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OPTIMIZATION WITH RESPECT TO ORDER IN A FRACTIONAL
DIFFUSION MODEL: ANALYSIS, APPROXIMATION AND
ALGORITHMIC ASPECTS*
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Abstract. We consider an identification problem, where the state u is governed by a fractional
elliptic equation and the unknown variable corresponds to the order s € (0,1) of the underlying
operator. We study the existence of an optimal pair (5,u) and provide sufficient conditions for its
local uniqueness. We develop semi-discrete and fully discrete algorithms to approximate the solutions
to our identification problem and provide a convergence analysis. We present numerical illustrations
that confirm and extend our theory.
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1. Introduction. Supported by the claim that they seem to better describe
many processes; nonlocal models have recently become of great interest in the applied
sciences and engineering. This is specially the case when long range (i.e., nonlocal)
interactions are to be taken into consideration; we refer the reader to [2] for a far
from exhaustive list of examples where such phenomena take place. However, the
actual range and scaling laws of these interactions — which determines the order of
the model— cannot always be directly determined from physical considerations. This
is in stark contrast with models governed by partial differential equations (PDEs),
which usually arise from a conservation law. This justifies the need to, on the basis
of physical observations, identify the order of a fractional model.

In [12], for the first time, this problem was addressed. The authors studied the
optimization with respect to the order of the spatial operator in a nonlocal evolution
equation; existence of solutions as well as first and second order optimality conditions
were addressed. The present work is a natural extension of these results under the
stationary regime: we address the local uniqueness of minimizers and propose a nu-
merical algorithm to approximate them. In addition, we study the convergence rates
of our method.

To make matters precise, let {2 be an open and bounded domain in R™ (n > 1)
with Lipschitz boundary 9€2. Given a desired state ug : 2 — R (the observations), we
define the cost functional

1
(1) (s, u) = 5llu = uallZe o) + #(s),

where, for some a and b satisfying that 0 < a < b < 1, s € (a,b) and, ¢ € C?%(a,b)
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denotes a nonnegative convex function that satisfies

2 I = +oo =i .
(2) lim o(s) = +o0 = lim o(s)

Examples of functions with these properties are

_ 1 _ erlﬁ
e(s) = ma ©(s

sS—a

We shall thus be interested in the following identification problem: Find (5, u)
such that

(3) J(3,u) = min J(s,u)
subject to the fractional state equation
(4) (=A)’u=finQ,

where (—A)® denotes a fractional power of the Dirichlet Laplace operator —A. We
immediately remark that, with no modification, our approach can be extended to
problems where the state equation is L*u = f, where Lw = —div(AVw), supplemented
with homogeneous Dirichlet boundary conditions, as long as the diffusion coefficient
A is fixed, bounded and symmetric. In principle, one could also consider optimization
with respect to order s and the diffusion A, as this could accommodate for anisotropies
in the diffusion process. We refer the reader to [8], and the references therein, for the
case when s = 1 is fixed and the optimization is carried out with respect to A.

We now comment on the choice of a and b. The practical situation can be en-
visioned as the following: from measurements or physical considerations we have an
expected range for the order of the operator, and we want to optimize within that
range to best fit the observations. From the existence and optimality conditions point
of view, there is no limitation on their values, as long as 0 < a < b < 1. However,
when we discuss the convergence of numerical algorithms, many of the estimates and
arguments that we shall make blow up as s | 0 or s T 1 so we shall assume that
a > 0and b < 1. How to treat numerically the full range of s is currently under
investigation.

Our presentation is organized as follows. The notation and functional setting is
introduced in section 2, where we also briefly describe, in section 2.1, the definition of
the fractional Laplacian. In section 3, we study the fractional identification problem
(3)—(4). We analyze the differentiability properties of the associated control to state
map (section 3.1) and derive existence results as well as first and second order opti-
mality conditions and a local uniqueness result (section 3.2). Section 4 is dedicated
to the design and analysis of a numerical algorithm to approximate the solution to
(3)-(4). Finally, in section 5 we illustrate the performance of our algorithm on several
examples.

2. Notation and preliminaries. Throughout this work 2 is an open, bounded
and convex polytopal subset of R™ (n > 1) with boundary 9. The relation X <Y
indicates that X < CY, with a nonessential constant C' that might change at each
occurrence.
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OPTIMIZATION IN ORDER 3

2.1. The fractional Laplacian. Spectral theory for the operator —A yields
the existence of a countable collection of eigenpairs {\x, 9k tren C RT x H}(Q) such
that {pk }ren is an orthonormal basis of L?(2) and an orthogonal basis of H{(£2) and

(5) — A = Appg in Q, wr =0 on 99, k e N.

With this spectral decomposition at hand, we define the fractional powers of the
Dirichlet Laplace operator, which for convenience we simply call the fractional Lapla-
cian, as follows: For any s € (0,1) and w € C5°(£2),

(6) (—A)*w = Z MWk,  wr = (W, Pr)2(0) = / wey, d.
keN Q
By density, this definition can be extended to the space
(7) H*(Q) = {w:Zwkgok eL*(Q): > Nuwp <oo}7
kEN keN

which we endow with the norm

(8) [[w]

1
2
Hs (Q) = <Z AZ“’%) ;

keN

see [5, 6, 9] for details. The space H*(Q) coincides with [L?(Q), H}(Q)]s, i.e., the
interpolation space between L?(Q2) and Hg(€); see [1, Chapter 7]. For s € (0,1), we
denote by H™%(€Q2) the dual space to H*(2) and remark that it admits the following
characterization:

(9) H™*(Q) = {w =D wepr €D'(Q) 1 YA wi < oo} ,

keN keN

where D’(2) denotes the space of distributions on Q. Finally, we denote by (-,-) the
duality pairing between H*(Q2) and H—*(2).

3. The fractional identification problem. In this section we study the exis-
tence of minimizers for the fractional identification problem (3)—(4), as well as optimal-
ity conditions. We begin by introducing the so-called control to state map associated
with problem (3)—(4) and studying its differentiability properties. This will allow us
to derive first order necessary and second order sufficient optimality conditions for
our identification problem, as well as existence results.

3.1. The control to state map. In this subsection we study the differentiabil-
ity properties of the control to state map S associated with (3)—(4), which we define
as follows: Given a control s € (0,1), the map S associates to it the state u = u(s)
that solves problem (4) with the forcing term f € H™*(£2). In other words,

(10) S:(0,1) 5 H(Q),  s—S8(s)= > A, frpn,
keN

where f, = (f, o) and {Ag, o }ren are defined by (5). Since f € H™*(Q), the charac-
terization of the space H™*(Q2), given in (9), allows us to immediately conclude that
the map S is well-defined; see also [6, Lemma 2.2].
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4 H. ANTIL, E. OTAROLA, A.J. SALGADO

Before embarking on the study of the smoothness properties of the map S we
define, for A > 0, the function Ej : (0,1) = RT by

(11) E\(s) =277, s€(0,1).

A trivial computation reveals that

(12) DIEA(s) = (—)" (W Ex(s), m €N,

from which immediately follows that, for m € N, we have the estimate
(13) DBy (s)| S 57,

where the hidden constant is independent of s, it remains bounded as A 1 oo, but
blows up as A | 0; compare with [12, eq. (2.27)].

With this auxiliary function at hand we proceed, following [12], to study the
differentiability properties of the map S. To begin we notice the inclusion S((0,1)) C
L?(9) so we consider S as a map with range in L%(Q) and we will denote by ||| - ||| the
norm of £(R, L?(12)).

THEOREM 1 (properties of ). Let S : (0,1) — L%(Q) be the control to state
map, defined in (10), and assume that f € L*(Q). For every s € (0,1) we have that

(14) S(8)2) S 1,

where the hidden constant depends on 2 and ||f||12(q), but not on s. In addition, S
is three times Fréchet differentiable; the first and second derivatives of S are charac-
terized as follows: for hi, hy € R, we have that

(15) DS(s)[h1] = h1Dsu(s), D28(s)[hi, ha] = hihaD?u(s),
where

Dgu(s) = — Z AL In(Ap)feor, D?u(s) = Z LS In?(\g)fron.
keN keN

Finally, form =1,2,3, we have
(16) 1 DTS < s™™,

where the hidden constants are independent of s.

Proof. Let s € (0,1). To shorten notation we set u = S(s). Using (10) we have
that

(17) lullZ20) = Z AR < AT 2 )
keN

where we used that, for all k € N, 0 < Ay < Ag. Since sup,¢(g 1 A ¥ is bounded, we
obtain (14).

We now define, for N € N, the partial sum wy = ij:l AL *fror. Evidently, as
N — 0o, we have that wy — u in L?(Q). Moreover, differentiating with respect to s
we immediately obtain, in light of (12), the expression

Dwy == > A In(Ae)fer,
k<N
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OPTIMIZATION IN ORDER 5

and, using (12) and (13), that

||Dsz||2L2(Q) = Z |Ds B, (s)]*f; < 2||f||L2(Q
k<N

where we used, again, that the eigenvalues are strictly away from zero. This estimate
allows us to conclude that, as N — oo, we have Dswy — Dgu in LQ(Q) and the
bound

(18) [Dsu(s)lz2) S 571||f||L2(Q)

Let us now prove that S is Fréchet differentiable and that (15) holds. Taylor’s
theorem, in conjunction with (12), yields that, for every [ € N and h; € R, we have

1
€ls := |E>\z (S + hl) - E/\z(s) - DSE/\z(S)h1| = ih%‘DgE)\z (0)‘7

for some 6 € (s — |h1|, s + |h1]). Now, if |h1| < s/2, we have that 72 < 4572, and
thus, in view of estimate (13), that

1 -
— DL (O)] S s,

This last estimate allows us to write

IS(s +h1) = S(s) = Dsu(s)llfz iy = Y i fi S his™IIfll72 ().
keN

where the hidden constant is independent of hy and s. The previous estimate shows
that S : (0,1) — L2(Q) is Fréchet differentiable and that D;S(s)[h1] = h1Dsu(s).
Finally, using (18), we conclude, estimate (16) for m = 1.

Similar arguments can be applied to show the higher order Fréchet differentiability
of § and to derive estimate (16) for m = 2,3. For brevity, we skip the details. |

3.2. Existence and optimality conditions. We now proceed to study the
existence of a solution to problem (3)—(4) as well as to characterize it via first and
second order optimality conditions. We begin by defining the reduced cost functional

(19) f(s) = J(s,8(s)),

where S denotes the control to state map defined in (10) and J is defined as in (1); we
recall that ¢ € C?(a,b). Notice that, owing to Theorem 1, S is three times Fréchet
differentiable. Consequently, f € C?(a,b) and, moreover, it verifies conditions similar
to (2). These properties will allow us to show existence of an optimal control. We
begin with a definition.

DEFINITION 2 (optimal pair). The pair (5,u(8)) € (a,b) x H¥(Q) is called optimal
for problem (3)—(4) if u(5) = S(5) and

f(3) < f(s),

for all (s,u(s)) € (a,b) x H*(2) such that u(s) = S(s).

THEOREM 3 (existence). There is an optimal pair (5,u(s)) € (a,b) x H¥(Q) for
problem (3)—(4).
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6 H. ANTIL, E. OTAROLA, A.J. SALGADO

Proof. Let {a; }ien, {bi}1en C (a,b) be such that, for every l € N, a < aj41 < a1 <
by < b1 < band a — a, b — b asl — oco. Denote I; = [a;,b;] and consider the
problem of finding

s; = argmin f(s).
sel)
The properties of f guarantee its existence. Notice that, since the intervals I; are
nested, we have

f(sm) < f(s1), m > 1.

We have thus constructed a sequence {s;}eny C (a,b) from which we can extract a
convergent subsequence, which we still denote by the same {s;};cn, such that s; —
5 € [a,b]. We claim that f attains its infimum, over (a,b), at the point §.
Let us begin by showing that, in fact, § € (a,b). The decreasing property of
{f(s1) }ien shows that
f(3) < f(s1), VIeN,

which, if § = a or § = b, would lead to a contradiction with the fact that f(s) > ¢(s)
and (2).

Let s, be any point of (a,b). The construction of the intervals I; guarantee that
there is L € N for which s, € I; whenever [ > L. Therefore, we have

f(5) < fls1) = géi}llf(S) < f(s54).

Which shows that 5 is a minimizer.

Since S, as a map from (a,b) to L*(), is continuous — even differentiable — we
see that there is u € L?(12), for which S(s;) — @ in L*(Q) as [ — oco. Let us now show
that, indeed, 0 € H*(Q) and that it satisfies the state equation.

Set U = ),y Urr and notice that, as [ — oo,

(S(Sl) -, @m)Lz(Q) = )‘:nslfm —Um — /\;ffm — Uy

Therefore O,, = A, *f,,. This shows that & € H*(Q) and that @ solves (4).
The result is thus proved. 0

We now provide first order necessary and second order sufficient optimality con-
ditions for the identification problem (3)—(4).

THEOREM 4 (optimality conditions). Let (5,u) be an optimal pair for problem
(3)=(4). Then it satisfies the following first order necessary optimality condition

(20) (U — Uq, DSG)LZ(Q) + (P/(g) =0.

On the other hand, if (3,u0), with t = §(8), satisfies (20) and, in addition, the second
order optimality condition

(21) (D, Dyt) 20y + (0 — ug, D20) 1200y + ¢"(5) > 0

holds, then (8,0) is an optimal pair.

Proof. Since, as shown in Theorem 3, § € (a,b), the first order optimality condi-
tion reads:

(22) f'(5) = (8(5) = ua, DsS(5)) 12() + ¢'(5) = 0.

This manuscript is for review purposes only.



214
215

216

217
218
219
220
221
222

229

230

231
232

234
235
236
237
238
239
240
241
242
243

OPTIMIZATION IN ORDER 7

The characterization of the first order derivative of S, given in Theorem 1, allows us
to conclude (20). A similar computation reveals that

(23)  ["(8) = (DsS(5), DsS(5)) L2(0) + (S(5) — ua, D3S(5)) 20y + ¢ (5).
Using, again, the characterization for the first and second order derivatives of S given
in Theorem 1 we obtain (21). This concludes the proof. |

Let us now provide a sufficient condition for local uniqueness of the optimal
identification parameter s. To accomplish this task we assume that the function ¢,
that defines the functional J in (1), is strongly convex with parameter &, i.e., for all
points s1, s2 in (a,b), we have that

(24) (#'(s1) = ¢/ (s2)) - (51— 82) = €] 51 — 8o
We thus present the following result.

LEMMA 5 (second-order sufficient conditions). Let § be optimal for problem (3)—
(4) and f be defined as in (19). If ||f||L2(q) and |[ual/z2(q) are sufficiently small, then
there exist a constant ¥ > 0 such that

(25) 1"(3) = 9.
Proof. On the basis of (23), we invoke the strong convexity of ¢ to conclude that
F(3) 2 IDsSG)Z2(q) + (S(5) — ua, DIS(3)) r2(0) + €.

It thus suffices to control the term (S(5) — ugq, DZS(5)) 12(0); and to do so we use the
estimates of Theorem 1. In fact, we have that

I(S(5) = ua, DIS(5)) 12| < C1 (Callfllr2) + luallzzo)) 57 21fll L2 (o)

where C7 and C5 depend on 2 and the operator —A but are independent of s, f and
ug. Since Theorem 3 guarantees that § € (a,b), we conclude that the right hand side
of the previous expression is bounded. This, in view of the fact that [/f|[;2q) and
lual£2(q) are sufficiently small, concludes the proof. d

As a consequence of the previous Lemma we derive, for the reduced cost functional
f, a convexity property that will be important to analyze the fully discrete scheme of
section 4, and a quadratic growth condition that implies the local uniqueness of s.

COROLLARY 6 (convexity and quadratic growth). Let 5 be optimal for problem
(3)—(4) and f be defined as in (19). If ||f||z2(q) and [Juallz2(q) are sufficiently small,
then there exists § > 0 such that

(26) (f’(s)—f’(g))~(s—§)2g|s—§|2 Vs € (a,b)N(5§—96,5+9),

where ¥ is the constant that appears in (25). In addition, we have the quadratic growth
condition

(27) £(s) 2f(§)+g|s—§|2 Vs € (a,b) N (5 — 6,5 + 6).

In particular, f has a local minimum at 5. Moreover, this minimum is unique in
(§_67§+5)m(a7b)'

Proof. Estimates (26) and (27) follow immediately from an application of Taylor’s
theorem and estimate (25); see [14, Theorem 4.23] for details. The local uniqueness
follows immediately from (27). 0
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8 H. ANTIL, E. OTAROLA, A.J. SALGADO

4. A numerical scheme for the fractional identification problem. In this
section we propose a numerical method that approximates the solution to the frac-
tional identification problem (3)—(4). To be able to provide a convergence analysis of
the proposed method we make the following assumption.

Assumption 7 (compact subinterval). The optimization bounds a and b satisfy
0<a<b<l1.

The scheme that we propose below is based on the discretization of the first order
optimality condition (20): we discretize the first derivative Dsu(s) in (20) using a
centered difference and then we approximate the solution to the state equation (4)
with the finite element techniques introduced in [9].

4.1. Discretization in s. To set the ideas, we first propose a scheme that
only discretizes the variable s and analyze its convergence properties. We begin by
introducing some terminology. Let ¢ > 0 and s € (a,b) such that s £ ¢ € (a,b). We
thus define, for ¢ : (a,b) — R, the centered difference approximation of Ds1) at s by

Us+0)— (s —a)

(28) doi(s) = =

If ¢ € C3(a,b), a basic application of Taylor’s theorem immediately yields the estimate

2
g -
(29) |Dsw(5) - d(ﬂ/)(s)| < ?”Dgw”ﬂ”(s—a,s—&-o)'
We also define the function j, : (a,b) — R by

(30) Jo(8) = (u(s) — ug, dou(s))L2(q) + ¢'(s),

where u(s) denotes the solution to (4). Finally, a point s, € (a,b) for which

(31) jo(so) =0,

will serve as an approximation of the optimal parameter s.

Notice that, in (30), the definition of j, coincides with the first order optimality
condition (20), when we replace the derivative of the state, i.e., D;u, by its centered
difference approximation, as defined in (28). The existence of s, will be shown by
proving convergence of Algorithm 1 which, essentially, is a bisection algorithm. In
addition, if the algorithm reaches line 14, since j, € C([s;, sr]) and it takes values
of different signs at the endpoints, the intermediate value theorem guarantees that
the bisection step will produce a sequence of values that we use to approximate the
root of j,. It remains then to show that we can eventually find the requisite interval
[s1, sr] C (a,b). This is the content of the following result.

LEMMA 8 (root isolation). If o is sufficiently small, there exist s; and s, in
(a,b) such that j,(s;) <0 and j,(s,) > 0, i.e., the root isolation step in Algorithm 1
terminates.

Proof. We begin the proof by noticing that, for s € (0,1 — o) C (a,b), the

estimates of Theorem 1 immediately yield the existence of a constant C' > 0 such that

(32) (u(s) s dot(5)) oy | < &

g
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Algorithm 1 Bisection algorithm.

1: 0 <o <1 and set s, s, € (a,b), with s; < s;.; > Initialization
> We take care of possible degenerate cases

if j,(s;) =0 then
S = S,

end if

if j,(sr) = 0 then
So = Sr;

end if

> Root isolation

%

while j,(s,) <0 do

9: Sy 1= 8, + 0;

10: end while

11: while j,(s;) > 0 do

12: S| = 8§ — 0,

13: end while

> Bisection

14: k=1,

15: repeat

16: Sk = %(sl + 50);

17: if jo(sx) =0 then

18: Sg = Sk,

19: break; > The solution has been found
20: end if

21: if jo(s1)jo(sx) > 0 then > Sign check
22: S| = Sk,

23: else

24: Sy = Sk;

25: end if

26: k=k+1,
27: until forever

where C' depends on €2, ug and f but not on s or o.

On the other hand, since property (2) implies that ¢'(s) — —oo as s | a, we
deduce the existence of ¢, > 0 such that, if s € (a,a+¢;) then ¢'(s) < —C/o. Assume
that o < ¢. Consequently, in view of the bound (32), definition (30) immediately
implies that, for every s € (a + 0,a + ¢;), we have the estimate

C
Jo(s) < s +¢'(5) < 0.

Similar arguments allow us to conclude the existence of €, > 0 such that, if s €
(b — €-,b) then ¢/(s) > C/o. Assume that o < ¢, . We thus conclude that, for every
s € (b—¢€,b— o), we have the bound

) C
Jols) 2 =+ ¢/(s) > .
In light of the previous estimates we thus conclude that, for o < min{e;, €, }, we

can find s; and s, in (a,b) such that j,(s;) < 0 and j,(s,) > 0. This concludes the
proof. 0
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10 H. ANTIL, E. OTAROLA, A.J. SALGADO

From Lemma 8 we immediately conclude that the bisection algorithm can be
performed and exhibits the following convergence property.

LEMMA 9 (convergence rate: bisection method). The sequence {si}r>1 gener-
ated by the bisection algorithm satisfies

(33) 56 — 8] S 277,

In addition, there exists s; and s, such that a < s; < s, < b and s, € (s, 5,).

The results of Lemmas 8 and 9 guarantee that, for a fixed o, the bisection algo-
rithm can be performed and exhibits a convergence rate dictated by (33). Let us now
discuss the convergence properties, as 0 — 0, of this semi-discrete method. We begin
with two technical lemmas.

LEMMA 10 (convergence of j,). Let j, : (a,b) = R be defined as in (30), then,
Jjo = f on (a,b) as o — 0.

Proof. From the definitions we obtain that, whenever s € (a,b)

1£/(5) = jo(s)| = | (u(s) — ug, Dsu(s) — dgu(s))L2(o)|

S sup [[Dsu(s) — dsu(s)|[r2(a),
s€la,b]

where the hidden constant depends on ug and estimate (14). Since, from Theorem 1
we know that the control to state map is three times differentiable, we can conclude

that

0.2

1Dsu(s) = dou(s)lizz ) S 3
where we used a formula analogous to (29) and estimate (16). The fact that a > 0
(Assumption 7) allows us to conclude. 0

With the uniform convergence of j, at hand, we can obtain the convergence of
its roots to parameters that are optimal.

LEMMA 11 (convergence of s,). The family {s;}o~0 contains a convergent sub-
sequence. Moreover, the limit of any convergent subsequence satisfies (20).

Proof. The existence of a convergent subsequence follows from the fact that
{$0}o>0 C [a,b]. Moreover, as in Theorem 3, we conclude that the limit is in (a,b).
Let us now show that any limit satisfies (20).

By Lemma 10, for any € > 0, if ¢ is sufficiently small, we have that

| (s0)] = 1f'(80) = Jo(s0)] <€

which implies that f/'(s,) — 0 as ¢ — 0. Let now {s,, }xen C {5} be a convergent
subsequence. Denote the limit point by s € (a,b). By continuity of f’ we have
1f'(s0,,) = f'(s) which implies that

f'(s) = 0. O

Remark 12 (stronger convergence). It is expected that we cannot prove more
than convergence up to subsequences, since there might be more than one s that
satisfies (20). If there is a unique optimal s, then the previous result implies that the
family {s,},>0 converges to it.
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In what follows, to simplify notation, we denote by {s,},>0 any convergent sub-
family. The next result then provides a rate of convergence.

THEOREM 13 (convergence rate in o). Let 5 denote a solution to the identifica-
tion problem (3)—(4) and let s, be its approzimation defined as the solution to equation
(31). If o is sufficiently small then we have

2
_ o
ERERBS 3 (IFll 22 (e2) + lluall2))
where the hidden constant is independent of 3, s,, o, f and ug.

Proof. We begin by considering the parameter o sufficiently small such that s, €
(§—0,5+9), where 0 > 0 is as in the statement of Corollary 6. Thus, an application
of the estimate (26) in conjunction with the fact that j,(s,) = 0 allow us to conclude
that

515 = 501? < (f'(5) = f'(50)) - (5 = 50) = f'(50) (55 — 3)
= (f'(s¢) = Jo(50)) - (50 — 5).

Consequently, following Lemma 10 we obtain that

W
=15 — so| < |(u(s5) — ug, Dsu(ss) — dyu(ss)) 2
(34) 2 ‘ d L <Q>‘

i)

g

S pe) (||f||L2(Q) + ||ud||L2(Q)) .

The theorem is thus proved. 0

4.2. Space discretization. The goal of this subsection is to propose, on the
basis of the bisection algorithm of section 4.1, a fully discrete scheme that approx-
imates the solution to problem (3)—(4). To accomplish this task we will utilize the
discretization techniques introduced in [9] that provides an approximation to the so-
lution to the fractional diffusion problem (4). In order to make the exposition as clear
as possible, we briefly review these aforementioned techniques below.

4.2.1. A discretization technique for fractional diffusion. Exploiting the
cylindrical extension proposed and investigated in [3, 6, 13], that is in turn inspired
in the breakthrough by L. Caffarelli and L. Silvestre analyzed in [4], the authors of
[9] have proposed a numerical technique to approximate the solution to problem (4)
that is based on an anisotropic finite element discretization of the following local and
nonuniformly elliptic PDE:

(35) div(y*V%) =01in C, % =0on JrC, Opo% = dsf in Q.
Here, C denotes the semi—infinite cylinder with base €2 defined by
C=Qx(0,00) CRY ={(2,y) : 2’ € R",y > 0},
and 95,C = 99 x [0, 00) its lateral boundary. In addition, ds = 2°T'(1 — s)/T'(s) and

@ = — 1. « .
8,, K y—1>r(I)1+y %y

Finally, « = 1—2s € (=1, 1). Although degenerate or singular, the variable coefficient
y® satisfies a key property. Namely, it belongs to the Muckenhoupt class Ap(R™F1).
This allows for an optimal piecewise polynomial interpolation theory [9].
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To state the results of [3, 4, 6, 13], we define the weighted Sobolev space
Hi(y*,C) = {we H' (y*,C) :w =0 on d:C},
and the trace operator
(36) tro : Hi (y*,C) — H*(Q), w — tro w,

where tro w denotes the trace of w onto Q x {0}.
The results of [3, 4, 6, 13] thus read as follows: Let % € H} (y*,C) and u € H*(Q)
be the solutions to (35) and (4), respectively, then

(37) u= tI'Q U .

A first step toward a discretization scheme is to truncate, for a given truncation
parameter & > 0, the semi-infinite cylinder C to Cy := Q x (0,9) and seek solutions
in this bounded domain. In fact, let v € H} (y*,Cy) be the solution to

(38) / VOV -V = dy(ftrad) Yo € HL(y®,Cy),
Cy

where H} (y*,Cy) = {we H' (y*,Cy) :w=00ndrCy UQ x {7}}. Then the expo-
nential decay of % in the extended variable y implies the following error estimate

IV(% —v)|l2ye o) S ef‘myMHfHHﬂ(Q),

provided 9 > 1, and the hidden constant depends on s, but is bounded on compact
subsets of (0,1). We refer the reader to [9, Section 3] for details. With this truncation
at hand, we thus recall the finite element discretization techniques of [9, Section 4].

To avoid technical difficulties, we assume that €2 is a convex polytopal subset of R™
and refer the reader to [11] for results involving curved domains. Let 95 = {K} be a
conforming and shape regular triangulation of € into cells K that are isoparametrically
equivalent to either a simplex or a cube. Let Z,, = {I} be a partition of the interval
[0,9] with mesh points

=—>1.
l1—a 2s

SN\
(39) yj:(j\]» ¥, j=0,..., M, ~>
We then construct a mesh of the cylinder Cy by Ty = T ® Ly, i.e., each cell T € Fy
is of the form T'= K x I where K € 9 and I € Z,,. We note that, by construction,
# Ty = M# T. When T, is quasiuniform with # .7 ~ M™ we have # 7, ~ M"*!
and, if hg, = max{diam(K) : K € J,}, then M =~ h}flz Having constructed the
mesh 7, we define the finite element space

V(Jy) == {W € C°(Cy) : Wip € P(K) @ Py(I) VT € Ty, Wip, =0},

where, I'p = 9Q x [0,9) U Q x {9}, and if K is isoparametrically equivalent to a
simplex, P(K) = Py(K) i.e., the set of polynomials of degree at most one. If K is a
cube P(K) = Q1(K), that is, the set of polynomials of degree at most one in each
variable. We must immediately comment that, owing to (39), the meshes .7y are not
shape regular but satisfy: if T} = K7 x I; and T = K5 X I5 are neighbors, then there
is & > 0 such that

h[l glih[w h]:|I|
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The use of anisotropic meshes in the extended direction y is imperative if one wishes
to obtain a quasi-optimal approximation error since %, the solution to (35), possesses
a singularity as y J 0; see [9, Theorem 2.7].

We thus define a finite element approximation of the solution to the truncated
problem (38): Find Vg, € V(7y) such that

(40) / y*VVg, - VW =dy(f, trq W) VW € V(7).
Cy

With this discrete function at hand, and on the basis of the localization results of
Caffarelli and Silvestre, we define an approximation Ug,, € U(7q) = trq V(7 ) of the
solution u to problem (4) as follows:

(41) Uz, =trqVg,.

4.2.2. A fully discrete scheme for the fractional identification problem.
Following the discussion in [9] one observes that many of the stability and error esti-
mates in this work contain constants that depend on s. While these remain bounded
in compact subsets of (0,1) many of these degenerate or blow up as s . 0 or s 1 1.
In fact, it is not clear if the PDE (35) is well under the passage of these limits. Even
if this problem made sense, the Caffarelli-Silvestre extension property (37) does not
hold as we take the limits mentioned above. For this reason, we continue to work
under Assumption 7. We begin by defining the discrete control to state map S as
follows:

Sa:(a,b) =5 U(T), s—Ug,(s),

where Ug, (s) is defined as in (41). We also define the function j, o : (a,b) — R as
(42) Jo,7(8) = (Uzy(s) — ug, deUs, (3))L2(Q) + (pl(S),

where the centered difference d,, is defined as in (28). With these elements at hand,
we thus define a fully discrete approximation of the optimal identification parameter
5 as the solution to the following problem: Find s, o € (a,b) such that

(43) jmy(smy) =0.

We notice that, under the assumption that the map Sz is continuous in (a, b), the
same arguments developed in the proof of Lemma 8 yield the existence of s, 7 and
s,z in (a,b) such that j, 7(sr,z) < 0 and j,, 7 (s;,) > 0. This implies that, if in the
bisection algorithm of section 4.1 we replace j, by js, 7, the step Root isolation can
be performed. Consequently, we deduce the convergence of the bisection algorithm
and thus the existence of a solution s, 7 € (a,b) to problem (43).

It is then necessary to study the continuity of S, but this can be easily achieved
because we are in finite dimensions and the problem is linear.

PROPOSITION 14 (continuity of Sz). For every mesh Jy, defined as in Section
4.2.1, the map Sz is continuous on (a,b).

Proof. Let {sp}tren C (a,b) be such that sp — s € (a,b). Since the operator
trg, defined as in (36), is continuous [9, Proposition 2.5], it suffices to show that the
application s — Vi (s) is continuous. Consider

Vi (s) € V() : / YTV (5) - VW, = dy(F tra Wa) VIV, € (),
Cy
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and
Vo, (sk) € V(Ty) : / Y TV Vg, () - VW = dg, (F,trq Wi) YW, € V().
Cy
Set Wy = Vg, (s) — Vg, (sk) and Wy = Vg, (sx) — V7, (s) and add these two identities

to obtain
IV (Vg (s) = Vi (si)) 72120 ¢,y = (ds = ds ) (f, tra(Viz, (s) — Vig, (s1)))

+ /C (y' 2% =y )WV, (sk) - V(Vig, (s) — Vig, (s)) = T+ 1L

We now proceed to estimate each one of these terms.
For the first term we have

1| < |ds — ds, |[Ifll2 ) | tra (Vi (s) — Vi, (si) || L2 (@) — 0

as k — oo. This is the case because || tra(Vg, (s) = Vg, (sx)| 12 (q) is uniformly bounded
[9, Proposition 2.5] and, by Assumption 7, we have that ds, — ds.
We estimate the second term as follows

>
I < [QIVVa, (si)ll 2oy [V (Vi (s) — Vﬂy(Sk»HLoo(cy)/o |yt 28—yt 28k,

Using that we are in finite dimensions, the question reduces to the convergence

s
/ |y1—28 _ y1—28k| — O7
0

which follows from the a.e. convergence of y' =2 to y'~2°, the fact that, for 0 <
y < 1, we have 0 < y'=2% < yl=2¢ € [1(0,1) and an application of the dominated
convergence theorem.

This concludes the proof. 0

We now proceed to derive an a priori error bound for the error between the exact
identification parameter § and its approximation s, # given as the solution (43). We
begin by noticing that, following the proof of Lemma 10, using [10, Proposition 28]
and Assumption 7 we have

(44) o (8) = Jo,7(8)] S §| log(# Ty )2 (# )~ (H0)/ (n+D)

where the hidden constant depends on a and b but is uniform in (a,b). Clearly, for
fixed o, this implies the uniform convergence of j, 7 to j, as we refine the mesh.
By repeating the arguments of Lemma 11 we conclude the convergence, up to subse-
quences, of {s; 7} to s,, a root of j,. Arguing as in Remark 12, we see that we
cannot expect convergence of the entire family.

Finally, we denote one of these convergent subsequences by {s,, &} and provide
an error estimate.

THEOREM 15 (Error estimate: discretization in s and space). Let 5 be optimal for
the identification problem (3)—(4) and sy, 7 its approzimation defined as the solution
o (43). If o is sufficiently small, #Jy is sufficiently large and, f € H'~%(Q), then

(45) |5 = 50,7 | S o M log(# To) | (# To) "V IV g ) + 07,

where the hidden constant is independent of 5, s, 7, f and the mesh Jy.
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Proof. We begin by remarking that, by setting o sufficiently small and #.9,
sufficiently large, respectively, we can assert that s, o € (5 — 0,5+ ¢) with 0 being
the parameter of Corollary 6. By invoking the estimate (26) and in view of the fact
that f/(3) = 0 = jo,o(55,7), we deduce the following estimate:

g|5*50,9|2 < (f'(8) = ['(50,2))-(5=50,7) = (Jo,7(36,7) = ['(86,7))-(5—54,7).

We proceed to bound the right hand side of the previous expression. To accom-
plish this task, we invoke the definition (42) of j, 7 and repeating the arguments of
Lemma 10 we obtain that

(4 ) |j0,9(50,9) - f,(sa,9)| < ’(Uﬂg (5079) — Ug, dGUﬂg (30,9) - Dsu(sa,ﬂ))Lz(Q)‘
6
+ ‘(Uyn (50,3) - u(sa,ﬂ)vDsU(Sa,ﬂ))L2(Q)‘ =I+1IL

We thus examine each term separately. We start with II: its control relies on the a
priori error estimates of [9, 10]. In fact, combining the results of [10, Proposition 28]
with the estimate (16) for m = 1, we arrive at

11| < 1Dsu(so,7) |2 (@) U7 (80,7) — u(S0,7) | L2(2)
S s, | og(# Ty) 1?77 (# Ty) 100D f]| e 5 o

< | log(# T ) [P (# Ty )~/ FD | f |10 )

where the hidden constant depends on a and b but is independent of s, s, &, f and
Jy. Notice that here we used Assumption 7 to, for instance, control the term s;ly

We now proceed to control the term I 'in (46). A basic application of the Cauchy—
Schwarz inequality yields

1| < U, (86,7) — uallL2(@) lde Uz, (S0, 7) — Dsu(54,7)| L2(0)-
We thus apply the estimate (14) and the triangle inequality to obtain that
11 Mo (U (50.57) = u(50.7) | 20) + |[dou(50.7) = Dot(50,7) 1200
We estimate the first term on the right hand side of the previous expression: the
definition (28) of d, and [10, Proposition 28] imply that
1
ldo (U (30,7) = u(s0,7)) lL2(2) < o (llU% (80,7 +0) = u(So,7 +0)[lL2()

1 _lta
+ Uz (86,7 — ) — u(s5,7 — U)HL?(Q)) S ;| log(# Ty ) |* (# Ty )~ 71 |[f |- 0y

we notice that o is small enough such that s, 7 + 0 € (a,b). On the other hand, an
estimate similar to (29) yields that

||Dsu(30,9) - dou(50,9)||L2(Q) N o%a”?.

Collecting the previous estimates we arrive at the following bound for the term I:

(47) 1 S o log(#Ty) | (#T) "M |1 —a () + 0%,
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On the basis of (46), this bound, and the estimate for the term II yield
15— 80,71 S 0 [og(# 7)1 (# T) =+ D |- ) + 07,

where the hidden constant depends on a and b, but is independent of o and #.7.

This concludes the proof. 0

A natural choice of o comes from equilibrating the terms on the right—hand side
of (45): o = |log(# Ty )|?/3(# T )~ (1+a)/3(n+1) " This implies the following error
estimate.

COROLLARY 16 (error estimate: discretization in s and space). Let § be optimal
for the identification problem (3)—(4) and s,z be its approzimation defined as the
solution to (43). If #Jy is sufficiently large, the parameter o is chosen as

o~ |1og(#yy)|2b/3(#y ) (1+4a) /3(n+1)
and f € H'~%(Q) then

(48) 15— s0.2| < |log(#.Ty)| /3 (# Fy) 35

where the hidden constant depends on a and b but is independent of 5, 55,7, and the
mesh Ty .

5. Numerical examples. In this section, we study the performance of the pro-
posed bisection algorithm of section 4 when applied to the fully discrete parameter
identification problem of section 4.2.2 with the help of four numerical examples.

The implementation has been carried out within the MATLAB software library
iFEM [7]. The stiffness matrices of the discrete system (40) are assembled exactly and
the forcing terms are computed by a quadrature rule which is exact for polynomials
up to degree 4. Additionally, the first term in (42) is computed by a quadrature
formula which is exact for polynomials of degree 7. All the linear systems are solved
exactly using MATLAB'’s built-in direct solver.

In all examples, n = 2, = (0,1)2, TOL = 2.2204¢-16, and the initial value of
Sy, Sr 18 0 3, and 0.9, respectively. The truncation parameter for the cylinder Cy is
=14z (# g ) which allows balancing the approximation and truncation errors for
our state equation, see [9, Remark 5.5]. Moreover,

ato

(#7y) ;

with e = 10719,
Under the above setting, the eigenvalues and eigenvectors of —A are:

Mg =12 (k2 +1%),  @ri(21,22) = sin(kmay) sin(irws), k,1€N.

Consequently, by letting f = A3 522 for any s € (0,1) we obtain U = ¢z 5.

In what follows we will consider four examples. In the first one we set § = 1/2,
f and U as above and we set uy; = u. The second one differs from the first one in
that we set 5 = (3 — v/5)/2. In our third example, the exact solution is not known.
Finally, in our last example we explore the robustness of our algorithm with respect
to perturbations in the data. We accomplish this by considering the same setting as
in the first example but we add a random perturbation r € (—e, e) to the right hand
side f. We then explore the behavior of the optimal parameter § as the size of the
perturbation e varies.
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5.1. Example 1. We recall the definition of the cost function J(u,s) from (1)
and set p(s) = ﬁ The latter is strictly convex over the interval (0,1) and fulfills
the conditions in (2). The optimal solution § to (3)—(4) is given by 5 = 1/2.

Table 1 illustrates the performance of our optimization solver. The first column
indicates the degrees of freedom #.7y, the second column shows the value of s, &
obtained by solving (43), and the third column shows the corresponding value j, 7 at
55,7. The final column shows the total number of optimization iterations N taken,
for the bisection algorithm to converge. We notice that the observed values of s, o
matches almost perfectly with 5. In addition, the pattern in IV, as we refine the mesh,
indicates a mesh-independent behavior.

#79/ S0, T ja,y(sa,ﬂ) N

3146 | 4.96572¢-01 | -8.89011e-14 | 53

10496 | 4.98371e-01 | -8.38218e-14 | 53

25137 | 4.99069e-01 | 3.49235e-14 | 53

49348 | 4.99402e-01 | 1.52327e-12 | 53

85529 | 4.99585e-01 | 6.28221e-12 | 53
TABLE 1

The first column indicates the degrees of freedom, the second one corresponds to the solution
Sq,7 of our discrete optimality system (43) and the third column illustrates the corresponding value
of jo,7 at ss . The final column shows, N, the number of iterations taken by the bisection
algorithm to converge. The values of N are moderate. Additionally, we observe that s, o matches
with the exact solution § = 1/2 and the pattern in N shows a mesh independent behavior upon mesh
refinement.

Figure 1 (left panel) shows the computational rate of convergence. We observe
that
|5 = 80,7 S #Ty)™"°
which is significantly better than the predicated rate of (#.Z)~ 22 by the Corol-
lary 16. Indeed this suggests that our theoretical rates are pessimistic and in practice,
our algorithm works much better.

5=S85.,7|

[5=55.1

=+-ls =507
—%=DOFsH

10

Error
Error

10k : Teendindold H : H e

4 4
10 10
Degrees of Freedom (DOFs) Degrees of Freedom (DOF's)

Fic. 1. The left panel (dotted curve) shows the convergence rate for Example 1 and the right
one for Example 2. The solid line is the reference line. We notice that the computational rates of
convergence, in both examples, are much higher than the theoretically predicted rates in Corollary 16.

5.2. Example 2. We set ¢(s) = s~leT™ 9 which is again strictly convex over
the interval (0, 1) and fulfills the conditions in (2). The optimal solution 5 to (3)—(4)
is given by 5 = (3 — v/5)/2.
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Table 2 illustrates the performance of our optimization solver. As we noted in
section 5.1, the numerically computed solution s, # matches almost perfectly with
5 and the pattern of NV, with mesh refinement, again indicates a mesh independent

behavior.
#99’ S0, T ja,y(sa,y) N
3146 | 3.81417e-01 | 9.99201e-16 | 46
10496 | 3.81697e-01 | -2.52812e-13 | 53
25137 | 3.81811e-01 | 1.36418e-12 | 53
49348 | 3.81866e-01 | 2.66251e-12 | 53
85529 | 3.81897e-01 | 3.53083e-12 | 53
TABLE 2

The first column indicates the degrees of freedom, the second one corresponds to the solution
Sq,a of our discrete optimality system (43) and the third column illustrates the corresponding value
of jo,o7 at sq . The final column shows, N, the number of iterations taken by the bisection
algorithm to converge. The values of N are moderate. Additionally, we observe that s, o matches
with the exact solution § = (3 —+/5)/2 and the pattern in N shows a mesh independent behavior
upon mesh refinement.

Figure 1 (right panel) shows the computational rate of convergence. We again
see that

|5~ so,.7| S (#T5)7"°

Thus the observed rate is far superior than the theoretically predicted rate in Corol-
lary 16.

5.3. Example 3. In our third example, we take ¢(s) = sileﬁ, f =10, and
Uy = max {0.5 —V/]r1 — 052 + |22 — O.5|2,O}. We notice that f is large, thus the
requirements of Theorem 13 are not necessarily fulfilled. In addition, for p < 1/2,
f ¢ H'7#(Q) thus the requirements of Corollary 16 are not fulfilled. Nevertheless,
as we illustrate in Table 3, we can still solve the problem. We again notice a mesh
independent behavior in the number of iterations () taken by the bisection algorithm
to converge.

#yﬂ’ S0, T ja,y(sa,ﬂ) N

3146 | 4.44005e-01 | 4.22951e-12 | 53

10496 | 4.47239e-01 | 2.97451e-11 | 53

25137 | 4.48182e-01 | -3.20792e-11 | 53

49348 | 4.48544e-01 | 4.83542¢-11 | 53

85529 | 4.48690e-01 | 2.68390e-10 | 53
TABLE 3

The first column indicates the degrees of freedom, the second one corresponds to the solution
5q,7 of our discrete optimality system (43) and the third column illustrates the corresponding value
Jo,7 at sg g . The final column shows, N, the number of iterations taken by the bisection algorithm
to converge. The values of N are moderate and show a mesh independent character.

5.4. Example 4. In our final example we consider a similar setup to subsec-
tion 5.1. We modify the right hand side f = A3 , sin(27x1) sin(2722), with 5 = 1/2,
by adding a uniformly distributed random parameter r € (—e, e). We fix the spatial
mesh to #.7, = 85,529.
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At first we set e = 200, as a result r is more than 200 times the actual signal f, see
the first row on Table 4. Despite such a large noise, the recovery of s is reasonable.
Letting e | 0, we can recover 5 almost perfectly.

€ S0, T ja,ﬁ(sa,ﬂ) N

200 | 6.33937e-01 | 7.28484e-12 | 53

20 | 5.06469e-01 | -5.17408e-12 | 53

2 | 4.99341e-01 | -7.37949e-12 | 53

0.5 | 4.99581e-01 | -5.68941e-12 | 53

0.25 | 4.99586e-01 | 3.64379e-12 | 53

0.125 | 4.99584e-01 | 3.33318e-13 | 53
TABLE 4

Robustness of our algorithm with respect to noisy data. The number of spatial degrees of

freedom is fized to # Ty = 85,529. The first column indicates the range of the uniformly distributed
parameter r which is added to the right hand side f, the second one corresponds to the solution s, o
of our discrete optimality system (43) and the third column illustrates the corresponding value jo o
at sq o . The final column shows N, the number of iterations taken by the bisection algorithm to
converge. Notice that even with a notse which is 200 times more than the actual signal f the recovery
of 5 is reasonable (first row). If the noise is of the same order as f we can recover 5 perfectly. The
values of N are moderate and show a mesh independent character.
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