the function

w(y) = y1−α over [0,Y ]. We consider the graded partition TY of the interval [0,Y ]

yk =

(
k

M

)γ
Y , k = 0, . . . ,M, (3.106)

where γ = γ(α) > 3/(1− α) > 1. If we denote by hk the length of the interval

Ik = [yk, yk+1] =

[(
k

M

)γ
Y ,
(
k + 1

M

)γ
Y
]
,

then

hk = yk+1 − yk .
Y
Mγ

kγ−1, k = 1, . . . ,M − 1.

We again consider the operator ΠTY of § 3.3.2 on the one dimensional mesh TY and

wish to bound the local interpolation errors Ek of § 3.4.1. We apply estimate (3.77)

to interior elements to obtain that, for k = 2, . . . ,M − 1,

E2
k . h2

k

ˆ
ωIk

yα|wyy|2 dy . Y 2k
2(γ−1)

M2γ

ˆ
ωIk

yα|wyy|2 dy

. Y 2+α−β k
2(γ−1)

M2γ

(
k

M

)γ(α−β) ˆ
ωIk

yβ|wyy|2 dy . Y 1−αk
γ(1−α)−3

Mγ(1−α)
.

(3.107)

because yα .
(
k
M

)γ(α−β) Y α−βyβ and w(y) = y1−α over [0,Y ]. Adding (3.107) over

k = 2, . . . ,M − 1, and using that γ(1− α) > 3, we arrive at

‖∂y(w − ΠTY w)‖2
L2((y2,Y ),yα) . Y 1−αM−2. (3.108)

For the errors E2
0 , E

2
1 we resort to the stability bounds (3.76) and (3.95) to write

‖∂y(w − ΠTY w)‖2
L2((0,y3),yα) .

ˆ ( 3
M )

γ
Y

0

y−α dy .
Y 1−α

Mγ(1−α)
, (3.109)
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where we have used (3.106). Finally, adding (3.108) and (3.109) gives

‖∂y(w − ΠTY w)‖2
L2((0,Y ),yα) . Y 1−αM−2,

and shows that the interpolation error exhibits optimal decay rate.

We now apply this idea to the numerical solution of problem (3.37). We assume

TΩ to be quasi-uniform in TΩ with #TΩ ≈Mn and construct TY ∈ T as the tensor

product of TΩ and the partition given in (3.106), with γ > 3/(1−α). Consequently,

#TY = M · #TΩ ≈ Mn+1. Finally, we notice that since TΩ is shape regular and

quasi-uniform, hTΩ
≈ (#TΩ)−1/n ≈M−1.

Theorem 3.23 (Error estimate for graded meshes) Let VT ∈ V(TY ) solve (3.51)

and UTΩ
∈ U(TΩ) be defined as in (3.52). If f ∈ H1−s(Ω), then

‖U −VTY ‖ ◦H1
L(C,yα)

. e−
√
λ1Y /4‖f‖H−s(Ω)+Y (1−α)/2(#TY )−1/(n+1)‖f‖H1−s(Ω), (3.110)

Proof: In light of (3.57), with ε ≈ e−
√
λ1Y /4, it suffices to bound the interpolation

error U − ΠTY U on the mesh TY . To do so we, first of all, notice that if I1 and

I2 are neighboring cells on the partition of [0,Y ], then there is a constant σ = σ(γ)

such that hI1 ≤ σhI2 , whence the weak regularity condition (c) holds. We can thus

apply the polynomial interpolation theory of § 3.3.2. We decompose the mesh TY

into the sets

T0 :=
{
T ∈ TY : ωT ∩ (Ω̄× {0}) = ∅

}
, T1 :=

{
T ∈ TY : ωT ∩ (Ω̄× {0}) 6= ∅

}
.
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We observe that for all T = K×Ik ∈ T0 we have k ≥ 2 and yα .
(
k
M

)γ(α−β) Y α−βyβ.

Applying Theorem 3.17 and Theorem 3.18 to elements in T0 we obtain

∑
T∈T0

‖∇(U − ΠTY U )‖2
L2(T,yα) .

∑
T=K×I∈T0

(
h2
K‖∇x′∇U ‖2

L2(ωT ,yα)

+h2
I‖∂y∇x′U ‖2

L2(ωT ,yα) + h2
I‖∂yyU ‖2

L2(ωT ,yβ)

)
= S1 + S2 + S3.

We examine first the most problematic third term S3, which we rewrite as follows:

S3 .
M∑
k=2

Y 2+α−β k
2(γ−1)

M2γ

(
k

M

)γ(α−β) ˆ bk

ak

yβ
ˆ

Ω

|∂yyU |2 dx′ dy,

with ak =
(
k−1
M

)γ Y and bk =
(
k+1
M

)γ Y . We now invoke the local estimate (3.34), as

well as the fact that bk − ak .
(
k
M

)γ−1 Y
M

, to end up with

S3 .
M∑
k=2

Y 1−αk
γ(1−α)−3

Mγ(1−α)
‖f‖2

L2(Ω) . Y 1−αM−2‖f‖2
L2(Ω).

We now handle the middle term S2 with the help of (3.33), which is valid for bk ≤ 1.

This imposes the restriction k ≤ k0 ≤ MY −1/γ, whereas for k > k0 we know that

the estimate decays exponentially. We thus have

S2 . ‖f‖2
H1−s(Ω)

k0∑
k=2

((
k

M

)γ−1 Y
M

)3

.
Y 2/γ

M2
‖f‖2

H1−s(Ω) .
Y 1−α

M2
‖f‖2

H1−s(Ω).

The first term S1 is easy to estimate. Since hK .M−1 for all K ∈ TΩ, we get

S1 .M−2‖∇x′∇v‖2
L2(CY ,yα) .M−2‖f‖2

H1−s(Ω) . Y 1−αM−2‖f‖2
H1−s(Ω).

For elements in T1, we rely on the stability estimates (3.75), (3.76), (3.94) and

(3.95) of ΠTY and thus repeat the arguments used to derive (3.108) and (3.109).

Adding the estimates for T0 and T1 we obtain the assertion. �
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Remark 3.24 (Choice of Y ) A natural choice of Y comes from equilibrating the

two terms on the right-hand side of (3.110):

ε ≈ #(TY )−
1

n+1 ⇔ Y ≈ log(#(TY )).

This implies the near-optimal estimate

‖U − VTY ‖ ◦H1
L(C,yα)

. | log(#TY )|s(#TY )−1/(n+1)‖f‖H1−s(Ω). (3.111)

Remark 3.25 (Estimate for u) In view of (3.53), we deduce the energy estimate

‖u− UTΩ
‖Hs(Ω) . |log(#TY )|s (#TY )−1/(n+1)‖f‖H1−s(Ω).

We can rewrite this estimate in terms of regularity u ∈ H1+s(Ω) and #TΩ as

‖u− UTΩ
‖Hs(Ω) . |log(#TΩ)|s (#TΩ)−1/n‖u‖H1+s(Ω).

and realize that the order is near-optimal given the regularity shift from left to right.

However, our PDE approach does not allow for a larger rate (#TΩ)(2−s)/n that would

still be compatible with piecewise bilinear polynomials but not with (3.111).

Remark 3.26 (Computational complexity) The cost of solving the discrete

problem (3.51) is related to #TY , and not to #TΩ, but the resulting system is

sparse. The structure of (3.51) is so that fast multilevel solvers can be designed

with complexity proportional to #TY ; see Chapter 5 and [52]. On the other hand,

using an integral formulation requires sparsification of an otherwise dense matrix

with associated cost (#TΩ)2.

Remark 3.27 (Fractional regularity) The function U , solution of the α-harmonic

extension problem, may also have singularities in the direction of the x′-variables
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and thus exhibit fractional regularity. This depends on Ω and the right hand side

f (see Remark 3.4). The characterization of such singularities is as yet an open

problem to us. The polynomial interpolation theory developed in § 3.3.2, however,

applies to shape-regular but graded mesh TΩ, which can resolve such singularities,

provided we maintain the Cartesian structure of TY . The corresponding a posteriori

error analysis is an entirely different but important direction; see Chapter 6.

Remark 3.28 (Simplicial elements) The approximation results presented and

discussed in § 3.3.2.2, the interpolation theory developed in § 3.3.2.3 and § 3.3.2.4

and, consequently, the error estimates of this section hinge solely on the fact that

the mesh TY has a tensor product structure, i.e., it is composed of cells of the form

T = K × I. If we consider TΩ = {K} to be a mesh of Ω ⊂ Rn (n ≥ 1) made of

simplicial elements, together with the finite element space,

V(TY ) =
{
W ∈ C0(C̄Y ) : W |T ∈ P1(K)⊗ P1(I) ∀T ∈ TY , W |ΓD = 0

}
,

we can adapt, without major modifications, all the approximation, interpolation

and convergence results of this work.

Remark 3.29 (Hanging nodes) It is important to notice that the assumption

that the mesh is conforming was never explicitly used in the results of section 3.3

and that, actually, all that was required from the finite element space is the partition

of unity property, i.e., (3.87). This observation allows us to generalize the results of

section 3.3 to meshes that possess hanging nodes, which is important if one desires

to use mesh adaptation to resolve possible singularities in the solution.
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3.5 Numerical experiments for the fractional Laplacian

To illustrate the proposed techniques here we present a couple of numerical ex-

amples. The implementation has been carried out with the help of the deal.II

library (see [17, 18]) which, by design, is based on tensor product elements and thus

is perfectly suitable for our needs. The main concern while developing the code

was correctness and, therefore, integrals are evaluated numerically with Gaussian

quadratures of sufficiently high order and linear systems are solved using CG with

ILU preconditioner with the exit criterion being that the `2-norm of the residual is

less than 10−12.

3.5.1 A square domain

Let Ω = (0, 1)2. It is common knowledge that

ϕm,n(x1, x2) = sin(mπx1) sin(nπx2), λm,n = π2
(
m2 + n2

)
, m, n ∈ N.

If f(x1, x2) = (2π2)s sin(πx1) sin(πx2), by (3.3) we have

u(x1, x2) = sin(πx1) sin(πx2),

and, by (3.14),

U (x1, x2, y) =
21−s

Γ(s)
(2π2)s/2 sin(πx1) sin(πx2)ysKs(

√
2πy).

We construct a sequence of meshes {TYk}k≥1, where the triangulation of Ω

is obtained by uniform refinement and the partition of [0,Yk] is as in § 3.4.2, i.e.,

[0,Yk] is divided with mesh points given by (3.106) with the election of the parameter
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Figure 3.3: Computational rate of convergence for the approximate solution of the frac-

tional Laplacian over a square with graded meshes on the extended dimension. The left

panel shows the rate for s = 0.2 and the right one for s = 0.8. In both cases, the rate is

≈ (#TYk)−1/3 in agreement with Theorem 3.23 and Remark 3.24

γ > 3/(1−α). On the basis of Theorem 3.10, for each mesh the truncation parameter

Yk is chosen so that ε ≈ (#TYk−1
)−1/3. This can be achieved, for instance, by setting

Yk ≥ Y0,k =
2√
λ1

(logC − log ε).

With this type of meshes,

‖u− UTΩ,k
‖Hs(Ω) . ‖U − VTYk

‖ ◦
H1
L(C,yα)

. | log(#TYk)|s · (#TYk)
−1/3,

which is near-optimal in U but suboptimal in u, since we should expect (see [39])

‖u− UTΩ,k
‖Hs(Ω) . h2−s

TΩ
. (#TYk)

−(2−s)/3.

Figure 3.3 shows the rates of convergence for s = 0.2 and s = 0.8 respectively.

In both cases, we obtain the rate given by Theorem 3.23 and Remark 3.24.
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3.5.2 A circular domain

Let Ω = {|x′| ∈ R2 : |x′| < 1}. Using polar coordinates it can be shown that

ϕm,n(r, θ) = Jm(jm,nr) (Am,n cos(mθ) +Bm,n sin(mθ)) , (3.112)

where Jm is the m-th Bessel function of the first kind; jm,n is the n-th zero of Jm

and Am,n, Bm,n are real normalization constants that ensure ‖ϕm,n‖L2(Ω) = 1 for all

m,n ∈ N. It is also possible to show that λm,n = (jm,n)2.

If f = (λ1,1)sϕ1,1, then (3.3) and (3.14) show that u = ϕ1,1 and

U (r, θ, y) =
21−s

Γ(s)
(λ1,1)s/2ϕ1,1(r, θ)ysKs(

√
2πy).

From [1, Chapter 9], we have that j1,1 ≈ 3.8317.

We construct a sequence of meshes {TYk}k≥1, where the triangulation of Ω is

obtained by quasi-uniform refinement and the partition of [0,Yk] is as in § 3.4.2.

The parameter Yk is chosen so that ε ≈ (#TYk−1
)−1/3. With these meshes

‖U − VTYk
‖ ◦
H1
L(C,yα)

. | log(#TYk)|s(#TYk)
−1/3, (3.113)

which is near-optimal.

Figure 3.4 shows the errors of ‖U − VTk,Y ‖H1(yα,CYk ) for s = 0.3 and s = 0.7.

The results, again, are in agreement with Theorem 3.23 and Remark 3.24.

3.5.3 Incompatible data for s ∈ (0, 1)

The computational results of previous paragraphs always entail f ∈ H1−s(Ω) and

illustrate the error estimates of Theorem 3.23. Let us now consider a data f smooth
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Figure 3.4: Computational rate of convergence for the approximate solution of the frac-

tional Laplacian over a circle with graded meshes on the extended dimension. The left

panel shows the rate for s = 0.3 and the right one for s = 0.7. In both cases, the rate is

≈ (#TYk)−1/3 in agreement with Theorem 3.23 and Remark 3.24

but incompatible. Set Ω = (0, 1) and f ≡ 1. Notice that, if s ≤ 1
2

then f /∈ H1−s(Ω)

due to the fact that the function does not vanish at the boundary. In fact, we have

that
∞∑
k=1

λσk |fk|2 <∞ ⇔ σ <
1

2
,

in other words f ∈ Hσ(Ω) if and only if σ < 1
2
. Since, the coefficients of the solution

to (1.1) are given by uk = λ−sk fk, we can only expect that

∞∑
k=1

λµk |uk|2 =
∞∑
k=1

λµ−2s
k |fk|2 <∞ ⇔ µ− 2s <

1

2
,

namely u ∈ Hµ(Ω) for µ < 2s + 1
2
. In conclusion, full regularity is not possible but

owing to the special character of the data some shift can be expected; see Remark 3.4

and the discussion at the end of § 3.1.3.

This heuristic argument is rather illuminating as it tells us that the best rate
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of convergence we can expect is

‖u− UTΩ
‖Hs(Ω) ≤ (#TΩ)−r‖u‖Hµ(Ω),

with r = µ− s < s + 1
2
. Since we are dealing with a one dimensional problem, the

extension has two dimensions and, consequently, we expect

‖U − VTY ‖ ◦H1
L(C,yα)

.


(#TY )

−
(
s
2

+
1
4

)
, s <

1

2
,

(#TY )−
1
2 , s >

1

2
.

(3.114)

Since λk = π2k2 and ϕk =
√

2 sin(
√
λkx

′), it is not difficult to show that

fk =
√

2(1 − (−1)k)/
√
λk, whence we can obtain an approximate solution uN =∑N

k=1 λ
−s
k fkϕk with N sufficiently large. Figure 3.5 shows the norm of the difference

between VTY and the α-harmonic extension of uN for different values of s. The

experimental rates of convergence seem to agree with (3.114): they are suboptimal

for s < 1
2
.

To recover the optimal decay rate, we explore the a priori design of graded

meshes in the x′-direction, which is within our theory of §3.3 and §3.4 (see Re-

mark 3.27). Since u ∈ Hµ(Ω) with µ < 2s + 1
2
, we expect that u ≈ r2s as r → 0,

where r denotes the distance to the boundary. This, at least heuristically, can be

figured out as follows: if ∂µr r
2s ≈ r2s−µ, then

‖u‖2
Hµ(Ω) ≈

ˆ ε

0

|∂µr r2s|2 dr <∞ ⇔ µ < 2s+
1

2
,

and r2s ∈ Hµ(Ω) only for µ < 2s+ 1
2
.

Having guessed the nature of the singularity, we can apply the principle of error

equidistribution as in § 3.4.2 to design an optimal graded mesh as x′ approaches
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Figure 3.5: Computational rate of convergence for the approximate solution of the frac-

tional Laplacian with incompatible data f ≡ 1. The domain Ω is the unit interval and the

mesh is graded in the extended dimension. We show the H1(CY , y
α) norm of the difference

between VTY and the harmonic extension of uN with N = 5 · 104. The left panel shows

the rate for s = 0.2, 0.4 and the right one for s = 0.6, 0.8. As expected, the rate of

convergence is optimal for values larger than 1
2 . On the other hand, if s < 1

2 we see a

reduction on the rate of convergence in accordance with (3.114).

either 0 or 1, with a grading parameter γ > 3
2(1+s)

(compare with (3.106)). We

proceed as follows: construct a quasi-uniform mesh of the interval Ω = (0, 1) by

bisection, and next transform the nodes v by the rule v← ψ(v), where

ψ(v) =



1

4
(4v)γ , v ≤ 1

4
,

v,
1

4
≤ v ≤ 3

4
,

1− 1

4
(4(1− v))γ , v ≥ 3

4
.

(3.115)

We display in Figure 3.6 convergence plots for s = 0.2 and s = 0.4 over graded

meshes in Ω which restore the optimal decay rate. The construction requires a priori

knowledge of the solution, which is not obvious in higher dimensions. Adaptivity

might provide a way to recover an optimal rate without such a knowledge (see
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Remark 3.29 about hanging nodes).
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Figure 3.6: Computational rate of convergence for the approximate solution of the frac-

tional Laplacian with incompatible data f ≡ 1 over meshes that are graded both in the

x′- and y-directions. The domain Ω is the unit interval. The grading in the extended

dimension obeys (3.106), whereas the one on the x′-direction is constructed using (3.115).

We show the H1(CY , y
α) norm of the difference between VTY and the harmonic extension

of uN with N = 5 · 104. An optimal rate of convergence can be recover irrespective of the

fact that the solution does not possess full regularity.

3.6 Fractional powers of general second order elliptic operators

Let us now discuss how the methodology developed in previous sections extends

to a general second order, symmetric and uniformly elliptic operator. This is an

important property of our PDE approach. Recall that, in § 3.1.3, we discussed how

the fractional Laplace operator can be realized as a Dirichlet to Neumann map via an

extension problem posed on the semi-infinite cylinder C. In the work of Stinga and
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Torrea [155], the same type of characterization has been developed for the fractional

powers of second order elliptic operators.

Let L be a second order symmetric differential operator of the form

Lw = −divx′(A∇x′w) + cw, (3.116)

where c ∈ L∞(Ω) with c ≥ 0 almost everywhere, A ∈ C0,1(Ω,GL(n,R)) is symmetric

and positive definite, and Ω is Lipschitz. Given f ∈ L2(Ω), the Lax-Milgram lemma

shows that there is a unique w ∈ H1
0 (Ω) that solves

Lw = f in Ω, w = 0 on ∂Ω.

The operator L−1 : L2(Ω) → L2(Ω) is positive, compact and symmetric,

whence its spectrum is discrete, positive and accumulates at zero. Moreover, there

exists {λk, ϕk}k∈N ⊂ R+×H1
0 (Ω) such that {ϕk}k∈N is an orthonormal basis of L2(Ω)

and for, k ∈ N,

Lϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, (3.117)

and λk →∞ as k →∞. For u ∈ C∞0 (Ω) we then define the fractional powers of L

as

Lsu =
∞∑
k=1

ukλ
s
kϕk, (3.118)

where uk =
´

Ω
uϕk. By density the operator Ls can be extended again to Hs(Ω).

This discussion shows that it is legitimate to study the following problem: given

s ∈ (0, 1) and f ∈ H−s(Ω), find u ∈ Hs(Ω) such that

Lsu = f in Ω. (3.119)
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To realize the operator Ls as the Dirichlet to Neumann map of an extension

problem we use the generalization of the result by Caffarelli and Silvestre presented

in [155]. We seek a function U : C → R that solves

LU − α

y
∂yU − ∂yyU = 0, in C,

U = 0, on ∂LC,

∂U

∂να
= dsf, on Ω× {0},

(3.120)

where the constant ds is as in (3.13). In complete analogy to § 3.1.3 it is possible

to show that

dsLsu =
∂U

∂να
: Hs(Ω) 7−→ H−s(Ω).

Notice that the differential operator in (3.120) is

div (yαA∇U ) + yαcU ,

where, for all x ∈ C, A(x) = diag{A(x′), 1} ∈ GL(n+ 1,R).

It suffices now to notice that both yαc and yαA are in A2(Rn+1
+ ), to conclude

that, given f ∈ H−s(Ω), there is a unique U ∈ ◦
H1
L(C, yα) that solves (3.120), [79].

In addition, u = U (·, 0) ∈ Hs(Ω) solves (3.119) and we have the stability estimate

‖u‖Hs(Ω) . ‖∇U ‖L2(C,yα) . ‖f‖H−s(Ω), (3.121)

where the hidden constants depend on A, c, C2,yα and Ω.

The representation (3.14) of U in terms of the Bessel functions is still valid.

Consequently, we can show Uyy ∈ L2(C, yβ). We can also repeat the arguments in

the proof of Theorem 3.10 to conclude that

‖∇U ‖L2(Ω×(Y ,∞),yα) . e−
√
λ1Y /2‖f‖H−s(Ω),
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and introduce v ∈ ◦
H1
L(CY , y

α) — solution of a truncated version of (3.120) — and

show that

‖∇(U − v)‖L2(C,yα) . e−
√
λ1Y /4‖f‖H−s(Ω). (3.122)

Next, we define the finite element approximation of the solution to (3.120) as

the unique function VTY ∈ V(TY ) that solves

ˆ
CY

yαA(x)∇VTY · ∇W + yαc(x′)VTY W dx′ dy = ds〈f, trΩW 〉, ∀W ∈ V(TY ).

(3.123)

We construct, as in § 3.4.2, a shape regular triangulation TΩ of Ω, which we extend

to TY ∈ T with the partition given in (3.106), with γ > 3/(1 − α). Following the

proof of Theorem 3.23 we can also show the following error estimate.

Theorem 3.30 (Error estimate for general operators) Let VT ∈ V(TY ) be

the solution of (3.123) and UTΩ
∈ U(TΩ) be defined as in (3.52). If U , solution of

(3.120), is such that LU , ∂y∇U ∈ L2(C, yα), then we have

‖u− UTΩ
‖Hs(Ω) . ‖U − VTY ‖ ◦H1

L(C,yα)
. | log(#TY )|s(#TY )−1/(n+1)‖f‖H1−s(Ω).

3.7 Conclusions

We develop PDE solution techniques for problems involving fractional powers of the

Laplace operator (−∆)su = f in a bounded domain Ω with Dirichlet boundary con-

ditions. To overcome the inherent difficulty of nonlocality, we exploit the cylindrical

extension proposed and investigated by X. Cabré and J. Tan [42], which is in turn

inspired in the breakthrough by L. Caffarelli and L. Silvestre [43]. This leads to
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the (local) elliptic PDE (1.2) in one higher dimension y, with variable coefficient

yα, α = 1 − 2s, which either degenerates (s < 1/2) or blows up (s > 1/2). Several

remarks and comparisons with recent literature are now in order:

• Regularity. In § 3.1.5 we derive global and local regularity estimates for the

solution of problem (1.2) in weighted Sobolev spaces.

• Truncation. In § 3.2 we propose the truncated problem (3.36), and show expo-

nential convergence in the extended variable y to the solution of problem (1.2).

• Tensor product meshes. In § 3.3.1 we study a finite element strategy to approxi-

mate problem (1.2) which allows anisotropic elements in the extended dimension

y.

• Anisotropic interpolation theory. In § 3.3.2 we extend the anisotropic interpolation

estimates of [70] to the weighted Sobolev space H1(yα). This hinges on yα ∈

A2(Rn+1) and gives rise to a theory in Muckenhoupt weighted Sobolev spaces

with a general weight in the class Ap (1 < p <∞) along with applications [132].

• Error analysis. In § 3.4.1 we derive a priori error estimates for quasi-uniform

meshes which exhibit optimal regularity, according to § 3.1.5, but suboptimal

order. In § 3.4.2 we restore the optimal decay rate upon constructing suitably

graded meshes in the extended variable y and applying the interpolation theory

of § 3.3.2.

• Assumptions on f and Ω. We assume the regularity conditions of Remark 3.6

throughout solely for convenience. We could in fact compensate the lack of such
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regularity via graded but shape regular meshes in Ω, as illustrated in § 3.5.3,

which are within our theory.

• General operators. In § 3.6 we extend our FEM and supporting theory to general

linear second order, symmetric and uniformly elliptic operators.
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Chapter 4: Piecewise polynomial interpolation in Muckenhoupt weighted

Sobolev spaces and applications

Although this may seem a paradox, all exact science is dominated by the idea of approximation.

When a man tells you that he knows the exact truth about anything, you are safe in inferring

that he is an inexact man.
— Bertrand Russell.

4.1 Introduction

A fundamental tool in analysis, with both practical and theoretical relevance, is

the approximation of a function by a simpler one. For continuous functions a foun-

dational result in this direction was given by K. Weierstrass in 1885: continuous

functions defined on a compact interval can be uniformly approximated as closely

as desired by polynomials. Mollifiers, interpolants, splines and even Nevanlinna-

Pick theory can be regarded as instances of this program; see, for instance, [5, 114].

For weakly differentiable functions, the approximation by polynomials is very useful

when trying to understand their behavior. In fact, this idea goes back to S.L. Sobolev

[150], who used a sort of averaged Taylor polynomial to discuss equivalent norms in

Sobolev spaces.
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The role of polynomial approximation and error estimation is crucial in nu-

merical analysis: it is the basis of discretization techniques for partial differential

equations (PDE), particularly the finite element method. For the latter, several con-

structions for standard Sobolev spaces W 1
p , with 1 ≤ p ≤ ∞, and their properties

are well studied; see [58, 68, 69, 70, 143].

On the other hand, many applications lead to boundary value problems for

nonuniformly elliptic equations. The ellipticity distortion can be caused by degener-

ate/singular behavior of the coefficients of the differential operator or by singularities

in the domain. For such equations it is natural to look for solutions in weighted

Sobolev spaces [6, 21, 41, 43, 60, 72, 79, 80, 108, 158] and to study the regularity

properties of the solution in weighted spaces as well [110]. Of particular importance

are weighted Sobolev spaces with a weight belonging to the so-called Muckenhoupt

class Ap [126]; see also [79, 101, 158]. However, the literature focusing on polynomial

approximation in this type of Sobolev spaces is rather scarce; we refer the reader

to [6, 8, 11, 21, 60, 83, 88, 116] for some partial results. Most of these results focus

on a particular degenerate elliptic equation and exploit the special structure of the

coefficient to derive polynomial interpolation results.

To fix ideas, consider the following nonuniformly elliptic boundary value prob-

lem: let Ω be an open and bounded subset of Rn (n ≥ 1) with boundary ∂Ω. Given

a function f , find u that solves
−div(A(x)∇u) = f, in Ω,

u = 0, on ∂Ω,

(4.1)

where A : Ω→ Rn×n is symmetric and satisfies the following nonuniform ellipticity

93



condition

ω(x)|ξ|2 . ξᵀA(x)ξ . ω(x)|ξ|2, ∀ξ ∈ Rn, a.e. Ω. (4.2)

Here the relation a . b indicates that a ≤ Cb, with a constant C and ω is a weight

function, i.e., a nonnegative and locally integrable measurable function, which might

vanish, blow up, and possess singularities. Examples of this type of equations are the

harmonic extension problem related with the fractional Laplace operator [41, 43],

elliptic problems involving measures [6, 60], elliptic PDE in an axisymmetric three

dimensional domain with axisymmetric data [21, 88], and equations modeling the

motion of particles in a central potential field in quantum mechanics [11]. Due to

the nature of the coefficient A, the classical Sobolev space H1(Ω) is not appropriate

for the analysis and approximation of this problem.

Nonuniformly elliptic equations of the type (4.1)–(4.2), with ω in the so-called

Muckenhoupt class A2, have been studied in [79]: for f ∈ L2(ω−1,Ω), there exists

a unique solution in H1
0 (ω,Ω) [79, Theorem 2.2] (see § 2.2 for notation). Consider

the discretization of (4.1) with the finite element method. Let T be a conforming

triangulation of Ω and let V(T ) be a finite element space. The Galerkin approx-

imation of the solution to (4.1) is given by the unique function UT ∈ V(T ) that

solves ˆ
Ω

A∇UT · ∇W =

ˆ
Ω

fW, ∀W ∈ V(T ). (4.3)

Invoking Galerkin orthogonality, we deduce

‖u− UT ‖H1
0 (ω,Ω) . inf

W∈V(TY )
‖u−W‖H1

0 (ω,Ω). (4.4)

In other words, the numerical analysis of this boundary value problem reduces to
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a result in approximation theory: the distance between the exact solution u and

its approximation UT in a finite element space is bounded by the best approxi-

mation error in the finite element space with respect to an appropriate weighted

Sobolev norm. A standard way of obtaining bounds for the approximation error is

by considering W = ΠT v in (4.4), where ΠT is a suitable interpolation operator.

The purpose of this work is twofold. We first go back to the basics, and

develop an elementary constructive approach to piecewise polynomial interpolation

in weighted Sobolev spaces with Muckenhoupt weights. We consider an averaged

version of the Taylor polynomial and, upon using an appropriate weighted Poincaré

inequality and a cancellation property, we derive optimal approximation estimates

for constant and linear approximations. We extend these results to any polynomial

degree m (m ≥ 0), by a simple induction argument.

The functional framework considered is weighted Sobolev spaces with weights

in the Muckenhoupt class Ap(Rn), thereby extending the classical polynomial ap-

proximation theory in Sobolev spaces

The second main contribution of this work is the construction of a quasi-inter-

polation operator ΠT , built on local averages over stars and thus well defined for

functions in L1(Ω) as those in [58, 143]. The ensuing polynomial approximation

theory in weighted Sobolev spaces with Muckenhoupt weights allows us to obtain

optimal and local interpolation estimates for the quasi-interpolant ΠT . On simplicial

discretizations, these results hold true for any polynomial degree m ≥ 0, and they

are derived in the weighted W k
p -seminorm (0 ≤ k ≤ m + 1). The key ingredient

is an invariance property of the quasi-interpolant ΠT over the finite element space.
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On the other hand, on rectangular discretizations, we only assume that neighboring

cells in T have comparable size, as in [70, 129]. This mild assumption enables us

also to obtain anisotropic error estimates for domains that can be decomposed into

n–rectangles. These estimates are derived in the weighted W 1
p -semi-norm and the

weighted Lp-norm, the latter being a new result even for the unweighted setting.

For m = 0, 1, we also derive interpolation estimates in the space Wm
q (ρ,Ω) when

the smoothness is measured in the space Wm+1
p (ω,Ω), with different weights ω 6= ρ

and Lebesgue exponents 1 < p ≤ q, provided Wm+1
p (ω,Ω) ↪→ Wm

q (ρ,Ω).

The outline of this Chapter is as follows. Section 4.2 is dedicated to an impor-

tant weighted Lp-based Poincaré inequality over star-shaped domains and domains

that can be written as the finite union of star-shaped domains. In section 4.3,

we consider an averaged version of the Taylor polynomial, and we develop a con-

structive theory of piecewise polynomial interpolation in weighted Sobolev spaces

with Muckenhoupt weights. We discuss the quasi-interpolation operator ΠT and

its properties in section 4.4. We derive optimal approximation properties in the

weighted W k
p -seminorm for simplicial triangulations in § 4.4.1. In § 4.4.2 we derive

anisotropic error estimates on rectangular discretizations for a Q1 quasi-interpolant

operator assuming that Ω is an n-rectangle. Section 4.5 is devoted to derive optimal

and local interpolation estimates for different metrics (i.e., p ≤ q, ω 6= ρ). Finally,

in section 4.6 we present applications of our interpolation theory to nonuniformly el-

liptic equations (4.1), elliptic equations with singular sources, and fractional powers

of elliptic operators.
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4.2 A weighted Poincaré inequality

In order to obtain interpolation error estimates in Lp(ω,Ω) and W 1
p (ω,Ω), it is

instrumental to have a weighted Poincaré-like inequality [70, 129]. A pioneering

reference is the work by Fabes, Kenig and Serapioni [79], which shows that, when

the domain is a ball and the weight belongs to Ap 1 < p <∞, a weighted Poincaré

inequality holds [79, Theorem 1.3 and Theorem 1.5]. For generalizations of this

result see [82, 98]. For a star-shaped domain, and a specific A2-weight, we have

proved a weighted Poincaré inequality in §3.3.2.1 (see also [129, Lemma 4.2]). In

this section we extend this result to a general exponent p and a general weight

ω ∈ Ap(Rn). Our proof is constructive and not based on a compactness argument.

This allows us to trace the dependence of the stability constant on the domain

geometry.

Lemma 4.1 (weighted Poincaré inequality I) Let S ⊂ Rn be bounded, star-

shaped with respect to a ball B̂, with diamS ≈ 1. Let χ be a continuous function on

S with ‖χ‖L1(S) = 1. Given ω ∈ Ap(Rn), we define µ(x) = ω(Ax + b), for b ∈ Rn

and A = a · I, with a ∈ R. If v ∈ W 1
p (µ, S) is such that

´
S
χv = 0, then

‖v‖Lp(µ,S) . ‖∇v‖Lp(µ,S), (4.5)

where the hidden constant depends only on χ, Cp,ω and the radius r̂ of B̂, but is

independent of A and b.
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Proof: Property (v) of Proposition 2.1 shows that µ ∈ Ap(Rn) and Cµ,p = Cω,p.

Given v ∈ W 1
p (µ, S), we define

ṽ = sign(v)|v|p−1µ−
(ˆ

S

sign(v)|v|p−1µ

)
χ.

Hölder’s inequality yields

ˆ
S

µ|v|p−1 =

ˆ
S

µ1/p′ |v|p−1µ1/p ≤
(ˆ

S

µ|v|p
)1/p′ (ˆ

S

µ

)1/p

. ‖v‖p−1
Lp(µ,S), (4.6)

which implies that ṽ ∈ L1(S) and ‖ṽ‖L1(S) . ‖v‖p−1
Lp(µ,S). Notice, in addition, that

since
´
S
χ = 1, the function ṽ has vanishing mean value.

Given 1 < p < ∞, we define q = −p′/p, and we notice that q + p′ = 1 and

p′(p− 1) = p. We estimate ‖ṽ‖Lp′ (µq ,S) as follows:

(ˆ
S

µq|ṽ|p′
)1/p′

=

(ˆ
S

µq
∣∣∣∣sign(v)|v|p−1µ−

(ˆ
S

sign(v)|v|p−1µ

)
χ

∣∣∣∣p′
)1/p′

≤
(ˆ

S

µq+p
′ |v|p′(p−1)

)1/p′

+

(ˆ
S

|v|p−1µ

)
‖χ‖Lp′ (µq ,S)

. ‖v‖p−1
Lp(µ,S),

where we have used (4.6) together with the fact that µ ∈ Ap(Rn) implies µq ∈

L1
loc(Rn) (see Proposition 2.1 (i)), whence ‖χ‖Lp′ (µq ,S) ≤ ‖χ‖L∞(S)µ

q(S)1/p′ . 1.

Properties µq ∈ Ap′(Rn), that S is star-shaped with respect to B̂ and ṽ ∈

Lp
′
(µq, S) has vanishing mean value, suffice for the existence of u ∈

[
◦
W 1
p′(µ

q, S)
]n

satisfying

div u = ṽ,

and,

‖∇u‖[
W 1
p′ (µ

q ,S)
]n . ‖ṽ‖Lp′ (µq ,S), (4.7)
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where the hidden constant depends on Cp′,µq and the radius r of B̂; see [72, Theo-

rem 3.1].

Finally, since
´
S
χv = 0, the definition of ṽ implies

‖v‖pLp(µ,S) =

ˆ
S

vṽ +

(ˆ
sign(v)|v|p−1µ

) ˆ
S

χv =

ˆ
S

vṽ.

Replacing ṽ by −div u, integrating by parts and using (4.7), we conclude

‖v‖pLp(µ,S) = −
ˆ
S

∇v · u ≤
(ˆ

S

µ|∇v|p
)1/p(ˆ

S

µq|u|p′
)1/p′

. ‖∇v‖Lp(µ,S)‖ṽ‖Lp′ (µq ,S).

Invoking ‖ṽ‖Lp′ (µq ,S) . ‖v‖p−1
Lp(µ,S) yields the desired inequality. �

In section 4.4 we construct an interpolation operator based on local averages.

Consequently, the error estimates on an element T depend on the behavior of the

function over a so-called patch of T , which is not necessarily star shaped. Then,

we need to relax the geometric assumptions on the domain S and let the vanishing

mean property hold just in a subdomain. The following result is an adaptation of

Corollary 4.2 ( see also [129, Corollary 4.4]).

Corollary 4.2 (weighted Poincaré inequality II) Let S = ∪Ni=1Si ⊂ Rn be a

connected domain and each Si be star-shaped with respect to a ball Bi. Let χi ∈

C0(S̄i) and µ be as in Lemma 4.1. If v ∈ W 1
p (µ, S) and vi =

´
ωi
vχi, then

‖v − vi‖Lp(µ,S) . ‖∇v‖Lp(µ,S) ∀1 ≤ i ≤ N, (4.8)

where the hidden constant depends on {χi}Ni=1, the radii ri of Bi, and the amount of

overlap between the subdomains {Si}Ni=1, but is independent of A and b.
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Proof: This is an easy consequence of Lemma 4.1 and [68, Theorem 7.1]. For

completeness, we sketch the proof. It suffices to deal with two subdomains S1, S2

and the overlapping region D = S1 ∩ S2. We start from

‖v − v1‖Lp(µ,S2) ≤ ‖v − v2‖Lp(µ,S2) + ‖v1 − v2‖Lp(µ,S2).

Since v1 and v2 are constant

‖v1 − v2‖Lp(µ,S2) =

(
µ(S2)

µ(D)

)1/p

‖v1 − v2‖Lp(µ,D),

which together with

‖v1 − v2‖Lp(µ,D) ≤ ‖v − v1‖Lp(µ,S1) + ‖v − v2‖Lp(µ,S2),

and (4.5) imply ‖v − v1‖Lp(µ,S2) . ‖∇v‖Lp(µ,S1∪S2). This and (4.5) give (4.8) for

i = 1, with a stability constant depending on the ratio µ(S2)
µ(D)

. �

4.3 Approximation theory in weighted Sobolev spaces

In this section, we introduce an averaged version of the Taylor polynomial and

study its approximation properties in Muckenhoupt weighted Sobolev spaces. Our

results are optimal and are used to obtain error estimates for the quasi-interpolation

operator defined in section 4.4 on simplicial and rectangular discretizations. The

interpolation operator is built on local averages over stars, and so is similar to the

one introduced in [68]. The main difference is that it is directly defined on the given

mesh instead of using a reference element. This idea is fundamental in order to relax

the regularity assumptions on the elements, which is what allows us to derive the

anisotropic estimates on rectangular elements presented in § 4.4.2.
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4.3.1 Discretization

We start with some terminology and describe the construction of the underlying

finite element spaces. In order to avoid technical difficulties we shall assume ∂Ω is

polyhedral. We denote by T = {T} a partition, or mesh, of Ω into elements T

(simplices or cubes) such that

Ω̄ =
⋃
T∈T

T, |Ω| =
∑
T∈T

|T |.

The mesh T is assumed to be conforming or compatible: the intersection of any

two elements is either empty or a common lower dimensional element.

The collection of all conforming meshes is denoted by T. We say that T is

shape regular if there exists a constant σ > 1 such that, for all T ∈ T,

max {σT : T ∈ T } ≤ σ, (4.9)

where σT = hT/ρT is the shape coefficient of T . In the case of simplices, hT =

diam(T ) and ρT is the diameter of the sphere inscribed in T ; see, for instance, [39].

For the definition of hT and ρT in the case of n-rectangles see [56].

We assume the collection of meshes T to be conforming and satisfying the

regularity assumption (4.9). In § 4.4.2, we consider rectangular discretizations of

the domain Ω = (0, 1)n which satisfy a weaker regularity assumption and thus allow

for anisotropy in each coordinate direction (cf. [70]).

Given a conforming mesh T ∈ T, we define the finite element space of contin-

uous piecewise polynomials of degree m ≥ 1

V(T ) =
{
W ∈ C0(Ω̄) : W|T ∈ P(T ) ∀T ∈ T , W|∂Ω = 0

}
, (4.10)
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where, for a simplicial element T , P(T ) corresponds to Pm — the space of polyno-

mials of total degree at most m. If T is an n-rectangle, then P(T ) stands for Qm

— the space of polynomials of degree not larger than m in each variable.

Given an element T ∈ T , we denote by N (T ) and
◦

N (T ) the set of nodes

and interior nodes of T , respectively. We set N (T ) := ∪T∈T N (T ) and
◦

N (T ) :=

N (T ) ∩ ∂Ω. Then, any discrete function V ∈ V(T ) is characterized by its nodal

values on the set
◦

N (T ). Moreover, the functions φz ∈ V(T ), z ∈ ◦
N (T ), such that

φz(y) = δyz for all y ∈ N (T ) are the canonical basis of V(T ), and

V =
∑

z∈ ◦N (T )

V (z)φz.

The functions {φz}z∈ ◦N (T ) are the so called shape functions.

Given z ∈ N (T ), the star or patch around z is Sz :=
⋃
z∈T T, and, for T ∈ T ,

its patch is ST :=
⋃
z∈T Sz. For each z ∈ N (T ), we define hz := min{hT : z ∈ T}.

4.3.2 The averaged interpolation operator

We now develop an approximation theory in Muckenhoupt weighted Sobolev spaces,

which is instrumental in section 4.4. We define an averaged Taylor polynomial, built

on local averages over stars and thus well defined for Lp(ω,Ω)-functions. Exploiting

the weighted Poincaré inequality derived in section 4.2, we show optimal error esti-

mates for constant and linear approximations. These results are the basis to extend

these estimates to any polynomial degree via a simple induction argument in section

4.3.4.

Let ψ ∈ C∞(Rn) be such that
´
ψ = 1 and suppψ ⊂ B, where B denotes the
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ball in Rn of radius r and centered at zero and r ≤ 1/σ, with σ defined as in (4.9).

For z ∈ ◦
N (T ), we define the rescaled smooth function

ψz(x) =
1

hnz
ψ

(
z − x
hz

)
. (4.11)

Owing to the regularity assumption (4.9) and r ≤ 1/σ, we have suppψz ⊂ Sz.

Given a smooth function v, we denote by Pmv(x, y) the Taylor polynomial of

order m in the variable y about the point x, i.e.,

Pmv(x, y) =
∑
|α|≤m

1

α!
Dαv(x)(y − x)α. (4.12)

For z ∈ ◦
N (T ), and v ∈ Wm

p (ω,Ω), we define the corresponding averaged Taylor

polynomial of order m of v about the node z as

Qm
z v(y) =

ˆ
Pmv(x, y)ψz(x) dx. (4.13)

Integration by parts shows that Qm
z v is well-defined for functions in L1(Ω) [39,

Proposition 4.1.12]. Proposition 2.3 then allows us to conclude that (4.13) is well

defined for v ∈ Lp(ω,Ω). Since suppψz ⊂ Sz, the integral appearing in (4.13) can

be also written over Sz. Moreover, we have the following properties of Qm
z v:

• Qm
z v is a polynomial of degree less or equal than m in the variable y (cf. [39,

Proposition 4.1.9]).

• Qm
z v = Qm

z Q
m
z v, i.e., Qm

z is invariant over Pm.

• For any α such that |α| ≤ m,

DαQm
z v = Qm−|α|

z Dαv ∀v ∈ W |α|
1 (B), (4.14)
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(cf. [39, Proposition 4.1.17]). As a consequence of ω ∈ Ap(Rn), together with

Proposition 2.3, we have that (4.14) holds for v in W
|α|
1 (ω,B).

The following stability result is important in the subsequent analysis.

Lemma 4.3 (stability of Qm
z ) Let ω ∈ Ap(Rn) and z ∈ ◦

N (T ). If v ∈ W k
p (ω, Sz),

with 0 ≤ k ≤ m, we have the following stability result

‖Qm
z v‖L∞(Sz) . ‖ψz‖Lp′ (ω−p′/p,Sz)

k∑
l=0

hlz|v|W l
p(ω,Sz). (4.15)

Proof: Using the definition of the averaged Taylor polynomial (4.13), we arrive at

‖Qm
z v‖L∞(Sz) .

∑
|α|≤m

∥∥∥∥ˆ
Sz

Dαv(x)(y − x)αψz(x) dx

∥∥∥∥
L∞(Sz)

.

This implies estimate (4.15) if k = m. Otherwise, integration by parts on the higher

derivatives Dαv with k < |α| ≤ m, together with ψz = 0 on ∂Sz, and the estimate

|y − x| . hz for all x, y ∈ Sz, together with Hölder’s inequality, yields (4.15). �

Given ω ∈ Ap(Rn) and v ∈ Wm+1
p (ω,Ω) with m ≥ 0, in the next section

we derive approximation properties of the averaged Taylor polynomial Qm
z v in the

weighted W k
p (ω,Ω)-norm, with 0 ≤ k ≤ m, via a weighted Poincaré inequality and

a simple induction argument. Consequently, we must first study the approximation

properties of Q0
zv, the weighted average of v ∈ Lp(ω,Ω), which for z ∈ ◦

N (T ) reads

Q0
zv =

ˆ
Sz

v(x)ψz(x) dx. (4.16)

4.3.3 Weighted Lp-based error estimates

We start by adapting the proofs of [70, Lemma 2.3] and [129, Lemma 4.5] to obtain

local approximation estimates in the weighted Lp-norm for the polynomials Q0
zv and
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Q1
zv.

Lemma 4.4 (weighted Lp-based error estimates) Let z ∈ ◦
N (T ). If the func-

tion v ∈ W 1
p (ω, Sz), then we have

‖v −Q0
zv‖Lp(ω,Sz) . hz‖∇v‖Lp(ω,Sz). (4.17)

If v ∈ W 2
p (ω, Sz) instead, the following estimate holds

‖∂xj(v −Q1
zv)‖Lp(ω,Sz) . hz‖∂xj∇v‖Lp(ω,Sz), (4.18)

for j = 1, . . . , n. In both inequalities, the hidden constants depend only on Cp,ω, σ

and ψ.

Proof: Define the mapping Fz : x 7→ x̄ by

x̄ =
z − x
hz

,

the star S̄z = Fz(Sz) and the function v̄(x̄) = v(x). Set Q̄0v̄ =
´
v̄ψ dx̄, where ψ is

the smooth function introduced in section 4.3.2.

Notice that suppψ ⊂ S̄z. Consequently, in the definition of Q̄0v̄, integration

takes place over S̄z only. Using the mapping Fz, we have

Q0
zv =

ˆ
Sz

vψz dx =

ˆ
S̄z

v̄ψ dx̄ = Q̄0v̄,

and, since
´
S̄z
ψ dx̄ = 1,

ˆ
S̄z

(v − Q̄0v̄)ψ dx̄ =

ˆ
S̄z

v̄ψ dx̄− Q̄0v̄ = 0. (4.19)
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Define the weight ω̄z = ω ◦F −1
z . In light of property (v) in Proposition 2.1 we

have ω̄z ∈ Ap(Rn) and Cp,ω̄z = Cp,ω. Changing variables we get

ˆ
Sz

ω|v −Q0
zv|p dx = hnz

ˆ
S̄z

ω̄z|v̄ − Q̄0v̄|p dx̄. (4.20)

As a consequence of the shape regularity assumption (4.9), diam S̄z ≈ 1. Then,

in view of (4.19), we can apply Lemma 4.1 to v̄ − Q̄0v̄ over S = S̄z, with µ = ω̄z

and χ = ψ, to conclude

‖v̄ − Q̄0v̄‖Lp(ω̄z ,S̄z) . ‖∇̄v̄‖Lp(ω̄z ,S̄z),

where the hidden constant depends only on σ, Cp,ω̄z and ψ. Inserting this estimate

into (4.20) and changing variables with F−1
z to get back to S̄z we get (4.17).

In order to prove (4.18), we define

Q̄1v̄(ȳ) =

ˆ
S̄z

(
v̄(x̄) + ∇̄v̄(x̄) · (ȳ − x̄)

)
ψ(x̄) dx̄,

and observe thatQ1
zv(y) = Q̄1v̄(ȳ), whereQ1

zv is defined by (4.13). Since ∂ȳiQ̄
1v̄(ȳ) =

´
S̄z
∂x̄i v̄(x̄)ψ(x̄) dx̄ is constant for i ∈ {1, · · · , n}, we have the vanishing mean value

property ˆ
S̄z

∂x̄i

(
v̄(x̄)− Q̄1v̄(x̄)

)
ψ(x̄) dx̄ = 0.

This, together with Lemma 4.1, leads to (4.18). �

The following result is an optimal error estimate in the Lp-weighted norm for

the averaged Taylor polynomial Q1
zv, which is instrumental to study Qm

z v (m ≥ 0).

Lemma 4.5 (weighted Lp-based error estimate for Q1
z) Let z ∈ ◦

N (T ). If

v ∈ W 2
p (ω, Sz), then the following estimate holds

‖v −Q1
zv‖Lp(ω,Sz) . h2

z|v|W 2
p (ω,Sz), (4.21)
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where the hidden constant depends only on Cp,ω, σ and ψ.

Proof: Since

v −Q1
zv = (v −Q1

zv)−Q0
z(v −Q1

zv)−Q0
z(Q

1
zv − v),

and ∇(v −Q1
zv) = ∇v −Q0

z∇v from (4.14), we can apply (4.17) twice to obtain

‖(v −Q1
zv)−Q0

z(v −Q1
zv)‖Lp(ω,Sz) . hz‖∇(v −Q1

zv)‖Lp(ω,Sz) . h2
z‖D2v‖Lp(ω,Sz).

So it remains to estimate the term R1
z(v) := Q0

z(Q
1
zv − v). Since Q0

zv = Q0
zQ

0
zv,

we notice that R1
z(v) = Q0

z(Q
1
zv −Q0

zv). Then, using the definition of the averaged

Taylor polynomial given by (4.13), we have

R1
z(v) =

ˆ
Sz

(ˆ
Sz

∇v(x) · (y − x)ψz(x) dx

)
ψz(y) dy.

We exploit the crucial cancellation property R1
z(p) = 0 for all p ∈ P1 as follows:

R1
z(v) = R1

z(v −Q1
zv) = 0. This yields

‖R1
z(v)‖pLp(ω,Sz) =

ˆ
Sz

ω

∣∣∣∣ˆ
Sz

(ˆ
Sz

∇(v(x)−Q1
zv(x)) · (y − x)ψz(x) dx

)
ψz(y) dy

∣∣∣∣p
Applying Hölder inequality to the innermost integral I(y) leads to

|I(y)|p . hpz

(ˆ
Sz

ω|∇(v(x)−Q1
zv(x))|p dx

)(ˆ
Sz

ω−p
′/pψz(x)p

′
dx

)p/p′
.

This is combined with
´
Sz
ψz(y) dy = 1 and ‖ψz‖Lp′ (ω−p′/p,Sz)‖1‖Lp(ω,Sz) . 1, which

follows from the definition of ψz and the definition (2.10) of the Ap-class, to arrive

at

‖R1
z(v)‖pLp(ω,Sz) . h2p

z

ˆ
Sz

ω|D2v|p. (4.22)

This yields the desired estimate (4.21). �
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4.3.4 Induction argument

In order to derive approximation properties of the averaged Taylor polynomial Qm
z v

for any m ≥ 0, we apply an induction argument. We assume the following estimate

as induction hypothesis:

‖v −Qm−1
z v‖Lp(ω,Sz) . hmz |v|Wm

p (ω,Sz). (4.23)

Notice that, for m = 1, the induction hypothesis is exactly (4.18), while for m = 2

is given by Lemma 4.5. We have the following general result for any m ≥ 0.

Lemma 4.6 (weighted Lp-based error estimate for Qm
z ) Let z ∈ ◦

N (T ) and

m ≥ 0. If v ∈ Wm+1
p (ω, Sz), then we have the following approximation result

‖v −Qm
z v‖Lp(ω,Sz) . hm+1

z |v|Wm+1
p (ω,Sz), (4.24)

where the hidden constant depends only on Cp,ω, σ, ψ and m.

Proof: We proceed as in the proof of Lemma 4.5. Notice, first of all, that

v −Qm
z v = (v −Qm

z v)−Qm−1
z (v −Qm

z v)−Qm−1
z (Qm

z v − v).

The induction hypothesis (4.23) yields

‖(v −Qm
z v)−Qm−1

z (v −Qm
z v)‖Lp(ω,Sz) . hmz |v −Qm

z v|Wm
p (ω,Sz).

Since DαQm
z v = Q0

zD
αv for all |α| = m, according to property (4.14), the estimate

(4.17) yields |v −Qm
z v|Wm

p (ω,Sz) . hz|v|Wm+1
p (ω,Sz), and then

‖(v −Qm
z v)−Qm−1

z (v −Qm
z v)‖Lp(ω,Sz) . hm+1

z |v|Wm+1
p (ω,Sz).
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It thus remains to bound the term

Rm
z (v) := Qm−1

z (Qm
z v − v).

Since Qm−1
z Qm−1

z v = Qm−1
z v, writing Qm

z = Qm−1
z +

∑
|β|=m T

β
z with

T βz (v) =
1

β!

ˆ
Sz

Dβv(ζ)(x− ζ)βψz(ζ) dζ,

we obtain

Rm
z (v) =

∑
|β|=m

Qm−1
z T βz (v).

This representation allows us to write

Rm
z (v)(y) =

∑
|α|<m,|β|=m

Iα,βv(y),

with

Iα,βv(y) =
1

α!

ˆ
Sz

ψz(x)Dα
xT

β
z v(x)(y − x)α dx

=
1

α!

ˆ
Sz

ψz(x)
1

(β − α)!

ˆ
Sz

Dβ
ζ v(ζ)(x− ζ)β−αψz(ζ) dζ(y − x)α dx.

Finally, we notice the following cancellation property : Qm
z p = p for all p ∈ Pm,

whence Rm
z (p) = 0. Consequently Rm

z (v) = Rm
z (v −Qm

z v) implies

‖Iα,βv‖pLp(ω,Sz) . hmpz

ˆ
Sz

ω(y)

∣∣∣∣ˆ
Sz

ψz(x)

ˆ
Sz

Dβ
ζ (v −Qm

z v)(ζ)ψz(ζ) dζ dx

∣∣∣∣p dy.

Combining the identity DβQm
z v = Q0

zD
βv, with (4.17) and the bound

‖ψz‖Lp′ (ω−p′/p,Sz)‖1‖Lp(ω,Sz) . 1,

we infer that

‖Rm
z v‖pLp(ω,Sz) . hmpz ‖1‖pLp(ω,Sz)‖Dmv −DmQm

z v‖pLp(ω,Sz)‖ψz‖
p

Lp(ω−p′/p,Sz)

. h(m+1)p
z |v|p

Wm+1
p (ω,Sz)

.
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This concludes the proof. �

The following corollary is a simple consequence of Lemma 4.6.

Corollary 4.7 (weighted W k
p -based error estimate for Qm

z ) Let z ∈ ◦
N (T ).

If v ∈ Wm+1
p (ω, Sz) with m ≥ 0, then

|v −Qm
z v|Wk

p (ω,Sz) . hm+1−k
z |v|Wm+1

p (ω,Sz), k = 0, 1, . . . ,m+ 1, (4.25)

where the hidden constant depends only on Cp,ω, σ, ψ and m.

Proof: For k = 0, the estimate (4.25) is given by Lemma 4.6, while for k = m+ 1,

|v −Qm
z v|Wm+1

p (ω,Sz) = |v|Wm+1
p (ω,Sz).

For 0 < k < m+ 1, we employ property (4.14) of DαQm
z v with |α| = k to write

|v −Qm
z v|Wk

p (ω,Sz) =

∑
|α|=k

‖Dαv −Qm−k
z Dαv‖pLp(ω,Sz)

1/p

.

Therefore, applying estimate (4.24) to ‖Dαv −Qm−k
z Dαv‖Lp(ω,Sz), we obtain

|v −Qm
z v|Wk

p (ω,Sz) . hm+1−k
z |v|Wm+1

p (ω,Sz),

which is the asserted estimate. �

4.4 Weighted interpolation error estimates

In this section we construct a quasi-interpolation operator ΠT , based on local av-

erages over stars. This construction is well defined for functions in L1(Ω), and thus

for functions in the weighted space Lp(ω,Ω). It is well known that this type of
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quasi-interpolation operator is important in the approximation of nonsmooth func-

tions without point values because the Lagrange interpolation operator is not even

defined [58, 143]. Moreover, averaged interpolation has better approximation prop-

erties than the Lagrange interpolation for anisotropic elements [2]. We refer the

reader to [19, 70, 129] for applications of quasi-interpolantion.

The construction of ΠT is based on the averaged Taylor polynomial defined in

(4.13). In § 4.4.1, using the approximation estimates derived in section 4.3 together

with an invariance property of ΠT over the space of polynomials, we derive opti-

mal error estimates for ΠT in Muckenhoupt weighted Sobolev norms on simplicial

discretizations. The case of rectangular discretizations is considered in § 4.4.2.

Given ω ∈ Ap(Rn) and v ∈ Lp(ω,Ω), we recall that Qm
z v is the averaged

Taylor polynomial of order m of v over the node z; see (4.13). We define the quasi-

interpolant ΠT v as the unique function of V(T ) that satisfies ΠT v(z) = Qm
z v(z) if

z ∈ ◦
N (T ), and ΠT v(z) = 0 if z ∈ N (T ) ∩ ∂Ω, i.e.,

ΠT v =
∑

z∈ ◦N (T )

Qm
z v(z)φz. (4.26)

Optimal error estimates for ΠT rely on its stability, which follows from the

stability of Qm
z obtained in Lemma 4.3.

Lemma 4.8 (stability of ΠT ) Let v ∈ W k
p (ω, ST ) with 0 ≤ k ≤ m+1 and T ∈ T .

Then, the quasi-interpolant operator ΠT defined by (4.26) satisfies the following local

stability bound

|ΠT v|Wk
p (ω,T ) .

k∑
l=0

hl−kT |v|W l
p(ω,ST ). (4.27)
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Proof: Using the definition of ΠT given by (4.26), we have

|ΠT v|Wk
p (ω,T ) ≤

∑
z∈ ◦N (T )

‖Qm
z v‖L∞(Sz) |φz|Wk

p (ω,T ).

We resort to Lemma 4.3 to derive

|ΠT v|Wk
p (ω,T ) .

∑
z∈ ◦N (T )

|φz|Wk
p (ω,T )‖ψz‖Lp′ (ω−p′/p,Sz)

k∑
l=0

hlz|v|W l
p(ω,Sz).

Since φz and ψz are bounded in L∞(ST ) and ω ∈ Ap(Rn), we obtain

|φz|Wk
p (ω,T )‖ψz‖Lp′ (ω−p′/p, Sz) .

h−kz
hnz

(ˆ
Sz

ω

)1/p(ˆ
Sz

ω−p
′/p

)1/p′

. h−kz ,

which, given the definition of ST , the shape regularity of T , and the finite overlap-

ping property of stars imply (4.27). �

4.4.1 Interpolation error estimates on simplicial discretizations

The quasi-interpolant operator ΠT is invariant over the space of polynomials of

degree m on simplicial meshes: ΠT v|Sz = v for v ∈ Pm(Sz) and z ∈ ◦
N (T ) such

that ∂Sz ∩ ∂Ω = ∅. Consequently,

ΠT Q
m
z φ = Qm

z φ. ∀φ ∈ L1(ω, Sz). (4.28)

This property, together with (4.7), yields optimal interpolation estimates for ΠT .

Theorem 4.9 (interpolation estimate on interior simplices) Given T ∈ T

such that ∂T ∩ ∂Ω = ∅ and v ∈ Wm+1
p (ω, ST ), we have the following interpolation

error estimate

|v − ΠT v|Wk
p (ω,T ) . hm+1−k

T |v|Wm+1
p (ω,ST ), k = 0, 1, . . . ,m+ 1, (4.29)

where the hidden constant depends only on Cp,ω, σ, ψ and m.
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Proof: Given T ∈ T , choose a node z ∈ ◦
N (T ). Property (4.28) yields,

|v − ΠT v|Wk
p (ω,T ) ≤ |v −Qm

z v|Wk
p (ω,T ) + |ΠT (Qm

z v − v)|Wk
p (ω,T ).

Combining the stability of ΠT given by (4.27) together with (4.25) implies

|v − ΠT v|Wk
p (ω,T ) .

k∑
l=0

hl−kT |v −Qm
z v|W l

p(ω,ST ) . hm+1−k
T |v|Wm+1

p (ω,ST ),

which is exactly (4.29). �

By using the fact that, v ∈ Wm+1
p (ω,Ω) ∩ ◦

W 1
p (ω,Ω) implies ΠT v|∂Ω = 0

we can extend the results of Theorem 4.9 to boundary elements. The proof is an

adaption of standard techniques and, in order to deal with the weight, those of the

aforementioned Theorem 4.9. See also Theorem 4.17 below.

Theorem 4.10 (interpolation estimates on Dirichlet simplices) Let the func-

tion v ∈ ◦
W 1
p (ω,Ω) ∩Wm+1

p (ω,Ω). If T ∈ T is a boundary simplex, then (4.29)

holds with a constant that depends only on Cp,ω, σ and ψ.

We are now in the position to write a global interpolation estimate. To this

end, it is convenient to introduce the meshsize function h ∈ L∞(Ω) given by

h|T = hT , ∀T ∈ T .

Theorem 4.11 (global interpolation estimate over simplicial meshes) Given

T ∈ T and v ∈ Wm+1
p (ω,Ω), we have the following global interpolation error esti-

mate(∑
T∈T

|v − ΠT v|2Wk
p (ω,T )

)1/p

. |hm+1−kv|Wm+1
p (ω,Ω), k = 0, 1, . . . ,m+ 1, (4.30)

where the hidden constant depends only on Cp,ω, σ, ψ and m.
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Proof: Raise (4.29) to the p-th power and add over all T ∈ T . The finite overlap-

ping property of stars of T yields the result. �

4.4.2 Anisotropic interpolation estimates on rectangular meshes

Narrow or anisotropic elements are those with disparate sizes in each direction.

They are necessary, for instance, for the optimal approximation of functions with a

strong directional-dependent behavior such as line and edge singularities, boundary

layers, and shocks (see [70, 71, 129]).

Inspired by [70], here we derive interpolation error estimates assuming only

that neighboring elements have comparable sizes, thus obtaining results which are

valid for a rather general family of anisotropic meshes. Since symmetry is essential,

we assume that Ω = (0, 1)n, or that Ω is any domain which can be decomposed into

n-rectangles. We use below the notation introduced in [70].

We assume that the mesh T is composed of rectangular elements R, with sides

parallel to the coordinate axes. By v ∈ N (T ) we denote a node or vertex of the

triangulation T and by Sv, SR the associated patches; see § 4.3.1. Given R ∈ T ,

we define hiR as the length of R in the i-th direction and, if v ∈ N (T ), we define

hiv = min{hiR : v ∈ R} for i = 1, · · · , n. The finite element space is defined by (4.10)

with P = Q1.

We assume the following weak shape regularity condition: there exists a con-

stant σ > 1, such that if R, S ∈ T are neighboring elements, we have

hiR
hiS
≤ σ, i = 1, . . . , n. (4.31)
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Whenever v is a vertex of R the shape regularity assumption (4.31) implies that hiv

and hiR are equivalent up to a constant that depends only on σ. We define

ψv(x) =
1

h1
v . . . h

n
v

ψ

(
v1 − x1

h1
v

, . . . ,
vn − xn
hnv

)
,

which, owing to (4.31) and r ≤ 1/σ, satisfies suppψv ⊂ Sv. Notice that this function

incorporates a different length scale on each direction xi, which will prove useful in

the study of anisotropic estimates.

Given ω ∈ Ap(Rn), and v ∈ Lp(ω,Ω), we define Q1
vv, the first degree regu-

larized Taylor polynomial of v about the vertex v as in (4.13). We also define the

quasi-interpolation operator ΠT as in (4.26), i.e., upon denoting by φv the Lagrange

nodal basis function of V(T ), ΠT v reads

ΠT v :=
∑

v∈ ◦N (T )

Q1
vv(v)φv. (4.32)

The finite element space V(T ) is not invariant under the operator defined in

(4.32). Consequently, we cannot use the techniques for simplicial meshes developed

in § 4.4.1. This, as the results below show, is not a limitation to obtain interpolation

error estimates.

Lemma 4.12 (anisotropic Lp-weighted error estimates I) Let v ∈ ◦
N (T ). If

v ∈ W 1
p (ω, Sv), then we have

‖v −Q0
vv‖Lp(ω,Sv) .

n∑
i=1

hiv‖∂xiv‖Lp(ω,Sv). (4.33)

If v ∈ W 2
p (ω, Sv) instead, then the following estimate holds

‖∂xj(v −Q1
vv)‖Lp(ω,Sv) .

n∑
i=1

hiv‖∂xi∂xjv‖Lp(ω,Sv), (4.34)
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for j = 1, . . . , n. In both inequalities, the hidden constants depend only on Cp,ω, σ

and ψ.

Proof: To exploit the symmetry of the elements we define the map

Fv : x 7→ x̄, x̄i =
vi − xi
hiv

, i = 1, . . . , n, (4.35)

and proceed exactly as in the proof of Lemma 4.4. �

Lemma 4.12, in conjunction with the techniques developed in Lemma 4.5 give

rise the second order anisotropic error estimates in the weighted Lp-norm.

Lemma 4.13 (anisotropic Lp-weighted error estimate II) Let v ∈ ◦
N (T ). If

v ∈ W 2
p (ω, Sv), then we have

‖v −Q1
vv‖Lp(ω,Sv) .

n∑
i,j=1

hivh
j
v‖∂xi∂xjv‖Lp(ω,Sv), (4.36)

where the hidden constant in the inequality above depends only on Cp,ω, σ and ψ.

Proof: Recall that, if R1
v(v) = Q0

v(Q
1
vv − v), then we can write

v −Q1
vv = (v −Q1

vv)−Q0
v(v −Q1

vv)−R1
v(v).

Applying estimates (4.33) and (4.34) successively, we see that

‖(v −Q1
vv)−Q0

v(v −Q1
vv)‖Lp(ω,Sv) .

n∑
i=1

hiv‖∂xi(v −Q1
vv)‖Lp(ω,Sv)

.
n∑

i,j=1

hivh
j
v‖∂xi∂xjv‖Lp(ω,Sv).

It remanins then to bound R1
v(v). We proceed as in the proof of (4.22) in Lemma 4.5.

The definition (4.13) of the averaged Taylor polynomial, together with the cancel-
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lation property R1
v(v) = R1

v(v −Q1
vv), implies

‖R1
v(v)‖pLp(ω,Sv)

.
n∑
i=1

(hiv)
p‖∂xi(v −Q1

vv)‖pLp(ω,Sv)
‖1‖pLp(ω,Sv)

‖ψv‖pLp′ (ω−p′/p,Sv)

Combining (4.34) with the inequality ‖ψv‖Lp′ (ω−p′/p,Sv)‖1‖Lp(ω,Sv) . 1, which follows

from the the definition of ψv and the definition (2.10) of the Ap-class, yields

‖R1
v(v)‖Lp(ω,Sv) .

n∑
i,j=1

hivh
j
v‖∂xi∂xjv‖Lp(ω,Sv),

and leads to the asserted estimate (4.36). �

The anisotropic error estimate (4.33) together with the weighted Lp stability

of the interpolation operator ΠT , enables us to obtain anisotropic weighted Lp

interpolation estimates, as shown in the following Theorem.

Theorem 4.14 (anisotropic Lp-weighted interpolation estimate I) Let T sat-

isfy (4.31) and R ∈ T . If v ∈ Lp(ω, SR), we have

‖ΠT v‖Lp(ω,R) . ‖v‖Lp(ω,SR). (4.37)

If, in addition, w ∈ W 1
p (ω, SR) and ∂R ∩ ∂Ω = ∅, then

‖v − ΠT v‖Lp(ω,R) .
n∑
i=1

hiR‖∂xiv‖Lp(ω,SR). (4.38)

The hidden constants in both inequalities depend only on Cp,ω, σ and ψ.

Proof: The local stability (4.37) of ΠT follows from Lemma 4.8 with k = 0. Let us

now prove (4.38). Choose a node v ∈ ◦
N (R). Since Q0

vv is constant, and ∂R∩∂Ω = ∅,

ΠT Q
0
vv = Q0

vv over R. This, in conjunction with estimate (4.37), allows us to write

‖v − ΠT v‖Lp(ω,R) = ‖(I − ΠT )(v −Q0
vv)‖Lp(ω,R) . ‖v −Q0

vv‖Lp(ω,SR).
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The desired estimate (4.38) now follows from Corollary 4.2. �

To prove interpolation error estimates on the first derivatives for interior ele-

ments we follow [70, Theorem 2.6] and use the symmetries of a cube, thus handling

the anisotropy in every direction separately. We start by studying the case of interior

elements.

Figure 4.1: An anisotropic cube with sides parallel to the coordinate axes and the labeling

of its vertices. The numbering of the vertices proceeds recursively as follows: a cube in

dimension m is obtained as the Cartesian product of an (m − 1)-dimensional cube with

vertices {vi}2m−1

i=1 and an interval, and the new vertices are {vi+2m−1}2m−1

i=1 .

Theorem 4.15 (anisotropic W 1
p -weighted interpolation estimates) Let R ∈

T be such that ∂R ∩ ∂Ω = ∅. If v ∈ W 1
p (ω, SR) we have the stability bound

‖∇ΠT v‖Lp(ω,R) . ‖∇v‖Lp(ω,SR). (4.39)

If, in addition, v ∈ W 2
p (ω, SR) we have, for j = 1, · · · , n,

‖∂xj(v − ΠT v)‖Lp(ω,R) .
n∑
i=1

hiR‖∂xj∂xiv‖Lp(ω,SR). (4.40)

The hidden constants in the inequalities above depend only on Cp,ω, σ and ψ.
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Proof: Let us bound the derivative with respect to the first argument x1. The

other ones follow from similar considerations. As in [70, Theorem 2.5], to exploit

the geometry of R, we label its vertices in an appropriate way: vertices that differ

only in the first component are denoted vi and vi+2n−1 for i = 1, . . . , 2n−1; see

Figure 4.1 for the three-dimensional case.

Clearly v−ΠT v = (v−Q1
v1
v) + (Q1

v1
v−ΠT v), and the difference v−Q1

v1
v is

estimated by Lemma 4.12. Consequently, it suffices to consider q = Q1
v1
v − ΠT v ∈

Q1(R). Thanks to the special labeling of the vertices we have that ∂x1φvi+2n−1 =

−∂x1φvi . Therefore

∂x1q =
2n∑
i=1

q(vi)∂x1φvi =
2n−1∑
i=1

(q(vi)− q(vi+2n−1))∂x1φvi ,

so that

‖∂x1q‖Lp(ω,R) ≤
2n−1∑
i=1

|q(vi)− q(vi+2n−1)|‖∂x1φvi‖Lp(ω,R). (4.41)

This shows that it suffices to estimate δq(v1) = q(v1)− q(v1+2n−1). The definitions

of ΠT , q, and the averaged Taylor polynomial (4.13), imply that

δq(v1) =

ˆ
P 1(x, v1+2n−1)ψv1+2n−1 (x) dx−

ˆ
P 1(x, v1+2n−1)ψv1(x) dx, (4.42)

whence employing the operation ◦ defined in (2.4) and changing variables, we get

ˆ (
P 1(v1+2n−1 − hv1+2n−1 ◦ z, v1+2n−1)− P 1(v1 − hv1 ◦ z, v1+2n−1)

)
ψ(z) dz.

Define

θ1 = v1
1+2n−1 − v1

1 + (h1
v1
− h1

v1+2n−1
)z1,

θ = (θ1, 0, . . . , 0) and, for t ∈ [0, 1], the function Fz(t) = P 1(v1−hv1 ◦z+tθ, v1+2n−1).
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Since for i = 1, · · · , n− 1 we have that hiv1
= hiv1+2n−1

and vi1 = vi1+2n−1 we obtain

P 1(v1+2n−1 − hv1+2n−1 ◦ z, v1+2n−1)− P 1(v1 − hv1 ◦ z, v1+2n−1) = Fz(1)− Fz(0),

and consequently

δq(v1) =

ˆ
(Fz(1)− Fz(0))ψ(z) dz =

ˆ 1

0

ˆ
F ′z(t)ψ(z) dz dt.

Since ψ is bounded and B = suppψ ⊂ B(0, 1), it suffices to bound the integral

I(t) =

ˆ
B

|F ′z(t)| dz.

Invoking the definition of Fz, we get F ′z(t) = ∇P 1(v1−hv1 ◦z+tθ, v1+2n−1) ·θ, which,

together with the definition of the polynomial P 1 given by (4.12), yields

I(t) .
ˆ
B

|∂2
x1
v(v1 − hv1 ◦ z + tθ)| |v1

1+2n−1 − v1
1 + h1

v1
z1 − tθ1| |θ1| dz

+ .
n∑
i=2

ˆ
B

|∂2
xix1

v(v1 − hv1 ◦ z + tθ)| |vi1+2n−1 − vi1 + hiv1
zi| |θ1| dz.

Now, using that |z| ≤ 1, 0 ≤ t ≤ 1, and the definition of θ, we easily see that |θ| =

|θ1| . h1
v1

as well as |v1
1+2n−1−v1 +h1

v1
z1− tθ1| . h1

v1
and |vi1+2n−1−vi1−hiv1

zi| . hiv1

for i = 2, . . . n, whence

I(t) .
n∑
i=1

hv1
1
hvi1

ˆ
B

|∂2
xix1

v(v1 − hv1 ◦ z + tθ)| dz.

Changing variables via y = v1 − hv1 ◦ z + tθ, we obtain

I(t) .
1

hv2
1
. . . hvn1

n∑
i=1

hvi1

ˆ
SR

|∂2
xix1

v(y)| dy,

where we have used that the support of ψ is mapped into Sv1 ⊂ SR. Hölder’s

inequality implies

I(t) .
1

hv2
1
. . . hvn1

‖1‖Lp′ (ω−p′/p,SR)

n∑
i=1

hvi1‖∂
2
xix1

v‖Lp(ω,SR),
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which combined with ‖∂x1φv1‖Lp(ω,R)‖1‖Lp′ (ω−p′/p,SR) . h2
v1
. . . hnv1

, because ω ∈ Ap(Rn),

gives the following bound for the first term in (4.41)

δq(v1)‖∂x1φv1‖Lp(ω,R) .
n∑
i=1

hvi1‖∂
2
xix1

v‖Lp(ω,SR).

This readily yields (4.40).

The estimate (4.39) follows along the same arguments as in [129, Theorem

4.7]. In fact, by the triangle inequality

‖∇ΠT v‖Lp(ω,R) ≤ ‖∇Q1
v1
v‖Lp(ω,R) + ‖∇(Q1

v1
v − ΠT v)‖Lp(ω,R). (4.43)

The estimate of the first term on the right hand side of (4.43) begins by noticing

that the definition of ψv1 and the definition (2.10) of the Ap class imply

‖ψv1‖Lp′ (ω−p′/p,SR)‖1‖Lp(ω,SR) . 1.

This, together with the definition (4.13) of regularized Taylor polynomial Q1
v1
v,

yields

‖∇Q1
v1
v‖Lp(ω,R) ≤ ‖∇v‖Lp(ω,SR)‖ψv1‖Lp′ (ω−p′/p,SR)‖1‖Lp(ω,SR) . ‖∇v‖Lp(ω,SR).

To estimate the second term of the right hand side of (4.43), we integrate by parts

(4.42), using that ψvi = 0 on ∂ωvi for i = 1, . . . , n, to get

δq(v1) = (n+ 1)

(ˆ
v(x)ψv1+2n−1 (x) dx−

ˆ
v(x)ψv1(x) dx

)
−
ˆ
v(x)(v1+2n−1 − x) · ∇ψv1+2n−1 (x) dx+

ˆ
v(x)(v1 − x) · ∇ψv1(x) dx.

In contrast to (4.42), we have now created differences which involved v(x) instead

of ∇v(x). However, the same techniques used to derive (4.40) yield

|δq(v1)| . 1

h2
v1
. . . hnv1

‖∇v‖Lp(ω,SR)‖1‖Lp′ (ω−p′/p,SR),
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which, since ‖∂x1φv1‖Lp′ (ω−p′/p,SR)‖1‖Lp(ω,SR) . h2
v1
. . . hnv1

, results in

|δq(v1)|‖∂x1φv1‖Lp(ω,R) . ‖∇v‖Lp(ω,SR).

Replacing this estimate in (4.41), we get

‖∇(Q1
v1
v − ΠT v)‖Lp(ω,R) . ‖∇v‖Lp(ω,SR),

which implies the desired result (4.39). This completes the proof. �

Let us now derive a second order anisotropic interpolation error estimates for

the weighted Lp-norm, which is novel even for unweighted norms. For the sake of

simplicity, and because the arguments involved are rather technical (as in Theo-

rem 4.15), we prove the result in two dimensions. However, analogous results can

be obtained in three and more dimensions by using similar arguments.

Theorem 4.16 (anisotropic Lp-weighted interpolation estimate II) Let T

satisfy (4.31) and R ∈ T such that ∂R ∩ ∂Ω = ∅. If v ∈ W 2
p (ω, SR), then we have

‖v − ΠT v‖Lp(ω,R) .
n∑

i,j=1

hiRh
j
R‖∂xi∂xjv‖Lp(ω,SR), (4.44)

where the hidden constant in the inequality above depends only on Cp,ω, σ and ψ.

Proof: To exploit the symmetry of R, we label its vertices of R according to Fig-

ure 4.1: v2 = v1 + (a, 0), v3 = v1 + (0, b), v4 = v1 + (a, b). We write v − ΠT v =

(v − Q1
v1
v) + (Q1

v1
v − ΠT v). The difference v − Q1

v1
v is estimated by Lemma 4.13.

Consequently, it suffices to estimate q = Q1
v1
v − ΠT v.

Since q ∈ V(T ),

q =
4∑
i=1

q(vi)φvi =⇒ ‖q‖Lp(ω,R) ≤
4∑
i=1

|q(vi)|‖φvi‖Lp(ω,R), (4.45)
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and we only need to deal with q(vi) for i = 1, . . . , 4. Since q(v1) = 0, in accordance

with the definition (4.32) of ΠT , we just consider i = 2. Again, by (4.32), we have

q(v2) = Q1
v1
v(v2)−Q1

v2
v(v2)

which, together with the definition of the averaged Taylor polynomial (4.13) and a

change of variables, yields

q(v2) =

ˆ (
P 1(v1 − hv1 ◦ z, v2)− P 1(v2 − hv2 ◦ z, v2)

)
ψ(z) dz.

To estimate this integral, we define θ = (θ1, 0), where θ1 = v1
1 − v1

2 + (h1
v2
− h1

v1
)z1,

and the function Fz(t) = P (v2 − hv2 ◦ z + tθ, v2). Exploiting the symmetries of R,

i.e., using that v2
1 = v2

2 and h2
v1

= h2
v2

, we arrive at

q(v2) =

ˆ (
Fz(1)− Fz(0)

)
ψ(z) dz =

ˆ 1

0

ˆ
F ′z(t)ψ(z) dz dt.

By using the definition of the Taylor polynomial P 1 given in (4.12), we obtain

F ′z(t) = θD2v(v2 − hv2 ◦ z + tθ)(hv2 ◦ z − tθ)

which, together with the definition of θ and the inequalities |θ1| . h1
v2

, |h1
v2
z1−tθ1| .

h1
v2

and |h2
v2
z2| . h2

v2
, implies

ˆ
F ′z(t)ψ(z) dz ≤

ˆ
|∂x1x1v(v2 − hv2 ◦ z + tθ)| |h1

v2
z1 − tθ1| |θ1| |ψ(z)| dz

+

ˆ
|∂x2x1v(v2 − hv2 ◦ z + tθ)| |h2

v2
z2| |θ1| |ψ(z)| dz

. h1
v2
h1
v2

ˆ
|∂x1x1v(v2 − hv2 ◦ z + tθ)| |ψ(z)| dz

+ h2
v2
h1
v2

ˆ
|∂x2x1v(v2 − hv2 ◦ z + tθ)| |ψ(z)| dz.
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The change of variables y = v2 − hv2 ◦ z + tθ yields

ˆ
F ′z(t)ψ(z) dz .

(
h1
v2

h2
v2

‖∂x1x1v‖Lp(ω,SR) + ‖∂x2x1v‖Lp(ω,SR)

)
‖1‖Lp′ (ω−p′/p,SR),

where we used Hölder inequality, that the support of ψ is mapped into SR, and

ψ ∈ L∞(Rn). Finally, using the Ap-condition, we conclude

|q(v2)|‖φv2‖Lp(ω,R) . (h1
v2

)2‖∂x1x1v‖Lp(ω,SR) + h1
v2
h2
v2
‖∂x2x1v‖Lp(ω,SR).

The same arguments above apply to the remaining terms in (4.45). For the

term labeled i = 3, we obtain

|q(v3)|‖φv3‖Lp(ω,R) . (h2
v3

)2‖∂x2x2v‖Lp(ω,SR) + h1
v3
h2
v3
‖∂x1x2v‖Lp(ω,SR),

whereas for the term labeled i = 4, rewritten first in the form

q(v4) =
(
Q1

v1
v(v4)−Q1

v3
v(v4)

)
+
(
Q1

v3
v(v4)−Q1

v4
v(v4)

)
,

we deduce

|q(v4)|‖φv4‖Lp(ω,R) .
2∑

i,j=1

hiv4
hjv4
‖∂xi∂xjv‖Lp(ω,SR).

Finally, replacing the previous estimates back into (4.45), and using the shape

regularity properties hjvi ≈ hjR for i = 1, . . . , 4 and j = 1, 2, which result from (4.31),

shows the desired anisotropic estimate (4.44). �

Let us comment on the extension of the interpolation estimates of Theo-

rem 4.15 to elements that intersect the Dirichlet boundary, where the functions to be

approximated vanish. The proof is very technical and is an adaptation of the argu-

ments of [70, Theorem 3.1] and [129, Theorem 4.7], together with the ideas involved

in the proof of Theorem 4.15 to deal with the Muckenhoupt weight ω ∈ Ap(Rn).
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Theorem 4.17 (stability and local interpolation: Dirichlet elements) Let R ∈

T be a boundary element. If v ∈ W 1
p (ω, SR) and v = 0 on ∂R ∩ ∂Ω, then we have

‖∇ΠT v‖Lp(ω,R) . ‖∇v‖Lp(ω,SR). (4.46)

Moreover, if v ∈ W 2
p (ω, SR), then

‖∂xj(v − ΠT v)‖Lp(ω,R) .
n∑
i=1

hiR‖∂xj∂xiv‖Lp(ω,SR). (4.47)

for j = 1, . . . , n. The hidden constants in both inequalities depend only on Cp,ω, σ

and ψ.

4.5 Interpolation estimates for different metrics

Given v ∈ W 1
p (ω, ST ) with ω ∈ Ap(Rn) and p ∈ (1,∞), the goal of this section

is to derive local interpolation estimates for v in the space Lq(ρ, T ), with weight

ρ 6= ω and Lebesgue exponent q 6= p. To derive such an estimate, it is necessary to

ensure that the function v belongs to Lq(ρ, T ), that is we need to discuss embeddings

between weighted Sobolev spaces with different weights and Lebesgue exponents.

Embedding results in spaces of weakly differentiable functions are fundamental

in the analysis of partial differential equations. They provide some basic tools in

the study of existence, uniqueness and regularity of solutions. To the best of our

knowledge, the first to prove such a result was S.L. Sobolev in 1938 [149]. Since then,

a great deal of effort has been devoted to studying and improving such inequalities;

see, for instance, [26, 128, 166]. In the context of weighted Sobolev spaces, there is

an abundant literature that studies the dependence of this result on the properties

of the weight; see [82, 87, 93, 97, 98, 100, 101].
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Let us first recall the embedding results in the classical case, which will help

draw an analogy for the weighted case. We recall the Sobolev number of Wm
p (Ω)

sob(Wm
p ) = m− n

p
,

which governs the scaling properties of the seminorm |v|Wm
p (Ω): the change of vari-

ables x̂ = x/h transforms Ω into Ω̂ and v into v̂, while the seminorms scale as

|v̂|Wm
p (Ω̂) = hsob(Wm

p )|v|Wm
p (Ω).

With this notation classical embeddings [84, Theorem 7.26] can be written in a

concise way: if Ω denotes an open and bounded domain with Lipschitz boundary,

1 ≤ p < n and sob(W 1
p ) ≥ sob(Lq), then

◦
W 1
p (Ω) ↪→ Lq(Ω) and

‖v‖Lq(Ω) . diam(Ω)sob(W 1
p )−sob(Lq)‖∇v‖Lp(Ω) (4.48)

for all v ∈ ◦
W 1
p (Ω). When sob(W 1

p ) > sob(Lq) the embedding is compact. Results

analogous to (4.48) in the weighted setting have been studied in [49, 82, 121, 136]

for n > 1. For n = 1, if Ω = (0, a), v ∈ W 1
p (ω,Ω), and ω ∈ Ap(Rn), Proposition

2.3 yields v ∈ W 1
1 (Ω). Consequently v ∈ L∞(Ω), and then v ∈ Lq(ρ,Ω) for any

weight ρ and q ∈ (1,∞). However, to gain intuition on the explicit dependence

of the embbedding constant in terms of the weights and the Lebesgue measure of

the domain, let us consider the trivial case n = 1 in more detail. To simplify the

discussion assume that v(0) = v(a) = 0. We thus have

ˆ a

0

|v(x)|qρ(x) dx =

ˆ a

0

ρ(x)

∣∣∣∣ˆ x

0

v′(s)ω(s)1/pω(s)−1/p ds

∣∣∣∣q dx

≤
ˆ a

0

ρ(x)

(ˆ x

0

ω(s)|v′(s)|p ds

)q/p(ˆ x

0

ω(s)−p
′/p ds

)q/p′
dx
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whence invoking the definition of the the Muckenhoupt class (2.10) we realize that

ˆ a

0

|v(x)|qρ(x) dx . ‖v′‖qLp(ω,Ω)|Ω|qρ(Ω)ω(Ω)−q/p.

The extension of this result to the n-dimensional case has been studied in [49, 82, 121]

and is reported in the next two theorems; see [49] for a discussion.

Theorem 4.18 (embeddings in weighted spaces) Let ω ∈ Ap(Rn), p ∈ (1, q],

and ρ be a weight that satisfies the strong doubling property (2.13). Let the pair

(ρ, ω) satisfy the compatibility condition

r

R

(
ρ(B(x, r))

ρ(B(x,R))

)1/q

≤ Cρ,ω

(
ω(B(x, r))

ω(B(x,R))

)1/p

, (4.49)

for all x ∈ Ω and r ≤ R. If v ∈ ◦
W 1
p (ω,Ω), then v ∈ Lq(ρ,Ω) and

‖v‖Lq(ρ,Ω) . diam(Ω)ρ(Ω)1/qω(Ω)−1/p‖∇v‖Lp(ω,Ω), (4.50)

where the hidden constant depends on the quotient between the radii of the balls

inscribed and circumscribed in Ω.

Proof: Given v ∈ ◦
W 1
p (ω,Ω) we denote by ṽ its extension by zero to a ball BR of

radius R containing Ω such that R ≤ 2 diam(Ω). We then apply [49, Theorem 1.5]

if p < q, or [121, Corollary 2.1] if p = q, to conclude

‖ṽ‖Lq(ρ,BR) . Rρ(BR)1/qω(BR)−1/p‖∇ṽ‖Lp(ω,BR).

By assumption ρ satisfies the strong doubling property (2.13) and so, for Br ⊂ Ω ⊂

Ω̄ ⊂ BR, we have ρ(BR) . ρ(Br) ≤ ρ(Ω) with a constant that only depends on R/r.

Applying this property, together with ω(Ω) ≤ ω(BR), we derive (4.50). �
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Theorem 4.19 (Poincaré inequality) Let p ∈ (1, q], ρ be a weight that satisfies

the strong doubling property (2.13), and ω ∈ Ap(Rn), and let the pair (ρ, ω) satisfy

(4.49). If v ∈ W 1
p (ω,Ω), then there is a constant vΩ such that

‖v − vΩ‖Lq(ρ,Ω) . diam(Ω)ρ(Ω)1/qω(Ω)−1/p‖∇v‖Lp(ω,Ω), (4.51)

where the hidden constant depends on the quotient between the radii of the balls

inscribed and circumscribed in Ω.

Proof: Since Ω is open and bounded, we can choose 0 < r < R such that B̄r ⊂

Ω ⊂ Ω̄ ⊂ BR, where Bδ is a ball of radius δ. The extension theorem on weighted

Sobolev spaces proved in [55, Theorem 1.1] shows that there exists ṽ ∈ W 1
p (ω,BR)

such that ṽ|Ω = v and

‖∇ṽ‖Lp(ω,BR) . ‖∇v‖Lp(ω,Ω), (4.52)

where the hidden constant does not depend on v. If p < q, then we invoke [82,

Theorem 1] and [49, Theorem 1.3] to show that inequality (4.51) holds over BR

with vΩ being a weighted mean of ṽ in BR. If p = q instead, we appeal to [121,

Remark 2.3] and arrive at the same conclusion. Consequently, we have

‖ṽ − vΩ‖Lq(ρ,Ω) ≤ ‖ṽ − vΩ‖Lq(ρ,BR) . Rρ(BR)1/qω(BR)−1/p‖∇ṽ‖Lp(ω,BR).

The strong doubling property ρ(BR) . ρ(Ω) and ω(Ω) ≤ ω(BR) yield

‖ṽ − vΩ‖Lq(ρ,Ω) . diam(Ω)ρ(Ω)1/qω(Ω)−1/p‖∇ṽ‖Lp(ω,BR).

Employing (4.52) we finally conclude (4.51). �
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Inequalities (4.50) and (4.51) are generalizations of several classical results.

We first consider ω = ρ ≡ 1, for which an easy manipulation shows that (4.49)

holds if sob(W 1
p ) ≥ sob(Lq), whence (4.51) reduces to (4.48). We next consider

ρ = ω ∈ Ap(Rn), for which (4.49) becomes

ω(B(x,R)) .

(
R

r

)pq/(q−p)
ω(B(x, r)).

This is a consequence of the strong doubling property (2.13) for ω in conjunction

with |BR| ≈ Rn, provided the restriction q ≤ pn/(n − 1) between q and p is valid.

Moreover, owing to the so-called open ended property of the Muckenhoupt classes

[126]: if ω ∈ Ap(Rn), then ω ∈ Ap−ε(Rn) for some ε > 0, we conclude that q ≤

pn/(n − 1) + δ for some δ > 0, thus recovering the embedding results proved by

Fabes, Kenig and Serapioni [79, Theorem 1.3] and [79, Theorem 1.5]; see [49] for

details.

The embedding result of Theorem 4.19 allows us to obtain polynomial inter-

polation error estimates in Lq(ρ, T ) for functions in W 1
p (ω, ST ).

Theorem 4.20 (interpolation estimates for different metrics I) Let T be a

simplicial mesh and P = P1 in (4.10). Let the pair (ρ, ω) ∈ Aq(Rn)×Ap(Rn) satisfy

(4.49). If v ∈ W 1
p (ω, ST ) for any T ∈ T , then then

‖v − ΠT v‖Lq(ρ,T ) . hTρ(ST )1/qω(ST )−1/p‖∇v‖Lp(ω,ST ), (4.53)

where the hidden constant depends only on σ, ψ, Cp,ω and Cρ,ω.

Proof: Given an interior element T ∈ T , let us denote vT the constant such that

the estimate (4.51) holds true on ST . Since vT is constant over ST , we have that
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ΠT vT = vT in T . This, together with the stability bound (4.27) for the operator

ΠT , implies

‖v − ΠT v‖Lq(ρ,T ) = ‖(I − ΠT )(v − vT )‖Lq(ρ,T ) . ‖v − vT‖Lq(ρ,ST ).

The Poincaré inequality (4.51) and the mesh regularity assumption (4.31) yield

‖v − ΠT v‖Lq(ρ,T ) . ‖v − vT‖Lq(ρ,ST ) . hTρ(ST )1/qω(ST )−1/p‖∇v‖Lp(ω,ST )

which is (4.53). A similar argument yields (4.53) on boundary elements. �

A trivial but important consequence of Theorem 4.20 is the standard, un-

weighted, interpolation error estimate in Sobolev spaces; see [56, Theorem 3.1.5].

Corollary 4.21 (Lq-based interpolation estimate) If p < n and sob(W 1
p ) >

sob(Lq), then for all T ∈ T and v ∈ W 1
p (ST ), we have the local error estimate

‖v − ΠT v‖Lq(T ) . h
sob(W 1

p )−sob(Lq)

T ‖∇v‖Lp(ST ), (4.54)

where the hidden constant depends only on σ and ψ.

For simplicial meshes, the invariance property of ΠT and similar arguments to

those used in § 4.4.1 enable us to obtain other interpolation estimates. We illustrate

this in the following.

Theorem 4.22 (interpolation estimates for different metrics II) Let T be

a simplicial mesh and P = P1 in (4.10). Given p ∈ (1, q], let the pair (ω, ρ) ∈

Ap(Rn) × Aq(Rn) satisfy (4.49). Then, for every T ∈ T and every v ∈ W 2
p (ω, ST )

we have

‖∇(v − ΠT v)‖Lq(ρ,T ) . hTρ(ST )1/qω(ST )−1/p‖D2v‖Lp(ω,ST ), (4.55)

where the hidden constant depends only on σ, ψ, Cp,ω and Cρ,ω.
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Proof: Let, again, T ∈ T be an interior element, the proof for boundary elements

follows from similar arguments. Denote by v a vertex of T . Since the pair of

weights (ω, ρ) satisfies (4.49) the embedding W 2
p (ω, ST ) ↪→ W 1

q (ρ, ST ) holds and it

is legitimate to write

‖∇(v − ΠT v)‖Lq(ρ,T ) ≤ ‖∇v −∇Q1
vv‖Lq(ρ,T ) + ‖∇(Q1

vv − ΠT v)‖Lq(ρ,T )

In view of (4.27), we have ‖∇(Q1
vv − ΠT v)‖Lq(ρ,T ) . ‖∇v −∇Q1

vv‖Lq(ρ,T ). We now

recall (4.14), namely ∇Q1
vv = Q0

v∇v, to end up with

‖∇(v − ΠT v)‖Lq(ρ,T ) . ‖∇v −Q0
v∇v‖Lq(ρ,ST ) . ‖∇v − (∇v)T‖Lq(ρ,ST ),

because Q0
vc = c for any constant c. Applying (4.51) finally implies (4.55). �

4.6 Applications

We now present some immediate applications of the interpolation error estimates

developed in the previous sections. We recall that V(T ) denotes the finite element

space over the mesh T , ΠT the quasi-interpolation operator defined in (4.26), and

UT the Galerkin solution to (4.3).

4.6.1 Nonuniformly elliptic boundary value problems

We first derive novel error estimates for the finite element approximation of solutions

of a nonuniformly elliptic boundary value problem. Let Ω be a polyhedral domain

in Rn with Lipschitz boundary, ω ∈ A2(Rn) and f be a function in L2(ω−1,Ω).

Consider problem (4.1) with A as in (4.2). The natural space to seek a solution u

of problem (4.1) is the weighted Sobolev space H1
0 (ω,Ω).
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Since Ω is bounded and ω ∈ A2(Rn), Proposition 2.4 shows that H1
0 (ω,Ω) is

Hilbert. The Poincaré inequality proved in [79, Theorem 1.3] and the Lax-Milgram

lemma then imply the existence and uniqueness of a solution to (4.1) as well as

(4.3). The following result establishes a connection between u and UT .

Corollary 4.23 (error estimates for nonuniformly elliptic PDE) Let the we-

ight ω ∈ A2(Rn) and V(T ) consist of simplicial elements of degree m ≥ 1 or

rectangular elements of degree m = 1. If the solution u of (4.1) satisfies u ∈

H1
0 (ω,Ω)∩Hk+1(ω,Ω) for some 1 ≤ k ≤ m, then we have the following global error

estimate

‖∇(u− UT )‖L2(ω,Ω) . ‖hkDk+1u‖L2(ω,Ω), (4.56)

where h denotes the local mesh-size function of T .

Proof: By Galerkin orthogonality we have

‖∇(u− UT )‖L2(ω,Ω) . inf
V ∈V(T )

‖∇(u− V )‖L2(ω,Ω).

Consider V = ΠT u and use the local estimates of either Theorem 4.11 or The-

orems 4.15 and 4.17, depending on the discretization. This concludes the proof.

�

Remark 4.24 (regularity assumption) We assumed that u ∈ Hm+1(ω,Ω) in

Corollary 4.23. Since the coefficient matrix A is not smooth but rather satisfies

(4.2), it is natural to ponder whether u ∈ Hm+1(ω,Ω) holds. References [48, 53]

provide sufficient conditions on A,Ω and f for this result to be true for m = 1.
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Remark 4.25 (multilevel methods) Multilevel methods are known to exhibit

linear complexity for the solution of the ensuing algebraic systems. We refer to [90]

for weights of class A1 and [52] for weights of class A2 (including fractional diffusion).

4.6.2 Elliptic problems with Dirac sources

Dirac sources arise in applications as diverse as modeling of pollutant transport,

degradation in an aquatic medium [10] and problems in fractured domains [60]. The

analysis of the finite element method applied to such problems is not standard, since

in general the solution does not belong to H1(Ω) for n ≥ 1. A priori error estimates

in the L2(Ω)-norm have been derived in the literature using different techniques. In

a two dimensional setting and assuming that the domain is smooth, Babuška [12]

derived almost optimal a priori error estimates of order O(h1−ε), for an arbitrary

ε > 0. Scott [142] improved these estimates by removing the ε and thus obtaining

an optimal error estimate of order O(h2−n/2) for n = 2, 3. It is important to notice,

as pointed out in [144, Remark 3.1], that these results leave a “regularity gap”.

In other words, the results of [142] require a C∞ domain yet the triangulation is

assumed to consist of simplices. Using a different technique, Casas [47] obtained the

same result for polygonal or polyhedral domains and general regular Borel measures

on the right-hand side.

In the context of weighted Sobolev spaces, interpolation estimates and a priori

error estimates have been developed in [6, 60] for such problems. We now show how

to apply our polynomial interpolation theory to obtain similar results.
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Let Ω be a convex polyhedral domain in Rn with Lipschitz boundary, and x0

be an interior point of Ω. Consider the following elliptic boundary value problem:
−∇ · (A∇u) + b · ∇u+ cu = δx0 , in Ω,

u = 0, on ∂Ω,

(4.57)

where A ∈ L∞(Ω) is a piecewise smooth and uniformly symmetric positive definite

matrix, b ∈ W 1,∞(Ω)n, c ∈ L∞(Ω), and δx0 denotes the Dirac delta supported at

x0 ∈ Ω. Existence and uniqueness of u in weighted Sobolev spaces follows from

[6, Theorem 1.3] and Lemma 4.29 below, and its asymptotic behavior near x0 is

dictated by that of the Laplacian

∇u(x) ≈ |x− x0|1−n. (4.58)

Denote by d = diam(Ω) the diameter of Ω and by dx0(x) the scaled Euclidean

distance dx0(x) = |x− x0|/(2d) to x0. Define the weight

$(x) =


dx0(x)n−2

log2 dx0(x)
, 0 < dx0(x) <

1

2
,

22−n

log2 2
, dx0(x) ≥ 1

2
.

(4.59)

We now study two important properties of $: ∇u ∈ L2($,Ω) and $ ∈ A2(Rn).

Lemma 4.26 (regularity of ∇u) The solution u of (4.57) satisfies ∇u ∈ L2($,Ω).

Proof: Since Ω ⊂ B, the ball of radius d centered at x0, we readily have from (4.58)

ˆ
Ω

|∇u|2$ .
ˆ
B

dx0(x)2(1−n) dx0(x)n−2

log2 dx0(x)
dx .

ˆ 1
2

0

1

r log2 r
dr =

1

log 2
,

which is the asserted result. �

Lemma 4.27 ($ ∈ A2(Rn)) The weight $ belongs to the Muckenhoupt class A2(Rn)

with constant C2,$ only depending on d.
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Proof: Let x0 = 0 for simplicity, let Br = Br(y) be a ball in Rn of radius r and

center y, and denote $(Br) =
´
Br
$ and $−1(Br) =

´
Br
$−1. We must show

$(Br)$
−1(Br) . r2n ∀ r > 0, (4.60)

with a hidden constant depending solely on d. We split the proof into two cases.

1. Case |y| < 2r: Since Br(y) ⊂ B3r(0) we infer that

$(Br) .
ˆ
B3r(0)

( |x|
2d

)n−2

log2 |x|
2d

dx .
ˆ 3r

2d

0

s2n−3

log2 s
ds ≈

(
3r
2d

)2n−2

log2 3r
2d

and

$−1(Br) .
ˆ
B3r(0)

( |x|
2d

)2−n
log2

( |x|
2d

)
dx .

ˆ 3r
2d

0

s log2 s ds ≈
(3r

2d

)2

log2 3r

2d
,

provided 3r < d. The equivalences ≈ can be checked via L’Hôpital’s rule for

r → 0. If 3r ≥ d, then both $(Br) and $−1(Br) are bounded by constants

depending only on d. Therefore, this yields (4.60).

2. Case |y| ≥ 2r: Since all x ∈ Br(y) satisfy 1
2
|y| ≤ |x| ≤ 3

2
|y| we deduce

$ ≤ min

{(
3|y|
4d

)n−2

log2 3|y|
4d

,
22−n

log2 2

}
, $−1 ≤ max

{( |y|
4d

)2−n
log2 |y|

4d
, 2n−2 log2 2

}
,

whence $(Br)$
−1(Br) satisfies again (4.60).

This completes the proof. �

The fact that the weight $ ∈ A2(Rn) is the key property for the analysis of

discretizations of problem (4.57). Let us apply the results of Theorem 4.18 to this

particular weight.
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Lemma 4.28 (H1(Ω) ↪→ L2($−1,Ω)) Let $ be defined in (4.59). If n < 4, then

the following embedding holds:

H1(Ω) ↪→ L2($−1,Ω).

Proof: This is an application of Theorem 4.18. We must show when condition

(4.49) holds with p = q = 2, ω = 1 and ρ = $−1. In other words, we need to verify

Λ(r, R) :=
r2−n

R2−n
$−1(Br)

$−1(BR)
. 1, ∀r ∈ (0, R],

where both Br and BR are centered at y ∈ Rn. We proceed as in Lemma 4.27 and

consider now three cases.

1. |y| < 2r. We know from Lemma 4.27 that $−1(Br) .
(

3r
2d

)2
log2

(
3r
2d

)
. Moreover,

every x ∈ BR(y) satisfies |x| < |y|+R ≤ 3R whence

$−1(BR) ≥
ˆ
BR

(3|x|
2d

)2−n
log2

(3|x|
2d

)
dx ≈

ˆ 3R
2d

0

s log2 s ds ≈
(3R

2d

)2

log2
(3R

2d

)
.

If n < 4, then this shows

Λ(r, R) .
r4−n

R4−n
log2

(
3r
2d

)
log2

(
3R
2d

) . 1.

2. 2r ≤ |y| < 2R. We learn from Lemma 4.27 that

$−1(Br) . |Br|
( |y|

4d

)2−n
log2

( |y|
4d

)
.
( r

2d

)2

log2
( r

2d

)
.

In addition, any x ∈ BR satisfies |x| ≤ |y| + R ≤ 3R and the same bound as in

Case 1 holds for $−1(BR). Consequently, Λ(r, R) . 1 again for n < 4.
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3. |y| ≥ 2R. Since still |y| > 2r we have for $−1(Br) the same upper bound as in

Case 2. On the other hand, for all x ∈ BR we realize that |x| ≤ |y| + R ≤ 3
2
|y|

and $−1(x) ≥ $−1(3
2
y). Therefore, we deduce(3R

d

)2

log2 3R

d
. Rn

(3|y|
2d

)2−n
log2

(3|y|
2d

)
. $−1(BR),

which again leads to Λ(r, R) . 1 for n < 4.

This concludes the proof. �

The embedding of Lemma 4.28 allows us to develop a general theory for equa-

tions of the form (4.57) on weighted spaces. To achieve this, define

a(w, v) =

ˆ
Ω

A∇w · ∇v + b · ∇wv + cwv. (4.61)

The following results follow [60, 6].

Lemma 4.29 (inf–sup conditions) The bilinear form a, defined in (4.61), satis-

fies

1 . inf
w∈H1

0 ($,Ω)
sup

v∈H1
0 ($−1,Ω)

a(w, v)

‖∇w‖L2($,Ω)‖∇v‖L2($−1,Ω)

, (4.62)

1 . inf
v∈H1

0 ($−1,Ω)
sup

w∈H1
0 ($,Ω)

a(w, v)

‖∇w‖L2($,Ω)‖∇v‖L2($−1,Ω)

. (4.63)

Proof: We divide the proof into several steps:

1. We first obtain an orthogonal decomposition of L2($−1,Ω)n [60, Lemma 2.1]:

for every q ∈ L2($−1,Ω)n there is a unique couple (σ, v) ∈ X := L2($−1,Ω)n ×

H1
0 ($−1,Ω) such that

q = σ +∇v,
ˆ

Ω

Aσ · ∇w = 0, ∀w ∈ H1
0 ($,Ω), (4.64)

‖σ‖L2($−1,Ω)n + ‖∇v‖L2($−1,Ω) . ‖q‖L2($−1,Ω)n . (4.65)

137



To see this, we let Y := L2($,Ω)n ×H1
0 ($,Ω), write (4.64) in mixed form

B[(σ, v), (τ , w)] :=

ˆ
Ω

σ · τ +

ˆ
Ω

∇v · τ +

ˆ
Ω

Aσ · ∇w =

ˆ
Ω

q · τ ∀ (τ , w) ∈ Y,

and apply the generalized Babuška-Brezzi inf–sup theory [24, Theorem 2.1], [60,

Lemma 2.1]. This requires only that A be positive definite along with the trivial

fact that φ ∈ L2($−1,Ω) implies $−1φ ∈ L2($,Ω).

2. Set |b| = c = 0 and let w ∈ H1
0 ($,Ω) be given. According to Step 1 we can

decompose q = $∇w ∈ L2($−1,Ω) into q = σ +∇v. Invoking (4.64), as in [60,

Corollary 2.2] and [6, Proposition 1.1], we infer that

ˆ
Ω

A∇w · ∇v =

ˆ
Ω

A∇w · q−
ˆ

Ω

A∇w · σ =

ˆ
Ω

$A∇w · ∇w ≈
ˆ

Ω

$|∇w|2,

whence, using (4.65) in the form ‖∇v‖L2($−1,Ω) . ‖∇w‖L2($,Ω), we deduce the

inf–sup condition (4.62).

3. As in [6], we show that for every F ∈ H1
0 ($−1,Ω)′ the problem

w ∈ H1
0 ($,Ω) : a(w, v) = 〈F, v〉, ∀v ∈ H1

0 ($−1,Ω),

is well posed. To this end, we decompose w = w1 + w2 ∈ H1
0 ($,Ω), with

w1 ∈ H1
0 ($,Ω) :

ˆ
Ω

A∇w1 · ∇v = 〈F, v〉, ∀v ∈ H1
0 ($−1,Ω), (4.66)

w2 ∈ H1
0 (Ω) : a(w2, v) = −

ˆ
Ω

(b · ∇w1 + cw1) v, ∀v ∈ H1
0 (Ω). (4.67)

In fact, if problems (4.66) and (4.67) have a unique solution, then we obtain

a(w, v) = a(w1 + w2, v)

=

ˆ
Ω

A∇w1 · ∇v +

ˆ
Ω

(b · ∇w1 + cw1) v + a(w2, v) = 〈F, v〉,
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for any v ∈ H1
0 ($−1,Ω) ⊂ H1

0 (Ω). The conclusion of Step 2 shows that (4.66) is

well posed. The Cauchy-Schwarz inequality and Lemma 4.28 yield

ˆ
Ω

(b · ∇w1 + cw1) v . ‖w1‖H1($,Ω)‖v‖L2($−1,Ω) . ‖F‖H1
0 ($−1,Ω)′‖∇v‖L2($−1,Ω),

which combines with the fact that a(·, ·) satisfies the inf–sup condition in H1
0 (Ω)

[13, Theorem 5.3.2 - Part I] to show that (4.67) is well posed as well.

Finally, the general inf–sup theory [75] [133, Theorem 2] guarantees the validity of

the two inf–sup conditions (4.62) and (4.63). This concludes the proof. �

We also have the following discrete counterpart of Lemma 4.29. We refer to

[60, Lemma 3.3] and [6, Theorem 2.1] for similar results which, however, do not

exploit the Muckenhoupt structure of the weight $.

Lemma 4.30 (discrete inf–sup conditions) Let T be a quasi-uniform mesh of

size h consisting of simplices. If V(T ) is made of piecewise linears, then the bilinear

form a, defined in (4.61), satisfies:

1 . inf
W∈V(T )

sup
V ∈V(T )

a(W,V )

‖∇W‖L2($,Ω)‖∇V ‖L2($−1,Ω)

,

1 . inf
V ∈V(T )

sup
W∈V(T )

a(W,V )

‖∇W‖L2($,Ω)‖∇V ‖L2($−1,Ω)

.

where the hidden constants depend on C2,$ but not on h.

Proof: We proceed as in Lemma 4.29. We define the spaces of piecewise constants

V0(T ) = W0(T ) =
{
Q ∈ L∞(Ω)n : Q|T ∈ Rn, ∀T ∈ T

}
,

those of piecewise linears V1(T ) = W1(T ) = V(T ), and endow the product spaces

V0(T ) × V1(T ) and W0(T ) ×W1(T ) with the norms of X and Y respectively,
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the latter spaces being defined in Lemma 4.29. Given Q ∈ V0(T ), we need the

following orthogonal decomposition — a discrete counterpart of (4.64)-(4.65): find

Σ ∈ V0(T ), V ∈ V1(T ) so that

Q = Σ +∇V,
ˆ

Ω

AΣ · ∇W = 0, ∀W ∈W1(T ), (4.68)

‖Σ‖L2($−1,Ω)n + ‖∇V ‖L2($−1,Ω) . ‖Q‖L2($−1,Ω)n . (4.69)

We first have to verify that the bilinear form B satisfies a discrete inf–sup

condition, as in Step 1 of Lemma 4.29. We just prove the most problematic inf–sup

‖∇W‖L2($,Ω) . sup
T∈V0(T )

´
Ω
AT · ∇W

‖T‖L2($−1,Ω)n
.

We let T = $T∇W ∈ V0(T ), where $T is the piecewise constant weight defined

on each element T ∈ T as $T |T = |T |−1
´
T
$. Since ∇W ∈ V0(T ), we get

ˆ
Ω

AT · ∇W =

ˆ
Ω

$TA∇W · ∇W ≈
ˆ

Ω

$T∇W · ∇W =

ˆ
Ω

$|∇W |2,

and

ˆ
Ω

$−1|T|2 =
∑
T∈T

ˆ
T

|T |−2$−1

(ˆ
T

$

)2

|∇W|T |2 ≤ C2,$

ˆ
Ω

$|∇W |2.

We employ a similar calculation to perform Step 2 of Lemma 4.29, and the rest is

exactly the same as in Lemma 4.29. The proof is thus complete. �

The numerical analysis of a finite element approximation to the solution of

problem (4.57) is now a consequence of the interpolation estimates developed in

section 4.5.

Corollary 4.31 (error estimate for elliptic problems with Dirac sources)

Assume that n < 4 and let u ∈ H1
0 ($,Ω) be the solution of (4.57) and UT ∈ V(T )
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be the finite element solution to (4.57). If T is simplicial, quasi-uniform and of size

h, we have the following error estimate

‖u− UT ‖L2(Ω) . h2−n/2| log h|‖∇u‖L2($,Ω). (4.70)

Proof: We employ a duality argument. Let ϕ ∈ H1
0 (Ω) be the solution of

a(v, ϕ) =

ˆ
Ω

(u− UT )v ∀ v ∈ H1
0 (Ω), (4.71)

which is the adjoint of (4.57). Since Ω is convex and polyhedral, and the coefficients

A,b, c are sufficiently smooth, we have the standard regularity pick-up [84]:

‖ϕ‖H2(Ω) . ‖u− UT ‖L2(Ω). (4.72)

This, together with Lemma 4.28, allows us to conclude that, if n < 4,

ϕ ∈ H2(Ω) ∩H1
0 (Ω) ↪→ H1

0 ($−1,Ω).

Moreover, Theorem 4.22 yields the error estimate

‖∇(ϕ− ΠT ϕ)‖L2($−1,Ω) . σ(h)‖ϕ‖H2(Ω).

with

σ(h) = h
(
$−1(Bh)

) 1
2 |Bh|−

1
2 . h2−n

2 | log h|.

Let ΦT ∈ V(T ) be the Galerkin solution to (4.71). Galerkin orthogonality

and the continuity of the form a on H1
0 ($,Ω)×H1

0 ($−1,Ω) yield

‖u− UT ‖2
L2(Ω) = a(u, ϕ− ΦT ) . ‖∇u‖L2($,Ω)‖∇(ϕ− ΦT )‖L2($−1,Ω). (4.73)
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The discrete inf–sup conditions of Lemma 4.30 and and the continuity of the form

a allow us to conclude that

‖∇(ϕ− ΦT )‖L2($−1,Ω) . ‖∇(ϕ− ΠT ϕ)‖L2($−1,Ω).

Combining this bound with (4.72) and (4.73) results in

‖u− UT ‖2
L2(Ω) . σ(h)‖∇u‖L2($,Ω)‖u− UT ‖L2(Ω),

which is the asserted estimate (4.70) in disguise. �

Remark 4.32 (an interpolation result) For any β ∈ (−n, n) we can consider

the weight dx0(x)β, which belongs to the A2(Rn) Muckenhoupt class. Theorem 4.11

and Theorems 4.15 and 4.17 show that

‖u− ΠT u‖L2(dx0
β ,Ω) . ‖h∇u‖L2(dx0

β ,Ω).

This extends the interpolation error estimates of [6, Proposition 4.6], which are valid

for β ∈ (−n, 0) only.

4.6.3 Fractional powers of uniformly elliptic operators

We finally comment on finite element approximations of solutions to fractional dif-

ferential equations. Let Ω be a polyhedral domain in Rn (n ≥ 1), with boundary

∂Ω. Given a piecewise smooth and uniformly symmetric positive definite matrix

A ∈ L∞(Ω) and a nonnegative function c ∈ L∞(Ω), define the differential operator

Lw = −div(A∇w) + cw.
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Given f ∈ H−1(Ω), the problem of finding u ∈ H1
0 (Ω) such that Lu = f has a

unique solution. Moreover, the operator L : D(L) ⊂ L2(Ω) → L2(Ω) with domain

D(L) = H2(Ω) ∩ H1
0 (Ω) has a compact inverse [91, Theorem 2.4.2.6]. Therefore,

there exists a sequence of eigenpairs {λk, ϕk}∞k=1, with λk > 0, such that

Lϕk = λkϕk, in Ω ϕk |∂Ω = 0.

The sequence {ϕk}∞k=1 is an orthonormal basis of L2(Ω).

In this case, for s ∈ (0, 1), we define the fractional powers of L0 (where the

sub-index is used to indicate the homogeneous Dirichlet boundary conditions) by

w =
∑
k

wkϕk =⇒ Ls0w =
∑
k

λskwkϕk.

We are interested in finding numerical solutions to the following fractional differen-

tial equation: given s ∈ (0, 1) and a function f ∈ Hs(Ω)′, find u such that

Ls0u = f. (4.74)

The fractional operator Ls0 is nonlocal (see [115, 43, 41]). To localize it, we consider

the Caffarelli and Silvestre [43] and its extensions [155, 44] to replace the nonlocal

problem (4.74) by the local problem

−div
(
yαA∇U ) + yαcU = 0

with α := 1 − 2s, A = diag{A, 1} ∈ R(n+1)×(n+1), posed in the semi-infinite cylin-

der C, and subject to a Neumann condition at y = 0 involving f . Since C is

an unbounded domain, this problem cannot be directly approximated with finite-

element-like techniques. However, as Proposition 3.4 shows, the solution to this
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problem decays exponentially in the extended variable y so that, by truncating the

cylinder C to CY = Ω × (0,Y ), and setting a vanishing Dirichlet condition on the

upper boundary y = Y , we only incur in an exponentially small error in terms of Y ;

see Theorem 3.10. Define

◦
H1
L(yα, CY ) =

{
v ∈ H1(yα, CY ) : v = 0 on ∂LCY ∪ Ω× {Y }

}
.

Then, the aforementioned problem reads: find U ∈ ◦
H1
L(yα, CY ) such that for all

v ∈ ◦
H1
L(yα, CY )

ˆ
CY

yα ((A∇U ) · ∇v + cU v) = ds〈f, trΩ v〉Hs(Ω)×Hs(Ω)′ , (4.75)

We construct a mesh over CY with cells of the form T = K×I with K ⊂ Ω being an

element that is isoparametrically equivalent either to [0, 1]n or the unit simplex in

Rn and I ⊂ R is an interval. In view of the regularity estimate (3.28) it is necessary

to measure the regularity of Uyy with a stronger weight and thus compensate with a

graded mesh in the extended dimension. This makes anisotropic estimates essential.

We consider the graded partition of the interval [0,Y ] with mesh points

yk =

(
k

M

)γ
Y , k = 0, . . . ,M, (4.76)

where γ > 3/(1−α), along with a quasi-uniform triangulation TΩ of the domain Ω.

We construct the mesh TY as the tensor product of TΩ and the partition given in

(4.76); hence #T = M #TΩ. Assuming that #TΩ ≈ Mn we have #TY ≈ Mn+1.

Finally, since TΩ is shape regular and quasi-uniform, hTΩ
≈ (#TΩ)−1/n. All these

considerations allow us to obtain the following result.

144



Corollary 4.33 (error estimate for fractional powers of elliptic operators)

Let T be a graded tensor product grid, which is quasi-uniform in Ω and graded in

the extended variable so that (4.76) hold. If V(T ) is made of bilinear elements, then

the solution of (4.75) and its Galerkin approximation UT ∈ V(T ) satisfy

‖U − UT ‖ ◦H1
L(C,yα)

. | log(#TY )|s(#TY )−1/(n+1)‖f‖H1−s(Ω),

where Y ≈ log(#TY ). Alternatively, if u denotes the solution of (4.74), then

‖u− UT (·, 0)‖Hs(Ω) . | log(#TY )|s(#TY )−1/(n+1)‖f‖H1−s(Ω)

Proof: First of all, notice that yα ∈ A2(Rn+1) for α ∈ (−1, 1). Owing to the

exponential decay of U , and the choice of the parameter Y , it suffices to estimate

U − ΠTY U on the mesh TY ; see § 3.3.1. To do so, we notice that if I1 and I2 are

neighboring cells on the partition of [0,Y ], then the weak regularity condition (4.31)

holds. Thus, we decompose the mesh TY into the sets

T0 =
{
T ∈ TY : ST ∩ (Ω̄× {0}) = ∅

}
, T1 =

{
T ∈ TY : ST ∩ (Ω̄× {0}) 6= ∅

}
,

and apply our interpolation theory developed in Theorems 4.15 and 4.17 for interior

and boundary elements respectively, together with the local regularity estimates for

the function U derived in § 3.1.5 (see also [129, Theorem 2.8]). �

The error estimates with graded meshes are quasi-optimal in both regularity

and order. Error estimates for quasi-uniform meshes are suboptimal in terms of

order [129, Section 5]. Mesh anisotropy is thus able to capture the singular behavior

of the solution U and restore optimal decay rates.
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Chapter 5: Multilevel methods for nonuniformly elliptic operators

5.1 Introduction

The main advantage of the algorithm proposed in Chapter 3, is that we are solv-

ing the local problem (1.2) instead of dealing with the nonlocal operator (−∆)s of

problem (1.1). However, this comes at the expense of incorporating one more di-

mension to the problem, thus raising the question of how computationally efficient

this approach is. A quest for the answer is the motivation for the study of multilevel

methods, since it is known that they are the most efficient techniques for the solution

of discretizations of partial differential equations, see [36, 37, 94, 161]. Multigrid

methods for equations of the type (1.2), however, are not very well understood.

The purpose of this work is twofold and hinges on the multilevel framework

developed in [32, 161] and the Xu-Zikatanov identity [163]. First, we show nearly

uniform convergence of a multilevel method for a class of general nonuniformly el-

liptic equations on quasi-uniform meshes. Second, we derive an almost uniform

convergence of a multilevel method for the local problem that arises from our PDE

approach to the fractional Laplacian (1.2) on anisotropic meshes [129, 132]. The

former result assumes that the weight ω in the differential operator belongs to the

so-called Muckenhoupt class A2; see Definition 2.2 for details. A somewhat related

146



work is [90] where the authors show a uniform norm equivalence for a multilevel space

decomposition under the assumption that the weight belongs to the smaller class

A1. Their results and techniques, however, do not apply to our setting since, simply

put, an A1-weight is “almost bounded”, which is too restrictive; see Remark 2.3 for

details. We make no regularity assumption on the weight ω and show that our es-

timates solely depend on the A2-constant C2,ω. However, our results depend on the

number J of levels, and thus logarithmically on the meshsize, which seems unavoid-

able without further regularity assumptions. For the fractional Laplacian, Chapter

3 shows that a quasi-uniform mesh cannot yield quasi-optimal error estimates and,

consequently, the mesh in the extended dimension must be graded towards the bot-

tom of the cylinder thus becoming anisotropic. We apply line smoothers over vertical

lines in the extended domain and prove that the corresponding multigrid V-cycle

converges almost uniformly.

We propose an algorithm with complexity O(Mn+1 logM) for computing a

nearly optimal approximation of the fractional Laplacian problem (1.1) in Rn, where

M denotes the number of degrees of freedom in each direction. Notice that using

the intrinsic integral formulation of the fractional Laplacian [41, 43], a discretiza-

tion would result in a dense matrix with O(M2n). Special techniques such as fast

multipole methods [89], the H-matrix methods [96] or wavelet methods [99, 154]

might be applied to reduce the complexity of storage and manipulation of the dense

matrix as well as the complexity of solvers.

The outline of this paper is as follows. Section 5.2 contains the salient results

about the finite element approximation of nonuniformly elliptic equations includ-
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ing the fractional Laplacian on anisotropic meshes. Here we also collect the relevant

properties of a quasi-interpolant which are crucial to obtain the convergence analysis

of our multilevel methods. In section 5.3, we recall the theory of subspace correc-

tions [161] and the Xu-Zikatanov identity [163]. We present multigrid algorithms

for nonuniformly elliptic equations discretized on quasi-uniform meshes in section

5.4 and prove their nearly uniform convergence. We adapt the algorithms and anal-

ysis of section 5.4 to the fractional Laplacian discretized on anisotropic meshes in

section 5.5. This requires a line smoother along the extended direction. Finally,

to illustrate the performance of our methods and the sharpness of our results, we

present a series of numerical experiments in section 5.6.

5.2 Finite element discretization of nonuniformly elliptic equations

In order to keep this Chapter self-contained, we recall some elements and results

of Chapters 3 and 4. Let D be an open and bounded subset of RN (N ≥ 1)

with boundary ∂D and let f ∈ L2(ω−1, D). In this section, we focus on the study

of a finite element method for the following nonuniformly elliptic boundary value

problem: find u ∈ H1
0 (ω,D) that solves

−div(A(x)∇u) = f, in D,

u = 0, on ∂D,

(5.1)

where A : D → RN×N is symmetric and satisfies the following nonuniform ellipticity

condition

ω(x)|ξ|2 . ξᵀA(x)ξ . ω(x)|ξ|2, ∀ξ ∈ RN , a.e. x ∈ D, (5.2)
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and ω belongs to the Muckenhoupt class A2, which is defined by (2.2). We define

the bilinear form

a(u, v) =

ˆ
D

A∇u · ∇v dx, (5.3)

which is clearly continuous and coercive in H1
0 (ω,D). Then, a weak formulation of

problem (5.1) reads: find u ∈ H1
0 (ω,D) such that

a(u, v) =

ˆ
D

fv dx, ∀v ∈ H1
0 (ω,D). (5.4)

5.2.1 Finite element approximation on quasi-uniform meshes

We recall the construction of the underlying finite element spaces given in § 4.3.1. To

avoid technical difficulties, we assume D to be a polyhedral domain. Let T = {T}

be a mesh of D into elements T (simplices or cubes) such that

D̄ =
⋃
T∈T

T, |D| =
∑
T∈T

|T |.

The partition T is assumed to be conforming or compatible. We denote by T the

collection of all conforming meshes. We say that T is shape regular, i.e., if there

exists a constant σ > 1 such that, for all T ∈ T,

max {σT : T ∈ T } ≤ σ, (5.5)

where σT := hT/ρT is the shape coefficient of T .

We assume that the collection of meshes T is conforming and satisfies the

regularity assumption (5.5), which says that the element shape does not degenerate

with refinement. A refinement method generating meshes satisfying the shape reg-

ular condition (5.5) will be called isotropic refinement. A particular instance of an
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isotropic refinement is the so called quasi-uniform refinement. We recall that T is

quasi-uniform if it is shape regular and for all T ∈ T we have

max {hT : T ∈ T } . min {hT : T ∈ T } ,

where the hidden constant is independent of T . In this case, all the elements on

the same refinement level are of comparable size. We define hT = maxT∈T hT .

Given a mesh T ∈ T, we define the finite element space of continuous piecewise

polynomials of degree one

V(T ) =
{
W ∈ C0(D̄) : W |T ∈ P(T ) ∀T ∈ T , W |∂Ω = 0

}
, (5.6)

where for a simplicial element T , P(T ) corresponds to the space of polynomials of

total degree at most one, i.e., P1(T ), and for n-rectangles, P(T ) stands for the space

of polynomials of degree at most one in each variable, i.e., Q1(T ).

The finite element approximation of u, solution of problem (5.1), is defined as

the unique discrete function UT ∈ V(T ) satisfying

a(UT ,W ) =

ˆ
D

fW, ∀W ∈ V(T ). (5.7)

5.2.2 Quasi-interpolation operator

Let us recall the main properties of the quasi-interpolation operator ΠT introduced

and analyzed in Chapter 4 (see also [132]). This operator is based on local averages

over stars, and then it is well defined for functions in Lp(ω,D). We summarize its

construction and its approximation properties as follows.

Given a mesh T ∈ T and T ∈ T , we denote by N (T ) the set of nodes of T .

We set N (T ) := ∪T∈T N (T ) and
◦

N (T ) := N (T )∩D. Then, any discrete function
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W ∈ V(T ) is characterized by its nodal values on the set
◦

N (T ). Moreover, the

functions φv ∈ V(T ), v ∈ ◦
N (T ), such that φv(w) = δvw for all w ∈ N (T ) are the

canonical basis of V(T ), and

W =
∑

v∈ ◦N (T )

W (v)φv.

Given a vertex v ∈ N (T ), we define the star or patch around v as Sv = ∪T3vT,

and for T ∈ T we define its patch as ST = ∪v∈TSv. For each vertex v ∈ N (T ), we

define hv = min{hT : v ∈ T}.

Let ψ ∈ C∞(RN) be such that
´
ψ = 1 and supp ψ ⊂ B, where B denotes the

ball in RN of radius r centered at zero with r ≤ 1/σ, with σ defined by (5.5). For

v ∈ ◦
N (T ), we define the rescaled smooth function

ψv(x) =
1

hNv
ψ

(
v− x
hv

)
.

Given a smooth function v, we denote by P 1v(x, z) the Taylor polynomial of

degree one of the function v in the variable z about the point x, i.e.,

P 1v(x, z) = v(x) +∇v(x) · (z − x).

Then, given v ∈ ◦
N (T ) and a function v ∈ W 1

p (ω,D), we define the corresponding

averaged Taylor polynomial of first degree of v about the vertex v as

Q1
vv(z) =

ˆ
P 1v(x, z)ψv(x) dx. (5.8)

Since supp ψv ⊂ Sv, the integral appearing in (5.8) can be written over Sv. More-

over, integration by parts shows that Q1
v is well defined for functions in L1(D);

see [27, Proposition 4.1.12]. Consequently, Proposition 2.3 implies that Q1
v is also

well defined for functions in Lp(ω,D) with ω ∈ Ap(RN).
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Given ω ∈ Ap(RN) and v ∈ Lp(ω,D), we define the quasi-interpolant ΠT v as

the unique function ΠT v ∈ V(T ) that satisfies ΠT v(v) = Q1
v(v) if v ∈ N (T ), and

ΠT v(v) = 0 if v ∈ N (T ) ∩ ∂Ω, i.e.,

ΠT v(v) =
∑

v∈ ◦N (T )

Q1
v(v)φv.

For this operator, Chapter 4 (see also [132, Section 5]) proves stability and

interpolation error estimates in the weighted Lp-norm and W 1
p -seminorm. We recall

these results for completeness.

Proposition 5.1 (weighted stability and local error estimate I) Let T ∈ T ,

ω ∈ Ap(RN) and v ∈ Lp(ω, ST ). Then, we have the following local stability bound

‖ΠT v‖Lp(ω,T ) . ‖v‖Lp(ω,ST ). (5.9)

If, in addition, v ∈ W 1
p (ω, ST ), then we have the local interpolation error estimate

‖v − ΠT v‖Lp(ω,T ) . hv‖∇v‖Lp(ω,ST ). (5.10)

The hidden constants in both inequalities depend only on Cp,ω, ψ and σ.

Proposition 5.2 (weighted stability and local error estimate II) Let T ∈ T ,

ω ∈ Ap(RN) and v ∈ W 1
p (ω, ST ). Then, we have the following local stability bound

‖∇ΠT v‖Lp(ω,T ) . ‖∇v‖Lp(ω,ST ). (5.11)

If, in addition, v ∈ W 2
p (ω, ST ), then

‖∇(v − ΠT v)‖Lp(ω,T ) . hv‖D2v‖Lp(ω,ST ). (5.12)

The hidden constants in both inequalities depend only on Cp,ω, ψ and σ.
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5.2.3 Finite element approximation on anisotropic meshes

Let us now focus our attention on the finite element discretization of problem (1.2).

Estimates (3.27)-(3.28) motivate the construction of a mesh over CY with cells of the

form T = K × I, where K ⊂ Rn is an element that is isoparametrically equivalent

either to the unit cube [0, 1]n or the unit simplex in Rn and I ⊂ R is an interval. To

be precise, let TΩ = {T} be a conforming and shape regular mesh of Ω. In order to

obtain a global regularity assumption for TY , we assume that there is a constant σY

such that if T1 = K1 × I1 and T2 = K2 × I2 ∈ TY have nonempty intersection, then

hI1
hI2
≤ σY , (5.13)

where hI = |I|. Exploiting the Cartesian structure of the mesh it is possible to

handle anisotropy in the extended variable and obtain estimates of the form

‖v − ΠTY v‖L2(yα,T ) . hv′‖∇x′v‖L2(yα,ST ) + hv′′‖∂yv‖L2(yα,ST ),

‖∂xj(v − ΠTY v)‖L2(yα,T ) . hv′‖∇x′∂xjv‖L2(yα,ST ) + hv′′‖∂y∂xjv‖L2(yα,ST ),

with j = 1, . . . , n+1, where hv′ = min{hK : v′ ∈ K}, hv′′ = min{hI : v′′ ∈ I} and v is

the solution of problem (3.37); see § 3.3.2.3 and § 3.3.2.4 for details. However, since

Uyy ≈ y−α−1 as y ≈ 0, we realize that U /∈ H2(yα, C) and the second estimate is not

meaningful for j = n+ 1. In view of the regularity estimate (3.28) it is necessary to

measure the regularity of Uyy with a different weight and thus compensate with a

graded mesh in the extended dimension. This makes anisotropic estimates essential.

In order to simplify the analysis and implementation of multilevel techniques,

we consider a sequence of nested discretizations. We construct such meshes as
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follows. First, we introduce a sequence of nested uniform partitions of the unit

interval {Tk}, with mesh points ŷl,k, for l = 0, . . . ,Mk and k = 0, . . . , J . Then, we

obtain a family of meshes of the interval [0,Y ] given by the mesh points

yl,k = Y ŷγl,k, l = 0, . . . ,Mk, (5.14)

where γ > 3/(1− α). Then, for k = 0, . . . , J , we consider a quasi-uniform triangu-

lation TΩ,k of the domain Ω and construct the mesh TY ,k as the tensor product of

TΩ,k and the partition given in (5.14); hence #TY ,k = Mk #TΩ,k. Assuming that

#TΩ,k ≈ Mn
k we have #TY ,k ≈ Mn+1

k . Finally, since TΩ,k is shape regular and

quasi-uniform, hTΩ,k
≈ (#TΩ,k)

−1/n. All these considerations allow us to obtain the

following result; see § 3.4.

Theorem 5.1 (error estimate) Denote by VTY ,k ∈ V(TY ,k) the Galerkin approx-

imation of problem (3.37) with first degree tensor product elements. Then,

‖∇(U − VTY ,k)‖L2(yα,C) . | log(#TY ,k)|s(#TY ,k)
−1/(n+1)‖f‖H1−s(Ω),

where Y ≈ log(#TY ,k).

We notice that the anisotropic meshes of the cylinder CY considered above are

semi-structured by construction. They are generated as the tensor product of an

unstructured grid TΩ together with the structured mesh Tk. Figure 5.1 shows an

example of this type of meshes in three dimensions.

Notice that the approximation estimates (5.9)-(5.12) are local and thus valid

under the weak shape regularity condition (5.13). Owing to the tensor product

structure of the mesh, we have the following anisotropic error estimate.
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Figure 5.1: A three dimensional graded mesh of the cylinder (0, 1)2 × (0,Y ) with 392

degrees of freedom. The mesh is constructed as a tensor product of a quasi-uniform mesh

of (0, 1)2 with cardinality 49 and the image of the quasi-uniform partition of the interval

(0, 1) with cardinality 8 under the mapping (5.14).

Lemma 5.2 (weighted L2 anisotropic error estimate) Let v ∈ ◦
H1
L(yα, CY ) be

the solution of problem (3.37). Then, the quasi-interpolation operator ΠTY satisfies

the following error estimate

‖v − ΠTY v‖L2(yα,CY ) . #T −1/(n+1)
Y

(
‖∇x′v‖L2(yα,CY ) + ‖∂yv‖L2(yα,CY )

)
.

Proof: This is a direct consequence of the results from Chapter 4 together with the

Cartesian structure of the mesh TY . �

A simple application of the mean value theorem yields

yl+1,k − yl,k =
Y
Mγ

k

(
(l + 1)γ − lγ

)
≤ γ

Y
Mk

(
l + 1

Mk

)γ−1

≤ γ
Y
Mk

, (5.15)

for every l = 0, . . . ,Mk − 1, where γ > 3/(1 − α) = 3/(2s) according to (5.14). In

other words, since the meshsize of the quasi-uniform mesh TΩ,k is O(M−1
k ), the size
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of the partitions in the extended variable y can be uniformly controlled by hTΩ,k
for

k = 0, . . . , J . However, γ blows up as s ↓ 0.

5.3 Multilevel space decomposition and multigrid methods

In this section, we present a V-cycle multigrid algorithm based on the method of

subspace corrections [32, 161], and we present the key identity of Xu and Zikatanov

[163] in order to analyze the convergence of the proposed multigrid algorithm.

5.3.1 Multilevel decomposition

We follow [30, 31] to present a multilevel decomposition of the space V(T ). Assume

that we have an initial conforming mesh T0 made of simplices or cubes, and a nested

sequence of discretizations {Tk}Jk=0 where, for k > 0, Tk is obtained by uniform

refinement of Tk−1. We then obtain a nested sequence, in the sense of trees, of

quasi-uniform meshes

T0 ≤ T1 ≤ · · · ≤ TJ = T .

Denoting by hk := hTk the meshsize of the mesh Tk, we have that hk h ρk for some

ρ ∈ (0, 1), and then J h | log hJ |. Let Vk := V(Tk) denote the corresponding finite

element space over Tk defined by (5.6). We thus get a sequence of nested spaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ = V,

and a macro space decomposition

V =
J∑
k=0

Vk.
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Note the redundant overlapping of the multilevel decomposition above; in particular,

the sum is not direct. We now introduce a space micro-decomposition. We start by

defining N k := N (Tk) = dimVk, i.e., the number of interior vertices of the mesh

Tk. In order to deal with point and line Gauss-Seidel smoothers, we introduce the

following sets of indices: For j = 1, . . . ,Mk we denote by Ik,j a subset of the index

set {1, 2, . . . ,Nk}, and assume Ik,j satisfies

Mk⋃
j=1

Ik,j = {1, 2, . . . ,Nk}.

The sets Ik,j may overlap, i.e., given 0 < j1, j2 ≤ Mk such that j1 6= j2, we may have

Ik,j1 ∩ Ik,j2 6= ∅. This overlap, however, is finite and independent of J and N k.

Upon denoting the standard nodal basis of Vk by φk,i, i = 1, . . . ,Nk, we define

Vk,j = span{φk,i : i ∈ Ik,j} and we have the space decomposition

V =
J∑
k=0

Mk∑
j=1

Vk,j. (5.16)

5.3.2 Multigrid algorithm

We now describe the multigrid algorithm for the non-uniformly elliptic problem

(5.1). We start by introducing several auxiliary operators. For k = 0, . . . , J , we

define the operator Ak : Vk → Vk by

(Akvk, wk)L2(ω,D) = a(vk, wk), ∀vk, wk ∈ Vk,

where the bilinear form a is defined in (5.3). Notice that this operator is symmetric

and positive definite with respect to the weighted L2-inner product. The projection
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operator Pk : VJ → Vk in the a-inner product is defined by

a(Pkv, wk) = a(v, wk), ∀wk ∈ Vk,

and the weighted L2-projection Qk : VJ → Vk is defined by

(Qkv, wk)L2(ω,D) = (v, wk)L2(ω,D), wk ∈ Vk.

We define, analogously, the operators Ak,j : Vk,j → Vk,j, Pk,j : Vk → Vk,j

and Qk,j : Vk → Vk,j. The operator Ak,j can be regarded as the restriction of Ak

to the subspace Vk,j, and its matrix representation, which is the sub-matrix of Ak

obtained by deleting the indices i /∈ Ik,j, is symmetric and positive definite. On the

other hand, the operators Pk,j and Qk,j denote the projections with respect to the a-

and the weighted L2-inner products into Vk,j, respectively. We also remark that the

matrix representation of the operator Qk,j is the so-called restriction operator, and

the prolongation operator QT
k,j corresponds to the natural embedding Vk,j ↪→ Vk.

The following property, which is of fundamental importance, will be used frequently

in the paper

Ak,jPk,j = Qk,jAk. (5.17)

With this notation we define a symmetric V-cycle multigrid method as in

Algorithm 1. When m = 1, it is equivalent to the application of successive subspace

corrections (SSC) to the decomposition (5.16) with exact sub-solvers A−1
k,j so that

the V-cycle multigrid method has a smoother at each level of block Gauss-Seidel

type [31, 161]. In particular, if we consider a nodal decomposition Ik,j = {j} we

obtain a point-wise Gauss-Seidel smoother. On the other hand, if the indices in Ik,j
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are such that the corresponding vertices lie on a straight line, we obtain the so-called

line Gauss-Seidel smoother, which will be essential to efficiently solve problem (1.2)

with anisotropic elements.

5.3.3 Analysis of the multigrid method

In order to prove the nearly uniform convergence of the symmetric V-cycle multigrid

method without any assumptions, we rely on the following fundamental identity

developed by Xu and Zikatanov [163]; see also [51, 54] for alternative proofs.

Theorem 5.3 (XZ Identity) Let V be a Hilbert space with inner product (·, ·)A

and norm ‖ · ‖A. Let Vj ⊂ V be a closed subspace of V for j = 0, . . . , J , satisfying

V =
J∑
j=0

Vj.

Denote by Pj : V → Vj the orthogonal projection in the inner product (·, ·)A onto

Vj. Then, the following identity holds∥∥∥∥∥
J∏
j=0

(I − Pj)
∥∥∥∥∥

2

A

= 1− 1

1 + c0

,

where

c0 = sup
‖ν‖A=1

inf∑J
i=0 νi=ν

J∑
i=0

∥∥∥∥∥Pi
J∑

j=i+1

νj

∥∥∥∥∥
2

A

. (5.18)

The XZ identity given by Theorem 5.3, the properties of the interpolation

operator ΠT defined in §5.2.2, the stability of the nodal decomposition stated in

Lemma 5.4 below, and the weighted inverse inequality proved in Lemma 5.5 below,

will allow us to obtain the nearly uniform convergence of the symmetric V-cycle

159



Algorithm 1: Symmetric V-cycle multigrid method
e = MG(r, k,m)

input : r ∈ Vk — residual;

k ∈ {0, . . . J} — level;

m ∈ N — number of smoothing steps.

output : e ∈ Vk — an approximate solution of Ake = r.

if k = 0 then

e = A−1
0 r;

// pre-smoothing: m steps

u0 = 0;

for l← 1 to m do

v ← ul−1;

for j ← 1 to Mk do

v ← v +A−1
k,jQk,j(r −Akv);

ul ← v;

// coarse grid correction

um+1 = um + MG (Qk−1(r −Aku
m), k − 1,m);

// post-smoothing: m steps

for l← m+ 2 to 2m+ 1 do

v ← ul−1;

for j ← Mk to 1 do

v ← v +A−1
k,jQk,j(r −Akv);

ul ← v;

// output

e = u2m+1;
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multigrid method described in Algorithm 1, without resorting to any regularity as-

sumptions on the solution. To see how this is possible we recall the basic ingredients

in the analysis of multilevel methods; see [30, 31, 33, 161] for details. We introduce,

for k = 1, 2, . . . , J , the operator

Kk = (I − A−1
k,Mk

Qk,Mk
Ak) · · · (I − A−1

k,1Qk,1Ak)

= (I − Pk,Mk
) · · · (I − Pk,1) =

Mk∏
j=1

(I − Pk,j),

where we used (5.17) to obtain the second equality. With this notation, Algorithm 1

can then be recast as a two-layer iterative scheme for the solution of AJu = f of the

form

u`+1 = u` +BJ(f − AJu`),

where the iterator BJ satisfies

I −BJAJ = (Km
J )∗ · · · (Km

1 )∗ (I − P0)Km
1 · · ·Km

J ,

with M∗ denoting the adjoint operator of M with respect to the a–inner product.

Notice that I −BJAJ is the so-called error transfer operator i.e.,

u− u`+1 = (I −BJAJ)
(
u− u`

)
.

Consequently, to show convergence of our scheme we must show that this operator

is a contraction with a contraction factor, ideally, independent of J . Owing to the

fact that

‖Km
k ‖A ≤ ‖Kk‖mA ≤ ‖Kk‖A,
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it suffices to consider the case m = 1, where, given an operator S, we denote by

‖S‖A the operator norm induced by the bilinear form a. Therefore

‖I −BJAJ‖A ≤
∥∥∥∥∥

J∏
k=0

Mk∏
j=1

(I − Pk,j)
∥∥∥∥∥

2

A

, (5.19)

because P0 is an exact solve and thus a projection, whence (I − P0)2 = I − P0.

Notice that the right hand side of (5.19) is precisely the quantity that the XZ

identity provides a value for. In conclusion, based on Theorem 5.3, to prove the

convergence of the symmetric V-cycle multigrid method described in Algorithm 1,

we must obtain an estimate for the constant c0 given by (5.18), which will be the

content of the next two sections.

5.4 Analysis of multigrid methods on quasi-uniform grids

In this section we consider the V-cycle multigrid method described in Algorithm 1

applied to solve the weighted discrete problem (5.7) on quasi-uniform meshes. We

consider standard pointwise Gauss-Seidel smoothers and prove the convergence of

Algorithm 1 with a nearly optimal rate up to a factor J h | log hJ |. Our main

contribution is the extension of the standard multigrid analysis [36, 37, 94, 161] to

include weights belonging to the Muckenhoput class A2(RN). An optimal result

for weights in the A1(RN)-class is derived in [90]. Nevertheless, since our main

motivation is the fractional Laplacian, and the weight yα ∈ A2(RN) \ A1(RN), we

need to consider the larger class A2(RN).
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5.4.1 Stability of the nodal decomposition in the weighted L2-norm

The following result states that the nodal decomposition is stable in the weighted L2-

norm or, equivalently, the mass matrix for this inner product is spectrally equivalent

to its diagonal.

Lemma 5.4 (stability of the nodal decomposition) Let T ∈ T be a quasi-

uniform mesh, and let v ∈ V(T ). Then, we have the following norm equivalence

N (T )∑
i=1

‖vi‖2
L2(ω,D) . ‖v‖2

L2(ω,D) .
N (T )∑
i=1

‖vi‖2
L2(ω,D), (5.20)

where v =
∑N (T )

i=1 vi denotes the nodal decomposition for v, and the hidden constants

in each inequality above only depend on the dimension and the A2-constant of the

weight ω.

Proof: Let T̂ ⊂ RN be a reference element and {φ̂1, . . . , φ̂N
T̂
} be its local shape

functions, where N T̂ is the number of vertices of T̂ . A standard argument shows

ĉ1

(ˆ
T̂

ω̂

) N
T̂∑

i=1

V̂ 2
i ≤ ‖v̂‖2

L2(ω̂,T̂ ) ≤ ĉ2

(ˆ
T̂

ω̂

) N
T̂∑

i=1

V̂ 2
i ,

where 0 < ĉ1 ≤ ĉ2, v̂ =
∑N

T̂
i=1 V̂iφ̂i and ω̂ is a weight; see [75, Lemma 9.7]. Now,

given T ∈ T , we denote by FT : T̂ → T the mapping such that v̂ = v◦FT . Since the

A2 class is invariant under isotropic dilations Proposition 2.1, a scaling argument

shows (ˆ
T

ω

) NT∑
i=1

V 2
i . ‖v‖2

L2(ω,T ) .

(ˆ
T

ω

) NT∑
i=1

V 2
i .
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It remains thus to show that
´
T
ω ≈

´
T
ωφ2

i . The fact that 0 ≤ φi ≤ 1 yields

immediately ˆ
T

ωφ2
i ≤

ˆ
T

ω.

The converse inequality follows from the strong doubling property of ω given in

Proposition 2.2. In fact, setting E = {x ∈ T : φ2
i ≥ 1

2
} ⊂ T , we have

ˆ
T

ωφ2
i ≥

ˆ
E

ωφ2
i ≥

1

2

ˆ
E

ω ≥ 1

2C2,ω

( |E|
|T |

)2 ˆ
T

ω.

Finally, notice that the supports of the nodal basis functions {φi}N (T )
i=1 have a finite

overlap which is independent of the refinement level, i.e., for every i = 1, . . . ,N (T ),

the number n(i) = # {j : suppφi ∩ suppφj 6= ∅} is uniformly bounded. We arrive

at (5.20) summing over all the elements T ∈ T . �

With the aid of the stability of the nodal decomposition, we now show a

weighted inverse inequality.

Lemma 5.5 (weighted inverse inequality) Let T ∈ T be a quasi-uniform mesh,

and let T ∈ T and v ∈ V(T ). Then, we have the following inverse inequality

‖∇v‖L2(ω,T ) . h−1
T ‖v‖L2(ω,T ). (5.21)

Proof: Since T is quasi-uniform with meshsize hT , we have |∇φi| . h−1
T , and

ˆ
T

ω|∇v|2 . h−2
T

NT∑
i=1

V 2
i

ˆ
T

ω,

where, we have used the nodal decomposition of v =
∑NT

i=1 Viφi. As in the proof of

Lemma 5.4, the strong doubling property of ω yields

ˆ
T

ω . C2,ω

ˆ
T

ωφ2
i
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so that we obtain

ˆ
T

ω|∇v|2 . C2,ωh
−2
T

N∑
i=1

V 2
i

ˆ
T

ωφ2
i . C2,ωh

−2
T

ˆ
T

ωv2,

where, in the last step, we have used (5.20). This concludes the proof. �

5.4.2 Convergence analysis

We now present a convergence analysis of Algorithm 1 applied to solve the weighted

discrete problem (5.7) over quasi-uniform meshes and with standard pointwise Gauss-

Seidel smoothers i.e., Mk = Nk and Ik,j = {j} for j = 1, . . .Nk. The main ingre-

dients in such analysis are the stability of the nodal decomposition obtained in

Lemma 5.4, the weighted inverse inequality of Lemma 5.5, and the properties of the

quasi-interpolant introduced in section 5.2. We follow [160, 162].

Theorem 5.6 (convergence of symmetric V-cycle multigrid) Algorithm 1 with

point-wise Gauss-Seidel smoother is convergent with a contraction rate

δ ≤ 1− 1

1 + CJ
,

where C is independent of the meshsize, and it depends on the weight ω only through

the constant C2,ω defined in (2.10).

Proof: By the XZ identity stated in Theorem 5.3, we only need to estimate

c0 = sup
‖v‖

H1
0(ω,D)

=1

inf∑J
k=0

∑Nk
i=1vk,i=v

J∑
k=0

Nk∑
i=1

∥∥∥∥∥∥∇
Pk,i ∑

(l,j)�(k,i)

vl,j

∥∥∥∥∥∥
2

L2(ω,D)

, (5.22)
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where � stands for the so called lexicographic ordering, i.e.,

(l, j) � (k, i)⇔


l > k,

l = k & j > i.

We recall that k = 0, · · · J , j = 1, . . . ,Nk and the operator Pk,i : Vk → Vk,i

is the projection with respect to the bilinear form a. For k = 0, · · · J we denote by

ΠTk the quasi-interpolation operator defined in §5.2.2 over the mesh Tk. Next, we

introduce the telescopic multilevel decomposition

v =
J∑
k=0

vk, vk = (ΠTk − ΠTk−1
)v, ΠT−1v := 0, (5.23)

along with the nodal decomposition

vk =

N k∑
i=1

vk,i,

for each level k. Consequently, the right hand side of (5.22) can be rewritten by

using the telescopic multilevel decomposition (5.23) as follows:

Vk,i :=
∑

(l,j)�(k,i)

vl,j =
J∑

l=k+1

Nk∑
j=1

vl,j +

Nk∑
j=i+1

vk,j

=
J∑

l=k+1

vl +

Nk∑
j=i+1

vk,j = v − ΠTkv +

Nk∑
j=i+1

vk,j.

Therefore, we have

‖∇Pk,iVk,i‖2
L2(ω,D) . ‖∇Pk,i(v − ΠTkv)‖2

L2(ω,D) +

∥∥∥∥∥∇Pk,i
Nk∑

j=i+1

vk,j

∥∥∥∥∥
2

L2(ω,D)

. ‖∇(v − ΠTkv)‖2
L2(ω,Dk,i)

+

Nk∑
j=i+1

Dk,i∩Dk,j 6=∅

‖∇vk,j‖2
L2(ω,D),
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where Dk,i = suppφk,i. Adding over i = 1, . . . ,Nk, and using the finite overlapping

property of the sets Dk,i, yields

Nk∑
i=1

Nk∑
j=i+1

Dk,i∩Dk,j 6=∅

‖∇vk,j‖2
L2(ω,D) .

Nk∑
i=1

‖∇vk,i‖2
L2(ω,D),

whence, the weighted inverse inequality (5.21) gives

Nk∑
i=1

‖∇Pk,iVk,i‖2
L2(ω,D) . ‖∇(v − ΠTkv)‖2

L2(ω,D) +

Nk∑
i=1

h−2
k ‖vk,i‖2

L2(ω,D).

We resort to the stability of the operator ΠTk , Proposition 5.2, and the stability of

the micro decomposition, Lemma 5.4, to arrive at

Nk∑
i=1

‖∇Pk,iVk,i‖2
L2(ω,D) . ‖∇v‖2

L2(ω,D) + h−2
k ‖vk‖2

L2(ω,D).

Since vk = (ΠTk −ΠTk−1
)v, we utilize the approximation properties of ΠTk , given in

Proposition 3.16, to deduce

‖vk‖L2(ω,D) ≤ ‖v − ΠTkv‖L2(ω,D) + ‖v − ΠTk−1
v‖L2(ω,D) . hk‖∇v‖L2(ω,D).

This implies
∑Nk

i=1 ‖∇Pk,iVk,i‖
2
L2(ω,D) . ‖∇v‖2

L2(ω,D), and adding over k from 0 to J

yields c0 . J , which completes the proof. �

5.5 A multigrid method for the fractional Laplace operator

As we explained in § 5.2.3, the regularity estimate (3.28) implies the necessity of

graded meshes in the extended variable y. This allows us to recover an almost-

optimal error estimate for the finite element approximation of problem (1.2) [129,

Theorem 5.4]. In fact, finite elements on quasi-uniform meshes have poor approxi-

mation properties for small values of the parameter s. The isotropic error estimates
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of [129, Theorem 5.1] are not optimal, which makes anisotropic estimates essential.

For this reason, in this section we develop a multilevel theory for problem (1.2)

having in mind anisotropic partitions in the extended variable y and the multilevel

setting described in section 5.3 for the nonuniformly elliptic equation (4.1). We shall

obtain nearly uniform convergence of a V-cycle multilevel method for the problem

(1.2) without any regularity assumptions. We consider line Gauss-Seidel smoothers.

The analysis is an adaptation of the results presented in [160] for anisotropic elliptic

equations, and it is again based on the XZ identity [163].

5.5.1 A multigrid algorithm with line smoothers

As W. Hackbusch rightfully explains [95]: “the multigrid method cannot be under-

stood as a fixed algorithm. Usually, the components of the multigrid iteration should

be adapted to the given problem, [...] being the smoothing iteration the most delicate

part of the multigrid process”.

The success of multigrid methods for uniformly elliptic operators is due to the

fact that the smoothers are effective in reducing the nonsmooth (high frequency)

components of the error and the coarse grid corrections are effective in reducing the

smooth (low frequency) components. However, the effectiveness of both strategies

depends crucially on several factors such as the anisotropy of the mesh. A key

ingredient in the design and analysis of a multigrid method on anisotropic meshes

is the use of the so called line smoothers; see [9, 34, 95, 153].

Intuitively, when solving the α-harmonic extension (1.2) on graded meshes,
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the approximation from the coarse grid is dominated by the larger meshsize in the

x-direction and thus the coarse grid correction cannot capture the smaller scale in

the y-direction. One possible solution is the use of semi-coarsening, i.e., coarsening

only the y-direction until the meshsizes in both directions are comparable. Another

solution is the use of line smoothing, i.e., solving sub-problems restricted to one

vertical line. We shall use the latter approach which is relatively easy to implement

for tensor-product meshes.

Let us describe the decomposition of VJ = V(TYJ ) that we shall use. To do

so, we follow the notation of §5.3.1. We set Mk to be the number of interior nodes

of TΩ,k and define, for j = 1, . . . ,Mk, the set Ik,j as the collection of indices for the

vertices that lie on the line {v′j} × (0,Y ) at the level k. The decomposition is then

given by (5.16). This decomposition is also stable, which allows us to obtain the

appropriate anisotropic inverse inequalities; see Lemma 5.7 below.

Owing to the nature of the decomposition, the smoother requires the evalu-

ation of A−1
k,j which corresponds to the action of the operator over a vertical line.

This can be efficiently realized since the corresponding matrix is tri-diagonal.

Lemma 5.7 (nodal stability and anisotropic inverse inequalities) Let TY be

a graded tensor product grid, which is quasi-uniform in Ω and graded in the extended

variable so that (5.14) holds. If v ∈ V(TY ) can be decomposed as v =
∑MJ

j=1 vj, then

MJ∑
j=1

‖vj‖2
L2(yα,CY ) . ‖v‖2

L2(yα,CY ) .
MJ∑
j=1

‖vj‖2
L2(yα,CY ). (5.24)

Moreover, we have the following inverse inequalities

‖∇x′v‖L2(yα,T ) . h−1
K ‖v‖L2(yα,T ), ‖∂yv‖L2(yα,T ) . h−1

I ‖v‖L2(yα,T ), (5.25)
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where T = K × I is a generic element of TY .

Proof: The nodal stability (5.24) follows along the same lines of Lemma 5.4 upon

realizing that the functions vj = vj(x
′, y) are defined on the vertical lines (v′j, y) with

y ∈ (0,Y ) and the index j corresponds to a nodal decomposition in Ω. Moreover,

noticing that |∇x′φi| . h−1
K and |∂yφi| . h−1

I , we derive (5.25) inspired in Lemma 5.5.

�

We examine Algorithm 1 applied to the decomposition (5.16) with exact sub-

solvers on Vk,j, i.e., with line smoothers; see [33, §III.12] and [160]. A key observation

in favor of subspaces {Vk,j}Mk
j=1 follows.

Lemma 5.8 (nodal stability of y-derivatives) Under the same assumptions of

Lemma 5.7 we have

MJ∑
j=1

‖∂yvj‖2
L2(yα,CY ) . ‖∂yv‖2

L2(yα,CY ) .
MJ∑
j=1

‖∂yvj‖2
L2(yα,CY ). (5.26)

Proof: We just proceed as in Lemma (5.4) with v replaced by ∂yv =
∑MJ

j=1 ∂yvj. �

Exploiting Theorem 5.3, the properties of the quasi-interpolation operator ΠTk

defined in §5.2.2, and Lemmas 5.7 and 5.8, we obtain the nearly uniform convergence

of the symmetric V-cycle multigrid method. We follow [160, 162].

Theorem 5.9 (convergence of multigrid methods with line smoothers) The

symmetric V-cycle multigrid method with line smoothing converges with a contrac-

tion rate

δ ≤ 1− 1

1 + CJ
,
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where C is independent of the number of degrees of freedom. The constant C depends

on the weight yα only through the constant C2,yα, and on s like C ≈ γ, where γ is

the parameter that defines the graded mesh (5.14).

Proof: We use the XZ identity (5.3) and modify the arguments in the proof of

Theorem 5.6. We introduce the telescopic multilevel decomposition

v =
J∑
k=0

vk, vk = (ΠTY ,k − ΠTY ,k−1
)v, ΠTY ,−1v := 0, (5.27)

along with the line decomposition

vk =

Mk∑
j=1

vk,j.

Following the same arguments developed in the proof of Theorem 5.6, and denoting

Vk,i =
∑

(l,j)�(k,i) vl,j, we arrive at the inequality

Mk∑
i=1

‖∇Pk,iVk,i‖2
L2(yα,CY ) . ‖∇(v − ΠTY ,kv)‖2

L2(yα,CY ) +

Mk∑
j=1

‖∇vk,j‖2
L2(yα,CY ), (5.28)

where we have used the finite overlapping property of the sets Ik,j; see § 5.3.1. It

remains to estimate both terms in (5.28). The stability of the quasi-interpolant

ΠTY ,k stated in (5.11) (see also [129, Theorems 4.7 and 4.8] and [132, Lemma 5.1])

yields

‖∇(v − ΠTY ,kv)‖L2(yα,CY ) . ‖∇v‖L2(yα,CY ). (5.29)

To estimate the second term in (5.28) we begin by noticing that

Mk∑
j=1

‖∇vk,j‖2
L2(yα,CY ) =

Mk∑
j=1

‖∇x′vk,j‖2
L2(yα,CY ) +

Mk∑
j=1

‖∂yvk,j‖2
L2(yα,CY ). (5.30)
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The first term is estimated via the first weighted inverse inequality (5.25) and the

stability of the nodal decomposition (5.24), that is

Mk∑
j=1

‖∇x′vk,j‖2
L2(yα,CY ) .

Mk∑
j=1

h′k
−2‖vk,j‖2

L2(yα,CY ) . h′k
−2‖vk‖2

L2(yα,CY ), (5.31)

where h′k denotes the meshsize in the x′ direction at level k. The approximation

property of ΠTY ,k stated in Lemma 5.2 (see also [132, Theorem 5.7]) and the defini-

tion of vk yield

‖vk‖L2(yα,CY ) ≤ ‖v − ΠTY ,kv‖L2(yα,CY ) + ‖v − ΠTY ,k−1
v‖L2(yα,CY )

. h′k‖∇x′v‖L2(yα,CY ) + h′′k‖∂yv‖L2(yα,CY )

where h′′k denotes the maximal meshsize in the y direction at level k. Using (5.15)

we see that h′′k . γh′k, and replacing the estimate above in (5.31), we obtain

Mk∑
j=1

‖∇x′vk,j‖2
L2(yα,CY ) . ‖∇v‖2

L2(yα,CY ), (5.32)

which bounds the first term in (5.30). To estimate the second term, we resort to

Lemma 5.8, namely

Mk∑
j=1

‖∂yvk,j‖2
L2(yα,CY ) . ‖∂yvk‖2

L2(yα,CY ). (5.33)

Finally, inequalities (5.32) and (5.33) allow us to conclude

Mk∑
j=1

‖∇vk,j‖2
L2(yα,CY ) . ‖∇v‖2

L2(yα,CY ),

which together with (5.29) yields the desired result after summing over k. �

Remark 5.10 (dependence on s) We point out the use of (5.15), which in turn

implies h′′k . γh′k, to derive (5.32). This translates into C ≈ γ in Theorem 5.9 and,
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since γ > 3/(1−α) = 3/(2s), in deterioration of the contraction factor as s ↓ 0. We

explore a remedy in § 5.6.3.

5.6 Numerical Illustrations

In this section, we present numerical experiments to support our theoretical findings.

We consider two examples:

(5.6.1) n = 1, Ω = (0, 1), u = sin(3πx),

(5.6.2) n = 2, Ω = (0, 1)2, u = sin(2πx1) sin(2πx2),

and Y = 1. The length Y of the cylinder in the extended direction is fixed, as

discussed in Chapter 3 (see also[129]), so that it captures the exponential decay

of the solution. All of our algorithms are implemented based on the MATLAB c©

software package iFEM [50].

5.6.1 Multigrid with line smoothers on graded meshes

We partition Ω into a uniform grid of size hTΩ
, and we construct a graded mesh in

the extended direction using the mapping (5.14) with parameter γ = 3
2s

+ 0.1 and

M = 1
h
. Some sample meshes are shown in Figure 5.2. The mesh points are ordered

column-wise so that the indices associated to vertical lines are easily accessible.

Starting from hT0 = 1
4

we obtain a sequence of meshes by halving the meshsize of

Ω and applying the mapping (5.14) in the extended direction with double number

of mesh points.
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Figure 5.2: Graded meshes for the cylinder CY = (0, 1) × (0, 1). In both cases, the mesh

in Ω is uniform and of size hT0 = 1
16 . The meshes in the extended direction are graded

according to (5.14) with M = 1
h and γ = 3

2s + 0.1. The left mesh is for s = 0.8 and the

right for s = 0.15.

We assemble the matrix corresponding to the finite element discretization of

(5.7) on each level. The natural embedding V(Tk)→ V(Tk+1) for k = 0, . . . , J − 1

gives us the prolongation matrix between two consecutive levels. Notice that the

prolongation in the x′-direction is obtained by standard averaging, while in the

extended direction the weights must be modified to take into account the grading

of the mesh. The restriction matrix is taken as the transpose of the prolongation

matrix.

As discussed in section 5.5 we must use vertical line smoothers to attain effi-

ciency of the multigrid method. The tri-diagonal sub-matrix corresponding to one

vertical line is inverted exactly by using the built-in direct solver in MATLAB c©.

Red-black ordering of the indices in the x′-direction is used to further improve the

efficiency of the line smoothers. We perform three pre- and post-smoothing steps,

i.e., m = 3. We start with the zero initial guess and use as exit criterion that the
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`2-norm of the relative residual is smaller than 10−7.

Tables 5.1 and 5.2 show the number of iterations for the implemented multi-

grid method for the one and two dimensional problems, respectively. As we see,

the method converges almost uniformly with respect to the number of degrees of

freedom. Notice that the number of iterations for s = 0.15 is significantly larger

than that for the remaining tested cases. This can be explained by the fact that, as

Theorem 5.9 states, the contraction factor depends on γ ≈ 1
s

and thus, we observe a

preasymptotic regime where the number of iterations grows. This is exactly the case

for the one dimensional problem and we would expect a similar behavior in the two

dimensional case. However, since the extended problem is now in three dimensions,

the size of the problems grows rather quickly and thus our computational resources

were not sufficient to deal with the cases hTΩ
= 1

256
and hTΩ

= 1
512

. In §5.6.3 we will

propose a modification of the graded mesh in the extended direction to address this

issue.

We also tested a point Gauss-Seidel smoother for the one dimensional case

Ω = (0, 1). Except for the trivial case hTΩ
= 1/16, the corresponding V-cycle is not

able to achieve the desired accuracy in 200 iterations.

5.6.2 Multigrid methods on quasi-uniform meshes

Even though the approximation of the Caffarelli-Silvestre extension of the fractional

Laplace operator on quasi-uniform meshes in the extended direction is suboptimal,

let us use this problem to illustrate the convergence properties of the multilevel

175



hTΩ
DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 289 7 6 5 5

1
32 1,089 13 9 6 6

1
64 4,225 25 10 6 6

1
128 16,641 33 11 6 6

1
256 66,049 37 10 6 6

1
512 263,169 38 10 6 7

Table 5.1: Number of iterations for a multigrid method for the one dimensional fractional

Laplacian using a line smoother in the extended direction. The mesh in Ω is uniform of

size hTΩ
. The mesh in the extended direction is graded according to (5.14).

hTΩ
DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 4,913 10 7 6 5

1
32 35,937 19 8 6 6

1
64 274,625 34 9 6 6

1
128 2,146,689 47 9 6 6

Table 5.2: Number of iterations for a multigrid method for the two dimensional fractional

Laplacian using a line smoother in the extended direction. The mesh in Ω is uniform of

size hTΩ
. The mesh in the extended direction is graded according to (5.14).
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method, developed in section 5.4, for general A2 weights. The setting is the same as

in the previous subsection but we use a point-wise Gauss-Seidel smoother. Tables 5.3

and 5.4 show the number of iterations with respect to the number of degrees of

freedom and s. We see that the convergence is almost uniform with respect to the

number of unknowns as well as the parameter s ∈ (0, 1).

hTΩ DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 289 12 13 13 14

1
32 1,089 15 15 15 17

1
64 4,225 15 16 16 17

1
128 16,641 15 16 16 18

1
256 66,049 15 15 16 18

1
512 263,169 15 15 16 18

Table 5.3: Number of iterations for a multigrid method with point-wise Gauss-Seidel

smoothers on uniform meshes for the one dimensional fractional Laplacian.

hTΩ
DOFs s = 0.15 s = 0.3 s = 0.6 s = 0.8

1
16 4,913 13 12 13 15

1
32 35,937 15 15 15 17

1
64 274,625 15 16 16 18

1
128 2,146,689 15 16 16 19

Table 5.4: Number of iterations for a multigrid method with point-wise Gauss-Seidel

smoothers on uniform meshes for the two dimensional fractional Laplacian.
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5.6.3 Modified mesh grading

Examining the proof of Theorem 5.9, we realize that the critical step (5.32) consists

in the application of inequality (5.15), namely h′′k . γh′k, which deteriorates as s

becomes small because γ > 3/(1 − α) = 3/(2s). Numerically, this effect can be

seen in Tables 5.1 and 5.2 where, for instance, the number of iterations needed for

s = 0.15 is significantly larger than that for all the other tested values; see the right

mesh for s = 0.15 in Figure 5.2. As a result, the contraction rate of Theorem 5.9

becomes 1 − 1/(1 + CγJ). Here we explore computationally how to overcome this

issue. We construct a mesh such that the maximum meshsize in the extended

direction is uniformly bounded, with respect to s, by the uniform meshsize in the

x′-direction without changing the ratio of degrees of freedom in Ω and the extended

direction by more than a constant.

Let us begin with some heuristic motivation. In order to control the aspect

ratio h′′k/h
′
k uniformly on s ∈ (0, 1), we may apply some extra refinements to the

largest elements in the y direction, increasing the number of degrees of freedom of

TY just by a constant. We denote by T̃Y the resulting mesh and we notice that

V(TY ) ⊂ V(T̃Y ). Thus, Galerkin orthogonality implies

‖∇(v − VT̃Y
)‖L2(yα,CY ) = inf

{
‖∇(v −W )‖L2(yα,CY ) : W ∈ V(T̃Y )

}
≤ ‖∇(v − VTY )‖L2(yα,CY ) . (#TY )−

1
n+1 ≈ (#T̃Y )−

1
n+1 .

We build on this idea through a modification of the mapping function below.

Let F : (0, 1) → (0,Y ) be an increasing and differentiable function such that
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F (0) = 0 and F (1) = Y . By mapping a uniform grid of (0, 1) via the function F , we

can construct a graded mesh with mesh points given by yl = F (l/M) for l = 1, ...,M ;

for instance, F (ξ) = Y ξγ yields (5.14). The mean value theorem implies

yl+1 − yl =
F ′(cl)

M
≤ 1

M
max

{
|F ′(ξ)| : ξ ∈

[
l

M
,
l + 1

M

]}
,

which shows that the map of (5.14) is not uniformly bounded with respect to s.

For this reason, we instead consider the following construction: Let (ξ?, y?) ∈

(0, 1)2, which we will call the transition point, and define the mapping

F (ξ) =


y?Y

(
ξ

ξ?

)γ
, 0 < ξ ≤ ξ?,

Y
(

1− y?
1− ξ?

(ξ − ξ?) + y?

)
, ξ? < ξ < 1.

Over the interval (0, ξ?) the mapping F defines the same type of graded mesh

but, over (ξ?, 1) it defines a uniform mesh. Let us now choose the transition point

to obtain a bound on the derivative of F . We have

F ′(ξ) =


γY

y?
ξ?

(
ξ

ξ?

)γ−1

, 0 < ξ ≤ ξ?,

Y
1− y?
1− ξ?

, ξ? < ξ < 1,

(5.34)

so that

F := max
ξ∈[0,1]

|F ′(ξ)| = Y max

{
γ
y?
ξ?
,
1− y?
1− ξ?

}
.

Given ξ? we choose y? to have γ y?
ξ?

= 1−y?
1−ξ? , i.e.,

y? =
1

1 + γ 1−ξ?
ξ?

.

this immediately yields F ∈ C1([0, 1]) and, more importantly,

F = γY
y?
ξ?

= Y
γ

ξ? + (1− ξ?)γ
≤ Y

1

1− ξ?
.
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We can now choose ξ? to gain control of F . For instance, ξ? = 0.5 gives us that

F ≤ 2 and ξ? = 0.75 that F ≤ 4. In the experiments presented below we choose

ξ? = 0.75. The theory presented in § 5.5 still applies.

Figure 5.3: Graded meshes for the extended domain CY = (0, 1) × (0, 1), hTΩ
= 1

16 and

s = 0.15. Left : The grading is according to (5.14). Right : The grading is given by the

map (5.34).

To better visualize the effect of this modification Figures 5.3 and 5.4, show

the original graded mesh, defined by (5.14), and the modified one obtained using

(5.34), in two and three dimensions, respectively. The modified graded meshes have

asymptotically the same distribution of points near the bottom part of the cylinder

and so they are also capable of capturing the singular behavior of the solution U .

However, near the top part, the aspect ratio is uniformly controlled by a factor

4. The modified mesh is only applied for γ > 4. For s = 0.3, 0.6 and 0.8, no

modification is needed in the original mesh.

Upon constructing a mesh with this modification, we can develop a V-cycle

multigrid solver with vertical line smoothers. Comparisons of this approach with the

setting of § 5.6.1 are shown in Tables 5.5 and 5.6. From them we can conclude that
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Figure 5.4: Graded meshes for the extended domain CY = (0, 1)2 × (0, 1), hTΩ
= 1

16 and

s = 0.15. Left : The grading is according to (3.106). Right : The grading is given by the

map (5.34).

the strong anisotropic behavior of the mesh grading (5.14) affects the performance of

the V-cycle multigrid with vertical line smoothers. For the original graded meshes,

there is a preasymptotic regime where the number of iterations increases faster than

log J . The modification of the mesh proposed in (5.34) allows us to obtain an almost

uniform number of iterations for all problem sizes without sacrificing the accuracy

of the method. This is also evidenced by the computational time required to solve

a problem with a fixed number of degrees of freedom.
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hTΩ
DOFs I(o) I(m) E(o) E(m) CPU(o) CPU(m)

1
16 289 7 7 0.1556 0.1739 0.0209 0.0554

1
32 1,089 13 9 0.0828 0.0937 0.0664 0.0985

1
64 4,225 25 10 0.0426 0.0485 0.2337 0.2720

1
128 16,641 33 10 0.0216 0.0246 0.9041 0.4496

1
256 66,049 37 11 0.0109 0.0124 4.8168 1.7051

1
512 263,169 38 11 0.0055 0.0062 25.1351 7.3439

Table 5.5: Comparison of the multilevel solver with vertical line smoother over two graded

meshes for the one dimensional fractional Laplacian, s = 0.15. Legend : The original mesh,

given by (3.106) is denoted by o, whereas the modification proposed in (5.34) is denoted

by m. I – number of iterations, E – error in the energy norm, CPU – cpu time (s).

hTΩ
DOFs I(o) I(m) E(o) E(m) CPU(o) CPU(m)

1
16 4,913 10 8 0.1070 0.1198 0.41 0.31

1
32 35,937 19 11 0.0570 0.0646 4.76 2.95

1
64 274,625 34 12 0.0294 0.0334 82.56 31.48

1
128 2,146,689 47 13 0.0149 0.0170 892.65 269.63

Table 5.6: Comparison of the multilevel solver with vertical line smoother over two graded

meshes for the two dimensional fractional Laplacian, s = 0.15. Legend : The original mesh,

given by (3.106) is denoted by o, whereas the modification proposed in (5.34) is denoted

by m. I – number of iterations, E – error in the energy norm, CPU – cpu time (s).
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Chapter 6: A posteriori error analysis

6.1 Introduction

We are interested in the derivation and the analysis of a computable a posteriori

error estimator for problems involving the fractional powers of the Dirichlet Laplace

operator (−∆)s.

The main advantage of the algorithm described and analyzed in Chapter 3, is

that we are solving the local problem (1.2) instead of dealing with the nonlocal op-

erator (−∆)s of problem (1.1). However, this comes at the expense of incorporating

one more dimension to the problem, thus raising the question of how computation-

ally efficient this approach is. A quest for the answer is the motivation for the study

of a posteriori error estimators and adaptivity.

In this work we derive a computable a posteriori error estimator, which is

the basic tool to solve problem (1.2) via an adaptive procedure. In view of the

overwhelming evidence given in Chapter 3 that meshes must be highly anisotropic

in the extended dimension y, we design an a posteriori error estimator which is able

to deal with such anisotropic behaviour. Before proceeding with our analysis, it

is instructive to comment about the anisotropic a posteriori error estimator theory

advocated in the literature.
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A posteriori error estimators are computable quantities, depending on the

computed solution and data, that provide information about the quality of approx-

imation. They are problem-dependent and may be used to make judicious mesh

refinement. For isotropic discretizations, i.e., meshes where the aspect ratio of the

cells is bounded, the theory of a posteriori error estimation is well understood.

Starting with the pioneering work [15] of Babuška and Rheinbolt, a great deal of

work has been devoted to its study. We refer to [7, 159] for an overview of the

state-of the-art. However, the theory of a posteriori error estimation on anisotropic

discretizations, i.e., meshes where the cells have disparate sizes in each direction, is

still at its infancy.

To the best of the author’s knowledge the first work that attempts to deal with

anisotropic a posteriori error estimation is [146]. In this work, a residual a posteriori

error estimator is introduced and analyzed on anisotropic meshes. However, such

analysis relies on assumptions on the exact and discrete solutions and on the mesh,

which are neither proved nor there is a way to enforce them in the course of compu-

tations; [146, § 6, Remark 3]. Posteriorly, in [111] the concept of matching function

is introduced in order to derive anisotropic a posteriori error indicators. The correct

alignment of the grid with the exact solution is crucial to derive an upper bound for

the error. Indeed, this upper bound involves the matching function, which depends

on the error itself and then it does not provide a real computable quantity; see [111,

Theorem 2]. For similar works in this direction see [113, 112, 127]. In [137], the

anisotropic interpolation estimates derived in [81] are used to derive a Zienkiewicz–

Zhu type of a posteriori error estimator. However, as [137, Proposition 2.3] states,
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the derived upper bound for the error depends on the error itself, and then, it is not

computable.

In our case, since the coefficient yα in (1.2) either degenerates (s < 1/2) or

blows up (s > 1/2), the usual residual estimators do not apply; integration by parts

fails! Inspired in [14, 125], and to deal with both, the natural anisotropy of the

mesh in the extended variable y and the nonuniform coefficient yα, we consider

local problems on cylindrical stars. The solutions of these local problems allow

us to define a computable and anisotropic a posteriori error estimator which is

equivalent to the error up to oscillations terms. In order to derive such a result,

a computationally implementable geometric condition needs to be imposed on the

mesh, which does not depend on the exact solution of problem (1.2). This approach

is of value not only for (1.2), but in general for anisotropic problems since rigorous

anisotropic a posteriori error estimators are not available in the literature.

The outline of this Chapter is as follows. Section 6.2 recalls some elements

of the a priori theory developed in Chapter 3, and motivates our a posteriori error

estimator. Section 6.3 is dedicated to the study of an ideal error estimator which

set the basis ideas of our analysis. The former is not computable but it is equivalent

to the error on anisotropic meshes. In §6.4, we introduce and study the anisotropic

and computable a posteriori error estimator ETY , based on the local star indicators

Ez′ . We prove the equivalence between the error and the estimator up to oscillation

terms on anisotropic meshes.
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6.2 Preliminaries

We start recalling some elements of the a priori error analysis developed in [129]

and Chapter 3.

6.2.1 A priori error analysis

Estimates (3.27)-(3.28) motivate the construction of a mesh over CY as follows. We

first consider a graded partition IY of the interval [0,Y ] with mesh points

yk =

(
k

M

)γ
Y , k = 0, . . . ,M, (6.1)

where γ > 3/(1 − α). We also consider TΩ = {K} to be a conforming and shape

regular mesh of Ω, where K ⊂ Rn is an element that is isoparametrically equivalent

either to the unit cube [0, 1]n or the unit simplex in Rn. We construct the mesh

TY as the tensor product triangulation of TΩ and IY . In order to obtain a global

regularity assumption for TY , we assume that there is a constant σY such that if

T1 = K1 × I1 and T2 = K2 × I2 ∈ TY have nonempty intersection, then

hI1
hI2
≤ σY , (6.2)

where hI = |I|, which allows for anisotropy in the extended variable (cf. [70, 129]).

The set of all such triangulations is denoted by T.

For TY ∈ T, we define the finite element space

V(TY ) =
{
W ∈ C0(CY ) : W |T ∈ P1(K)⊗ P1(I) ∀T ∈ TY , W |ΓD = 0

}
. (6.3)

where the space P1(K) corresponds to P1 for a simplicial element K, and to Q1 for
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a n-rectangle K. We also define U(TΩ) = trΩ V(TY ), i.e., a P1 finite element space

over the mesh TΩ.

The Galerkin approximation of (3.37) is given by the unique function VTY ∈

V(TY ) solution of (3.51).

Exploiting the Cartesian structure of the mesh it is possible to handle anisotropy

in the extended variable and obtain estimates of the form

‖v − ΠT v‖L2(yα,T ) . hv′‖∇x′v‖L2(yα,ST ) + hv′′‖∂yv‖L2(yα,ST ),

‖∂xj(v − ΠT v)‖L2(yα,T ) . hv′‖∇x′∂xjv‖L2(yα,ST ) + hv′′‖∂y∂xjv‖L2(yα,ST ),

with j = 1, . . . , n + 1, where hv′ = min{hK : v′ ∈ K}, and hv′′ = min{hI : v′′ ∈ I};

see [129, Theorem 4.5] for details. However, since Uyy ≈ y−α−1 as y ≈ 0, we have

that U /∈ H2(yα, CY ) and the second estimate is not meaningful for j = n + 1. In

view of the regularity estimate (3.28) it is necessary to measure the regularity of Uyy

with a stronger weight and thus compensate with a graded mesh in the extended

dimension. This makes anisotropic estimates essential.

Finally, notice that #TY = M #TΩ. Assuming that #TΩ ≈ Mn we have

#TY ≈Mn+1. If TΩ is shape regular and quasi-uniform, we have hTΩ
≈ (#TΩ)−1/n.

All these considerations allow us to obtain the following result; see [129, Theorem

5.4] and [129, Corollary 7.11].

Corollary 6.1 (a priori error estimate) Let TY be a graded tensor product grid,

which is quasi-uniform in Ω and graded in the extended variable so that (6.1) holds.

If Ω satisfies

‖w‖H2(Ω) . ‖∆w‖L2(Ω), ∀w ∈ H2(Ω) ∩H1
0 (Ω), (6.4)
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then the solution U of (3.37) and its Galerkin approximation VTY ∈ V(TY ) satisfy

‖U − VTY ‖ ◦H1
L(C,yα)

. | log(#TY )|s(#TY )−1/(n+1)‖f‖H1−s(Ω),

where Y ≈ log(#TY ). Alternatively, if u denotes the solution of (1.1), then

‖u− UT ‖Hs(Ω) . | log(#TY )|s(#TY )−1/(n+1)‖f‖H1−s(Ω).

Remark 6.2 (Domain and data regularity) The results of Theorem 6.1 are mean-

ingful only if f ∈ H1−s(Ω) and the domain Ω is such that (6.4) holds.

6.2.2 Motivation

The function U , solution of the α-harmonic extension problem (1.2), has a sin-

gular behaviour on the extended variable y, which is compensated by considering

anisotropic meshes in such a direction dictated by (6.1). However, the solution

U , may also have singularities in the direction of the x′-variables and thus exhibit

fractional regularity, which would not allow us to attain the almost optimal rate of

convergence given by Corollary (6.1). In fact, as Remark 6.2 shows, in order to have

an almost optimal rate of convergence, it is necessary f ∈ H1−s(Ω) and property

(6.4). If any of these two conditions is not satisfied, we may have singularities, whose

characterization is as yet an open problem; see [129, § 6.3] and § 3.5.3 in Chapter 3

for an illustration of this situation. In this Chapter, we plan to derive a computable

a posteriori error estimator for the finite element approximation of problem (3.37),

which can resolve such singularities via an adaptive algorithm.

In order to derive such a posteriori error estimator a computationally imple-

mentable geometric condition needs to be imposed on the mesh. The latter, allow us
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to consider graded meshes in Ω in order to compensate some possible singularities

in the direction of the x′-variables. We thus assume the following condition over the

family of meshes T: there exists a positive constant CT such that for every mesh

TY ∈ T

hY ≤ CT hz′ , (6.5)

for all the interior nodes z′ of TΩ, where hY denotes the maximal mesh size in the

y direction, and hz′ ≈ |Sz′ |1/n; see below for the precise definition of hz′ and Sz′ .

We remark that this condition is satisfied in the case of quasi-uniform refinement in

the variable x′, which is a consequence of the convexity of the function involved in

(6.1). In fact, a simple computation shows

hY = yM − yM−1 =
Y
Mγ

(
(M)γ − (M − 1)γ

)
≤ γ

Y
M
, (6.6)

where γ > 3/(1− α) = 3/(2s).

We now consider some terminology and notation. Given a node z on the mesh

TY , we explote the tensor product structure of TY , and we write z = (z′, z′′) where

z′ and z′′ are nodes on the meshes TΩ and IY respectively.

Given a cell K ∈ TΩ, we denote by N (K) and
◦

N (K) the set of nodes and

interior and Neumann nodes of K respectively. We set

N (TΩ) :=
⋃

K∈TΩ

N (K)
◦

N (TΩ) :=
⋃

K∈TΩ

◦
N (K).

Given T ∈ TY , we define N (T ),
◦

N (T ) accordingly, and consequently
◦

N (TY ) and

N (TY ). Then, any discrete function V ∈ V(TY ) is characterized by its nodal values

on the set
◦

N (TY ). Moreover, the functions φz ∈ V(TY ), z ∈ ◦
N (TY ), such that
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φz(z) = δzz for all z ∈ N (TY ) are the canonical basis of V(TY ), and

V =
∑

z∈ ◦N (TY )

V (z)φz.

The functions {φz : z ∈ ◦
N (TY )} are the so called shape functions of V(TY ).

Analogously, given a node z′ ∈ ◦
N (TΩ), we also consider the discrete functions

ϕz′ ∈ U(TΩ) = trΩ V(TY ) defined by ϕz′(z
′) = δz′z′ for all z′ ∈ N (TΩ). The set

{ϕz′ : z′ ∈ ◦
N (TΩ)} is the canonical basis of U(TΩ).

We have the following important properties associated with the set of functions

{φz : z ∈ N (TY )}. First, we have the so-called partition of union property, i.e.,

∑
z∈N (TY )

φz = 1 in CY . (6.7)

Second, for any interior or Neumann node z ∈ ◦
N (TY ), the corresponding basis

function φz ∈ V(TY ) and then we have the so called Galerkin orthogonality, i.e.,

ds〈f, trΩ φz〉H−s(Ω)×Hs(Ω) −
ˆ
CY

yα∇VTY∇φz = 0. (6.8)

We also have a partition of union property for the canonical basis {ϕz′ : z′ ∈

N (TΩ)}. Now, given z′ ∈ N (TΩ) and the associated basis function ϕz′(x
′), we

define the extended basis function ϕ̃z′(x
′, y) = ϕz′(x

′)1(0,Y ). Consequently, we have

the following partition of union property

∑
z′∈N (TΩ)

ϕ̃z′ = 1 in CY . (6.9)

Given z′ ∈ N (TΩ), we define the star around z′ as

Sz′ :=
⋃
K3z′

K ⊂ Ω,
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and the cylindrical star around z′ as

Cz′ :=
⋃
{T ∈ TY : T = K × I,K 3 z′} = Sz′ × (0,Y ) ⊂ CY .

Given an element K ∈ TΩ we define its path as SK :=
⋃
z′∈K Sz′ , and then, given

z′ ∈ N (TΩ) we define its the cylindrical path as Dz′ =
⋃
K3z′ SK × (0,Y ) ⊂ CY .

Finally, we define, for each z′ ∈ N (TΩ), hz′ := min{hK : z′ ∈ K}.

6.2.3 Local weighted Sobolev spaces

In order to define the local a posteriori error estimatores considered in our work, we

first need to define some local weighted Sobolev spaces.

Definition 6.3 Given z′ ∈ N (TΩ), for each cylindrical star Cz′, we define

W(Cz′) :=
{
w ∈ H1(yα, Cz′) : w = 0 on ∂Cz′ \ Ω× {0}

}
.

The space W(Cz′) defined above is a Hilbert space due to the fact that weight

|y|α belongs to the so-called Muckenhoupt class A2(Rn+1); see [79, 87, 109, 126].

Moreover, as it is shown in the following proposition, a weighted Poincaré-type

inequality holds true, and consequently the semi-norm 9w9Cz′ := ‖∇w‖L2(yα,Cz′ )

defines a norm on W(Cz′); see also [129, §2.3].

Proposition 6.1 (weighted Poincaré inequality) Let z′ ∈ N (TΩ). If the func-

tion w ∈W(Cz′), then we have

‖w‖L2(yα,Cz′ ) . ‖∇w‖L2(yα,Cz′ ), (6.10)
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Proof: By density [158, Corollary 2.1.6], it suffices to reduce the considerations to

a function w, which is smooth. Given x′ ∈ Sz′ , we have that w(x′,Y ) = 0 so that

w(x′, y) = −
ˆ Y

y

∂yw(x′, ξ) dξ.

Multiplying the expression above |y|α, integrating over Cz′ , and using the Cauchy

Schwarz inequality, we arrive at

ˆ
Cz′
|y|α|w(x′, y)|2 dx′ dy ≤

ˆ
Cz′
|y|α

(ˆ Y

0

|ξ|α|∂yw(x′, ξ)|2 dξ

ˆ Y

0

|ξ|−α dξ

)
dx′ dy

=

ˆ Y

0

|y|α dy

ˆ Y

0

|ξ|−α dξ

ˆ
Cz′
|ξ|α|∂yw(x′, ξ)|2 dx′ dξ

≤ C2,|y|α|Y |2
ˆ
Cz′
|y|α|∂yw(x′, y)|2 dx′ dy,

where in the third inequality we have used that yα belongs to the Muckenhoupt

class A2(Rn+1); see Definition (2.2). In conclusion, we have derived the anisotropic

Poincaré inequality

‖w‖L2(yα,Cz′ ) . Y ‖∂yw‖L2(yα,Cz′ ),

which concludes the proof of (6.10). �

Remark 6.4 (anisotropic weighted Poincaré inequality) Let z′ ∈ N (TΩ). If

the function w ∈ W(Cz′), then by extending the one-dimensional argument devel-

oped above to a n-dimensional setting, we are also able to derive

‖w‖L2(yα,Cz′ ) . hz′‖∇x′w‖L2(yα,Cz′ ).

6.3 An ideal a posteriori error estimator

In this subsection, we define an ideal a posteriori error estimator on anisotropic

meshes which is not computable. However, it provides the intuition and establish

192



the basis to define a discrete and computable error indicator. We prove that this

ideal error estimator is equivalent to the error without any oscillation term, which

relies on the assumption (6.5) imposed on the family of discretizations T.

Inspired by [14, 46, 125] we now define ζz′ ∈W(Cz′) to be the solution of

ˆ
Cz′
yα∇ζz′∇ψ = ds〈f, trΩ ψ〉H−s(Ω)×Hs(Ω) −

ˆ
Cz′
yα∇VTY∇ψ, (6.11)

for all ψ ∈ W(Cz′). The existence and uniqueness of ζz′ ∈ W(Cz′) is guaranteed by

the Lax–Milgram Lemma and the weighted Poincaré inequality of Proposition 6.1.

The continuity of the right hand side of (6.11), as a linear functional in W(Cz′),

follows from (7.15) and the Cauchy-Schwarz inequality. We then define the global

error estimator

ẼTY =

 ∑
z′∈N (TΩ)

Ẽ 2
z′


1
2

, (6.12)

in terms of the local error indicators

Ẽz′ = 9 ζz′9Cz′ . (6.13)

The properties of this ideal estimator are as follows.

Proposition 6.2 (ideal estimator) Let v ∈ ◦
H1
L(CY , y

α) and VTY ∈ V(TY ) solve

(3.37) and (3.51) respectively. Then, the ideal estimator ẼTY , defined in (6.12)–

(6.13), satisfies

‖∇(v − VTY )‖L2(yα,CY ) . ẼTY , Ẽz′ ≤ ‖∇(v − VTY )‖L2(yα,Cz′ ). (6.14)
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Proof: Denote the error by eTY = v − VTY , then for any φ ∈ ◦
H1
L(yα, CY ) we have

ˆ
CY

yα∇eTY∇φ = ds〈f, trΩ φ〉H−s(Ω)×Hs(Ω) −
ˆ
CY

yα∇VTY∇φ

=
∑

z′∈N (TΩ)

ds〈f, trΩ φϕ̃z′〉H−s(Ω)×Hs(Ω) −
ˆ
Cz′
yα∇VTY∇(φϕ̃z′)

=
∑

z′∈N (TΩ)

ds〈f, trΩ(φ−W )ϕ̃z′〉H−s(Ω)×Hs(Ω) −
ˆ
Cz′
yα∇VTY∇ ((φ−W )ϕ̃z′)

for any W ∈ V(TY ). To derive the expresion above, we have used the partition of

the unity property (6.9), and Galerkin orthogonality (6.8).

Now, we first notice that for each z′ ∈ N (TΩ) the function (φ − W )ϕ̃z′ ∈

W(Cz′). In fact, if z′ is an interior node,

(φ−W )ϕ̃z′|∂Cz′\Ω×{0} = 0 (6.15)

because of the vanishing property of the basis function ϕz′ on ∂Sz′ together with

the fact that φ = W = 0 on Ω × {Y }. On the other hand, if z′ is a Dirichlet node

similar arguments allow us to derive (6.15).

Second, by setting W = ΠTY φ, the quasi-interpolant introduced in [132, § 5],

we obtain boundedness of 9(φ−W )ϕ̃z′9Cz′ as follows,

9(φ−W )ϕ̃z′92
Cz′ .

ˆ
Cz′
yα|∇(φ−ΠTY φ)|2ϕ̃2

z′+

ˆ
Cz′
yα|φ−ΠTY φ|2|∇x′ϕ̃z′ |2 . 9φ92

Dz′ .

The fist term of the expression above is estimated via the local stability of ΠTY [132,

Lemma 5.1] together with the fact that 0 ≤ ϕ̃z′ ≤ 1 for all x ∈ CY . The second term

is estimated via the local approximation properties of ΠTY [129, Theorems 4.7 and
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4.8]. In fact,

ˆ
Cz′
yα|φ− ΠTY φ|2|∇x′ϕ̃z′|2 .

1

h2
z′

(
h2
z′‖∇x′φ‖2

L2(Dz′ ,yα) + h2
Y ‖∂yφ‖2

L2(Dz′ ,yα)

)
. 9φ92

Dz′ , (6.16)

where we have used that |∇x′ϕ̃z′| = |∇x′ϕz′ | . h−1
z′ together with (6.5).

Consequently, setting ψz′ = (φ−ΠTY φ)ϕ̃z′ ∈W(Cz′) as test function in problem

(6.11) we obtain

ˆ
CY

yα∇eTY∇φ =
∑

z′∈N (TΩ)

ˆ
Sz′

yα∇ζz′∇ψz′ .
∑

z′∈N (TΩ)

9ζz′9Cz′ 9φ9Dz′

.

 ∑
z′∈N (TΩ)

9ζz′92
Cz′


1
2

‖∇φ‖L2(CY ,yα) = ẼTY ‖∇φ‖L2(CY ,yα),

where we have used that 9ψ9Cz′ . 9φ9Dz′ and the finite overlapping property of

the stars Sz′ .

To obtain the first inequality in (6.14), set φ = eTY ∈
◦
H1
L(CY , y

α).

Finally, the second inequality of (6.14) is immediate:

Ẽ 2
z′ = 9ζz′92

Cz′ =

ˆ
Cz′
yα∇ζz′∇ζz′ =

ˆ
Cz′
yα∇eTY∇ζz′ ≤ ‖∇eTY ‖L2(Cz′ ,yα) 9 ζz′9Cz′ ,

which concludes the proof. �

Remark 6.5 (Anisotropic meshes) Examining the proof of Proposition (6.2),

we realize that a critical (6.16) consists in the application of inequality (6.5), namely

hY ≤ CT hz′ for all z′ ∈ N (TΩ). Therefore, Proposition (6.2) shows how the resolu-

tion of local problems on cylindrical stars allows us to consider anisotropic meshes on

the extended variable y and graded meshes in Ω. The latter allows us to compensate

possible singularities in the x′ variables.
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6.4 A computable a posteriori error estimator

Notice that the estimator has an important drawback: for each node z′, it requires

the exact solution ζz′ to the local problem (6.11) in the infinite dimensional space

W(Cz′), therefore it is not computable. However, it provides the intuition and es-

tablish the basis to define a discrete and computable error indicator. We now define

local discrete spaces and local computable error indicators, which will will allow us

to write a global error indicator.

Definition 6.6 (discrete local spaces) For z′ ∈ N (TΩ), define the discrete space

W(Cz′) =
{
W ∈ C0(CY ) : W |T ∈ P2(K)⊗ P2(I) ∀T ∈ Cz′ , W |∂Cz′\Ω×{0} = 0

}
.

where, if K is a simplex, P2(K) corresponds to P2(K) and, if K is quadrilateral,

P2(K) stands for Q2(K).

We then define the discrete local problems: For each cylindrical star Cz′ , we

define ηz′ ∈ W(Cz′) to be the solution of

ˆ
Cz′
yα∇ηz′∇W = 〈f, trΩW 〉H−s(Ω)×Hs(Ω) −

ˆ
Cz′
yα∇VTY∇W, (6.17)

for all W ∈ W(Cz′). We also define the global error estimator

ETY =

 ∑
z′∈N (TΩ)

E 2
z′


1
2

, (6.18)

in terms of the local error indicators

Ez′ = 9ηz′9Cz′ . (6.19)
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Let us now prove the equivalence, up to oscillation terms, of the error and the

a posteriori error estimator (6.18). We first prove a local lower bound for the error

without any oscillation term and free of any constant.

Theorem 6.7 (localized lower bound) Let v ∈ ◦
H1
L(yα, CY ) and VTY ∈ V(TY )

solve (3.37) and (3.51) respectively. Then, for any z′ ∈ N (TΩ), we have

Ez′ ≤ ‖∇(v − VTY )‖L2(yα,Cz′ ). (6.20)

Proof: The proof repeats the arguments used to obtain the second inequality in

(6.14). Let z′ ∈ N (TΩ), and let ηz′ and Ez′ as in (6.17) and (6.19). Then,

E 2
z′ = 9ηz′92

Cz′ =

ˆ
Cz′
yα∇ηz′∇ηz′ =

ˆ
Cz′
yα∇eTY∇ηz′ ≤ ‖∇eTY ‖L2(yα,Cz′ ) 9 ηz′9Cz′ ,

which concludes the proof. �

Remark 6.8 (data oscillation free bound) This data oscillation free lower bound

implies a strong concept of reliability: the relative size of Ez′ dictates mesh refine-

ment regardless of fine structure of the data f , and thus works even in the pre-

asymptotic regime.

In order to derive an upper bound, we need to introduce the so called os-

cillation terms and the following operator. Given z′ ∈ N (TΩ), we define Mz′ :

W(Cz′)→W(Cz′) such that for any ψ ∈W(Cz′) the following conditions hold:

ˆ
F

(ψ −Mz′ψ) = 0, (6.21)

where F is either an internal face of Cz′ or a boundary face that lies on Ω× {0},
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ˆ
T

(ψ −Mz′ψ) = 0, (6.22)

for every T ⊂ Cz′ , and ˆ
Sz′×I

(ψ −Mz′ψ) = 0. (6.23)

for every cell I ⊂ IY . In the literature, the operator considered above is known as an

operator defined via moments, and it is a slight modification of the one introduced

and studied in [3, 86]. The properties of this operator are as follows.

Proposition 6.3 (continuity of Mz′) For every z′ ∈ N (TΩ) the operator Mz′ is

well defined and continuous, that is

9Mz′ψ9Sz′
. 9ψ9Dz′ , ∀ψ ∈W(Sz′), (6.24)

where the hidden constant is independent of z′.

Proof: To show that Mz′ is well defined it suffices to consider ψ ≡ 0 and prove

that Mz′ψ ≡ 0 is the unique solution of conditions (6.21)-(6.23) on W(Cz′). Since

such a result relies on standard finite element arguments, we skip the details.

In order to prove the stability estimate (6.24), we shall be inspired in [67, 38],

and derive the boundedness of Mz′ from the fact that it local, bounded in W 1
1 and

an appropiate inverse inequality. In fact, since the definition of the operatorMz′ is

based on the moment conditions (6.21)-(6.23), we have that, for every T ∈ Cz′ ([3,

Lemma 1])

‖∇Mz′ψ‖L1(T ) . ‖∇ψ‖L1(S̃(T )),
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where S̃(T ) = S(T ) ∩ Cz′ . On the other hand, if T ∈ TY and ψ ∈W(Cz′), by using

that Mz′ψ is a discrete function, we have

‖∇Mz′ψ‖L∞(T ) .
 
T

|∇Mz′ψ|.

Therefore, collecting the estimates above, we derive

ˆ
T

yα|∇Mz′ψ|2 .
ˆ
T

yα
( 

T

|∇Mz′ψ|
)2

.
1

|T |2
ˆ
T

yα
(ˆ

S̃(T )

|∇ψ|
)2

.

which, together with Definition 2.2, yields

ˆ
T

yα|∇Mz′ψ| .
1

|T |2
(ˆ

T

yα
)(ˆ

S̃(T )

y−α
) ˆ

tildeS(T )

yα|∇ψ|2 .
ˆ
S̃(T )

yα|∇ψ|2.

Adding over T ∈ Cz′ , using that |T | ≈ S̃(T ) and using the finite intersection property

of stars concludes the proof. �

Finally, for every z′ ∈ N (TΩ), let us define the local data oscillation as

oscz′(f, y
α,W )2 = ‖f − fz′‖2

L2(Sz′ )
+ ‖yα∇W − σz′‖2

L2(Cz′ ,y−α), (6.25)

where fz′ |K ∈ R and σ′z|T ∈ Rn+1, that is, they are piecewise constant over Sz′ and

Cz′ respectively, and defined by

fz′ |K =

 
K

f, σz′ |T =

 
T

yα∇W, (6.26)

for K ∈ Sz′ and T ∈ Cz′ . We also define the global data oscillation as

oscTY (f, yα,W )2 =
∑

z′∈N (TΩ)

oscz(f, y
α,W )2. (6.27)

With the aid of the operatorsMz′ we can bound, up to oscillation terms, the

error by the estimator.
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Theorem 6.9 (global upper bound) Let v ∈ ◦
H1
L(CY , y

α) and VTY ∈ V(TY ) solve

(3.37) and (3.51), respectively. Then, the estimator ETY , defined in (6.18)–(6.19)

satisfies

‖∇(v − VTY )‖L2(yα,CY ) . ETY + oscTY (f, yα, VTY ), (6.28)

where the oscillation terms are defined in (6.25)

Proof: Denote the error by eTY = v − VTY . Given any function φ ∈ ◦
H1
L(yα, CY ) we

define ψz′ = (φ− ΠTY φ)ϕ̃z′ ∈W(Cz′), where ΠTY is quasi-interpolant introduced in

[132, § 5], and we recall the estimate 9ψz′9Cz′ . 9φ9Dz′ . Then, as in the proof of

Proposition 6.2, we have

ˆ
CY

yα∇eTY∇φ =
∑

z′∈N (TΩ)

ˆ
Cz′
yα∇eTY∇ψz′

=
∑

z′∈N (TΩ)

ˆ
Cz′
yα∇eTY∇Mz′ψz′ −

∑
z′∈N (TΩ)

ˆ
Cz′
yα∇eTY∇(ψz′ −Mz′ψz′).

We now examine each term separately:

1. First, for every z′ ∈ N (TΩ) we haveMz′ψz′ ∈ W(Cz′), and then the definition of

the discrete local problem (6.17) yields

∑
z′∈N (TΩ)

ˆ
Cz′
yα∇eTY∇Mz′ψz′ =

∑
z′∈N (TΩ)

ˆ
Cz′
yα∇ηz′∇Mz′ψz′

≤

 ∑
z′∈N (TΩ)

E 2
z′


1
2
 ∑
z′∈N (TΩ)

9ψz′92
Cz′


1
2

. ETY ‖∇φ‖L2(yα,CY ),

where in the last inequality we have used the continuity property of the operator

Ls given in Proposition 6.3, the inequality 9ψz′9Cz′ . 9φ9Dz′ , and the finite

overlapping property of the stars Sz′ .
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2. Second, for any z′ ∈ N (TΩ), we use conditions (6.21)–(6.23) which define the

operator Mz′ , to derive

ˆ
Cz′
yα∇eTY∇(ψz′ −Mz′ψz′) = ds

ˆ
Sz′

(f − fz′) trΩ(ψz′ −Mz′ψz′)

−
ˆ
Cz′

(yα∇VTY − σz′)∇(ψz′ −Mz′ψz′),

and consequently

∑
z′∈N (TΩ)

ˆ
Cz′
yα∇VTY∇(ψz′ −Mz′ψz′) .

∑
z′∈N (TΩ)

(
‖f − fz′‖L2(Sz′ )

9ψz′ −Mz′ψz′9Cz′ +‖yα∇VTY − σz′‖L2(Cz′ ,y−α) 9ψz′ −Mz′ψz′9Cz′

)
. oscTY (f, yα, VTY )‖∇φ‖L2(CY ,yα),

where we applied the trace inequality (7.15), the continuity of the operatorMz′ ,

the bound 9ψz′9Cz′ . 9φ9Dz′ , and the finite overlapping property of the stars

Sz′ .

Collecting the estimates derived in Steps 1 and 2, we derive the desired global upper

bound (6.28). �
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Chapter 7: Space-time fractional parabolic problems

7.1 Introduction

We are interested in the numerical approximation of an initial boundary value prob-

lem for a space-time fractional parabolic equation. To be concrete, let Ω be an open

and bounded subset of Rn (n ≥ 1), with boundary ∂Ω. Given s ∈ (0, 1), γ ∈ (0, 1],

a function f , and an initial datum u0, the problem reads as follows: find u such that

∂γt u + Lsu = f, in Ω, t ∈ (0, T ),

u(0) = u0, in Ω,

u = 0, on ∂Ω, t ∈ (0, T ).

(7.1)

The operator Ls, with s ∈ (0, 1) denotes the fractional powers of a general second or-

der, symmetric and uniformly elliptic operator L, supplemented with homogeneous

Dirichlet boundary conditions, defined by

Lw = −divx′(A∇x′w) + cw, (7.2)

where c ∈ L∞(Ω) with c ≥ 0 almost everywhere, and A ∈ C0,1(Ω,GL(n,R)) is

symmetric and positive definite.

The fractional derivative in time ∂γt for γ ∈ (0, 1) is understood as the left-sided
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Caputo fractional derivative of order γ with respect to t, which is defined by

∂γt u(x, t) =
1

Γ(1− γ)

ˆ t

0

1

(t− r)γ
∂u(x, r)

∂r
dr, (7.3)

where Γ is the Gamma function. For γ = 1, we consider the usual derivative ∂t.

One of the main difficulties in the study of problem (7.1) is given by the

nonlocality of the fractional time derivative and the fractional space operator (see

[43, 44, 138, 140, 155]). A possible approach to overcome the nonlocality in space is

given by the seminal result of Caffarelli and Silvestre in Rn [43] and its extensions

to bounded domains [42, 44, 155]. Fractional powers of the spatial operator L can

be realized as an operator that maps a Dirichlet boundary condition to a Neumann

condition via an extension problem on the semi-infinite cylinder C = Ω × (0,∞).

This extension is the following mixed boundary value problem (see [43, 155] for

details): 
LU − α

y
∂yU − ∂yyU = 0, in C,

U = 0, on ∂LC,
∂U

∂να
= dsf, on Ω× {0},

(7.4)

where ∂LC = ∂Ω× [0,∞) is the lateral boundary of C, and ds is a positive normal-

ization constant that depends only on s. The parameter α is defined as

α = 1− 2s ∈ (−1, 1), (7.5)

and the so-called conormal exterior derivative of U at Ω× {0} is

∂U

∂να
= − lim

y→0+
yαUy. (7.6)

We will call y the extended variable and the dimension n + 1 in Rn+1
+ the

extended dimension of problem (7.4). The limit in (7.6) must be understood in
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the distributional sense; see [43, 155]. As noted in [42, 43, 44, 155], we can re-

late the fractional powers of the operator L with the Dirichlet-to-Neumann map

of problem (7.4): dsLsu = ∂U
∂να

in Ω. Notice that the differential operator in (7.4)

is −div (yαA∇U ) + yαcU where, for all (x′, y) ∈ C, A(x′, y) = diag{A(x′), 1} ∈

C0,1(C,GL(n+ 1,R)).

Recently, the Caffarelli-Silvestre extension has been also employed for the

study of evolution equations with space fractional diffusion. For instance, by using

this technique, interior and Hölder estimates for the fractional heat equation and

a drift equation with fractional diffusion have been proved in [148]. In [61, 62],

existence, uniqueness and regularity results have been derived for a porous medium

equation with fractional diffusion. Inspired in these techniques, we shall use the

Caffarelli-Silvestre extension to rewrite problem (7.1) as a quasi-stationary elliptic

problem with dynamic boundary condition:

−div (yαA∇U) + yαcU = 0, in C, t ∈ (0, T ),

U = 0, on ∂LC, t ∈ (0, T ),

ds∂
γ
t U +

∂U
∂να

= dsf, on Ω× {0}, t ∈ (0, T ),

U = u0, on Ω× {0}, t = 0.

(7.7)

Before proceeding with the description and analysis of our method, let us

give an overview of those advocated in the literature. The design of an efficient

technique to treat numerically the left-sided Caputo fractional derivative of order γ

is not an easy task. The main difficulty is given by the nonlocality of the operator

∂γt . There are several approaches via finite differences, finite elements and spectral
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methods. For instance, a finite difference scheme is proposed and analyzed in [118,

119]. The truncation error is O(τ 2−γ), where τ denotes the time step. Approaches

via finite elements and spectral approximations have been studied in [64, 65, 76, 118],

and references therein. In this Chapter, we employ the finite difference scheme of

[118, 119], improve on the truncation error, and show discrete stability estimates.

The latter lead to novel energy estimates for evolution problems with fractional

time derivative in a general Hilbert space setting, which are written in terms of a

fractional integral of a norm of the solution.

In Chapter 3 (see also [129]) we used the Caffarelli-Silvestre extension to dis-

cretize the fractional space operator and obtained near-optimal error estimates in

weighted Sobolev spaces for the extension. An alternative approach has been de-

veloped in [29], which is based on the integral formulation of fractional powers

of self-adjoint operators [27, Chapter 10.4]. This yields a sequence of easily par-

allelizable uncoupled elliptic PDEs, and leads to quasi-optimal error estimates in

the L2-norm instead of the energy norm provided Ω is convex and f ∈ H2−2s(Ω).

However, the extension of [29] to the evolution case with fractional diffusion is not

completely evident, even for the heat equation with fractional diffusion, i.e., γ = 1

in (7.1). In this Chapter, we will adapt the approach developed in Chapter 3 to

the evolution case, and refer to Chapter 1 for an overview of the existing numerical

techniques to solve problems involving fractional diffusion.

We use the extension problem (7.7) to propose a strategy to find the solution

of (7.1): given a function f and an initial datum u0, we solve (7.7), thus obtaining

a function U : (x, t) ∈ C × (0, T ) 7→ U(x, t) ∈ R. Setting u : (x′, t) ∈ Ω × (0, T ) 7→
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u(x′, t) = U(x′, 0, t) ∈ R, we obtain the solution of (7.1). The main objective of this

work is to describe and analyze a fully discrete scheme for problem (7.7). We use

finite differences for time discretization [118, 119], and first degree tensor product

finite elements for space discretization.

The outline of this Chapter is as follows. In section 7.2 we introduce some

terminology used throughout this work. We recall the definition of the fractional

powers of elliptic operators on a bounded domain via spectral theory in §7.2.2, and

in §7.2.3 we introduce the functional framework that is suitable to study problems

(7.1) and (7.7). In §7.2.4, we derive a representation for the solution of problem

(7.4). Regularity results are discussed in §7.2.5. The time discretization of prob-

lem (7.1) is analyzed in section 7.3: the case γ = 1 is discretized by the standard

backward Euler scheme whereas, for γ ∈ (0, 1), we consider the finite difference

approximation of [118, 119]. For both cases we derive stability results and a novel

energy estimate for evolution problems with fractional time derivative in a general

Hilbert space setting. We discuss error estimates for semi-discrete schemes in §7.3.4.

The space discretization of problem (7.7) begins in section 7.4: in §7.4.1, we intro-

duce a truncation of the domain C and study some properties of the solution of

a truncated problem; in §7.4.2 we present the finite element approximation to the

solution of (7.7) in a bounded domain and in §7.4.3 we study a weighted elliptic

projector and its properties. In §7.5, we introduce fully discrete schemes and derive

near optimal error estimates in time and space for all γ ∈ (0, 1].
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7.2 Notation and preliminaries

Let T > 0 be a fixed time, and let φ be a function defined on D × (0, T ), with D

being an open domain in RN , N ≥ 1. As it is standard in time dependent problems,

we consider φ as a function of t with values in a Banach space X

φ : (0, T ) 3 t 7−→ φ(t) ≡ φ(·, t) ∈ X .

For 1 ≤ p ≤ ∞, Lp(0, T ;X ) is the space of X -valued functions whose norm in X is

in Lp(0, T ). This is a Banach space for the norm

‖φ‖Lp(0,T ;X ) =

(ˆ T

0

‖φ(t)‖pX
)1
p

, 1 ≤ p <∞, ‖φ‖L∞(0,T ;X ) = sup
t∈(0,T )

‖φ(t)‖X .

Wwe recall that we adopt the left-sided Caputo fractional derivative, defined

in (7.3), as the fractional derivative ∂γt in problem (7.1). Indeed, there are three

definitions, not completely equivalent, of fractional derivatives: Riemann Liouville

derivative, Caputo derivative and Grünwald-Letnikov derivative. A comprehensive

survey of these three different definitions for fractional derivatives and their prop-

erties, is given in [105, 138, 140].

7.2.1 Fractional integrals

We recall an important element from fractional calculus, which will be fundamental

in our analysis. Given a function g, the left Riemann-Liouville fractional integral

Iσg of order σ > 0 is defined by [105, 138, 140]

(Iσg)(t) =
1

Γ(σ)

ˆ t

0

g(r)

(t− r)1−σ dr. (7.8)
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The following result yields the continuity of a general class of integral operators.

Lemma 7.1 (continuity) If g ∈ L2(0, T ) and φ ∈ L1(0, T ), then the operator

Φ(t) =

ˆ t

0

φ(t− r)g(r) dr

is continuous from L2(0, T ) into itself and ‖Φ‖L2(0,T ) ≤ ‖φ‖L1(0,T )‖g‖L2(0,T ).

Proof: We first express Φ as an integral over R and change variables to obtain

|Φ(t)| ≤
ˆ
R
|φ(z)|χ[0,T ](z)|g(t− z)|χ[0,T ](t− z) dz.

We next write the L2-norm of Φ also as an integral over R and apply Minkowski

inequality to get

‖Φ‖L2(0,T ) ≤
ˆ
R

{ˆ
R
|φ(z)|2χ[0,T ](z)|g(t− z)|2χ[0,T ](t− z) dt

}1
2

dz.

Reordering the integrals and noticing that z, t− z ∈ [0, T ], we arrive at

‖Φ‖L2(0,T ) ≤
ˆ T

0

|φ(z)| dz
{ˆ T

0

|g(t)|2 dt

}1
2

= ‖φ‖L1(0,T )‖g‖L2(0,T ),

which concludes the proof. �

Lemma 7.1 yields immediately the continuity of the fractional operator Iσ.

Corollary 7.2 (continuity of Iσ) The left Riemann-Liouville fractional integral

Iσg is continuous from L2(0, T ) into itself for any σ > 0 and

‖Iσg‖L2(0,T ) ≤
T σ

Γ(σ + 1)
‖g‖L2(0,T ) ∀g ∈ L2(0, T ).
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7.2.2 Fractional powers of general second order elliptic operators

Our definition is based on spectral theory. For any f ∈ L2(Ω), the Lax Milgram

Lemma provides the existence and uniqueness of w ∈ H1
0 (Ω) that solves

Lw = f in Ω, w = 0 on ∂Ω.

The operator L−1 : L2(Ω)→ L2(Ω) is compact, symmetric and positive, whence its

spectrum {λ−1
k }k∈N is discrete, real, positive and accumulates at zero. Moreover,

there exists {ϕk}k∈N ⊂ H1
0 (Ω) which is an orthonormal basis of L2(Ω) and satisfies

Lϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, (7.9)

for all k ∈ N. Fractional powers of the operator L can be defined for w ∈ C∞0 (Ω) by

Lsw :=
∞∑
k=1

λskwkϕk, (7.10)

where wk =
´

Ω
wϕk. By density Ls can be extended to the space

Hs(Ω) =

{
w =

∞∑
k=1

wkϕk :
∞∑
k=1

λskw
2
k <∞

}
=



Hs(Ω), s ∈ (0, 1
2
),

H
1/2
00 (Ω), s = 1

2
,

Hs
0(Ω), s ∈ (1

2
, 1).

(7.11)

The characterization given by the second equality is shown in [120, Chapter 1]. For

s ∈ (0, 1) we denote by H−s(Ω) the dual space of Hs(Ω).

7.2.3 The Caffarelli-Silvestre extension problem

To exploit the Caffarelli-Silvestre result [43], or its variants [42, 44, 155], we need

to deal with a nonuniformly elliptic equation. To this end, we consider weighted
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Sobolev spaces with the weight |y|α, α ∈ (−1, 1). Let D ⊂ Rn+1 be an open set and

α ∈ (−1, 1). We define the weighted spaces L2(D, |y|α) and H1(D, |y|α) according

to Definitions 2.4 and 2.5 respectively. The space H1(D, |y|α) is equipped with the

norm

‖w‖H1(D,|y|α) =
(
‖w‖2

L2(D,|y|α) + ‖∇w‖2
L2(D,|y|α)

)1
2
. (7.12)

Since α ∈ (−1, 1) we have that |y|α belongs to the so-called Muckenhoupt class

A2(Rn+1); see [87, 158]. This, in particular, implies that H1(D, |y|α) equipped with

the norm (7.12) is a Hilbert space. Moreover, the set C∞(D)∩H1(D, |y|α) is dense

in H1(D, |y|α) (cf. [158, Proposition 2.1.2, Corollary 2.1.6] and [87, Theorem 1]).

To study problem (7.7) we define the weighted Sobolev space

◦
H1
L(C, yα) :=

{
w ∈ H1(C, yα) : w = 0 on ∂LC

}
. (7.13)

As Chapter 3 shows, the following weighted Poincaré inequality holds:

ˆ
C
yαw2 .

ˆ
C
yα|∇w|2, ∀w ∈ ◦

H1
L(C, yα). (7.14)

Then, the seminorm on
◦
H1
L(C, yα) is equivalent to the norm (7.12). For w ∈

H1(C, yα), we denote by trΩ w its trace onto Ω × {0}, and we recall that the trace

operator trΩ satisfies (see Chapter 3 and [44, Proposition 2.1])

trΩ

◦
H1
L(C, yα) = Hs(Ω), ‖ trΩw‖Hs(Ω) ≤ CtrΩ

‖w‖ ◦
H1
L(C,yα)

. (7.15)

Let us now describe the Caffarelli-Silvestre result and its extension to second

order operators; [43, 155]. Let u be the solution of Lsu = f in Ω. We define the

α-harmonic extension of u to the cylinder C as the function U , solution of problem
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(7.4), namely

dsLsu =
∂U

∂να
in Ω, where ds = 21−2sΓ(1− s)

Γ(s)
.

To make the above considerations precise, we define

W := {w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Hs(Ω)) : ∂γt w ∈ L2(0, T ;H−s(Ω))},

V := {w ∈ L2(0, T ;
◦
H1
L(C, yα)) : ∂γt trΩ w ∈ L2(0, T ;H−s(Ω))}.

Given f ∈ L2(0, T ;H−s(Ω)), a function u ∈W solves (7.1) if and only if the harmonic

extension U ∈ V solves (7.7). A possible weak formulation of problem (7.7) reads:

seek U ∈ V such that for a.e. t ∈ (0, T ),
〈trΩ ∂

γ
t U , trΩ φ〉H−s(Ω)×Hs(Ω) + a(U , φ) = 〈f, trΩ φ〉H−s(Ω)×Hs(Ω)

trΩ U(0) = u0,

(7.16)

for all φ ∈ ◦
H1
L(C, yα), where

a(w, φ) =
1

ds

ˆ
C
yαA(x)∇w · ∇φ+ yαc(x′)wφ (7.17)

and 〈·, ·〉H−s(Ω)×Hs(Ω) denotes the duality pairing between Hs(Ω) and H−s(Ω), which,

as a consequence of (7.15), is well defined for f ∈ L2(0, T ;H−s(Ω)) and φ ∈
◦
H1
L(C, yα).

Remark 7.3 (equivalent seminorm) Notice that the regularity assumed of the

coefficients A and c, together with the weighted Poincaré inequality (7.14), imply

that the bilinear form a, defined in (7.17), is bounded and coercive in
◦
H1
L(C, yα). In

what follows we shall use repeatedly the fact that a(w,w)1/2 is a norm, equivalent

to the seminorm in
◦
H1
L(C, yα).
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Remark 7.4 (dynamic boundary condition) Problem (7.16) corresponds to a

weak formulation of an elliptic problem with the dynamic boundary condition

〈f − trΩ ∂
γ
t U , trΩ φ〉H−s(Ω)×Hs(Ω),

posed on the bottom part of the cylinder boundary. As a consequence, the analysis of

problem (7.16) is slightly different from the standard theory for parabolic equations.

Remark 7.5 (initial datum) The initial datum u0 of problem (7.1) defines only

U(0) on Ω×{0} in a trace sense. However, in the subsequent analysis it is necessary

to consider its extension to the whole cylinder C. Thus, we define U(0) to be the

solution of problem (7.4) with the Neumann condition replaced by the Dirichlet

condition U = u0, and then we have the estimate [44]

‖U(0)‖ ◦
H1
L(C,yα)

. ‖u0‖Hs(Ω).

7.2.4 Solution representation

Here we give a representation of the solution of problem (7.7) using the eigen-

pairs {λk, ϕk} defined in (7.9). Let the solution to (7.1) be given by u(x′, t) =∑
k uk(t)ϕk(x

′). The solution U of problem (7.7) can then be written as

U(x, t) =
∞∑
k=1

uk(t)ϕk(x
′)ψk(y), (7.18)

where ψk solves

ψ′′k +
α

y
ψ′k − λkψk = 0, ψk(0) = 1, lim

y→∞
ψk(y) = 0. (7.19)
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If s = 1
2
, then clearly ψk(y) = e−

√
λky. For s ∈ (0, 1) \ {1

2
} we have that if cs = 21−s

Γ(s)
,

then [44, Proposition 2.1]

ψk(y) = cs

(√
λky
)s
Ks(
√
λky),

where Ks is the modified Bessel function of the second kind [1, Chapter 9.6].

To write an equation for uk(t), we first recall some formulas from Chapter 3.

For s ∈ (0, 1), we have

lim
y↓0+

yαψ′k(y)

dsλsk
= −1, (7.20)

and ˆ b

a

yα
(
λkψk(y)2 + ψ′k(y)2

)
dy = yαψk(y)ψ′k(y)|ba , (7.21)

where a, b ∈ R+. Then, using the dynamic boundary condition on problem (7.7),

and the asymptotic formula (7.20) together with the definitions (7.6) and (7.18), we

have

dsf(x) =
∂U
∂να

(x′, 0) + ds trΩ ∂
γ
t U(x, 0) = − lim

y↓0
yαUy(x′, y) + ds trΩ ∂

γ
t U(x, 0)

= ds

∞∑
k=1

ϕk(x
′)
(
λskuk(t) + ∂γt uk(t)

)
.

The equation above, together with the initial condition u(x′, 0) = u0(x′) gives us the

following fractional initial value problem for uk(t):

∂γt uk(t) + λskuk(t) = fk(t), uk(0) = u0,k, (7.22)

with u0,k = (u0, ϕk)L2(Ω), and fk = (f, ϕk)L2(Ω). According to the existence theory

for fractional ordinary differential equations [138, 140], there exists a unique function

uk(t) satisfying problem (7.22).
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Notice that, using (7.18) and (7.19), we obtain

U(x, t)|y=0 =
∞∑
k=1

uk(t)ϕk(x
′)ψk(0) =

∞∑
k=1

uk(t)ϕk(x
′) = u(x′, t).

Moreover, by using Remark 7.3, together with formulas (7.20) and (7.21), we have

that for almost every t ∈ (0, T )

‖∇U(t)‖2
L2(C,yα) .

∞∑
k=1

uk(t)
2

ˆ ∞
0

yα
(
λkψk(y)2 + ψ′k(y)2

)
= ds‖u(t)‖2

Hs(Ω). (7.23)

We now turn our attention to the solution of problem (7.22).

7.2.4.1 Case γ = 1: The exponential function

If γ = 1, then problem (7.22) reduces to a standard first order initial value problem.

We introduce the operator

E(t)w =
∞∑
k=1

e−λ
s
ktwkϕk,

where wk =
´

Ω
wϕk. This is the solution operator of (7.1) with f ≡ 0. For the

nonhomogeneous equation, Duhamel’s principle gives the solution u of problem (7.1):

u(x′, t) = E(t)u0 +

ˆ t

0

E(t− r)f(x′, r) dr.

7.2.4.2 Case γ ∈ (0, 1): The Mittag-Leffler function

In order to explore (7.22), we introduce some preliminary elements from fractional

calculus such as the Mittag-Leffler function and recall some of its main properties;

see [105, 138, 140]. For γ > 0 and µ ∈ R, we define the Mittag Leffler function

Eγ,µ(z) as

Eγ,µ(z) :=
∞∑
k=0

zk

Γ(γk + µ)
, z ∈ C.
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It can be shown that Eγ,µ(z) is an entire function of z ∈ C. The two most important

members of this family are Eγ,1(z), and Eγ,γ(z), which are essential to write the

solution operator of problem (7.1). There are several important properties of the

Mittag-Leffler function. We recall the differentiation formula

∂γt Eγ,1(−λtγ) = −λEγ,1(−λtγ), (7.24)

which holds true for λ > 0, γ > 0, and t > 0 [105, Lemma 2.23].

Following [139], we construct a representation of the solution to problem (7.1).

We introduce the solution operator of (7.1) with a homogeneous right-hand side

f ≡ 0, i.e., Gγ(t)u0 = u, where

Gγ(t)w =
∞∑
k=1

Eγ,1(−λsktγ)wkϕk. (7.25)

This follows from the eigenfunction expansion and property (7.24) of the Mittag-

Leffler function. For the non-homogeneous equation with vanishing initial datum

u0 ≡ 0, we use the operator defined by

Fγ(t)w =
∞∑
k=1

tγ−1Eγ,γ(−λsktγ)wkϕk. (7.26)

These operators are used to represent the solution u(x′, t) of (7.1):

u(x′, t) = Gγ(t)u0 +

ˆ t

0

Fγ(t− r)f(x′, r) dr; (7.27)

see [139, Theorem 2.2] for details. We have thus the following result about existence

and uniqueness of solutions of problems (7.1) and (7.7).

Theorem 7.6 (existence and uniqueness of u and U) Given s ∈ (0, 1), γ ∈

(0, 1], f ∈ L2(0, T ;H−s(Ω)) and u0 ∈ L2(Ω), problems (7.1) and (7.7) have a unique

solution.
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Proof: Existence and uniqueness of problem (7.1) can be obtained modifying the

spectral decomposition approach studied in [139] based on the solution representa-

tion (7.27); see [139, Theorems 2.1 and 2.2]. Similar arguments apply to conclude

the well-posedness of problem (7.7). For brevity, we leave the details to the reader.

We refer to §7.3 for energy estimates (see also [139]). �

7.2.5 Regularity

We have shown that problem (7.1), for every γ ∈ (0, 1] and s ∈ (0, 1), always has a

unique solution. Let us now discuss some results about the regularity of the solution,

both in space and time.

We begin by describing the regularity in space. As a consequence of the

asymptotic behavior Uyy(t) ≈ y−α−1 as y ≈ 0+, we conclude U /∈ H2(C, yα). In fact,

[129, Theorem 2.6] shows, for the elliptic problem (7.4), that

‖LU ‖L2(C,yα) + ‖∂y∇x′U ‖L2(C,yα) . ‖f‖H1−s(Ω), (7.28)

‖Uyy‖L2(C,yβ) . ‖f‖L2(Ω), (7.29)

for β > 2α + 1. Estimate (7.28), however, requires f ∈ H1−s(Ω), which might be

too strong an assumption since it does not allow for meaningful duality arguments.

For this reason, here we present an improvement over (7.28), in which we weaken

the regularity of f , at the expense of strengthening the weight from yα to yβ as in

(7.29), which is already needed to control the term Uyy. Concerning the domain Ω,

in the analysis that follows we will tacitly assume

‖w‖H2(Ω) . ‖Lw‖L2(Ω), ∀w ∈ H2(Ω) ∩H1
0 (Ω).
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Theorem 7.7 (global regularity of the harmonic extension) Let f ∈ L2(Ω)

and U ∈ ◦
H1
L(C, yα) solve (7.4) with f as data. Then, for s ∈ (0, 1) \ {1

2
}, we have

‖U ‖H2(C,yβ) . ‖f‖L2(Ω), (7.30)

with β > 2α + 1. If s = 1
2
, then

‖U ‖H2(C) . ‖f‖L2(Ω).

Proof: The critical case s = 1
2

as well as the estimate for the term Uyy with

s ∈ (0, 1) \ {1
2
} are both studied in [129, Theorem 2.6]. It thus remains to analyze

the terms ‖LU ‖L2(C,yβ) and ‖∂y∇x′U ‖L2(C,yβ) in (7.30). First, using the fact that

{ϕk}k∈N is an orthonormal basis of L2(Ω) satisfying (7.9), we obtain

‖Lx′U ‖2
L2(C,yβ) .

∞∑
k=1

u2
kλ

2
k

ˆ ∞
0

yβ|ψk(y)|2 dy.

By considering the sequence {ak = 1/
√
λk}k≥1, we can write

‖LU ‖2
L2(C,yβ) .

∞∑
k=1

u2
kλ

2
k

(ˆ ak

0

yβ|ψk(y)|2 dy +

ˆ ∞
ak

yβ|ψk(y)|2 dy

)
.

We estimate the two terms on the right hand side separately. Since zsKs(z) ≈ 1 as

z ↓ 0 [1, Chapter 9.6], we get

ˆ ak

0

yβ|ψk(y)|2 dy = c2
sλ
−β/2−1/2
k

ˆ 1

0

zβ+2sKs(z)2 dz ≈ λ
−β/2−1/2
k ,

where the integral converges because β > 2α+1 > −1. On the other hand, exploiting

the exponential decay of Ks(z) as z ↑ ∞, the second term above can be bounded

similarly. This, together with the fact that uk = fkλ
−s
k and 2 − 2s − β

2
− 1

2
=

1
2
(1 + 2α− β) < 0, allows us to deduce

‖LU ‖2
L2(C,yβ) .

∞∑
k=1

f 2
kλ

2−2s−β/2−1/2
k ≤ ‖f‖2

L2(Ω).
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Estimating ∂y∇x′U follows along the same lines. In fact, we have

‖∂y∇x′U ‖2
L2(C,yβ) .

∞∑
k=1

u2
kλk

(ˆ ak

0

yβ|ψ′k(y)|2 dy +

ˆ ∞
ak

yβ|ψ′k(y)|2 dy

)
.

We utilize d
dz

(zsKs(z)) = −zsK1−s(z) [1, Chapter 9.6] to estimate the first integral

on the right hand side as follows

ˆ ak

0

yβ|ψ′k(y)|2 dy = c2
sλ

1/2−β/2
k

ˆ 1

0

zβ+2sK2
1−s(z) dz

. λ
1/2−β/2
k

ˆ 1

0

zβ+4s−2 dz ≈ λ
1/2−β/2
k ,

where the integral converges because β + 4s− 2 = β − 2α > 1. We obtain a similar

estimate for the second integral above that again exploits the exponential decay of

K1−s(z) as z ↑ 0. Replacing the estimates back we derive

‖∂y∇x′U ‖2
L2(C,yβ) .

∞∑
k=1

f 2
kλ

1−2s+1/2−β/2
k ≤ ‖f‖2

L2(Ω),

because 1− 2s+ 1
2
− β

2
= 1

2
(1 + 2α− β) < 0. This concludes the proof. �

Having just discussed the regularity in space, let us briefly elaborate on the

regularity in time. Since our problem is linear, we could simply demand sufficient

regularity (in time) of the right-hand side along with compatibility conditions for

the initial datum u0. However, we express the requisite regularity directly in terms

of U for all γ ∈ (0, 1]:

∂tt trΩ U ∈ L2(0, T ;H−s(Ω)). (7.31)

7.3 Time discretization

LetK ∈ N denote the number of time steps. We define the time step as τ = T/K > 0,

and set tk = kτ for 0 ≤ k ≤ K. If E is a normed space equipped with the norm
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‖ · ‖E, then for any time dependent function φ ∈ C([0, T ], E), we denote φk = φ(tk)

and φτ = {φk}Kk=0. Moreover, we define

‖φτ‖`∞(E) = max
0≤k≤K

‖φk‖E, ‖φτ‖2
`2(E) =

K∑
k=1

τ‖φk‖2
E.

For a sequence of time-discrete functions W τ ⊂ E we define, for k = 0, . . . ,K − 1,

δ1W k+1 =
W k+1 −W k

τ
. (7.32)

7.3.1 Time discretization for γ = 1

We apply the usual backward Euler scheme to problem (7.16) with γ = 1, which

computes V τ = {V k}Kk=0 ⊂
◦
H1
L(C, yα) as follows. The first step is the initialization

trΩ V
0 = u0. (7.33)

Then, for k = 0, . . . ,K − 1, we find V k+1 ∈ ◦
H1
L(C, yα) solution of

(
δ1 trΩ V

k+1, trΩ W
)
L2(Ω)

+ a(V k+1,W ) =
〈
fk+1, trΩ W

〉
H−s(Ω)×Hs(Ω)

, (7.34)

for all W ∈ ◦
H1
L(C, yα), where fk+1 = f(tk+1). By defining

Uk := trΩ V
k, (7.35)

we obtain a sequence U τ = {Uk}Kk=0 ⊂ Hs(Ω), which is a piecewise constant approx-

imation of u, solution to problem (7.1).

Remark 7.8 (initial datum) Step (7.33) does not require an extension of u0.

Remark 7.9 (dynamic boundary condition) Problem (7.16) is an elliptic prob-

lem with a dynamic boundary condition, and so is problem (7.33)–(7.34). As a con-

sequence, the stability and error analyses are slightly different from the standard

theory for, say, the heat equation.
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Remark 7.10 (locality) The main advantage of scheme (7.33)–(7.34) is its local

nature, thereby mimicking that of problem (7.16).

The stability of this scheme is rather elementary as the following result shows.

Lemma 7.11 (unconditional stability for γ = 1) The semi-discrete scheme (7.33)–

(7.34) is unconditionally stable, namely

‖ trΩ V
τ‖2

`∞(L2(Ω)) + ‖V τ‖2

`2(
◦
H1
L(C,yα))

. ‖u0‖2
L2(Ω) + ‖f τ‖2

`2(H−s(Ω)). (7.36)

Proof: Choose W = 2τV k+1 in (7.34) and use the identity 2a(a − b) = a2 − b2 +

(a− b)2. The trace estimate (7.15) and Young’s inequality yield

‖ trΩ V
k+1‖2

L2(Ω) + τ‖V k+1‖2
◦
H1
L(C,yα)

.‖ trΩ V
k‖2

L2(Ω) + τ‖fk+1‖2
H−s(Ω).

Adding this inequality over k yields (7.36). �

7.3.2 Time discretization for γ ∈ (0, 1)

We now discretize in time the nonlocal operator given by the fractional derivative ∂γt

of order γ ∈ (0, 1). We consider the finite difference scheme proposed in [118, 119].

By using the definition of the left-sided Caputo fractional derivative of order γ given

in (7.3) and the Taylor formula with integral remainder we have, for 0 ≤ k ≤ K− 1,

∂γt u(·, tk+1) =
1

Γ(1− γ)

ˆ tk+1

0

∂tu(·, t)
(tk+1 − t)γ dt

=
1

Γ(1− γ)

k∑
j=0

u(·, tj+1)− u(·, tj)
τ

ˆ tj+1

tj

dt

(tk+1 − t)γ + rk+1
γ (·)

=
1

Γ(2− γ)

k∑
j=0

aj
u(·, tk+1−j)− u(·, tk−j)

τ γ
+ rk+1

γ (·),

(7.37)
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where

aj = (j + 1)1−γ − j1−γ, (7.38)

and

rk+1
γ =

1

Γ(1− γ)

k∑
j=0

ˆ tj+1

tj

1

(tk+1 − t)γR(·, t) dt,

denotes the remainder, with the function R defined by

R(·, t) = ∂tu(·, t)− 1

τ

(
u(·, tj+1)− u(·, tj)

)
∀t ∈ (tj, tj+1). (7.39)

Notice that from definition (7.38), we deduce that aj > 0 for all j ≥ 0 and

1 = a0 > a1 > a2 > · · · > aj, lim
j→∞

aj = 0.

7.3.2.1 Consistency estimate

We now estimate the residual rτγ by exploiting some cancellation property. We first

observe that the function R defined in (7.39) has vanishing mean in (tj, tj+1) for all

j ∈ {0, . . . ,K − 1}, whence we can write

rk+1
γ =

1

Γ(1− γ)

k∑
i=0

ˆ tj+1

tj
(ψ(t)− ψ̄j)R(·, t) dt, (7.40)

where ψ(t) = 1
(tk+1−t)γ and ψ̄j =

ffl tj+1

tj
ψ(t) dt is its mean. The following result gives

an estimate for ‖Rτ‖`2(H−s(Ω)).

Lemma 7.12 (estimate for Rτ) The term R defined by (7.39) satisfies

‖Rτ‖`2(H−s(Ω)) ≤ τ‖∂ttu‖L2(0,T ;H−s(Ω).
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Proof: For t ∈ (tj, tj+1), from the definition of R in (7.39), we have

‖R(·, t)‖H−s(Ω) ≤
1

τ

ˆ tj+1

tj
‖∂tu(·, t)− ∂tu(·, r)‖H−s(Ω) dr ≤

ˆ tj+1

tj
‖∂ttu(·, z)‖H−s(Ω) dz,

whence

‖R(·, t)‖2
H−s(Ω) ≤ τ

ˆ tj+1

tj
‖∂ttu(·, z)‖2

H−s(Ω) dz.

Finally,

‖Rτ‖`2(H−s(Ω)) ≤
(
K∑
j=1

τ 2

ˆ tj

tj−1

‖∂ttu(·, z)‖2
H−s(Ω)

)1
2

≤ τ‖∂ttu‖L2(0,T ;H−s(Ω),

which concludes the proof. �

Now, we compute the L1-norm of ψ− ψ̄τ . We start with the interval (tj, tj+1):

ˆ tj+1

tj
|ψ(t)− ψ̄j| dt =

1

τ

ˆ tj+1

tj

∣∣∣∣∣
ˆ tj+1

tj
(ψ(t)− ψ(r)) dr

∣∣∣∣∣ dt ≤ τ

ˆ tj+1

tj
|ψ′(t)| dt

= τγ

ˆ tj+1

tj

1

(tk+1 − t)γ+1
dt = τ 1−γ

[
1

(k − j)γ −
1

(k − j + 1)γ

]
,

which is valid for all 0 ≤ j < k. For j = k, we take ψ̄k = 0 and simply compute

ˆ tk+1

tk
ψ(t) dt =

ˆ tk+1

tk

1

(tk+1 − t)γ dt =
τ 1−γ

1− γ .

Consequently,

‖ψ − ψ̄τ‖L1(0,T ) =
k∑
j=0

ˆ tj+1

tj
|ψ(t)− ψ̄j| dt

≤ τ 1−γ

(
1

1− γ +
k−1∑
j=0

[
1

(k − j)γ −
1

(k − j + 1)γ

])

= τ 1−γ
(

1

1− γ + 1− 1

(k + 1)γ

)
≤ 2− γ

1− γ τ
1−γ.

We thus have the following result.
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Lemma 7.13 (kernel estimate) The kernel ψ satisfies

‖ψ − ψ̄τ‖L1(0,T ) ≤
2− γ
1− γ τ

1−γ.

We now derive an estimate for rτγ , which is an improvement over [118, (3.4)].

Proposition 7.1 (consistency) The fractional residual rτγ = {rkj }K−1
k=0 satisfies

‖rτγ‖`2(H−s(Ω)) . τ 2−γ‖∂ttu‖L2(0,T ;H−s(Ω)). (7.41)

Proof: Setting g(t) = R(·, t) and φ(t) = ψ(t)− ψ̄τ , we apply Lemma 7.1 to rτγ :

‖rτγ‖`2(H−s(Ω)) ≤ ‖ψ − ψ̄‖L1(0,T )‖Rτ‖`2(H−s(Ω)),

which, together with Lemmas 7.12 and 7.13 concludes the proof. �

7.3.2.2 Stability and energy estimates

To fix the ideas concerning the application of the discretization (7.37), we present

an abstract approach within a general Hilbert space setting. Given a Gelfand triple

V ⊂ H ≡ H′ ⊂ V ′, with V dense in H, let A : V → V ′ be a linear, continuous and

coercive operator. If (·, ·)H is the inner product in H, set

‖U‖H = (U,U)
1/2
H , ‖U‖V = 〈AU,U〉1/2

where 〈·, ·〉 denotes the duality pairing between V and V ′. Given f ∈ L2(0, T ;V ′) and

u0 ∈ H, we study a time discretization scheme for the fractional evolution problem

∂γt u +Au = f, u(0) = u0. (7.42)
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For φτ = {φk}Kk=0 ⊂ V , we define the discrete fractional operator

δγφk+1 :=
1

Γ(2− γ)

k∑
j=0

aj
φk+1−j − φk−j

τ γ
, k = 0, . . .K − 1, (7.43)

for γ ∈ (0, 1), which, using that a0 = 1, is equivalent to

δγφk+1 :=
1

Γ(2− γ)τ γ

(
φk+1 −

k−1∑
j=0

(aj − aj+1)φk−j − akφ0

)
,

for 0 ≤ k ≤ K − 1 provided the sum for k = 0 is defined to be zero. The relations

(7.37) motivate the following semi-discrete scheme to solve (7.42). Let U0 = u0 and,

for k = 0, . . . ,K − 1, compute Uk+1 ∈ V as the solution of

(δγUk+1,W )H + 〈AUk+1,W 〉 = 〈fk+1,W 〉, ∀W ∈ V . (7.44)

We have the following stability result.

Theorem 7.14 (unconditional stability for γ ∈ (0, 1)) The semi-discrete scheme

(7.44) is unconditionally stable and satisfies

I1−γ‖U τ‖2
H + ‖U τ‖2

`2(V) ≤ I1−γ‖U0‖2
H + ‖f τ‖2

`2(V ′). (7.45)

Proof: Denote κ = Γ(2− γ)τ γ and set W = 2κUk+1 in (7.44). We obtain

2‖Uk+1‖2
H + 2κ‖Uk+1‖2

V

= 2
k−1∑
j=0

(aj − aj+1)(Uk−j, Uk+1)H + 2ak(U
0, Uk+1)H + 2κ〈fk+1, Uk+1〉,

for 0 ≤ k ≤ K− 1 provided the sum vanishes for k = 0. Using the Cauchy-Schwarz

inequality, the fact that aj − aj+1 > 0, and the telescopic property of the sum
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∑k−1
j=0(aj − aj+1) = 1− ak, we obtain for 0 ≤ k ≤ K − 1

(2− (1− ak)− ak) ‖Uk+1‖2
H + κ‖Uk+1‖2

V

≤
k−1∑
j=0

(aj − aj+1)‖Uk−j‖2
H + ak‖U0‖2

H + κ‖fk+1‖2
V ′ .

A simple manipulation of the left-hand side of the inequality above yields

k∑
j=0

aj‖Uk+1−j‖2
H + κ‖Uk+1‖2

V ≤
k−1∑
j=0

aj‖Uk−j‖2
H + ak‖U0‖2

H + κ‖fk+1‖2
V ′ ,

where the sum on the right-hand side vanishes for k = 0. Adding the inequality

above over k, for 0 ≤ k ≤ K − 1, we get

K−1∑
j=0

aj‖UK−j‖2
H + κ

K∑
k=1

‖Uk‖2
V ≤

(
K−1∑
k=0

ak

)
‖U0‖2

H + κ
K∑
k=1

‖fk‖2
V ′ .

Multiplying this inequality by τ 1−γ/Γ(2− γ), we obtain

τ 1−γ

Γ(2− γ)

K−1∑
j=0

aj‖UK−j‖2
H + ‖U τ‖2

`2(V) ≤
T 1−γ

Γ(2− γ)
‖U0‖2

H + ‖f τ‖2
`2(V ′). (7.46)

Now, changing the summation index and using the definition (7.38), we obtain

K−1∑
j=0

aj‖UK−j‖2
H =

1

τ 1−γ

K∑
l=1

(
(T − tl−1)1−γ − (T − tl)1−γ) ‖U l‖2

H

=
1− γ
τ 1−γ

K∑
l=1

ˆ tl

tl−1

‖U τ (r)‖2
H

(T − r)γ dr,

whence,

τ 1−γ

Γ(2− γ)

K−1∑
j=0

aj‖UK−j‖2
H = I1−γ‖U τ‖2

H,

which together with (7.46) yields the desired estimate (7.45). �

Deducing an energy estimate for problem (7.42) is nontrivial due to the nonlo-

cality of the fractional time derivative. The main technical difficulty lies on the fact
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that a key ingredient in deriving such a result is an integration by parts formula,

which for a function u not vanishing at t = 0 and t = T involves boundary terms and

these need to be estimated; for a step in this direction see [77, 117]. In this sense,

the discrete energy estimate (7.45) has an important consequence at the continuous

level.

Corollary 7.15 (fractional energy estimate for u) Let γ ∈ (0, 1) and u be the

solution of problem (7.42). Then, the following estimate holds

I1−γ‖u‖2
H + ‖u‖2

L2(0,T ;V) ≤ I1−γ‖u0‖2
H + ‖f‖2

L2(0,T ;V ′). (7.47)

Proof: Given that the estimate (7.45) is uniform in τ and ‖rk+1
γ ‖V ′ . τ 2−γ, we

easily derive (7.47) by taking τ ↓ 0. �

Remark 7.16 (limiting case) Given g ∈ Lp(0, T ), we have Iσg → g in Lp(0, T )

as σ ↓ 0; see [140, Theorem 2.6]. This implies that, taking the limit as γ ↑ 1 in

(7.47), we recover the well known stability result for a parabolic equation, i.e.,

‖u‖2
L∞(0,T ;H) + ‖u‖2

L2(0,T ;V) ≤ ‖u0‖2
H + ‖f‖2

L2(0,T ;V ′). (7.48)

Notice that Remark 7.16 in conjunction with Theorem 7.14, allows us to unify

the fractional energy estimate given in Corollary 7.15 to γ ∈ (0, 1].

7.3.3 Discrete stability

We now apply the ideas developed in §7.3.1 and §7.3.2 to problem (7.1), i.e., we

consider A = Ls. As it was discussed in §7.2.3, we realize the nonlocal spatial
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operator Ls with the Caffarelli-Silvestre extension and look for solutions of the

extended problem (7.16). In view of (7.34) and (7.44), we propose the following

semi-discrete numerical scheme to approximate problem (7.16) for γ ∈ (0, 1]:

Set trΩ V
0 = u0. For k = 0, . . . ,K − 1 find V k+1 ∈ ◦

H1
L(C, yα), solution of

(δγ trΩ V
k+1, trΩ W )L2(Ω) + a(V k+1,W ) = 〈fk+1, trΩW 〉H−s(Ω)×Hs(Ω), (7.49)

for all W ∈ ◦
H1
L(C, yα), where a is the bilinear form defined in (7.17), and δγ is

defined by (7.43) for γ ∈ (0, 1), and (7.32) for γ = 1. We have the following stability

result.

Corollary 7.17 (unconditional stability for 0 < γ ≤ 1) The semi-discrete scheme

(7.49) is unconditionally stable and satisfies

I1−γ‖ trΩ V
τ‖Hs(Ω) + ‖V τ‖2

`2(
◦
H1
L(C,yα))

≤ I1−γ‖u0‖Hs(Ω) + ‖f τ‖2
`2(H−s(Ω)). (7.50)

Proof: The desired estimate (7.50) is a direct consequence of Theorem 7.14 for

γ ∈ (0, 1) and Lemma 7.11 for γ = 1. �

7.3.4 Error Estimates

We present the following semi-discrete error estimate.

Theorem 7.18 (error estimates for semi-discrete schemes) Let U solve (7.16)

and V τ solve (7.49). If U satisfies (7.41), then we have for γ ∈ (0, 1]

I1−γ‖ trΩ(U τ − V τ )‖2
L2(Ω) + ‖U τ − V τ‖2

`2(
◦
H1
L(C,yα))

. τ 2(2−γ)‖∂ttU‖2
L2(0,T ;H−s(Ω)),

where the hidden constants depend on T , f and u0 but not on U .
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Proof: In view of (7.16) and (7.49), together with the residual estimate (7.41), the

equation for the error Ek := Uk − V k reads

(δγ trΩE
k+1, trΩW )L2(Ω) + a(Ek+1,W ) = −〈rk+1

γ , trΩ W 〉H−s(Ω)×Hs(Ω).

Apply now either (7.36) or (7.50) in conjunction with (7.41) to conclude the proof.

�

7.4 Space Discretization

7.4.1 Truncation

Given that C is an infinite cylinder, problem (7.7) cannot be directly approximated

with finite element-like techniques. A first step towards the discretization is to

truncate the domain C. Since, for a.e. t ∈ (0, T ), U(t) decays exponentially in the

extended direction y, we truncate the cylinder C to CY = Ω × (0,Y ) for a suitable

Y and seek solutions in this bounded domain; see [129, §3]. The next result is an

adaptation of [129, Proposition 3.1] and shows the exponential decay of U , solution

of problem (7.16). To write such a result, we first define for γ ∈ (0, 1]

Λ2
γ(u0, f) := I1−γ‖u0‖2

L2(Ω) + ‖f‖2
L2(0,T ;H−s(Ω)), (7.51)

where I0 is the identity according to Remark 7.16 (case γ = 1).

Proposition 7.2 (exponential decay) For every γ ∈ (0, 1], s ∈ (0, 1) and Y > 1,

the solution U of (7.16) satisfies

‖∇U‖L2(0,T ;L2(Ω×(Y ,∞),yα)) . e−
√
λ1Y /2Λγ(u0, f). (7.52)
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Proof: Recall from (7.18) that U(x, t) =
∑

k uk(t)ϕk(x
′)ψk(y) solves (7.16). Since

{ϕk}k∈N is an orthonormal basis of L2(Ω) that satisfies (7.9) we have

ˆ T

0

ˆ
C\CY

yα|∇U(x, t)|2 dx dt .
ˆ T

0

∞∑
k=1

uk(t)
2

ˆ ∞
Y

yα
(
λkψk(y)2 + ψ′k(y)2

)
dy dt

=
∞∑
k=1

|Y αψk(Y )ψ′k(Y )|
ˆ T

0

uk(t)
2 dt.

where we have used (7.21). Since |Y αψk(Y )ψ′k(Y )| . λske
−
√
λkY , according to [129,

(2.32)], we deduce

ˆ T

0

ˆ
C\CY

yα|∇U(x, t)|2 dx dt . e−
√
λ1Y ‖u‖2

L2(0,T ;Hs(Ω)).

Finally, by setting V =
◦
H1
L(CY , y

α) and H = L2(Ω), the estimate (7.52) follows from

either (7.47) for γ ∈ (0, 1) or (7.48) for γ = 1. �

As a consequence of Proposition 7.2, we can consider the truncated problem

−div (yαA∇v) + yαcv = 0, in CY , t ∈ (0, T ),

v = 0, on ∂LCY ∪ Ω× {Y }, t ∈ (0, T ),

ds∂
γ
t v +

∂v

∂να
= dsf, on Ω× {0}, t ∈ (0, T ),

trΩ v(0) = u0, on Ω× {0},

(7.53)

with Y sufficiently large. In order to obtain a weak formulation of (7.53), we define

◦
H1
L(yα, CY ) =

{
w ∈ H1(yα, CY ) : w = 0 on ∂LCY ∪ Ω× {Y }

}
,

and

VY := {w ∈ L2(0, T ;
◦
H1
L(CY , y

α)) : ∂γt trΩ w ∈ L2(0, T ;H−s(Ω))}. (7.54)

Problem (7.53) is understood as follows: seek v ∈ VY such that, for a.e. t ∈ (0, T ),

〈∂γt trΩ v, trΩ φ〉H−s(Ω)×Hs(Ω) + aY (v, φ) = 〈f, trΩ φ〉H−s(Ω)×Hs(Ω), (7.55)
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for all φ ∈ ◦
H1
L(CY , y

α) and trΩ v(0) = u0. Here

aY (w, φ) =
1

ds

ˆ
CY

yαA(x)∇w · ∇φ+ yαc(x′)wφ. (7.56)

Remark 7.19 (initial datum) As in Remark 7.5, we define v(0) ∈ ◦
H1
L(CY , y

α) to

be the solution of the truncated problem associated with (7.4) with the Neumann

condition replaced by the Dirichlet condition v = u0. The following estimate holds

[129, Remark 3.4])

‖v(0)‖ ◦
H1
L(CY ,yα)

. ‖u0‖Hs(Ω).

Moreover, if β > 2α + 1, then the proof of Theorem 7.7 yields

‖v(0)‖ ◦
H1
L(CY ,yβ)

. ‖u0‖H2s(Ω).

Lemma 7.20 (exponential convergence) For every γ ∈ (0, 1] and Y ≥ 1, we

have

I1−γ‖ trΩ(U − v)‖2
L2(Ω) + ‖∇(U − v)‖2

L2(0,T ;L2(CY ,yα)) . e−
√
λ1Y Λ2

γ(u0, f). (7.57)

Proof: Let w(x, t) := U(x′, y, t) − U(x′,Y , t) ∈ ◦
H1
L(CY , y

α) be a modification of U

with vanishing trace at y = Y . We observe that w satisfies

〈trΩ ∂
γ
t w, trΩ φ〉H−s(Ω)×Hs(Ω) + aY (w, φ) = 〈f, trΩ φ〉H−s(Ω)×Hs(Ω) −

ˆ
C\CY

yα∇U∇φ

− 〈trΩ ∂
γ
t U(·,Y , ·), trΩ φ〉H−s(Ω)×Hs(Ω) − aY (U(·,Y , ·), φ).

Therefore, the error e := v − w satisfies

〈trΩ ∂
γ
t e, trΩ φ〉H−s(Ω)×Hs(Ω) + aY (e, φ) =

ˆ
C\CY

yα∇U∇φ+ aY (U(·,Y , ·), φ)

+ 〈trΩ ∂
γ
t U(·,Y , ·), trΩ φ〉H−s(Ω)×Hs(Ω).
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Setting V =
◦
H1
L(CY , y

α) and H = L2(Ω), the assertion is a consequence of Corol-

lary 7.15 for γ < 1 and Remark 7.16 for γ = 1, provided we can estimate the

right-hand side of the previous expression and e(·, 0) = U(·,Y , 0). We estimate the

four terms in question separately upon exploiting the expression (7.18), namely

U(x, t) =
∞∑
k=1

uk(t)ϕk(x
′)ψk(y),

and Proposition 7.2. We start by noticing that (7.52) implies∣∣∣∣ˆ
C\CY

yα∇U∇φ
∣∣∣∣ ≤ e−

√
λ1Y /2Λγ(u0, f)‖φ‖ ◦

H1
L(CY ,yα)

.

For the second term, we use |aY (U(·,Y , ·), φ)| . ‖U(·,Y , ·)‖ ◦
H1
L(CY ,yα)

‖φ‖ ◦
H1
L(CY ,yα)

, and

‖∇U(·,Y , ·)‖2
L2(CY ,yα) =

1

α + 1

∞∑
k=1

λku
2
k(t)Y 1+αψ2

k(Y ).

Now, since |ψk(y)| . (
√
λky)se−

√
λky for y ≥ 1, we easily see that

‖∇U(·,Y , ·)‖2
L2(0,T ;L2(CY ,yα)) . Y 2(1−s)

∞∑
k=1

λk

ˆ T

0

u2
k(t) dt(

√
λkY )2se−2

√
λkY

. e−
√
λ1Y

∞∑
k=1

λsk

ˆ T

0

u2
k(t) dt = e−

√
λ1Y ‖u‖2

L2(0,T ;Hs(Ω)).

For the third term, we have ∂γt U(·,Y , t) =
∑∞

k=1 ∂
γ
t uk(t)ϕkψk(Y ), whence

‖∂γt U(·,Y , t)‖H−s(Ω) =
∞∑
k=1

|∂γt uk(t)|2λ−sk |ψk(Y )|2 . e−
√
λ1Y

∞∑
k=1

|∂γt uk(t)|2λ−sk .

On the other hand, in light of (7.22), we deduce

∞∑
k=1

|∂γt uk(t)|2λ−sk .
∞∑
k=1

u2
k(t)λ

s
k + f 2

k (t)λ−sk = ‖u(t)‖2
Hs(Ω) + ‖f(t)‖2

H−s(Ω).

Finally,

‖U(·,Y , 0)‖2
L2(Ω) =

∞∑
k=1

u2
k(0)ψ2

k(Y ) . e−
√
λ1Y ‖u0‖L2(Ω).
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Collecting the previous estimates, we deduce

I1−γ‖ trΩ e‖2
L2(Ω) + ‖∇e‖2

L2(0,T ;L2(CY ,yα)) . e−
√
λ1Y Λ2

γ(u0, f), (7.58)

where we have used the stability bounds (7.47) and (7.48) for u. Moreover, we have

I1−γ‖ trΩ U(·,Y , ·, )‖2
L2(Ω)+ ‖U(·,Y , ·)‖2

L2(0,T ;
◦
H1
L(CY ,yα))

. e−
√
λ1Y Λ2

γ(u0, f),

which together with (7.58) implies the desired estimate (7.57). �

Finally, as in §7.3, we consider a semi-discrete approximation of (7.55). Given

the initialization V 0 = trΩ u0, for k = 0, . . . ,K − 1, let V k+1 ∈ ◦
H1
L(C, yα) solve

(δγ trΩ V k+1, trΩW )L2(Ω) + aY (V k+1,W ) = 〈fk+1,W 〉H−s(Ω)×Hs(Ω), (7.59)

for all W ∈ ◦
H1
L(CY , y

α). The stability of this scheme is a direct consequence of

Lemma 7.11 for γ = 1 and Theorem 7.14 for γ ∈ (0, 1). In addition, one can also

prove a result analogous to Theorem 7.18, but for brevity we skip these details.

7.4.2 Finite element methods

We follow Chapter 3 but summarize here the main ideas and results. To avoid

technical difficulties we assume that the boundary of Ω is polygonal. Let TΩ = {K}

be a partition, or mesh, of Ω into elements K (simplices or n-rectangles) such that

Ω̄ =
⋃

K∈TΩ

K, |Ω| =
∑
K∈TΩ

|K|.

The mesh TΩ is assumed to be conforming or compatible and shape regular (see [56,

Chapter 4.3] and [39, Chapter 4]). The collection of such triangulations is denoted

by TΩ. If TΩ ∈ TΩ we define hTΩ
= maxK∈TΩ

hK .
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We define TY to be a partition of CY into cells of the form T = K × I,

where K ∈ TΩ, and I denotes an interval in the extended dimension. The intervals

I = (yk−1, yk) form a partition of (0,Y ) and, for them, we consider two cases: either

they are uniform, i.e., yk = kY /M , or graded and given by the formula

yk =

(
k

M

)µ
Y , k = 0, . . . ,M, (7.60)

where µ = µ(α) > 3/(1 − α) > 1. Notice that each discretization of the truncated

cylinder CY depends on the truncation parameter Y . The set of all such triangu-

lations is denoted by T. In addition, if we assume that TΩ is shape regular and

the partitions in the extended direction are given by (7.60), the following weak

regularity condition is valid: there is a constant σ such that, for all TY ∈ T, if

T1 = K1 × I1, T2 = K2 × I2 ∈ TY have nonempty intersection, then hI1/hI2 ≤ σ,

where hI = |I|; see [70, 129].

The main motivation to consider elements as in (7.60) is to capture the singular

behavior of the solution U of problem (7.16) as y ≈ 0+. In fact, it is well known that

the numerical approximation of functions with a strong directional-dependent be-

havior needs anisotropic elements in order to recover (quasi)optimal error estimates.

In our setting, anisotropic elements of tensor product structure are essential.

Given TY , we call N the set of its nodes and N in the set of its interior and

Neumann nodes, and denote by N = #N in the number of degrees of freedom of TY .

For each vertex v ∈ N , we write v = (v′, v′′), where v′ corresponds to a node of TΩ,

and v′′ corresponds to a node of the discretization of the extended dimension. We

define hv′ = min{hK : v′ is a vertex of K}, and hv′′ = min{hI : v′′ is a vertex of I}.
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The star or patch around v is the set Sv =
⋃

v∈T T, whereas for T ∈ TY its

patch is the set ST =
⋃

v∈T Sv.

For TY ∈ T, we define the finite element space

V(TY ) =
{
W ∈ C0(CY ) : W |T ∈ P1(K) ∀T ∈ TY , W |ΓD = 0

}
,

where ΓD = ∂LCY ∪ Ω × {Y } is called the Dirichlet boundary; the space P1(K)

corresponds to P1 for a simplicial element K, and to Q1 for a n-rectangle K. We

also define U(TΩ) = trΩ V(TY ), i.e., a P1 finite element space over the mesh TΩ.

The graded meshes described by (7.60) yield near optimal estimates both in

regularity and order for the elliptic case investigated in [129].

7.4.3 Weighted elliptic projector and properties

This subsection is dedicated to the definition of a weighted elliptic projector, which

is fundamental in the error analysis of the fully-discrete schemes introduced be-

low. This projector is the operator PTY :
◦
H1
L(CY , y

α) → V(TY ) such that, for

w ∈ ◦
H1
L(CY , y

α), is given by

aY
(
PTY w,W

)
= aY (w,W ), ∀W ∈ V(TY ). (7.61)

To easily describe the properties of the weighted elliptic projection operator

PTY we introduce the mesh-size functions h′, h′′ ∈ L∞(CY ) given by

h′|T = hK , h′′|T = hI ∀T = K × I ∈ TY .

We have the following result.
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Proposition 7.3 (weighted elliptic projector) If w ∈ ◦
H1
L(CY , y

α), then the weighted

elliptic projector PTY is stable, i.e.,

‖∇PTY w‖L2(CY ,yα) . ‖∇w‖L2(CY ,yα). (7.62)

If, in addition, w ∈ H2(CY , y
α), then PTY has the following approximation property

‖∇(w − PTY w)‖L2(CY ,yα) . ‖h′∂x′∇w‖L2(CY ,yα) + ‖h′′∂y∇w‖L2(CY ,yα). (7.63)

Proof: To show stability set W = PTY w in (7.61), use Cauchy-Schwarz inequality

and the equivalence of aY (w,w) with ‖∇w‖2
L2(CY ,yα) (see Remark 7.3).

Obtaining the estimate (7.63) hinges on Galerkin orthogonality, namely

‖∇(w − PTY w)‖2
L2(CY ,yα) . aY

(
w − PTY w,w − PTY w

)
= aY

(
w − PTY w,w − ΠTY w

)
where ΠTY is the interpolation operator defined in Chapter 3. The result then follows

from the anisotropic interpolation estimates of Theorems 3.17 and 3.18 in Chapter

3. �

In order to apply estimate (7.63) to v, solution of problem (7.55), we need

v ∈ H2(CY , y
α), which is not a valid assumption. However, as it is explained in

Chapter 3, the regularity estimates (7.28) and (7.29), together with the graded

mesh (7.60), allow us to capture the singular behavior of v and, consequently, derive

near-optimal error estimates. Before we write these estimates we briefly comment

on the regularity of v in terms of U .

Remark 7.21 (regularity of v vs U) We recall w ∈ ◦
H1
L(CY , y

α) defined in the

proof Theorem (7.20): w(x, t) = U(x′, y, t)−U(x′,Y , t). Applying now the stability
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of PTY we obtain

‖∇(v − PTY v)‖L2(CY ,yα) ≤ ‖∇(v − w)‖L2(CY ,yα) + ‖∇(w − PTY w)‖L2(CY ,yα)

+ ‖∇(PTY w − PTY v)‖L2(CY ,yα)

. ‖∇(v − w)‖L2(CY ,yα) + ‖∇(w − PTY w)‖L2(CY ,yα)

. e−
√
λ1Y Λγ(u0, f) + ‖∇(w − PTY w)‖L2(CY ,yα),

(7.64)

where we have used the estimate for ‖∇(v − w)‖L2(CY ,yα) in the proof of Theorem

(7.20). Consequently, the estimate above depends on the regularity of U .

Using the graded mesh (7.60), we derive near-optimal approximation results

for the elliptic projector.

Lemma 7.22 (error estimates for the elliptic projector) Let v be the solu-

tion of (7.55), and PTY the weighted elliptic projector defined in (7.61). Then,

given f ∈ L2(Ω), we have the following near optimal estimates

‖∇(v − PTY v)‖L2(CY ,yα) . | logN |sN−1/(n+1)‖U(t)‖H2(C,yβ), (7.65)

and

‖ trΩ(v − PTY v)‖Hs(Ω) . | logN |sN−1/(n+1)‖U(t)‖H2(C,yβ). (7.66)

Proof: The proof of (7.65) is a direct consequence of estimates (7.63) and (7.64),

the regularity estimates (7.30) and Theorem 3.23 in Chapter 3, where the graded

mesh (7.60) on the extended variable y is essential to recover near optimality.

The proof of (7.66) is a consequence of the trace estimate (7.15). �

Using the regularity result of Theorem 7.7 we can obtain L2 approximation

properties for the trace of the elliptic projection via duality.

236



Proposition 7.4 (L2(Ω)-approximation) If w ∈ ◦
H1
L(CY , y

α) ∩ H2(CY , y
β) with

β > 2α + 1, and the mesh TY is quasiuniform, then

‖ trΩ(w − PTY w)‖L2(Ω) . h2+α−β
TY

‖w‖H2(CY ,yβ). (7.67)

If w ∈ ◦
H1
L(CY , y

α) ∩H2(CY , y
β) and the mesh is graded as in (7.60), then

‖ trΩ(w − PTY w)‖L2(Ω) . | logN |2sN−2/(n+1)‖w‖H2(CY ,yβ). (7.68)

Proof: We argue by duality. Let z ∈ ◦
H1
L(CY , y

α) solve the adjoint problem

aY (φ, z) = 〈trΩ(w − PTY w), trΩ φ〉H−s(Ω)×Hs(Ω), ∀φ ∈ ◦
H1
L(CY , y

α). (7.69)

The regularity for z is given in Theorem 7.7: ‖z‖H2(CY ,yβ) . ‖ trΩ(w − PTY w)‖L2(Ω).

Set φ = w − PTY w in (7.69). By definition of the the elliptic projection we

have

‖ trΩ(w − PTY w)‖2
L2(Ω) = aY

(
w − PTY w, z − PTY z

)
. ‖∇(w − PTY w)‖L2(CY ,yα)‖∇(z − PTY z)‖L2(CY ,yα).

It remains to estimate the two terms in the right hand side of this inequality.

The approximation result (7.63), together with an improvement over [129, Theorem

5.1] based on Theorem 7.7, allows us to obtain

‖∇(w − PTY w)‖L2(CY ,yα) . h%TY
‖w‖H2(CY ,yβ), (7.70)

where % = (2 +α− β)/2. The regularity estimates for z, together with (7.63), yield

‖∇(z − PTY z)‖L2(CY ,yα) . h%TY
‖z‖H2(CY ,yβ) . h%TY

‖ trΩ(w − PTY w)‖L2(Ω). (7.71)
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This implies (7.67) for TY quasiuniform. If TY is graded according to (7.60), then we

can prove the following improvement over [129, Theorem 5.4] based on Theorem 7.7:

‖∇(w − PTY w)‖L2(CY ,yα) . | logN |sN−1/(n+1)‖w‖H2(CY ,yβ).

Using this estimate in conjunction with the previous argument yields (7.68). �

Remark 7.23 (duality) If the functions w, z satisfy w, z ∈ H2(CY , y
α) and TY is

quasiuniform, then the above analysis gives the usual estimate

‖ trΩ(w − PTY w)‖L2(Ω) . h2
TY
‖w‖H2(CY ,yα).

7.5 A fully discrete scheme for γ ∈ (0, 1]

Let us now describe the fully discrete first order numerical scheme to solve problem

(7.55). The discretization in space is given via truncation and the finite element

method discussed in §7.4; the discretization in time uses the backward Euler method

for γ = 1, and the finite difference scheme proposed in (7.3.2) for γ ∈ (0, 1).

The scheme computes V τ
TY
⊂ V(TY ), an approximation of the solution to

problem (7.55) at each time step. We initialize the scheme by setting

trΩ V
0
TY

= PTΩ
u0, (7.72)

where PTΩ
denotes an appropriate interpolation or projection operator into the

space U(TΩ); we let eTΩ
(u0) = ‖u0 − PTΩ

u0‖L2(Ω). Notice that the initial datum u0

is approximated in the space UTΩ
via the operator PTΩ

, so no extension is needed.

We define a first order fully-discrete scheme to approximate the solution of

(7.55) as follows: given V 0
TY

satisfying (7.72), for k = 0, . . . ,K−1, let V k+1
TY
∈ V(TY )
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solve

(δγ trΩ V
k+1
TY

, trΩ W )L2(Ω) + aY (V k+1
TY

,W ) =
〈
fk+1, trΩ W

〉
H−s(Ω)×Hs(Ω)

, (7.73)

for all W ∈ V(TY ), where the discrete operator δγ is defined in (7.43) for γ ∈ (0, 1)

and by (7.32) for γ = 1. To obtain an approximation of the solution u to problem

(7.1) we define the sequence U τ
TΩ
⊂ V(TΩ) by

U τ
TΩ

= trΩ V
τ
TY
. (7.74)

Remark 7.24 (dynamic condition) Problem (7.72)-(7.73) is a discrete elliptic

problem with a dynamic boundary condition. Consequently, its stability and error

analyses are slightly different than the standard theory for the heat equation.

Remark 7.25 (computational efficiency) The main advantage of scheme (7.73)

is that U τ
TΩ

is obtained as an approximation of the local problem (7.55). The nu-

merical scheme is simple to implement and is such that multilevel methods can be

designed with complexity proportional to N ; see Chapter 5.

We have the following unconditional stability result.

Lemma 7.26 (unconditional stability) The discrete scheme (7.72)-(7.73) is un-

conditionally stable for all γ ∈ (0, 1], i.e.,

I1−γ‖ trΩ V
τ
TY
‖2
L2(Ω) + ‖V τ

TY
‖2

`2(
◦
H1
L(CY ,yα))

. I1−γ‖u0‖2
L2(Ω) + ‖f τ‖2

`2(H−s(Ω)). (7.75)

Proof: Set W = 2τV k+1
TY

for γ = 1 and W = 2Γ(2 − γ)τ γV k+1
TY

for 0 < γ < 1 in

(7.73) and proceed as in Lemma 7.11 and Theorem 7.14, respectively. �
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Let us now obtain an error estimate for the fully discrete scheme (7.73). This

estimate relies on the properties of the elliptic projector studied in §7.4.3. We split

the error into the so-called interpolation and approximation errors [75, 157]:

vτ − V τ
TY

=
(
vτ − PTY v

τ
)

+ (PTY v
τ − V τ

TY
) = ητ + Eτ

TY
.

Property (7.65) of the elliptic projection implies that ητ is controlled near-optimally

in energy

‖∇ητ‖`2(L2(CY ,yα)) . | logN |sN−1/(n+1)‖vτ‖`2(H2(CY ,yβ)), (7.76)

and, by (7.68), we have super-approximation in the L2-norm of the trace

I1−γ‖ trΩ η
τ‖L2(Ω) . | logN |2sN−2/(n+1)I1−γ‖vτ‖H2(CY ,yβ). (7.77)

Therefore, to obtain an error estimate it suffices to bound Eτ
TY

. To do that, given a

function w, let us introduce

Φk(w) =
1

τ

ˆ tk+1

tk
‖∂tw(s)‖H2(CY ,yβ) ds, ∀k = 1, . . . ,K − 1 (7.78)

and denote

C = C(v, u0, f, γ) = I1−γ‖vτ‖2
H2(CY ,yβ) + I1−γ‖u0‖2

H2s(Ω) + ‖Φτ (v)‖2
`2 ,

and

D = D(v, u0, f, γ) = ‖v‖2
`2(H2(CY ,yβ)) + I1−γ‖u0‖2

H2s(Ω) + ‖Φτ (v)‖2
`2 .

With this notation the error estimates for scheme (7.72)-(7.73) read as follows.
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Theorem 7.27 (error estimates) Let γ ∈ (0, 1], v and V τ
TY

solve (7.55) and

(7.72)-(7.73), respectively. If TY is graded according (7.60), then we have

I1−γ‖ trΩ(vτ − V τ
TY

)‖2
L2(Ω) . I1−γe2

TΩ
(u0) + τ 2(2−γ)‖ trΩ ∂ttv‖2

L2(0,T ;H−s(Ω))

+ C| logN |4sN −4
n+1 , (7.79)

and

‖vτ − V τ
TY
‖2

`2(
◦
H1
L(CY ,yα))

. I1−γe2
TΩ

(u0) + τ 2(2−γ)‖ trΩ ∂ttv‖2
L2(0,T ;H−s(Ω))

+ D| logN |2sN −2
n+1 . (7.80)

Proof: Using the continuous problem (7.55), the discrete equation (7.73), and the

definition (7.61) of the weighted elliptic projector PTY , we arrive at the equation

that controls the error,

(δγ trΩE
k+1
TY

, trΩ W )L2(Ω) + aY (Ek+1
TY

,W ) =
〈
trΩ ω

k+1, trΩ W
〉
H−s(Ω)×Hs(Ω)

, (7.81)

for all W ∈ V(TY ), where ωk+1 = δγPTY v(tk+1)− ∂γt v(tk+1). The stability estimate

(7.75) applied to (7.81) yields

I1−γ‖ trΩ E
τ
TY
‖2
L2(Ω)+‖Eτ

TY
‖2

`2(
◦
H1
L(CY ,yα))

. I1−γ‖ trΩE
0
TY
‖2
L2(Ω)+‖ trΩ ω

τ‖2
`2(H−s(Ω)),

for all γ ∈ (0, 1]. Now, (7.68) together with (7.72) implies

‖ trΩE
0
TY
‖L2(Ω) ≤ ‖ trΩ(PTY v(0)− v(0))‖L2(Ω) + ‖ trΩ v(0)− PTΩ

u0‖L2(Ω)

. | logN |2sN−2/(n+1)‖v(0)‖H2(CY ,yβ) + ‖u0 − PTΩ
u0‖L2(Ω).

Remark 7.19 implies ‖v(0)‖H2(CY ,yβ) . ‖u0‖H2s(Ω), whence

I1−γ‖ trΩ E
0
TY
‖2
L2(Ω) . | logN |4sN−4/(n+1)I1−γ‖u0‖2

H2s(Ω) + I1−γe2
TΩ

(u0).

241



To control the term involving ωτ we decompose it as

ωk+1 =
(
∂γt v(tk+1)− δγv(tk+1)

)
+ δγ

(
v(tk+1)− PTY v(tk+1)

)
:= ωk+1

1 + ωk+1
2 .

The first term is controlled by using Proposition 7.1

‖ trΩ ω
τ
1‖`2(H−s(Ω)) . τ 2−γ‖ trΩ ∂ttv‖L2(0,T ;H−s(Ω)).

To deal with ωk+1
2 we utilize (7.43) to write

ωk+1
2 =

1

Γ(2− γ)

k∑
j=0

aj
τ γ

ˆ tk+1−j

tk−j
(I − PTY )∂tv(s) ds,

and estimate this as follows

‖ trΩ ω
k+1
2 ‖H−s(Ω) .

τ−γ

Γ(2− γ)
| logN |2sN −2

n+1

k∑
j=0

aj

ˆ tk+1−j

tk−j
‖∂tv(s)‖H2(CY ,yβ) ds

because of (7.68) in Proposition 7.4. In view of definition (7.78) of Φ and (7.8) of

the fractional integral, as well as the fact that all terms in the sum are positive, we

get

‖ trΩ ω
k+1
2 ‖H−s(Ω) .

τ 1−γ

Γ(2− γ)
| logN |2sN −2

n+1

k∑
j=0

ajΦ
k−j(v)

= | logN |2sN −2
n+1 (I1−γΦτ (v))(tk).

Using the continuity of I1−γ from L2(0, T ) into itself (Corollary 7.2), we deduce

‖ trΩ ω
τ
2‖`2(H−s(Ω)) . | logN |2sN −2

n+1‖Φτ (v)‖`2 .

Collecting all the previous estimates together with (7.76) and (7.77), allows us to

obtain the desired results. �
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Remark 7.28 (smooth initial data) If u0 ∈ H2(Ω), then we can take PTΩ
in

(7.72) to be the quasi-interpolation operator introduced in [129, 132], which yields

the error estimate e2
TΩ

(u0) . N−2/(n+1)‖u0‖H2(Ω). In this case, the estimates (7.79)

and (7.80) read

I1−γ‖ trΩ(vτ − V τ
TY

)‖2
L2(Ω) . τ 2(2−γ)‖∂ttv‖2

L2(0,T ;H−s(Ω)) + C| logN |4sN −4
n+1 ,

and

‖vτ − V τ
TY
‖2

`2(
◦
H1
L(CY ,yα))

. τ 2(2−γ)‖∂ttv‖2
L2(0,T ;H−s(Ω)) + D| logN |2sN −2

n+1 .

where the term I1−γ‖u0‖H2s(Ω) in C and D is replaced by I1−γ‖u0‖H2(Ω).

Remark 7.29 (limiting case γ = 1) In the framework of Remark 7.28, if γ = 1,

we recover the standard error estimates for the heat equation (see [75, 157])

‖ trΩ(vτ − V τ
TY

)‖2
`∞(L2(Ω)) . τ 2‖∂ttv‖2

L2(0,T ;H−s(Ω)) + C| logN |4sN −4
n+1 ,

and

‖vτ − V τ
TY
‖2

`2(
◦
H1
L(CY ,yα))

. τ 2‖∂ttv‖2
L2(0,T ;H−s(Ω)) + D| logN |2sN −2

n+1 ,

where C = D = ‖vτ‖2
`2(H2(CY ,yβ))

+ ‖u0‖2
H2(Ω) + ‖∂tvτ‖2

`2(H2(CY ,yβ))
.

Remark 7.30 (Estimate for u) In the framework of Remark 7.28 and in view of

the estimates (7.79) and (7.80), we deduce the following error estimates for u

I1−γ‖uτ − U τ‖2
L2(Ω) . τ 2(2−γ)‖∂ttv‖2

L2(0,T ;H−s(Ω)) + C| logN |4sN −4
n+1 ,

and

‖uτ − U τ‖2
`2(Hs(Ω)) . τ 2(2−γ)‖∂ttv‖2

L2(0,T ;H−s(Ω)) + D| logN |2sN −2
n+1 .
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[136] C. Pérez. Two weighted norm inequalities for Riesz potentials and uniform
Lp-weighted Sobolev inequalities. Indiana Univ. Math. J., 39(1):31–44, 1990.

[137] M. Picasso. An anisotropic error indicator based on Zienkiewicz-Zhu error esti-
mator: application to elliptic and parabolic problems. SIAM J. Sci. Comput.,
24(4):1328–1355 (electronic), 2003.

[138] I. Podlubny. Fractional differential equations, volume 198 of Mathematics in
Science and Engineering. Academic Press Inc., San Diego, CA, 1999.

[139] K. Sakamoto and M. Yamamoto. Initial value/boundary value problems for
fractional diffusion-wave equations and applications to some inverse problems.
J. Math. Anal. Appl., 382(1):426–447, 2011.

253



[140] S.G. Samko, A.A. Kilbas, and O.I. Marichev. Fractional integrals and deriva-
tives. Gordon and Breach Science Publishers, Yverdon, 1993.
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