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1. Introduction. Supported by the claim that they seem to better describe14

many processes; nonlocal models have recently become of great interest in the applied15

sciences and engineering. This is specially the case when long range (i.e., nonlocal)16

interactions are to be taken into consideration; we refer the reader to [2] for a far17

from exhaustive list of examples where such phenomena take place. However, the18

actual range and scaling laws of these interactions — which determines the order of19

the model— cannot always be directly determined from physical considerations. This20

is in stark contrast with models governed by partial differential equations (PDEs),21

which usually arise from a conservation law. This justifies the need to, on the basis22

of physical observations, identify the order of a fractional model.23

In [12], for the first time, this problem was addressed. The authors studied the24

optimization with respect to the order of the spatial operator in a nonlocal evolution25

equation; existence of solutions as well as first and second order optimality conditions26

were addressed. The present work is a natural extension of these results under the27

stationary regime: we address the local uniqueness of minimizers and propose a nu-28

merical algorithm to approximate them. In addition, we study the convergence rates29

of our method.30

To make matters precise, let Ω be an open and bounded domain in Rn (n ≥ 1)31

with Lipschitz boundary ∂Ω. Given a desired state ud : Ω→ R (the observations), we32

define the cost functional33

(1) J(s, u) =
1

2
‖u− ud‖2L2(Ω) + ϕ(s),34

where, for some a and b satisfying that 0 ≤ a < b ≤ 1, s ∈ (a, b) and, ϕ ∈ C2(a, b)35
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2 H. ANTIL, E. OTÁROLA, A.J. SALGADO

denotes a nonnegative convex function that satisfies36

(2) lim
s↓a

ϕ(s) = +∞ = lim
s↑b

ϕ(s).37

Examples of functions with these properties are38

ϕ(s) =
1

(s− a)(b− s)
, ϕ(s) =

e
1

(b−s)

s− a
.39

We shall thus be interested in the following identification problem: Find (s̄, ū)40

such that41

(3) J(s̄, ū) = minJ(s, u)42

subject to the fractional state equation43

(4) (−∆)su = f in Ω,44

where (−∆)s denotes a fractional power of the Dirichlet Laplace operator −∆. We45

immediately remark that, with no modification, our approach can be extended to46

problems where the state equation is Lsu = f, where Lw = −div(A∇w), supplemented47

with homogeneous Dirichlet boundary conditions, as long as the diffusion coefficient48

A is fixed, bounded and symmetric. In principle, one could also consider optimization49

with respect to order s and the diffusion A, as this could accommodate for anisotropies50

in the diffusion process. We refer the reader to [8], and the references therein, for the51

case when s = 1 is fixed and the optimization is carried out with respect to A.52

We now comment on the choice of a and b. The practical situation can be en-53

visioned as the following: from measurements or physical considerations we have an54

expected range for the order of the operator, and we want to optimize within that55

range to best fit the observations. From the existence and optimality conditions point56

of view, there is no limitation on their values, as long as 0 ≤ a < b ≤ 1. However,57

when we discuss the convergence of numerical algorithms, many of the estimates and58

arguments that we shall make blow up as s ↓ 0 or s ↑ 1 so we shall assume that59

a > 0 and b < 1. How to treat numerically the full range of s is currently under60

investigation.61

Our presentation is organized as follows. The notation and functional setting is62

introduced in section 2, where we also briefly describe, in section 2.1, the definition of63

the fractional Laplacian. In section 3, we study the fractional identification problem64

(3)–(4). We analyze the differentiability properties of the associated control to state65

map (section 3.1) and derive existence results as well as first and second order opti-66

mality conditions and a local uniqueness result (section 3.2). Section 4 is dedicated67

to the design and analysis of a numerical algorithm to approximate the solution to68

(3)–(4). Finally, in section 5 we illustrate the performance of our algorithm on several69

examples.70

2. Notation and preliminaries. Throughout this work Ω is an open, bounded71

and convex polytopal subset of Rn (n ≥ 1) with boundary ∂Ω. The relation X . Y72

indicates that X ≤ CY , with a nonessential constant C that might change at each73

occurrence.74
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OPTIMIZATION IN ORDER 3

2.1. The fractional Laplacian. Spectral theory for the operator −∆ yields75

the existence of a countable collection of eigenpairs {λk, ϕk}k∈N ⊂ R+ ×H1
0 (Ω) such76

that {ϕk}k∈N is an orthonormal basis of L2(Ω) and an orthogonal basis of H1
0 (Ω) and77

(5) −∆ϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, k ∈ N.78

With this spectral decomposition at hand, we define the fractional powers of the79

Dirichlet Laplace operator, which for convenience we simply call the fractional Lapla-80

cian, as follows: For any s ∈ (0, 1) and w ∈ C∞0 (Ω),81

(6) (−∆)sw :=
∑
k∈N

λskwkϕk, wk = (w,ϕk)L2(Ω) :=

ˆ
Ω

wϕk dx.82

By density, this definition can be extended to the space83

(7) Hs(Ω) =

{
w =

∑
k∈N

wkϕk ∈ L2(Ω) :
∑
k∈N

λskw
2
k <∞

}
,84

which we endow with the norm85

(8) ‖w‖Hs(Ω) =

(∑
k∈N

λskw
2
k

) 1
2

;86

see [5, 6, 9] for details. The space Hs(Ω) coincides with [L2(Ω), H1
0 (Ω)]s, i.e., the87

interpolation space between L2(Ω) and H1
0 (Ω); see [1, Chapter 7]. For s ∈ (0, 1), we88

denote by H−s(Ω) the dual space to Hs(Ω) and remark that it admits the following89

characterization:90

(9) H−s(Ω) =

{
w =

∑
k∈N

wkϕk ∈ D′(Ω) :
∑
k∈N

λ−sk w2
k <∞

}
,91

where D′(Ω) denotes the space of distributions on Ω. Finally, we denote by 〈·, ·〉 the92

duality pairing between Hs(Ω) and H−s(Ω).93

3. The fractional identification problem. In this section we study the exis-94

tence of minimizers for the fractional identification problem (3)–(4), as well as optimal-95

ity conditions. We begin by introducing the so-called control to state map associated96

with problem (3)–(4) and studying its differentiability properties. This will allow us97

to derive first order necessary and second order sufficient optimality conditions for98

our identification problem, as well as existence results.99

3.1. The control to state map. In this subsection we study the differentiabil-100

ity properties of the control to state map S associated with (3)–(4), which we define101

as follows: Given a control s ∈ (0, 1), the map S associates to it the state u = u(s)102

that solves problem (4) with the forcing term f ∈ H−s(Ω). In other words,103

(10) S : (0, 1)→ Hs(Ω), s 7→ S(s) =
∑
k∈N

λ−sk fkϕk,104

where fk = 〈f, ϕk〉 and {λk, ϕk}k∈N are defined by (5). Since f ∈ H−s(Ω), the charac-105

terization of the space H−s(Ω), given in (9), allows us to immediately conclude that106

the map S is well–defined; see also [6, Lemma 2.2].107
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4 H. ANTIL, E. OTÁROLA, A.J. SALGADO

Before embarking on the study of the smoothness properties of the map S we108

define, for λ > 0, the function Eλ : (0, 1)→ R+ by109

(11) Eλ(s) = λ−s, s ∈ (0, 1).110

A trivial computation reveals that111

(12) Dm
s Eλ(s) = (−1)m lnm(λ)Eλ(s), m ∈ N,112

from which immediately follows that, for m ∈ N, we have the estimate113

(13) |Dm
s Eλ(s)| . s−m,114

where the hidden constant is independent of s, it remains bounded as λ ↑ ∞, but115

blows up as λ ↓ 0; compare with [12, eq. (2.27)].116

With this auxiliary function at hand we proceed, following [12], to study the117

differentiability properties of the map S. To begin we notice the inclusion S((0, 1)) ⊂118

L2(Ω) so we consider S as a map with range in L2(Ω) and we will denote by 9 ·9 the119

norm of L(R, L2(Ω)).120

Theorem 1 (properties of S). Let S : (0, 1) → L2(Ω) be the control to state121

map, defined in (10), and assume that f ∈ L2(Ω). For every s ∈ (0, 1) we have that122

(14) ‖S(s)‖L2(Ω) . 1,123

where the hidden constant depends on Ω and ‖f‖L2(Ω), but not on s. In addition, S124

is three times Fréchet differentiable; the first and second derivatives of S are charac-125

terized as follows: for h1, h2 ∈ R, we have that126

(15) DsS(s)[h1] = h1Dsu(s), D2
sS(s)[h1, h2] = h1h2D

2
su(s),127

where128

Dsu(s) = −
∑
k∈N

λ−sk ln(λk)fkϕk, D2
su(s) =

∑
k∈N

λ−sk ln2(λk)fkϕk.129

Finally, for m = 1, 2, 3, we have130

(16) 9Dm
s S(s)9 . s−m,131

where the hidden constants are independent of s.132

Proof. Let s ∈ (0, 1). To shorten notation we set u = S(s). Using (10) we have133

that134

(17) ‖u‖2L2(Ω) =
∑
k∈N

λ−2s
k f2k ≤ λ−2s

1 ‖f‖2L2(Ω),135

where we used that, for all k ∈ N, 0 < λ1 ≤ λk. Since sups∈[0,1] λ
−2s
1 is bounded, we136

obtain (14).137

We now define, for N ∈ N, the partial sum wN =
∑N
k=1 λ

−s
k fkϕk. Evidently, as138

N →∞, we have that wN → u in L2(Ω). Moreover, differentiating with respect to s139

we immediately obtain, in light of (12), the expression140

DswN = −
∑
k≤N

λ−sk ln(λk)fkϕk,141
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OPTIMIZATION IN ORDER 5

and, using (12) and (13), that142

‖DswN‖2L2(Ω) =
∑
k≤N

|DsEλk(s)|2f2k .
1

s2
‖f‖2L2(Ω),143

where we used, again, that the eigenvalues are strictly away from zero. This estimate144

allows us to conclude that, as N → ∞, we have DswN → Dsu in L2(Ω) and the145

bound146

(18) ‖Dsu(s)‖L2(Ω) . s
−1‖f‖L2(Ω).147

Let us now prove that S is Fréchet differentiable and that (15) holds. Taylor’s148

theorem, in conjunction with (12), yields that, for every l ∈ N and h1 ∈ R, we have149

el,s := |Eλl(s+ h1)− Eλl(s)−DsEλl(s)h1| =
1

2
h2

1|D2
sEλl(θ)|,150

for some θ ∈ (s − |h1|, s + |h1|). Now, if |h1| < s/2, we have that θ−2 < 4s−2, and151

thus, in view of estimate (13), that152

el,s =
1

2
h2

1|D2
sEλl(θ)| . h2

1s
−2.153

This last estimate allows us to write154

‖S(s+ h1)− S(s)−Dsu(s)h1‖2L2(Ω) =
∑
k∈N

e2
k,sf

2
k . h

4
1s
−4‖f‖2L2(Ω),155

where the hidden constant is independent of h1 and s. The previous estimate shows156

that S : (0, 1) → L2(Ω) is Fréchet differentiable and that DsS(s)[h1] = h1Dsu(s).157

Finally, using (18), we conclude, estimate (16) for m = 1.158

Similar arguments can be applied to show the higher order Fréchet differentiability159

of S and to derive estimate (16) for m = 2, 3. For brevity, we skip the details.160

3.2. Existence and optimality conditions. We now proceed to study the161

existence of a solution to problem (3)–(4) as well as to characterize it via first and162

second order optimality conditions. We begin by defining the reduced cost functional163

(19) f(s) = J(s,S(s)),164

where S denotes the control to state map defined in (10) and J is defined as in (1); we165

recall that ϕ ∈ C2(a, b). Notice that, owing to Theorem 1, S is three times Fréchet166

differentiable. Consequently, f ∈ C2(a, b) and, moreover, it verifies conditions similar167

to (2). These properties will allow us to show existence of an optimal control. We168

begin with a definition.169

Definition 2 (optimal pair). The pair (s̄, ū(s̄)) ∈ (a, b)×Hs̄(Ω) is called optimal170

for problem (3)–(4) if ū(s̄) = S(s̄) and171

f(s̄) ≤ f(s),172

for all (s, u(s)) ∈ (a, b)×Hs(Ω) such that u(s) = S(s).173

Theorem 3 (existence). There is an optimal pair (s̄, ū(s̄)) ∈ (a, b)×Hs̄(Ω) for174

problem (3)–(4).175
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Proof. Let {al}l∈N, {bl}l∈N ⊂ (a, b) be such that, for every l ∈ N, a < al+1 < al <176

bl < bl+1 < b and al → a, bl → b as l → ∞. Denote Il = [al, bl] and consider the177

problem of finding178

sl = argmin
s∈Il

f(s).179

The properties of f guarantee its existence. Notice that, since the intervals Il are180

nested, we have181

f(sm) ≤ f(sl), m ≥ l.182

We have thus constructed a sequence {sl}l∈N ⊂ (a, b) from which we can extract a183

convergent subsequence, which we still denote by the same {sl}l∈N, such that sl →184

s̄ ∈ [a, b]. We claim that f attains its infimum, over (a, b), at the point s̄.185

Let us begin by showing that, in fact, s̄ ∈ (a, b). The decreasing property of186

{f(sl)}l∈N shows that187

f(s̄) ≤ f(sl), ∀l ∈ N,188

which, if s̄ = a or s̄ = b, would lead to a contradiction with the fact that f(s) ≥ ϕ(s)189

and (2).190

Let s? be any point of (a, b). The construction of the intervals Il guarantee that191

there is L ∈ N for which s? ∈ Il whenever l > L. Therefore, we have192

f(s̄) ≤ f(sl) = min
s∈Il

f(s) ≤ f(s?).193

Which shows that s̄ is a minimizer.194

Since S, as a map from (a, b) to L2(Ω), is continuous — even differentiable — we195

see that there is ū ∈ L2(Ω), for which S(sl)→ ū in L2(Ω) as l→∞. Let us now show196

that, indeed, ū ∈ Hs̄(Ω) and that it satisfies the state equation.197

Set ū =
∑
k∈N ūkϕk and notice that, as l→∞,198

(S(sl)− ū, ϕm)L2(Ω) = λ−slm fm − ūm → λ−s̄m fm − ūm.199

Therefore ūm = λ−s̄m fm. This shows that ū ∈ Hs̄(Ω) and that ū solves (4).200

The result is thus proved.201

We now provide first order necessary and second order sufficient optimality con-202

ditions for the identification problem (3)–(4).203

Theorem 4 (optimality conditions). Let (s̄, ū) be an optimal pair for problem204

(3)–(4). Then it satisfies the following first order necessary optimality condition205

(20) (ū− ud, Dsū)L2(Ω) + ϕ′(s̄) = 0.206

On the other hand, if (s̄, ū), with ū = S(s̄), satisfies (20) and, in addition, the second207

order optimality condition208

(21) (Dsū, Dsū)L2(Ω) + (ū− ud, D
2
s ū)L2(Ω) + ϕ′′(s̄) > 0209

holds, then (s̄, ū) is an optimal pair.210

Proof. Since, as shown in Theorem 3, s̄ ∈ (a, b), the first order optimality condi-211

tion reads:212

(22) f ′(s̄) = (S(s̄)− ud, DsS(s̄))L2(Ω) + ϕ′(s̄) = 0.213
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The characterization of the first order derivative of S, given in Theorem 1, allows us214

to conclude (20). A similar computation reveals that215

(23) f ′′(s̄) = (DsS(s̄), DsS(s̄))L2(Ω) + (S(s̄)− ud, D
2
sS(s̄))L2(Ω) + ϕ′′(s̄).216

Using, again, the characterization for the first and second order derivatives of S given217

in Theorem 1 we obtain (21). This concludes the proof.218

Let us now provide a sufficient condition for local uniqueness of the optimal219

identification parameter s̄. To accomplish this task we assume that the function ϕ,220

that defines the functional J in (1), is strongly convex with parameter ξ, i.e., for all221

points s1, s2 in (a, b), we have that222

(24) (ϕ′(s1)− ϕ′(s2)) · (s1 − s2) ≥ ξ|s1 − s2|2.223

We thus present the following result.224

Lemma 5 (second–order sufficient conditions). Let s̄ be optimal for problem (3)–225

(4) and f be defined as in (19). If ‖f‖L2(Ω) and ‖ud‖L2(Ω) are sufficiently small, then226

there exist a constant ϑ > 0 such that227

(25) f ′′(s̄) ≥ ϑ.228

Proof. On the basis of (23), we invoke the strong convexity of ϕ to conclude that229

f ′′(s̄) ≥ ‖DsS(s̄)‖2L2(Ω) + (S(s̄)− ud, D
2
sS(s̄))L2(Ω) + ξ.230

It thus suffices to control the term (S(s̄)− ud, D
2
sS(s̄))L2(Ω); and to do so we use the231

estimates of Theorem 1. In fact, we have that232

|(S(s̄)− ud, D
2
sS(s̄))L2(Ω)| ≤ C1

(
C2‖f‖L2(Ω) + ‖ud‖L2(Ω)

)
s̄−2‖f‖L2(Ω),233

where C1 and C2 depend on Ω and the operator −∆ but are independent of s̄, f and234

ud. Since Theorem 3 guarantees that s̄ ∈ (a, b), we conclude that the right hand side235

of the previous expression is bounded. This, in view of the fact that ‖f‖L2(Ω) and236

‖ud‖L2(Ω) are sufficiently small, concludes the proof.237

As a consequence of the previous Lemma we derive, for the reduced cost functional238

f , a convexity property that will be important to analyze the fully discrete scheme of239

section 4, and a quadratic growth condition that implies the local uniqueness of s̄.240

Corollary 6 (convexity and quadratic growth). Let s̄ be optimal for problem241

(3)–(4) and f be defined as in (19). If ‖f‖L2(Ω) and ‖ud‖L2(Ω) are sufficiently small,242

then there exists δ > 0 such that243

(26) (f ′(s)− f ′(s̄)) · (s− s̄) ≥ ϑ

2
|s− s̄|2 ∀s ∈ (a, b) ∩ (s̄− δ, s̄+ δ),244

where ϑ is the constant that appears in (25). In addition, we have the quadratic growth245

condition246

(27) f(s) ≥ f(s̄) +
ϑ

4
|s− s̄|2 ∀s ∈ (a, b) ∩ (s̄− δ, s̄+ δ).247

In particular, f has a local minimum at s̄. Moreover, this minimum is unique in248

(s̄− δ, s̄+ δ) ∩ (a, b).249

Proof. Estimates (26) and (27) follow immediately from an application of Taylor’s250

theorem and estimate (25); see [14, Theorem 4.23] for details. The local uniqueness251

follows immediately from (27).252
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4. A numerical scheme for the fractional identification problem. In this253

section we propose a numerical method that approximates the solution to the frac-254

tional identification problem (3)–(4). To be able to provide a convergence analysis of255

the proposed method we make the following assumption.256

Assumption 7 (compact subinterval). The optimization bounds a and b satisfy257

0 < a < b < 1.258

The scheme that we propose below is based on the discretization of the first order259

optimality condition (20): we discretize the first derivative Dsu(s) in (20) using a260

centered difference and then we approximate the solution to the state equation (4)261

with the finite element techniques introduced in [9].262

4.1. Discretization in s. To set the ideas, we first propose a scheme that263

only discretizes the variable s and analyze its convergence properties. We begin by264

introducing some terminology. Let σ > 0 and s ∈ (a, b) such that s± σ ∈ (a, b). We265

thus define, for ψ : (a, b)→ R, the centered difference approximation of Dsψ at s by266

(28) dσψ(s) :=
ψ(s+ σ)− ψ(s− σ)

2σ
.267

If ψ ∈ C3(a, b), a basic application of Taylor’s theorem immediately yields the estimate268

(29) |Dsψ(s)− dσψ(s)| ≤ σ2

3
‖D3

sψ‖L∞(s−σ,s+σ).269

We also define the function jσ : (a, b)→ R by270

(30) jσ(s) = (u(s)− ud, dσu(s))L2(Ω) + ϕ′(s),271

where u(s) denotes the solution to (4). Finally, a point sσ ∈ (a, b) for which272

(31) jσ(sσ) = 0,273

will serve as an approximation of the optimal parameter s̄.274

Notice that, in (30), the definition of jσ coincides with the first order optimality275

condition (20), when we replace the derivative of the state, i.e., Dsu, by its centered276

difference approximation, as defined in (28). The existence of sσ will be shown by277

proving convergence of Algorithm 1 which, essentially, is a bisection algorithm. In278

addition, if the algorithm reaches line 14, since jσ ∈ C([sl, sr]) and it takes values279

of different signs at the endpoints, the intermediate value theorem guarantees that280

the bisection step will produce a sequence of values that we use to approximate the281

root of jσ. It remains then to show that we can eventually find the requisite interval282

[sl, sr] ⊂ (a, b). This is the content of the following result.283

Lemma 8 (root isolation). If σ is sufficiently small, there exist sl and sr in284

(a, b) such that jσ(sl) < 0 and jσ(sr) > 0, i.e., the root isolation step in Algorithm 1285

terminates.286

Proof. We begin the proof by noticing that, for s ∈ (σ, 1 − σ) ⊂ (a, b), the287

estimates of Theorem 1 immediately yield the existence of a constant C > 0 such that288

(32)
∣∣∣(u(s)− ud, dσu(s))L2(Ω)

∣∣∣ ≤ C

σ
,289
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Algorithm 1 Bisection algorithm.

1: 0 < σ � 1 and set sl, sr ∈ (a, b), with sl < sr.; . Initialization
. We take care of possible degenerate cases

2: if jσ(sl) = 0 then
3: sσ = sl;
4: end if
5: if jσ(sr) = 0 then
6: sσ = sr;
7: end if

. Root isolation
8: while jσ(sr) < 0 do
9: sr := sr + σ;

10: end while
11: while jσ(sl) > 0 do
12: sl := sl − σ;
13: end while

. Bisection
14: k = 1;
15: repeat
16: sk = 1

2 (sl + sr);
17: if jσ(sk) = 0 then
18: sσ = sk;
19: break; . The solution has been found
20: end if
21: if jσ(sl)jσ(sk) > 0 then . Sign check
22: sl = sk;
23: else
24: sr = sk;
25: end if
26: k = k + 1;
27: until forever

where C depends on Ω, ud and f but not on s or σ.290

On the other hand, since property (2) implies that ϕ′(s) → −∞ as s ↓ a, we291

deduce the existence of εl > 0 such that, if s ∈ (a, a+ εl) then ϕ′(s) < −C/σ. Assume292

that σ < εl. Consequently, in view of the bound (32), definition (30) immediately293

implies that, for every s ∈ (a+ σ, a+ εl), we have the estimate294

jσ(s) ≤ C

σ
+ ϕ′(s) < 0.295

Similar arguments allow us to conclude the existence of εr > 0 such that, if s ∈296

(b− εr, b) then ϕ′(s) > C/σ. Assume that σ < εr . We thus conclude that, for every297

s ∈ (b− εr, b− σ), we have the bound298

jσ(s) ≥ −C
σ

+ ϕ′(s) > 0.299

In light of the previous estimates we thus conclude that, for σ < min{εl, εr}, we300

can find sl and sr in (a, b) such that jσ(sl) < 0 and jσ(sr) > 0. This concludes the301

proof.302
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From Lemma 8 we immediately conclude that the bisection algorithm can be303

performed and exhibits the following convergence property.304

Lemma 9 (convergence rate: bisection method). The sequence {sk}k≥1 gener-305

ated by the bisection algorithm satisfies306

(33) |sσ − sk| . 2−k.307

In addition, there exists sl and sr such that a < sl < sr < b and sσ ∈ (sl, sr).308

The results of Lemmas 8 and 9 guarantee that, for a fixed σ, the bisection algo-309

rithm can be performed and exhibits a convergence rate dictated by (33). Let us now310

discuss the convergence properties, as σ → 0, of this semi-discrete method. We begin311

with two technical lemmas.312

Lemma 10 (convergence of jσ). Let jσ : (a, b) → R be defined as in (30), then,313

jσ ⇒ f ′ on (a, b) as σ → 0.314

Proof. From the definitions we obtain that, whenever s ∈ (a, b)315

|f ′(s)− jσ(s)| =
∣∣(u(s)− ud, Dsu(s)− dσu(s))L2(Ω)

∣∣316

. sup
s∈[a,b]

‖Dsu(s)− dσu(s)‖L2(Ω),317

318

where the hidden constant depends on ud and estimate (14). Since, from Theorem 1319

we know that the control to state map is three times differentiable, we can conclude320

that321

‖Dsu(s)− dσu(s)‖L2(Ω) .
σ2

a3
,322

where we used a formula analogous to (29) and estimate (16). The fact that a > 0323

(Assumption 7) allows us to conclude.324

With the uniform convergence of jσ at hand, we can obtain the convergence of325

its roots to parameters that are optimal.326

Lemma 11 (convergence of sσ). The family {sσ}σ>0 contains a convergent sub-327

sequence. Moreover, the limit of any convergent subsequence satisfies (20).328

Proof. The existence of a convergent subsequence follows from the fact that329

{sσ}σ>0 ⊂ [a, b]. Moreover, as in Theorem 3, we conclude that the limit is in (a, b).330

Let us now show that any limit satisfies (20).331

By Lemma 10, for any ε > 0, if σ is sufficiently small, we have that332

|f ′(sσ)| = |f ′(sσ)− jσ(sσ)| < ε333

which implies that f ′(sσ) → 0 as σ → 0. Let now {sσk}k∈N ⊂ {sσ} be a convergent334

subsequence. Denote the limit point by s ∈ (a, b). By continuity of f ′ we have335

f ′(sσk)→ f ′(s) which implies that336

f ′(s) = 0.337

Remark 12 (stronger convergence). It is expected that we cannot prove more338

than convergence up to subsequences, since there might be more than one s that339

satisfies (20). If there is a unique optimal s, then the previous result implies that the340

family {sσ}σ>0 converges to it.341
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In what follows, to simplify notation, we denote by {sσ}σ>0 any convergent sub-342

family. The next result then provides a rate of convergence.343

Theorem 13 (convergence rate in σ). Let s̄ denote a solution to the identifica-344

tion problem (3)–(4) and let sσ be its approximation defined as the solution to equation345

(31). If σ is sufficiently small then we have346

|s̄− sσ| .
σ2

a3

(
‖f‖L2(Ω) + ‖ud‖L2(Ω)

)
,347

where the hidden constant is independent of s̄, sσ, σ, f and ud.348

Proof. We begin by considering the parameter σ sufficiently small such that sσ ∈349

(s̄− δ, s̄+ δ), where δ > 0 is as in the statement of Corollary 6. Thus, an application350

of the estimate (26) in conjunction with the fact that jσ(sσ) = 0 allow us to conclude351

that352

ϑ
2 |s̄− sσ|

2 ≤ (f ′(s̄)− f ′(sσ)) · (s̄− sσ) = f ′(sσ)(sσ − s̄)353

= (f ′(sσ)− jσ(sσ)) · (sσ − s̄).354355

Consequently, following Lemma 10 we obtain that356

(34)

ϑ

2
|s̄− sσ| ≤

∣∣∣(u(sσ)− ud, Dsu(sσ)− dσu(sσ))L2(Ω)

∣∣∣
.
σ2

a3

(
‖f‖L2(Ω) + ‖ud‖L2(Ω)

)
.

357

The theorem is thus proved.358

4.2. Space discretization. The goal of this subsection is to propose, on the359

basis of the bisection algorithm of section 4.1, a fully discrete scheme that approx-360

imates the solution to problem (3)–(4). To accomplish this task we will utilize the361

discretization techniques introduced in [9] that provides an approximation to the so-362

lution to the fractional diffusion problem (4). In order to make the exposition as clear363

as possible, we briefly review these aforementioned techniques below.364

4.2.1. A discretization technique for fractional diffusion. Exploiting the365

cylindrical extension proposed and investigated in [3, 6, 13], that is in turn inspired366

in the breakthrough by L. Caffarelli and L. Silvestre analyzed in [4], the authors of367

[9] have proposed a numerical technique to approximate the solution to problem (4)368

that is based on an anisotropic finite element discretization of the following local and369

nonuniformly elliptic PDE:370

(35) div(yα∇U ) = 0 in C, U = 0 on ∂LC, ∂ναU = dsf in Ω.371

Here, C denotes the semi–infinite cylinder with base Ω defined by372

C = Ω× (0,∞) ⊂ Rn+1
+ = {(x′, y) : x′ ∈ Rn, y > 0},373

and ∂LC = ∂Ω× [0,∞) its lateral boundary. In addition, ds = 2αΓ(1− s)/Γ(s) and374

∂ναU = − lim
y→0+

yαUy.375

Finally, α = 1−2s ∈ (−1, 1). Although degenerate or singular, the variable coefficient376

yα satisfies a key property. Namely, it belongs to the Muckenhoupt class A2(Rn+1).377

This allows for an optimal piecewise polynomial interpolation theory [9].378
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To state the results of [3, 4, 6, 13], we define the weighted Sobolev space379

◦
H1
L(yα, C) =

{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
,380

and the trace operator381

(36) trΩ :
◦
H1
L(yα, C)→ Hs(Ω), w 7→ trΩ w,382

where trΩ w denotes the trace of w onto Ω× {0}.383

The results of [3, 4, 6, 13] thus read as follows: Let U ∈
◦
H1
L(yα, C) and u ∈ Hs(Ω)384

be the solutions to (35) and (4), respectively, then385

(37) u = trΩ U .386

A first step toward a discretization scheme is to truncate, for a given truncation387

parameter Y > 0, the semi–infinite cylinder C to CY := Ω× (0,Y ) and seek solutions388

in this bounded domain. In fact, let v ∈
◦
H1
L(yα, CY ) be the solution to389

(38)

ˆ
CY

yα∇v · ∇φ = ds〈f, trΩ φ〉 ∀φ ∈
◦
H1
L(yα, CY ),390

where
◦
H1
L(yα, CY ) =

{
w ∈ H1(yα, CY ) : w = 0 on ∂LCY ∪ Ω× {Y }

}
. Then the expo-391

nential decay of U in the extended variable y implies the following error estimate392

‖∇(U − v)‖L2(yα,C) . e
−
√
λ1Y /4‖f‖H−s(Ω),393

provided Y ≥ 1, and the hidden constant depends on s, but is bounded on compact394

subsets of (0, 1). We refer the reader to [9, Section 3] for details. With this truncation395

at hand, we thus recall the finite element discretization techniques of [9, Section 4].396

To avoid technical difficulties, we assume that Ω is a convex polytopal subset of Rn397

and refer the reader to [11] for results involving curved domains. Let TΩ = {K} be a398

conforming and shape regular triangulation of Ω into cellsK that are isoparametrically399

equivalent to either a simplex or a cube. Let IY = {I} be a partition of the interval400

[0,Y ] with mesh points401

(39) yj =

(
j

M

)γ
Y , j = 0, . . . ,M, γ >

3

1− α
=

3

2s
> 1.402

We then construct a mesh of the cylinder CY by TY = TΩ⊗IY , i.e., each cell T ∈ TY403

is of the form T = K × I where K ∈ TΩ and I ∈ IY . We note that, by construction,404

#TY = M#TΩ. When TΩ is quasiuniform with #TΩ ≈ Mn we have #TY ≈ Mn+1405

and, if hTΩ = max{diam(K) : K ∈ TΩ}, then M ≈ h−1
TΩ

. Having constructed the406

mesh TY we define the finite element space407

V(TY ) :=
{
W ∈ C0(C̄Y ) : W|T ∈ P(K)⊗ P1(I) ∀T ∈ TY , W|ΓD = 0

}
,408

where, ΓD = ∂Ω × [0,Y ) ∪ Ω × {Y }, and if K is isoparametrically equivalent to a409

simplex, P(K) = P1(K) i.e., the set of polynomials of degree at most one. If K is a410

cube P(K) = Q1(K), that is, the set of polynomials of degree at most one in each411

variable. We must immediately comment that, owing to (39), the meshes TY are not412

shape regular but satisfy: if T1 = K1× I1 and T2 = K2× I2 are neighbors, then there413

is κ > 0 such that414

hI1 ≤ κhI2 , hI = |I|.415
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The use of anisotropic meshes in the extended direction y is imperative if one wishes416

to obtain a quasi-optimal approximation error since U , the solution to (35), possesses417

a singularity as y ↓ 0; see [9, Theorem 2.7].418

We thus define a finite element approximation of the solution to the truncated419

problem (38): Find VTY ∈ V(TY ) such that420

(40)

ˆ
CY

yα∇VTY · ∇W = ds〈f, trΩW 〉 ∀W ∈ V(TY ).421

With this discrete function at hand, and on the basis of the localization results of422

Caffarelli and Silvestre, we define an approximation UTΩ
∈ U(TΩ) = trΩ V(TY ) of the423

solution u to problem (4) as follows:424

(41) UTΩ
:= trΩ VTY .425

4.2.2. A fully discrete scheme for the fractional identification problem.426

Following the discussion in [9] one observes that many of the stability and error esti-427

mates in this work contain constants that depend on s. While these remain bounded428

in compact subsets of (0, 1) many of these degenerate or blow up as s ↓ 0 or s ↑ 1.429

In fact, it is not clear if the PDE (35) is well under the passage of these limits. Even430

if this problem made sense, the Caffarelli-Silvestre extension property (37) does not431

hold as we take the limits mentioned above. For this reason, we continue to work432

under Assumption 7. We begin by defining the discrete control to state map ST as433

follows:434

ST : (a, b)→ U(TΩ), s 7→ UTΩ
(s),435

where UTΩ(s) is defined as in (41). We also define the function jσ,T : (a, b)→ R as436

(42) jσ,T (s) = (UTΩ(s)− ud, dσUTΩ(s))L2(Ω) + ϕ′(s),437

where the centered difference dσ is defined as in (28). With these elements at hand,438

we thus define a fully discrete approximation of the optimal identification parameter439

s̄ as the solution to the following problem: Find sσ,T ∈ (a, b) such that440

(43) jσ,T (sσ,T ) = 0.441

We notice that, under the assumption that the map ST is continuous in (a, b), the442

same arguments developed in the proof of Lemma 8 yield the existence of sr,T and443

sl,T in (a, b) such that jσ,T (sr,T ) < 0 and jσ,T (sl,T ) > 0. This implies that, if in the444

bisection algorithm of section 4.1 we replace jσ by jσ,T , the step Root isolation can445

be performed. Consequently, we deduce the convergence of the bisection algorithm446

and thus the existence of a solution sσ,T ∈ (a, b) to problem (43).447

It is then necessary to study the continuity of ST , but this can be easily achieved448

because we are in finite dimensions and the problem is linear.449

Proposition 14 (continuity of ST ). For every mesh TY , defined as in Section450

4.2.1, the map ST is continuous on (a, b).451

Proof. Let {sk}k∈N ⊂ (a, b) be such that sk → s ∈ (a, b). Since the operator452

trΩ, defined as in (36), is continuous [9, Proposition 2.5], it suffices to show that the453

application s 7→ VTY (s) is continuous. Consider454

VTY (s) ∈ V(TY ) :

ˆ
CY

y1−2s∇VTY (s) · ∇Ws = ds〈f, trΩWs〉 ∀Ws ∈ V(TY ),455
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14 H. ANTIL, E. OTÁROLA, A.J. SALGADO

and456

VTY (sk) ∈ V(TY ) :

ˆ
CY

y1−2sk∇VTY (sk) · ∇Wk = dsk〈f, trΩWk〉 ∀Wk ∈ V(TY ).457

Set Ws = VTY (s)− VTY (sk) and Wk = VTY (sk)− VTY (s) and add these two identities458

to obtain459
460

‖∇(VTY (s)− VTY (sk))‖2L2(y1−2s,CY ) = (ds − dsk)〈f, trΩ(VTY (s)− VTY (sk))〉461

+

ˆ
CY

(y1−2sk − y1−2s)∇VTY (sk) · ∇(VTY (s)− VTY (sk)) = I + II.462

463

We now proceed to estimate each one of these terms.464

For the first term we have465

|I| ≤ |ds − dsk |‖f‖L2(Ω)‖ trΩ(VTY (s)− VTY (sk)‖L2(Ω) → 0466

as k →∞. This is the case because ‖ trΩ(VTY (s)−VTY (sk)‖L2(Ω) is uniformly bounded467

[9, Proposition 2.5] and, by Assumption 7, we have that dsk → ds.468

We estimate the second term as follows469

|II| ≤ |Ω|‖∇VTY (sk)‖L∞(CY )‖∇(VTY (s)− VTY (sk))‖L∞(CY )

ˆ Y

0

|y1−2s − y1−2sk |.470

Using that we are in finite dimensions, the question reduces to the convergence471

ˆ Y

0

|y1−2s − y1−2sk | → 0,472

which follows from the a.e. convergence of y1−2sk to y1−2s, the fact that, for 0 <473

y < 1, we have 0 < y1−2sk ≤ y1−2a ∈ L1(0, 1) and an application of the dominated474

convergence theorem.475

This concludes the proof.476

We now proceed to derive an a priori error bound for the error between the exact477

identification parameter s̄ and its approximation sσ,T given as the solution (43). We478

begin by noticing that, following the proof of Lemma 10, using [10, Proposition 28]479

and Assumption 7 we have480

(44) |jσ(s)− jσ,T (s)| . 1

σ
| log(#TY )|2b(#TY )−(1+a)/(n+1),481

where the hidden constant depends on a and b but is uniform in (a, b). Clearly, for482

fixed σ, this implies the uniform convergence of jσ,T to jσ as we refine the mesh.483

By repeating the arguments of Lemma 11 we conclude the convergence, up to subse-484

quences, of {sσ,T }T to sσ, a root of jσ. Arguing as in Remark 12, we see that we485

cannot expect convergence of the entire family.486

Finally, we denote one of these convergent subsequences by {sσ,T }T and provide487

an error estimate.488

Theorem 15 (Error estimate: discretization in s and space). Let s̄ be optimal for489

the identification problem (3)–(4) and sσ,T its approximation defined as the solution490

to (43). If σ is sufficiently small, #TY is sufficiently large and, f ∈ H1−a(Ω), then491

(45) |s̄− sσ,T | . σ−1| log(#TY )|2b(#TY )−(1+a)/(n+1)‖f‖H1−a(Ω) + σ2,492

where the hidden constant is independent of s̄, sσ,T , f and the mesh TY .493
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Proof. We begin by remarking that, by setting σ sufficiently small and #TY494

sufficiently large, respectively, we can assert that sσ,T ∈ (s̄ − δ, s̄ + δ) with δ being495

the parameter of Corollary 6. By invoking the estimate (26) and in view of the fact496

that f ′(s̄) = 0 = jσ,T (sσ,T ), we deduce the following estimate:497

498

ϑ

2
|s̄−sσ,T |2 ≤ (f ′(s̄)− f ′(sσ,T ))·(s̄−sσ,T ) = (jσ,T (sσ,T )− f ′(sσ,T ))·(s̄−sσ,T ).499

500

We proceed to bound the right hand side of the previous expression. To accom-501

plish this task, we invoke the definition (42) of jσ,T and repeating the arguments of502

Lemma 10 we obtain that503

(46)
|jσ,T (sσ,T )− f ′(sσ,T )| ≤

∣∣∣(UTΩ
(sσ,T )− ud, dσUTΩ

(sσ,T )−Dsu(sσ,T ))L2(Ω)

∣∣∣
+
∣∣∣(UTΩ

(sσ,T )− u(sσ,T ), Dsu(sσ,T ))L2(Ω)

∣∣∣ = I + II.
504

We thus examine each term separately. We start with II: its control relies on the a505

priori error estimates of [9, 10]. In fact, combining the results of [10, Proposition 28]506

with the estimate (16) for m = 1, we arrive at507

|II| ≤ ‖Dsu(sσ,T )‖L2(Ω)‖UTΩ
(sσ,T )− u(sσ,T )‖L2(Ω)508

. s−1
σ,T | log(#TY )|2sσ,T (#TY )−(1+sσ,T )/(n+1)‖f‖H1−sσ,T (Ω)509

. | log(#TY )|2b(#TY )−(1+a)/(n+1)‖f‖H1−a(Ω)510511

where the hidden constant depends on a and b but is independent of s̄, sσ,T , f and512

TY . Notice that here we used Assumption 7 to, for instance, control the term s−1
σ,T .513

We now proceed to control the term I in (46). A basic application of the Cauchy–514

Schwarz inequality yields515

|I| ≤ ‖UTΩ(sσ,T )− ud‖L2(Ω)‖dσUTΩ(sσ,T )−Dsu(sσ,T )‖L2(Ω).516

We thus apply the estimate (14) and the triangle inequality to obtain that517

|I| . ‖dσ (UTΩ
(sσ,T )− u(sσ,T )) ‖L2(Ω) + ‖dσu(sσ,T )−Dsu(sσ,T )‖L2(Ω).518

We estimate the first term on the right hand side of the previous expression: the519

definition (28) of dσ and [10, Proposition 28] imply that520

521

‖dσ (UTΩ
(sσ,T )− u(sσ,T )) ‖L2(Ω) ≤

1

2σ

(
‖UTΩ(sσ,T + σ)− u(sσ,T + σ)‖L2(Ω)522

+ ‖UTΩ
(sσ,T − σ)− u(sσ,T − σ)‖L2(Ω)

)
.

1

σ
| log(#TY )|2b(#TY )−

1+a
n+1 ‖f‖H1−a(Ω);523

524

we notice that σ is small enough such that sσ,T ± σ ∈ (a, b). On the other hand, an525

estimate similar to (29) yields that526

‖Dsu(sσ,T )− dσu(sσ,T )‖L2(Ω) . σ
2a−3.527

Collecting the previous estimates we arrive at the following bound for the term I:528

(47) |I| . σ−1| log(#TY )|2b(#TY )−(1+a)/(n+1)‖f‖H1−a(Ω) + σ2a−3.529
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On the basis of (46), this bound, and the estimate for the term II yield530

|s̄− sσ,T | . σ−1| log(#TY )|2b(#TY )−(1+a)/(n+1)‖f‖H1−a(Ω) + σ2,531

where the hidden constant depends on a and b, but is independent of σ and #TY .532

This concludes the proof.533

A natural choice of σ comes from equilibrating the terms on the right–hand side534

of (45): σ ≈ | log(#TY )|2b/3(#TY )−(1+a)/3(n+1). This implies the following error535

estimate.536

Corollary 16 (error estimate: discretization in s and space). Let s̄ be optimal537

for the identification problem (3)–(4) and sσ,T be its approximation defined as the538

solution to (43). If #TY is sufficiently large, the parameter σ is chosen as539

σ ≈ | log(#TY )|2b/3(#TY )−(1+a)/3(n+1),540

and f ∈ H1−a(Ω) then541

(48) |s̄− sσ,T | . | log(#TY )|4b/3(#TY )−
2(1+a)
3(n+1) ,542

where the hidden constant depends on a and b but is independent of s̄, sσ,T , and the543

mesh TY .544

5. Numerical examples. In this section, we study the performance of the pro-545

posed bisection algorithm of section 4 when applied to the fully discrete parameter546

identification problem of section 4.2.2 with the help of four numerical examples.547

The implementation has been carried out within the MATLAB software library548

iFEM [7]. The stiffness matrices of the discrete system (40) are assembled exactly and549

the forcing terms are computed by a quadrature rule which is exact for polynomials550

up to degree 4. Additionally, the first term in (42) is computed by a quadrature551

formula which is exact for polynomials of degree 7. All the linear systems are solved552

exactly using MATLAB’s built-in direct solver.553

In all examples, n = 2, Ω = (0, 1)2, TOL = 2.2204e-16, and the initial value of554

sl, sr is 0.3, and 0.9, respectively. The truncation parameter for the cylinder CY is555

Y = 1 + 1
3 (#TΩ) which allows balancing the approximation and truncation errors for556

our state equation, see [9, Remark 5.5]. Moreover,557

σ =
1

2.5
(#TY )−

(1+ε)
9 ,558

with ε = 10−10.559

Under the above setting, the eigenvalues and eigenvectors of −∆ are:560

λk,l = π2(k2 + l2), ϕk,l(x1, x2) = sin(kπx1) sin(lπx2), k, l ∈ N.561

Consequently, by letting f = λs2,2ϕ2,2 for any s ∈ (0, 1) we obtain ū = ϕ2,2.562

In what follows we will consider four examples. In the first one we set s̄ = 1/2,563

f and ū as above and we set ud = ū. The second one differs from the first one in564

that we set s̄ = (3 −
√

5)/2. In our third example, the exact solution is not known.565

Finally, in our last example we explore the robustness of our algorithm with respect566

to perturbations in the data. We accomplish this by considering the same setting as567

in the first example but we add a random perturbation r ∈ (−e, e) to the right hand568

side f. We then explore the behavior of the optimal parameter s̄ as the size of the569

perturbation e varies.570

This manuscript is for review purposes only.



OPTIMIZATION IN ORDER 17

5.1. Example 1. We recall the definition of the cost function J(u, s) from (1)571

and set ϕ(s) = 1
s(1−s) . The latter is strictly convex over the interval (0, 1) and fulfills572

the conditions in (2). The optimal solution s̄ to (3)–(4) is given by s̄ = 1/2.573

Table 1 illustrates the performance of our optimization solver. The first column574

indicates the degrees of freedom #TY , the second column shows the value of sσ,T575

obtained by solving (43), and the third column shows the corresponding value jσ,T at576

sσ,T . The final column shows the total number of optimization iterations N taken,577

for the bisection algorithm to converge. We notice that the observed values of sσ,T578

matches almost perfectly with s̄. In addition, the pattern in N , as we refine the mesh,579

indicates a mesh-independent behavior.580

#TY sσ,T jσ,T (sσ,T ) N
3146 4.96572e-01 -8.89011e-14 53

10496 4.98371e-01 -8.38218e-14 53
25137 4.99069e-01 3.49235e-14 53
49348 4.99402e-01 1.52327e-12 53
85529 4.99585e-01 6.28221e-12 53

Table 1
The first column indicates the degrees of freedom, the second one corresponds to the solution

sσ,T of our discrete optimality system (43) and the third column illustrates the corresponding value
of jσ,T at sσ,T . The final column shows, N , the number of iterations taken by the bisection
algorithm to converge. The values of N are moderate. Additionally, we observe that sσ,T matches
with the exact solution s̄ = 1/2 and the pattern in N shows a mesh independent behavior upon mesh
refinement.

Figure 1 (left panel) shows the computational rate of convergence. We observe581

that582

|s̄− sσ,T | . (#TY )−0.6
583

which is significantly better than the predicated rate of (#TY )−0.22 by the Corol-584

lary 16. Indeed this suggests that our theoretical rates are pessimistic and in practice,585

our algorithm works much better.586
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Fig. 1. The left panel (dotted curve) shows the convergence rate for Example 1 and the right
one for Example 2. The solid line is the reference line. We notice that the computational rates of
convergence, in both examples, are much higher than the theoretically predicted rates in Corollary 16.

5.2. Example 2. We set ϕ(s) = s−1e
1

(1−s) which is again strictly convex over587

the interval (0, 1) and fulfills the conditions in (2). The optimal solution s̄ to (3)–(4)588

is given by s̄ = (3−
√

5)/2.589
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Table 2 illustrates the performance of our optimization solver. As we noted in590

section 5.1, the numerically computed solution sσ,T matches almost perfectly with591

s̄ and the pattern of N , with mesh refinement, again indicates a mesh independent592

behavior.593

#TY sσ,T jσ,T (sσ,T ) N
3146 3.81417e-01 9.99201e-16 46

10496 3.81697e-01 -2.52812e-13 53
25137 3.81811e-01 1.36418e-12 53
49348 3.81866e-01 2.66251e-12 53
85529 3.81897e-01 3.53083e-12 53

Table 2
The first column indicates the degrees of freedom, the second one corresponds to the solution

sσ,T of our discrete optimality system (43) and the third column illustrates the corresponding value
of jσ,T at sσ,T . The final column shows, N , the number of iterations taken by the bisection
algorithm to converge. The values of N are moderate. Additionally, we observe that sσ,T matches

with the exact solution s̄ = (3 −
√

5)/2 and the pattern in N shows a mesh independent behavior
upon mesh refinement.

Figure 1 (right panel) shows the computational rate of convergence. We again594

see that595

|s̄− sσ,T | . (#TY )−0.6
596

Thus the observed rate is far superior than the theoretically predicted rate in Corol-597

lary 16.598

5.3. Example 3. In our third example, we take ϕ(s) = s−1e
1

(1−s) , f = 10, and599

ud = max
{

0.5 −
√
|x1 − 0.5|2 + |x2 − 0.5|2, 0

}
. We notice that f is large, thus the600

requirements of Theorem 13 are not necessarily fulfilled. In addition, for µ ≤ 1/2,601

f 6∈ H1−µ(Ω) thus the requirements of Corollary 16 are not fulfilled. Nevertheless,602

as we illustrate in Table 3, we can still solve the problem. We again notice a mesh603

independent behavior in the number of iterations (N) taken by the bisection algorithm604

to converge.605

#TY sσ,T jσ,T (sσ,T ) N
3146 4.44005e-01 4.22951e-12 53

10496 4.47239e-01 2.97451e-11 53
25137 4.48182e-01 -3.20792e-11 53
49348 4.48544e-01 4.83542e-11 53
85529 4.48690e-01 2.68390e-10 53

Table 3
The first column indicates the degrees of freedom, the second one corresponds to the solution

sσ,T of our discrete optimality system (43) and the third column illustrates the corresponding value
jσ,T at sσ,T . The final column shows, N , the number of iterations taken by the bisection algorithm
to converge. The values of N are moderate and show a mesh independent character.

5.4. Example 4. In our final example we consider a similar setup to subsec-606

tion 5.1. We modify the right hand side f = λs̄2,2 sin(2πx1) sin(2πx2), with s̄ = 1/2,607

by adding a uniformly distributed random parameter r ∈ (−e, e). We fix the spatial608

mesh to #TY = 85, 529.609
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At first we set e = 200, as a result r is more than 200 times the actual signal f, see610

the first row on Table 4. Despite such a large noise, the recovery of s̄ is reasonable.611

Letting e ↓ 0, we can recover s̄ almost perfectly.612

e sσ,T jσ,T (sσ,T ) N
200 6.33937e-01 7.28484e-12 53
20 5.06469e-01 -5.17408e-12 53
2 4.99341e-01 -7.37949e-12 53

0.5 4.99581e-01 -5.68941e-12 53
0.25 4.99586e-01 3.64379e-12 53

0.125 4.99584e-01 3.33318e-13 53
Table 4

Robustness of our algorithm with respect to noisy data. The number of spatial degrees of
freedom is fixed to #TY = 85, 529. The first column indicates the range of the uniformly distributed
parameter r which is added to the right hand side f, the second one corresponds to the solution sσ,T
of our discrete optimality system (43) and the third column illustrates the corresponding value jσ,T
at sσ,T . The final column shows N , the number of iterations taken by the bisection algorithm to
converge. Notice that even with a noise which is 200 times more than the actual signal f the recovery
of s̄ is reasonable (first row). If the noise is of the same order as f we can recover s̄ perfectly. The
values of N are moderate and show a mesh independent character.
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