OPTIMAL CONTROL OF A PARABOLIC FRACTIONAL PDE:
ANALYSIS AND DISCRETIZATION
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Abstract. We consider the integral definition of the fractional Laplacian and analyze a linear-
quadratic optimal control problem for the so-called fractional heat equation; control constraints are
also considered. We derive existence and uniqueness results, first order optimality conditions, and
regularity estimates for the optimal variables. To discretize the state equation equation we propose
a fully discrete scheme that relies on an implicit finite difference discretization in time combined
with a piecewise linear finite element discretization in space. We derive stability results and a novel
L2(0,T; L?(Q)) a priori error estimate. On the basis of the aforementioned solution technique, we
propose a fully discrete scheme for our optimal control problem that discretizes the control variable
with piecewise constant functions and derive a priori error estimates for it. We illustrate the theory
with one— and two—dimensional numerical experiments.
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1. Introduction. In this work we shall be interested in the design and analysis
of solution techniques for a linear-quadratic optimal control problem involving an
initial boundary value problem for a fractional parabolic equation. To make matters
precise, for n > 1, we let 2 C R™ be an open and bounded domain with Lipschitz
boundary 9f2; additional regularity requirements will be imposed in the course of our
convergence rate analysis ahead. Given a desired state ug : Q x (0,7) — R and a
regularization parameter p > 0, we define the cost functional

1 T
Hud) =5 [ (= vl + ulela) . (1)

Let f: Q@ x (0,7) — R and ug : 2 — R be fixed functions. We will call them the
right-hand side and initial datum, respectively. Let s € (0,1). We shall be concerned
with the following PDE-constrained optimization problem: Find

min J(u,z) (1.2)
subject to the fractional heat equation
Ou+ (—A)Yu=f+zin Q2 x(0,7), u=0in Q°x (0,7), u(0)=ugin Q, (1.3)
and the control constraints
a(z,t) < z(z,t) < b(z,t) ae (r,t)e@Q:=Qx(0,T). (1.4)

The functions a and b both belong to L?(Q) and satisfy the property a(z,t) < b(x,t)
for almost every (z,t) € Q. In (1.3), Q¢ := R™\ Q. For convenience, we will refer
to the optimal control problem 1) as the parabolic fractional optimal control
problem; see section [4] for its precise description and analysis.
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We adopt the integral definition of the fractional Laplace operator (—A)#, which,
from now on, we shall simply refer to as the integral fractional Laplacian. For smooth
functions w : R — R, (—=A)® can be naturally defined via Fourier transform:

F((=A)*w)(§) = [¢[* F(w)(€)- (1.5)
Equivalently, (—A)* can be defined by means of the following pointwise formula:

225sI'(s + )

A —s) 9

n

w(x) —w

(=A)*w(x) = C(n,s) p.v/ ;)y|n+<2ys)dy, C(n,s) =
where p.v stands for the Cauchy principal value and C(n, s) is a positive normalization
constant that depends only on n and s [I7, equation (3.2)]. C(n,s) is introduced to
guarantee that the symbol of the resulting operator is |£]2°. We refer the reader
to [25) section 1.1] and [I7, Proposition 3.3] for a proof of the equivalence of these
two definitions. We must immediately mention that in bounded domains, and in
addition to , there are many, non-equivalent, definitions of nonlocal operators
related to the fractional Laplacian; for instance, the regional fractional Laplacian and
the spectral fractional Laplacian.

Since the seminal work of Caffarelli and Silvestre [I0], the analysis of regularity
properties of solutions to fractional partial differential equations (PDEs) has received
a tremendous attention: fractional diffusion has been one of the most studied topics in
the past decade [10] 21], 29, B0]. Such an analysis has been motivated, in part, by the
fact that the integral fractional Laplacian of order 2s corresponds to the infinitesimal
generator of a 2s-stable Lévy process. These processes have been widely employed for
modeling market fluctuations, both for risk management and option pricing purposes
[14]. Further applications of fractional diffusion include nonlocal electrostatics [22],
image processing [20] 26], fluids [I1], 23], predator search behaviour [31], and many
others. It is then only natural that interest in efficient approximation schemes for
these problems arises and that one might be interested in their control.

The study of solution techniques for problems involving fractional diffusion is a
relatively new but rapidly growing area of research and thus it is impossible to provide
a complete overview of the available results and limitations. We restrict ourselves to
referring the interested reader to [8] for a survey. In contrast to these advances, the
study of solution techniques for PDE—constrained optimization problems involving
fractional and nonlocal equations have not been fully developed. To the best of our
knowledge, one of the first works in the elliptic setting is [I6], where the authors
consider an optimal control problem for a general nonlocal diffusion operator with
finite range interactions. Later, an elliptic optimal control problem for the spectral
fractional powers of elliptic operators was analyzed in [4]; numerical scheme were also
proposed and studied. Recently, a similar PDE—constrained optimization problem,
but for the integral fractional Laplacian, has been considered in [I5]. In this work, the
authors analyze the underlying control problem, derive regularity estimates, propose
numerical schemes, and derive a priori error estimates. We also mention [6], where an
optimal control problem for a fractional semilinear equation is considered. Concerning
parabolic optimal control problems, the first work that propose and study numerical
schemes when the state equation is the fractional heat equation is [5]. In this work, the
authors consider the spectral fractional powers of elliptic operators and derive error
estimates for a fully discrete scheme that approximates the solution of the underlying
optimal control problem. To close this paragraph, we would like to stress that the
integral and spectral definitions of the fractional Laplace operator do not coincide. In
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fact, solutions to linear and elliptic problems associated to these operator behave in
an essentially different way in terms of regularity properties.

The outline of this paper is as follows. The notation and functional setting is
described in section [2] where we also recall, in section [2.3] regularity results for the
elliptic counterpart of . In section 3| we derive the existence and uniqueness
of a weak solution for problem . In addition, we present energy estimates and
review regularity results. In section[d] we study the parabolic fractional optimal control
problem. We derive existence and uniqueness results together with first order sufficient
and necessary optimality conditions. In addition, we derive regularity estimates for
the optimal variables. In section |b| we introduce a fully discrete scheme for : we
consider the standard backward Euler scheme for time discretization and a piecewise
linear finite element discretization in space. For s € (0,1), we derive discrete stability
results and a L?(Q) a priori error estimate. To the best of our knowledge, these results
are not available in the literature. Section [6]is devoted to the design and analysis of
a numerical scheme to approximate the control problem 7. In particular,
in section we derive a priori error estimates. Finally, section [7] presents one-
and two—dimensional numerical experiments that illustrate the theory developed in
section

2. Notation and preliminaries. In this section we will introduce some nota-
tion and the set of assumptions that we shall operate under.

2.1. Notation. Throughout this work 2 is an open and bounded domain with
Lipschitz boundary 9. The complement of Q will be denoted by Q°¢. If T' > 0 is
a fixed time, we set Q@ = Q x (0,7"). Whenever X is a normed space we denote by
| - ||x its norm and by X’ its dual. For normed spaces X and ), we write X — ) to
indicate that X" is continuously embedded in ).

If D C R" is open and ¢ : D x [0,T] — R, we consider ¢ as a function of ¢ with
values in a Banach space X, ie., ¢ : [0,T] >t — ¢(t) = ¢(-,t) € X. For 1 < p < o0,
L?(0,T; X) is the space of X-valued functions whose X-norm is in LP(0,7). This is
a Banach space for the norm

1
T »
[0l Lo 0,7:2) = (/0 |¢>(t)|§(dt> , 1<p<oo, H¢||L°°(O,T;X):fS?SUP‘|¢(t)HX'
€

)

The relation a < b indicates that a < Cb with a nonessential constant C' that
might change at each occurrence.

2.2. Function spaces. For any s > 0, we define H*(R™), the Sobolev space of
order s over R™, by [32] Definition 15.7]

H*(R™) := {1} € L2(R™) : (1+[€)2)/2F(v) € LQ(R”)} .

With the space H*(R") at hand, we define H*(f2) as the closure of C§°(2) in H*(R™).
This space can be equivalently characterized by [27, Theorem 3.29]
H*(Q) = {v|q : v e H*(R"), supp v C Q}. (2.1)

When 99 is Lipschitz, H*(Q) is equivalent to H*(Q) = [L2(Q), H}(Q)]s, the real
interpolation between L?(Q) and H{(Q), for s € (0,1) and to H*(Q) N HL(Q) for
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s € (1,3/2) |27, Theorem 3.33]. We denote by H—*(£2) the dual space of H*(Q) and
by (-,-) the duality pair between these two spaces. We also define the bilinear form

Ay = 00 [ ()t ), (o

2 o — g

and denote by || - ||s the norm that A(-,-) induces, which is just a multiple of the
H?(R"™)-seminorm:

C(n,s)

lolls = A, o)t =/ =2

V] s (). (2.3)

2.3. Elliptic regularity. Let f € H~%(Q). Since the bilinear form A is con-
tinuous and coercive, an application of the Lax-Milgram Lemma immediately yields
well-posedness of the following elliptic problem: Find u € H*(2) such that

Au,v) = (f,0) Vo e H(Q). (2.4)

When 01 is smooth the following regularity properties for u can be derived.

PROPOSITION 2.1 (Sobolev regularity of u on smooth domains). Let s € (0,1)
and Q be a domain such that 00 € C*. If f € H"(Q), for some r > —s, then the
solution u of problem belongs to H*F?(Q), where ¥ = min{s +r,1/2 — €} and

€ > 0 is arbitrarily small. In addition, the following estimate holds:

lull oo ) S Nl Em(90) (2.5)

where the hidden constant depends on the domain Q, n, s, and 9.

Proof. See [21]. O

As a consequence of the previous result, it can be observed that smoothness of f
does not ensure that solutions are any smoother than H*+/2=¢(Q) with € > 0 being
arbitrarily small.

When €2 is a bounded Lipschitz domain satisfying the exterior ball condition, the
following regularity estimate can be derived [29]: If f € L*°(Q), then u € C*(R™).

3. The state equation. In this section we derive the existence and uniqueness
of a weak solution for the fractional heat equation (1.3). In addition, we present an
energy estimate and review regularity results.

3.1. Eigenvalue problem. Let us introduce the eigenvalue problem: Find
(A, p) € Rx H*(Q) \ {0} such that

A(p,v) = X, v)2) Yv e ]?[G(Q) (3.1)

Spectral theory yields the existence of a countable collection of solutions {Ag, ¢} C
Rt x H 5(€2), with the real eigenvalues enumerated in increasing order, counting mul-
tiplicities, and such that {¢y }ren is an orthonormal basis of L?(£2) and an orthogonal
basis of H*(Q).

3.2. Solution representation. We invoke the eigenparis { A\, ¢k }ren, defined
in section and formally write the solution to problem (|1.3)) as

u(z,t) = Zuk(t)gok(x). (3.2)

k=1
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Since, at this formal stage, we have u(xz,0) = ug(x), this representation yields the
following fractional initial value problem for ug:

Opuk(t) + Agug(t) = fe(t) +z(t), uk(0) =uok, k€N, (3.3)

where ug 1. = (Uo, &) r2(0), fe(t) = (f(-,1), or)2(0), and zx(t) = (z(-, 1), 1) 12(Q)- An
explicit representation formula for the solution uy to problem (3.3)) holds:

ug(t) = ugoe M 4 /0 e M (E (r) + 23, (7)) dr. (3.4)

3.3. Well-posedness. A weak formulation for problem (|1.3)) reads as follows:
Find u € V such that u(0) = ugy and, for a.e. ¢ € (0,T),

(Byu, 0) + A(u,0) = (F+2z,¢) Yo H(Q). (3.5)
The space V is defined as
V= {ve L*0,T; H*(Q) N L>®(0,T; L*(Q)) : dyv € L*(0,T; H*(R))}.  (3.6)
To simplify the exposition, we define

32 (v,8) = [VlIZ2(0) + el 2202 (0))- (3.7)

The following result provides the existence and uniqueness of a weak solution for
problem .

THEOREM 3.1 (well-posedness of (3.5)). Given s € (0,1), f € L*(0,T; H~*(2)),
z € L2(0,T; H=*(Q)), and ug € L*(2), problem has a unique weak solution. In
addition, we have the following energy estimate

lull =0, 7522 (0)) + lullz20, 7585 R )) S X(uo, f +2). (3.8)

The hidden constant does not depend on u nor the problem data.

Proof. Existence and uniqueness of a weak solution for problem can be
obtained in view of a standard spectral decomposition approach based on the solution
representation . The energy estimate (3.8) also follows from such a spectral
decomposition approach. O

Define

T2(v,g) = VI 7 ny + 8l 720.7:02(0))- (3.9)

Let f € L%(0,T; L*(Q)), z € L?(0,T; L*(Q)), and ug € H*(R"). Standard argu-
ments, which heuristically entail multiplying the state equation (|1.3)) by the derivative
of the solution u, yield the energy estimate

||atUHL2(O,T;L2(Q)) + HU||LOO(07T;H5(]R77,)) < T(UO, f+ Z), (3.10)
where the hidden constant does not depend on u nor the problem data.

3.4. Regularity estimates. We present the following regularity result.
THEOREM 3.2 (regularity estimate). Let s € (0,1) and 2 be a domain such that
oN e C™®. Iff+z¢e L>(0,T; L*(2)) and ug € H*(Q), then

lullz2co, 7547 )y + [10eullL2(@) S [luoll s @ny + [If + 2l Lo (0,7522(02)) (3.11)

where v = min{s,1/2 — e}. The hidden constant is independent of u and the problem
data.
Proof. See [I, Theorems 3.1 and 3.2]. O
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4. The fractional control problem. In this section, we study the parabolic
fractional optimal control problem. We provide existence and uniqueness results to-
gether with first order necessary and sufficient optimality conditions.

The parabolic fractional optimal control problem reads: Find min J(u,z) subject
to the state equation and the control constraints . The set of admissible
controls is defined by

Zoa = {w € L*(Q) : a(z,t) <w(z,t) <b(z,t) ae (z,t)€Q}. (4.1)

Notice that Z,q is a nonempty, bounded, closed, and convex subset of L?(Q).
To analyze 7, we introduce the so-called control to state operator.
DEFINITION 4.1 (control to state operator). The map S : L*(0,T; H=%(Q))
z— u(z) € V, where u(z) solves (1.3)), is called the fractional control to state operator.
We immediately notice that the control to state operator S is affine. In fact,

S(z) = So(z) + v, (4.2)

where Sg(z) denotes the solution to with f = 0 and ug = 0, while g solves (1.3
with z = 0. Notice that Sy is linear and continuous. By the estimates of Theorem [3.1]
S is continuous as well. Since V < L2(Q) < L?(0,T; H*(2)), we may consider the
operator S as acting from L?(Q) into itself. For simplicity, we keep the notation S.
We now define an optimal fractional state-control pair.
DEFINITION 4.2 (optimal fractional state-control pair). A state-control pair

(U(2),2) € V X Zyq is called optimal for (L.2)—~(L.4) if u(z) = Sz and
J(u(2),2) < J(u(z),2)

for all (u(z),z) € V X Z,q such that u(z) = Sz.
The existence and uniqueness of an optimal state-control pair is as follows.
THEOREM 4.3 (existence and uniqueness). The optimal control problem (|1.2)—
has a unique solution (U(2),z) € W X Z,q4.
Proof. Invoke S and reduce the optimal control problem f to: Minimize

1 1%
f(@) = 5”SZ - Ud||%2(Q) + 5”2”%2((;)) (4.3)

over Z,q. The strict convexity of f is immediate (x> 0). In addition, f is weakly
lower semicontinuous and Z,4 is weakly sequentially compact. The direct method of
the calculus of variations [I3, Theorem 5.51] allows us to conclude. O

4.1. Optimality conditions. The following result is standard.
LEMMA 4.4 (variational inequality). z € Z,q minimizes f over Z,q4 if and only if
it solves the variational inequality

(f'(2),z2—2)120) > 0 (4.4)

for every z € Z,4.
Proof. See [33 Lemma 2.21]. O
To explore first order optimality conditions, we introduce the adjoint state.
DEFINITION 4.5 (fractional adjoint state). The solution p = p(z) € V of

—op+ (-Ap=u—ugin Q, p=0inQ°x(0,7), p(T)=0inQ, (4.5)
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forz € L*(0,T; H=%(R)), is called the fractional adjoint state associated to u = u(z).
The following result is instrumental.
LEMMA 4.6 (auxiliary result). Let z denote the optimal control for problem (|1.2)—
(1.4) and 0 = Sz. For every z € Z,q4, we have

(U—ug,u—0)r2@Q) = (P.2— 2)12(Q)> (4.6)
where u =Sz € V and p = p(z) € V solve problems (3.5)) and (4.5)), respectively.

Proof. Define x := u—u € V. Since u solves (3.5) and u = Sz, we obtain that
x(0) =0 in Q and that, for a.e. t € (0,7,

O, 8) + A(x, ¢) = (z—2,)12(0) Vo € H(Q). (4.7)

Set ¢ = p(t) in (4.7) and integrate over time to arrive at the identity

T
(A[@%@+AWﬁﬂﬁ:@—Z@m@y

In view of the initial condition x(0) = 0, the terminal condition p(T") = 0, and the
symmetry of the bilinear form A, an integration by parts formula yields

T
A [0, x) + APy )] dt = (P2 — 2)12()-

Now, set x as a test function in the weak version of (4.5) and integrate over time.
These arguments allow us to arrive at

A (@B, x) + A, x)] dt = (@ — g, u — B) 22(0).

The desired identity (4.6)) follows immediately from the derived expressions. O
We now prove necessary and sufficient optimality conditions for (1.2)—(1.4).
THEOREM 4.7 (first-order optimality conditions). z € Z,4 is the optimal control

of problem (1.2)—(1.4) if and only if it solves the variational inequality
(HZ+P,z2—2)12(g) =0 Yz € Z 4, (4.8)

where p = p(z) solves (4.5)) with u replaced by u.
Proof. We invoke the results of Lemma to conclude that z € Z,4 is optimal

for problem (|1.2)—(L.4) if and only if
(ﬂ — Ug, So(Z — f))Lz(Q) + u(i, z— 2)L2(Q) > 0.

We recall that the control to state map S is affine (4.2). Notice that So(z — z) =
Soz + o — (Yo + Spz) = u(z) — u. Consequently,

(ﬁ — uqg, U(Z) — G)Lz(Q) + u(i, z— 2)L2(Q) > 0.
Finally, we invoke (4.6) to arrive at the desired variational inequality:
(P, 2= 2)12(@) + 1(Z,2 = 2)12(q) > 0.

This concludes the proof. O
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4.2. Regularity of the optimal control. In this section we derive regularity
estimates for the optimal control z. To accomplish this task, we recall the well-known
projection formula

- : 1_ . :
Z = DpIojp, p) (—Mp> s Projpp (v) := min {b, max {a,v}}, (4.9)

and refer the reader to [33] section 3.6.3] for a proof of this result.
To simply the exposition, we define

A= E(uo, f) + [luall 2@ + llallar 0,7522(02)) + 1Bl 10, 7522(02))5 (4.10)

where ¥ is defined as in .

We begin by deriving regularity estimates in time.

THEOREM 4.8 (time regularity estimates). Let s € (0,1), f € L2(0,T; H*(12)),
and up € L*(Q). Ifa,b € HY(0,T; L*()), then

192l 2(q) + 10:Pll 2 (@) S 24, (4.11)

where the hidden constant is independent of the problem data and the optimal vari-
ables.

Proof. Since f +z € L*(0,T; H*()) and uy € L*(Q), an application of the
energy estimate (3.8)) yields

G| Loo (0,73 22(02)) + 10l 22 (0,715 (R )y S Eluo, f 4 2). (4.12)

Now, in view of the fact that U — ug € L2(0,T;L?(2)), we can apply the energy
estimate (3.10]) for the problem that p solves, i.e., problem (4.5)) with u replaced by

U, to arrive at

10eplL2(@) + [Pl o 0,755 )y S 10— uallz2()- (4.13)
We invoke (4.12)) to conclude that

10¢B| 2 (@) + 1Pl oo 0,112 Yy S luolln2(e)y + If + 2l 20,7512 () + uall 2(q)-

On the basis of this estimate, we invoke the projection formula and [24] Theorem
A.1] to conclude that z € H'(0,T; L?(Q)) together with the estimate (4.11)). This
concludes the proof. O

To present regularity estimates in space, we define

B := X(uo, ) + [[uallze<0,7:02(02)) + llallz20, 711 (0)) + [Ibll20,7sm1 () (4:14)

and

€ = [luoflzregn) + Ifllzo= o220y + llallz=o,7;2(0) + lIbllz=(0,7502(02)),  (4.15)
where ¥ is defined as in ([3.7]).

THEOREM 4.9 (space regularity estimates: s € (0,1)). Let s € (0

(

be a domain such that 00 € C*. If ug € L*(Q), f € L*(0,T; H"®
L>(0,T;L3(S2)), and a,b € L*(0,T; H'(2)), then

,1) and Q
Q)), ug €

_ _ 1
12l 220,711 @) + 1Pl 20,751 0) S By 5> 5, (4.16)

_ _ 1
||Z||L2(O,T;H1*€(Q)) =+ ||p||L2(O,T;H1*5(Q)) SB, s= bR € >0, (4.17)

_ _ 1
12l 20,15 125 )y + 1Pl 220,75 120 () S B, s < 3 (4.18)
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Ifug € H*(Q), f € L®(0,T; L%()), and a,b € L>®(0,T; L*(Q)), then

_ 1
lallzz0,m:m1 )y S € 5> > (4.19)

_ 1
lall20,m; 51— S € 5= 7 € >0, (4.20)

_ 1
lallz20,7:m25 ) S € s < 5 (4.21)

In all the estimates the hidden constants are independent of the optimal variables and
the problem data.

Proof. We consider the following three cases.
s € (3,1): By assumption, the right-hand side f € L?(0,7;H*(12)) and the
control bounds a, b € L?(Q). Thus, an application of the energy estimate implies
that u € L>(0,7T; L?(2)) and, by assumption, that o — ug € L®(0,7T; L?(Q2)). We
now invoke the regularity estimate to conclude that

Il L2 (0,125 )y + [10ePll 22(@) S 18 — uall Lo 0,722 ()5 (4.22)

where v = min{s,1/2 — ¢} and € > 0. Since s > 1/2, this estimate implies that
p € L%0,T; H(2)). In view of the projection formula (4.9), we thus conclude that
z € L*(0,T; H'(Q)) together with the estimate

12l 220,731 () S U = vall o< 0,7522(0)) + lall 20,111 (2)) + [Pl 20,7311 (92))

< B(uo, f+2) + |luallze<o,m;22()) + lall 20,751 ()) + 1Pl 22 0,758 (2))-

To obtain the last inequality, we have used the energy estimate . The previous
estimate combined with (4.22)) yield (4.16]).

If up € H*(Q), f € L=(0,T; L*(Q)), and a,b € L>=(0,T; L*()), the estimate
follows from the regularity estimate (3.11)).

s € (0,%): In view of (4.22), we immediately conclude that the optimal adjoint
state p € L?(0,T; H?*(Q)). This, on the basis of a nonlinear operator interpolation
result, implies that z € L2(0,T; H?*(2)) with the estimate

2]l L2 (0,725 ()) S Lo, f +2) + [[uall Lo (0,722 (02))
+ llall 20,7300 (2)) + [IbllL2(0, 7501 (0))-  (4.23)

If ug € H(Q), f € L®(0,T; L*(Q)), and a,b € L>(0,T; L*(Q)), we apply the
regularity estimate (3.11)) to arrive at

6llz2(0,7;m25 () S b0l sy + [If + 2l Lo (0,722 (02))-

s = 1: The proof of the estimates (4.17) and (4.20) follow similar arguments. For
brevity, we skip the details. O

5. Approximation of the state equation. Let us now propose and analyze
a fully discrete numerical scheme to solve the state equation . The space dis-
cretization hinges on the standard finite element space of continuous and piecewise
linear functions. The discretization in time uses the backward Euler scheme. We
derive stability estimates and a L?(Q) a priori error estimate.
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5.1. Time discretization. Let K € N be the number of time steps. Define
the uniform time step 7 = T/K > 0 and set ¢, = k7 for £k = 0,...,K. We denote
the time partition by 7 := {tx}X_,. Given a function ¢ € C([0,7], X), we denote
oF = ¢(ty) € X and ¢7 = {¢*}{_, C X. For any sequence ¢” C X, we define the
piecewise linear interpolant ¢™ € C([0,T]; X) by

(1) = S B e i), E=0,,K-1 (5)
We also define, for any sequence ¢” C X, the first order differences operators
0 =77 (pF L — M), k=0,...,K—1, (5.2)
and
0F = -7 (¢F —¢¥), k=K-1,...,0, (5.3)
and the norms |[¢7[|g=(x) = max{||¢*||x : K =0,...,K} and

K

167 |ler () = (ZTH(?"'H?«) , pello00)

k=1

REMARK 5.1 (identification with a piecewise constant function). We note that
any sequence ¢’ C X can be equivalently understood as a piecewise constant, in time,
function ¢ € L*°(0,T; X). In fact, consider

o(t) =" Vte (th_i,te], k=1,...,K.

In what follows we will use this identification repeatedly and without explicit men-
tion.

5.2. Space discretization. Let 7 = {K} be a conforming partition of { into
simplices K with size hxg = diam(K). Set hy = maxges hx. We denote by T the
collection of conforming and shape regular meshes that are refinements of an initial
mesh 7). By shape regular we mean that there exists a constant ¢ > 1 such that
max{ox : K € I} < o for all 7 € T. Here, ox = hx/pKx denotes the shape
coefficient of K, where pg is the diameter of the largest ball that can be inscribed in
K [0, 12, [19].

Given a mesh .7 € T, we define the finite element space of continuous piecewise
polynomials of degree one as

V(7)={VeC’Q): Vg eP(K)VK € 7, V =0o0n0Q}. (5.4)

Note that discrete functions are trivially extended by zero to Q¢ and that we enforce
a classical homogeneous Dirichlet boundary condition at the degrees of freedom that
are located at the boundary of (2.

5.3. Elliptic projection. In this section, we define an elliptic projector that
will be of fundamental importance to derive error estimates. This projector Gz :
H?(Q) — V(.7) is such that, for w € H?(Q), it is given by

GoweV(T): AGgw,W)=Alw,W)VW € V(7). (5.5)
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The operator G & satisfies the following stability and approximation properties.
PROPOSITION 5.2 (elliptic projector). Let s € (0,1). The elliptic projector G o
is stable in H*(R2), i.e.,

1Gzwls S llwlls Vw € H (). (5.6)
If, in addition, w € H®(Q), for kK > s, then Gz has the following approximation
property:

lw = Gawlls S I |wlhxq)- (5.7)

In both estimates the hidden constants are independent of w and h .

Proof. To show stability set W = G 7w in , invoke the definition of the norm
| - [|s given by (2.3), and utilize the continuity of A.

Obtaining the estimate hinges on Galerkin orthogonality: If II & denotes the
Scott—Zhang quasi-interpolation operator, then

|w— Grw|? = Aw — Gow,w—Tow) < |w—Grw|||w—Tzrw|s.
The assertion thus follows from an interpolation error estimate for Il o:
[w —Tgwl|s S h%°|w|mx(a);

see [2, Section 4.2] for details. This concludes the proof. O
PROPOSITION 5.3 (L?(Q)-error estimate: elliptic projector). Let s € (0,1) and
Q be a domain such that 0Q € C*®. If w € H*(RQ), for k > s, then we have

[w = Gaw| 2 S PG lwlgx@), (5.8)

where 0 = min{s,1/2 — e}. The hidden constant is independent of w and hg.
Proof. To obtain (5.8)) we argue by duality. Let z € H*(€2) be the solution to

A(¢,2) = (w — Grw,¢) Vo€ H(Q).

Set ¢ = w — Ggw and utilize that A(w — Gzw,lzz) = 0, where Il denotes the
Scott—Zhang quasi-interpolation operator, to obtain

lw = Grwllia) = Alw - Gow,2) < [lw - Grwlls|z - Mzzs.

Invoke an interpolation error estimate for Il # combined with the regularity results of
Proposition 2.1}, with 7 = 0, to obtain

~

[z = zzls < h%|Z|H-s+ﬂ(Q) S hf}”w — Gaw| 20,

where ¢ = min{s,1/2 — e¢}. The estimate (5.7) allows us to conclude. O

5.4. A fully discrete scheme. Let us now describe a fully discrete numerical
method to solve the state equation . The discretization in time uses the backward
FEuler scheme. The space discretization hinges on the finite element space introduced
in section

Set z = 0. The fully discrete scheme computes the sequence UZ C V(J), an
approximation of the solution to problem at each time step. We initialize the
scheme by setting

Uy = Pzuo, (5.9)
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where Pz denotes the L?(Q)-orthogonal projection onto V(.7). For k =0,...,K —1,
Ukt € V(7) solves

QUET W) 2 + AUST, W) = (fFFL W) YV e V(), (5.10)

where fF+1 = =1 f::“ f dt. We recall that 0 is defined by (5.2)).

The fully discrete scheme (5.9)—(5.10)) is unconditionally stable.
THEOREM 5.4 (unconditional stability). Let UZ be the solution to the fully

discrete scheme (5.9)—(5.10). If f € L*(0,T; H=*(Q)) and ug € L?(2), then
1UZ 17 (£2(0)) + 1UZ 2205 ey S ol 7y + 171 25 ) (5.11)

where the hidden constant is independent of the data, the solution UZ,, and the dis-

cretization parameters.
Proof. Set W = 2rU%™ in (5.10). The relation 2(a —b)a = a* —b? + (a — b)? and
Young’s inequality yield

IUS 22 ) = WS T2) + IUST = US 1220y + TIUSHIE S TIF I 0

The stability estimate (5.11]) follows from adding the previous inequality over k. O

5.5. L%*(Q)-error estimate. We introduce, as a technical instrument, a semidis-
crete approximation of problem (3.5)): Set z = 0 and U =uy. Fork=0,...,K—1,
Ukl ¢ H*(Q) solves

QU @) ra) + AU, 6) = (1, 0) Vo € H*(Q). (5.12)

The scheme ((5.12)) is unconditionally stable.
THEOREM 5.5 (unconditional stability). Let U™ be the solution to (5.12)). If
f e L3(Q) and ug € H*(2), then

”aUT”?Z(LZ(Q)) + |UT‘?°°(HS(R")) S |U0|§15(Rn) + HfTHgZ(LZ(Q))a (5.13)

where the hidden constant is independent of the data, the solution U, and T.

Proof. Set W = U —U* in (5.10), use the relation 2(a—b)a = a® —b*+ (a—b)?,
and add over k. O

Define the piecewise linear function U € C%'([0, T]; H*(2)) by

U0)=U° Ut)=U"+(t—t)oU  te (tr trga), (5.14)

for k =0,..., — 1. An important observation is that, for t € (¢x, txt1], 8tU(t) =
U1, We can thus rewrite the semidiscrete scheme (5.12)), for a.e. t € (0,7), as

0:U(t), 9)12(0) + AU (t),0) = (7 (t),0) Vo € H(Q). (5.15)

Define é := u—U and € := u—UT. We observe that é(0) = £(0) = 0. In addition,
since the form A is bilinear and continuous, basic computations reveal that

%A (/01t e(e) dﬁ,/ot G63) dg) =24 </Ot e(é) dé,é(t)) -

Consequently,

/OTA (/Ot e(§) df,e(t)> dt = %A </OT e(t) dt, /OT e(t) dt) > 0. (5.16)
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We now derive an error estimate for the semidiscrete scheme ((5.12]).
THEOREM 5.6 (semi-discrete error estimate). Let u and U™ be the solutions to

BE) and (5.12), respectively. If ug € H*(Q) and f € L>°(0,T; L*(2)), then
||U - UT”Lz(O’T;Lz(Q)) 5 T (|U0|H5(R") + ||f||Loo(07T;L2(Q))) . (517)

The hidden constant is independent of the data, the solutions u and U", and the
discretization parameter T.

Proof. We begin by recalling that, we have set z = 0 in . Subtract from it
(5.15) and integrate the resulting expression with respect to time. This yields

0.0 +A( [ w0d0) = [ 101~ 70) ac.o)
+ (e(t) — é(t), )12y Yo € H' (), ae. te(0,T).

Set, for a.e. t € (0,T), ¢ = &(t) € H5(Q). Integrate with respect to time, again, and
invoke the identity ([5.16)), to arrive at

/ ' (/ 'IHe) — () e, O

T
/0 (e(t) — é(t). e(t)) 2y dt

T
/0 1E(t) 20y dt <

+ = I+1IL. (5.18)

It thus suffices to estimate I and II. To control the term I, we first notice that,

since f*1 = 71 ttk“ f(t) dt, we have, for £ € {1,--- K},
k

ty ¢ ti
[[t@-rena=3 [ - a=o
0 k=1

tr—1

Consequently, if ¢, <t < ty11, then
t t
| e -rnae= [ )~ () d S riflumor
ty
We can thus apply Cauchy—Schwarz and Young’s inequalities to arrive at

T
1< |
0

We now focus on estimating the term II. Since, on (tx, tx+1], we have that |e(t) —
é(t)] < T]pUkT|, we invoke the stability estimate (5.13) to conclude that

_ 1,
ez dt S T21fI 2w (0.7,22(0)) + 7 IElT2(q)-
L2(Q) 4

/0 7€) — £ (6)] de

T
/0 lle(t) — é(t)”%zm) at S 72 ”aUT”??(L?(Q)) <7 (\U0|§15(Rn) + ||fT||§2(L2(Q))) .
This yields the following bound for the term II:

1 = T
I < 1”6”2L2(0,T;L2(Q)) +Cr? (|U0|§15(Rn) + If H?z(Lz(Q))) :
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The desired estimate follows from replacing the estimates for I and II into
(5.18)). This concludes the proof. O

We now control the difference between the fully and the semidiscrete problems.

THEOREM 5.7 (auxiliary error estimate). Let U™ and U7 be the solutions to

problems (5.12) and (5.10), respectively. Let v = min{s,1/2 — e} with ¢ > 0. If
up € H*(Q) and f € L>°(0,T; L?(2)), then

WUT = UZlle@2@) S h? (luolzz2@ny + If + 2]l L= 0.7:22(02))) -

The hidden constant does not depend on U™, U7, or the problem data.
Proof. As it is customary, we split the error into the so-called interpolation and
approximation errors:

E"=(U" —GsUT) + (GaUT —U%) = 07 + ply; (5.19)

G 7 denotes the elliptic projector defined in (5.5). We estimate 67 in view of the
estimate (5.8) and the regularity results of Theorem In fact,

107 e2r20)) S B NU ey S B (Iluollers gy + [Ifll o (0,122 (02)))

where ¥ = v = min{s, 1/2 — €}. The estimate of the term p7, follows along the same
lines of [7, Lemma 5.6]. For brevity, we skip the details. O
We collect the estimates of Theorems|5.6|and [5.7]to derive a L?(Q)-error estimate

for the fully discrete scheme ((5.9)—(5.10)).

THEOREM 5.8 (error estimate for fully discrete scheme). Let u and U solve
(3-5) and (5.10), respectively. If f € L>°(0,T; L*(Q)) and up € H*Y(R), then
T 2
lu=UZlla@) S (7 +hF) (luolz @y + If + 2l L= (0,7502(0))) -

The hidden constant does not depend on ha, 7, u, UZ, or the problem data.

6. Approximation of parabolic fractional control problem. In this sec-
tion, we introduce an implicit fully-discrete scheme to approximate the solution of
the fractional control problem (L.2))-(L.4). The scheme discretizes the control vari-
able with piecewise constant functions. The state variable is discretized with standard
piecewise linear finite elements in space, as detailed in section [5.2] and with the back-
ward Euler scheme in time, as described in section 5.1

To simplify the exposition, in what follows we assume that a and b are constants.

6.1. An implicit fully discrete-scheme. To discretize the control variable,
we introduce the finite element space of piecewise constant functions over .7,

Z(T)={Z € L) : Z|k € Py(K) VK € T},
and the space of piecewise constant functions in time and space,
LT, 7)={Z2" CL™(Q): ZF € Z(T)} . (6.1)
The space of discrete admissible controls is defined as
Zoa(T, T) = Zaa NL(T, 7), (6.2)

where Z,q is defined in (4.1)).
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To perform an a priori error analysis, it is useful to introduce the L?(Q)-orthogonal
projection onto Z(7T, 7). This operator, 117, : L?(Q) — Z(T, 7), is defined by

zeL%(Q): (z—Thz, Z)r20) =0 YZ e Z(T, 7). (6.3)
If ze€ HY(0,T; L?(Q)) N L?(0,T; H*(Q)), with & € (0,1), we have the error estimate
Iz = 52|l 12) S W5 llzll 20,7 5(52)) + TN1ez 12(@)- (6.4)

An important observation in favor of Hg is that HE Zoa C Zaa(T, 7). We recall that
a and b, that define the set (4.1)), are constant.
We define the discrete functional J}—Q V(I)E xZ(T,7) = R by

T T 1 T T ILL T
UG, 2%) = §||U9‘ - ungZ(LZ(Q)) + §||Zﬂ||§2(L2(Q))'

Notice that, if u]; = ug we would have that J7, (w,r) = J(w,r) whenever w” = w and
r™ = r; see Remark

With this notation at hand, we introduce the following fully discrete scheme for
our parabolic fractional optimal control problem: Find

min /% (U, Z7)
subject to the discrete equation: initialize as in (5.9) and, for £ = 0,...,K — 1, let
Ug“ € V(.7) solve
QU W) L2 () + AUST W) = (1 4 25 W) (6.5)

for all W € V(.7), and the control constraints Z7, € Z,qa(T, 7).

6.2. First order optimality conditions. We provide first order necessary and
sufficient optimality conditions for the fully discrete optimal control problem. To
accomplish this task, we first define the following discrete adjoint problem: Find
PZ C V() such that P§ =0, and for k = K —1,...,0, P% € V(7) solves

P, W) 20y + A(PE W) = (UET — ulT W) (6.6)

for all W € V(7). The difference operator 0 is defined in (5.3)).
The optimality condition reads: (U%,Z7 ) is optimal for the scheme of section

if and only if U} = Pgug, for k=0,--- , K —1, U;‘H € V() solves (6.5)), and
(/LZ}-FP;,Z—Z;)[;(Q) >0 VZGZad(T, y), (67)

where ]5; solves . Set Z7 = ZX(t)_,.t,) With Z € Z(Jq) and a < Z < b in .
We thus obtain that (6.7) can be equivalently written as

(Ph+p2t,2 — 2%)12(0) >0 VZEZL(T), a<Z<b, Vk=1,... K.

6.3. Auxiliary problems. We introduce two auxiliary problems that will be
instrumental to derive error estimates for the fully discrete scheme of section [6.1

The first problem reads as follows: Find Q7, C V(.7) such that Q% = 0 and, for
k=K-1,...,0, Q% € V(7) solves

(6Qk97 W)LZ(Q) + A(Q@H W) = <ﬂk+1 - U§+1, trg W> (68)
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for all W € V(7); u = u(z) denotes the solution to (3.5) with z replaced by z.
The second auxiliary problem is: Find R7, C V(.7) such that RS = 0 and, for
k=K-1,...,0, R’fg € V(.7) solves

(6Rkﬂa W)L2(Q) + A(le% W) = <U§+l(z) - U§+1, W> (69)

for all W € V(.7); U™ (2) denotes the solution to (6.5) with Z%" replaced by 2"

6.4. A priori error analysis: s € (0,1). We derive the following a priori error
estimate.
THEOREM 6.1 (error estimate for the control: s € (0,1)). Let z be the optimal

control for problem (1.2) ~(1.4) and let Z7, be the optimal control for the fully discrete
scheme of section|6.1. If ug € H*'(Q) and f € L=(0,T; L*(Q)), then

_ 5 2
12— ZF||le20) ST+h,

where v = min{s,1/2 — €} and € > 0. The hidden constant is independent of Z, Z,
and the discretization parameters, but depends on the problem data.

Proof. We proceed in several steps.
Step 1. Set z = Z7 in and Z = H(Ei in , where HE denotes the L?(Q)-
orthogonal projection onto Z(7T,.7). Add the obtained inequalities to arrive at

pllz = 25032 < (b= P57, 25 — 2)12(q) + (PF + 125,152 = 2) 12(Q)-

We recall that the adjoint state p solves (4.5) with u replaced by u and its fully dis-
crete counterpart P7 is defined as the solution to with U §+1 replaced by U '];H.

Step 2. We invoke the solutions to the auxiliary problems and to write

p—PL =(p— Q%)+ (Qy — RY) + (R — P%). Since Q7 solves (6.8), the estimate
for the term p — Q)% follows immediately from Theorem

1P — Q% llz2(@) S (7 + 2*7) (lall o 0,732 (00 + lIuall o= 0,122 (2)) -
We invoke the energy estimate (3.8) and complete the previous error estimate:
1P = Q% 2@ S (7 4+ h*7) (X(uo, f +2) + [[uall Lo 0.7:22(02))) (6.10)

where ¥ is defined in (3.7)).

Step 3. The goal of this step is to control the difference Q7 — R%,. To accomplish this
task, we first invoke the stability result of Theorem and then the error estimate
of Theorem These arguments yield the estimates

1% — R ll2@) S 16— UZ@)r2(0) S (7 +h*)Z(uo, f +2), (6.11)
where the hidden constant is independent of hs and 7.

Step 4. We handle the term R7, — 15; in view of an argument based on summation
by parts. First, we define

Uh = PL — RY, oM.=UT - UL (2).



OPTIMAL CONTROL OF A PARABOLIC FRACTIONAL PDE 17

Now, set U* and ®*! in the problems that U%, — UZ(Z) and PZ — R, solve, respec-
tively. In view of the fact that 1/ = 0 = ®°, invoke the discrete summation by parts
formula

K—

_

K—-1
> ek pk) = -
k=0

to conclude that

K—-1
T((pk+17o,l/}k+1 Z T ‘I)k+1 D’l)[}k
k=0 k=0

(Ry — P57, 2% —2)r2(q) < 0.
Step 5. The goal of this step in to control the term (P% + uZ7%, 117,z — Z)12(q)- To
accomplish this task, we write
(Py +nZ% 5z —2)12q) = (p+ 12,1152 - 2)12() + (P57 — Q% 1152 — 2)12(qg)
+(Q% —p, 115z~ 2)2(0) + (2, —2, 1152~ 2)2(0) = I+ I+ LT+ IV. (6.12)

We recall that the auxiliary variable Q7 is defined as the solution to
To estlmate the term I we invoke the property (6.3] . that defines H 4%, and the
error estimate . We can thus obtain

I=(p+uz— HE(() +12), 1157 - 2) 12(g)
< (WGP + w2l L2017 (9)) + 7O (B + 12) | 22(@))
(W2l 2o ) + T L2y -
Notice that the norms ||p + pz||z2(0,7;m7 () and [|0:(p + p2)|z2(@) are uniformly
controlled by the problem data; see the regularity estimates of Theorems [4.8) and [£.9]
In what follows we control II. To accomplish this task, we first notice that
IP7 — Q% llr2@) < IPF — R7llr2(q) + I1IRY — Q% ll12(q),

where the auxiliary variable R7, is defined as the solution to . The term ||R7, —
Q7% 12(@) is bounded as in (6.11]). It thus suffices to bound ||PZ — R% || 12(g). To do
this, we invoke the stability estimate ([5.11)), twice, to arrive at

|P7 — R%l2q) SNU% — UZ (@2 @) S 125 — Zlle2 )

We thus obtain that [P} — Q% |l12(q) S (7 + k*7)E(uo, f +2) + (| 25 — 2] 12(q)- We
now invoke the Cauchy—Schwarz inequality, the previous estimate for P7 — Q7%;, the
error estimate ([6.4]), and Young’s inequality to arrive at

DT T 5 = Ky mr S ]
I <Py — Q% 2@ 11152 — 2| 12(g) < i e 2| %2(q) + C(TZZQ(UOHC +2)
+ W22 (ug, f+2) + h?||2||2L2(0,T;HW(Q)) + 72||at2||i2@)),
where C' > 0.
The control of the term III follows from ([6.10) and ( . In fact,
111 5 (7' + hQW) (E(Uo,f + 2) + ||UdHL°°(O,T;L2(Q)))
(W5 l1zl 2o, () + TN0e2l| r2(0)) -

The term IV can be bounded in view of similar arguments.
Step 6. The assertion follows from collecting all the estimates we obtained in previous
steps. This concludes the proof. O
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7. Numerical examples. We present a series of numerical examples that illus-
trate the performance of the fully discrete scheme proposed in section[6.1] when solving
the optimal control problem f. We consider one— and two-dimensional nu-
merical experiments posed on the domain B(0,1) x (0,T), where B(0,1) denotes the
interval (0,1), when n = 1, and the circle of radius 1 centered at (0,0), when n = 2.

7.1. Exact solutions. We let n € {1,2}, Q = B(0,1), and s € (0,1). We
consider the fractional Poisson problem: Find u such that

(-A)’u=finQ, wu=0inQ" (7.1)

If n =1 and the right-hand side is

k—1/2 R o
B (@) = 2T (1 + s)° <S+ . /><‘HS‘ )P,ﬁ’ V2 (222~ 1), k>0,

then, the solution u of problem (7.1)) is given by

ui%(m) = P£5’71/2) (25(}2 -1)(1- :vg)j_ .

Here, P,ga’ﬁ ) denote the Jacobi polynomials, x; = max{0,z}, and
<x> B (x+1)
y) T+l (z—y+1)

correspond to the generalized binomial coefficients. On the other hand, when the
right-hand side is

AD(z) = 25T (1 +5)° <S+k+1/2> (S+k

) >xP,§s’1/2) (222 —1), k>0,

S

then, the solution u of problem ([7.1]) is given by

u,chl(;v) = xP,gS’l/z) (2902 — 1) (1 — ;vQ)j_ .

If n = 2 and the right-hand side reads, in polar coordinates,
k k
f/?,%(’": 9) _ 225F (1 + 8)2 <S + . + f) (5‘;’ >7"£ cOoS (59) P]gs,@) (27"2 _ 1) , g, k>0

then, the solution of problem (|7.1)) is given, in polar coordinates, by

S

Wt (r0) = o*cos (10) L") (22 = 1) (1= #%)

We refer the reader to [I8] for details on how these analytical solutions are determined.

In what follows we construct analytic solutions to the parabolic fractional optimal
control problem. Let ¢,¢ € C°°((0,T)) be such that (0) = 1 and ¢(T) = 0. Let
fig € C*(Q) and w and v be the solutions to the fractional Poisson problem
with right-hand sides f and g, respectively. Set

f(t,x) = ¢'(t)u+ (8 f(x) — proj g (S(t)v(2)) ,
ug (t,z) = ¥(t)u(z) + pd' (t)o(x) + pé(t)g(z),
)

ug () .

u(x



OPTIMAL CONTROL OF A PARABOLIC FRACTIONAL PDE 19

The exact solution to the parabolic fractional optimal control problem is given by

u(t, z) = ¥(t)u(x),
p(t, ) = —po(t)v(z),
z(t, x) = projp, p) (¢(t)v(x)) -
Since f,g € C*(Q) and 9 € C*, we can apply the results of Proposition to
conclude that u,v € H5+1/2_6(Q) with € > 0 being arbitrarily small. Consequently,
up € HPV274(Q), ug € L0, T; HVV/?79(Q)),  fe L™(0,T; HY(Q)),

where £ = min{1,s + 1/2 — €}; the last regularity result follows from [33, Lemma
2.21]. Notice that, under this particular scenario, we have that z € H'(0,T; L*(Q)) N
L?(0,T; H¥+1/27¢(Q)), with € > 0 being arbitrarily small. With this regularity result
at hand, the techniques developed in the proof of Theorems [5.§ and [6.1] yield the
improved error estimates

|z = Z5ll2@) ST+ R, y=min{s,1/2— ¢}, €>0, (7.2)
= 1/2+
lo = U7 N2 S 7+ by, (7.3)
Notice that the error estimates obtained in Theorems [5.8| and [6.1] rely on the general
regularity estimates of Theorem

7.2. Implementation details. In what follows, we employ the panel clustering
approach described in [3] to obtain a sparse approximation of the integral fractional
Laplacian (—A)®. For the minimization problem we use the BFGS algorithm [28§].
The linear systems of equations arising from the fully discrete scheme from section
[6.1] are solved using conjugate gradient preconditioned by geometric multigrid.

The L? (Q)-error of approximating the variable w with the discrete function W}
is approximated as follows:

T
W~ W 2 0) :/ /wtm%(v*v;f Az dt
0 Q

T K
z/ /w%mmZW; (W5 —2w).
0 Ja k=0
The first term can be evaluated analytically.

7.3. Examples in 1D. We set Q@ = (0,1) C R, T =1, a = —0.5, b = 0.5,
p=0.1,u=ulP, v=ulP, ¥(t) = cos(t), and ¢(t) = sin(T — t). The exact solution
is then given by

u(t, z) = cos(t)u? (z),
p(t,z) = —psin(T — t)up® (z),
_ A b if [z] < 7o(t)
Z(t,x) = pro sin(T — t)uiP = ’
(62 = projp (sin( " @) {(1 —22)® if |z > (),
where

if sin(T —t) <b,

0
Toll) = 1/s
“ \/1—(11(;*;_”) if sin(T —t) > b.




20 C. Grusa, E. OTAROLA

F1G. 7.1. 1D example: Finite element solutions for the optimal state U"g (left) and the optimal
control Z7, (right) for s = 0.7. We notice that the upper bound on the control is active.

— B ® s=04 — B ® s=04
o s5s=0.1 ha o s5s=0.1 ha
e BYT v s=05 — v s=05
X s=0.2 + 5=06 X =02 + s=06
...... ho Loe=or e BOS 4 oasor
m s=03 s=08 B s—03 s=08

hO.Q * s=09 ho_g * s=0.9
. hY% o BY

101 - x ”‘ L

e
E - CoXTl
"’):;/ * /!
{* e’ 1m &
10—3 4 ’/ ‘ 10—3 _Ei/
™ T ML | T ML | T T b | T ML | T ML | T
10-3 10—2 10-1 10-3 10—2 10—t

ha ha

Fi1G. 7.2. 1D example: Ezperimental rates of convergence for ||u — UTy”L?(Q) (left) and ||z —
Z \l12(q) (right) for @ = (0,1) and s € {0.1,0.2,...,0.9}.

We also set 7 = hyHW, where 7 = min{s, 1/2 — €} and € > 0.

In Figure we present the finite element solutions for the optimal state and
control, on a suitable mesh, for s = 0.7. We observe that the constraint b = 0.5
is indeed active for |z| < 7r,(¢). In Figure we display the experimental rates
of convergence for the L?(Q)-errors of the state and control variables. We consider
different values for the fractional order s € {0.1,0.2,...,0.9} and different mesh sizes
hz. We observe the predicted rate of convergence for the error approximation
of the control variable.
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0.5 0.5

— Ry — By

—o— HS error state —®— HS error state
0.75 ——

R X hz

2
—8— L2 error state —&— L~ error state
10,75 —— ho
—e Y —— 12 trol
error contro.

L? error control

F1G. 7.3. 2D ezample: Ezperimental rates of convergence for ||i — U%HLQ((OKI‘)’HS(Q)), o —
U<‘%||L2(Q)7 and ||z — ZTg||L2(Q) for s =0.25 (left) and s = 0.75 (right) on quasi-uniform meshes.

7.4. Examples in 2D. We set Q = B(0,1) C R?, T =1,a = —0.5, b = 0.5,
=01, u=uil, v=udl, () = cos(t), and ¢(t) = sin(T — t). The exact solution
is then given by

cl

(t,x) = cos(t)ugg(x),
ﬁ(t, JE) = —H Sin(T - t)u(zj,% (I)a
(t,z) = projp p (sin(T — t)u%%(x)) .

7.4.1. Quasi-uniform mesh. We use quasi-uniform meshes with mesh size h &
and a time step of size 7 = hyﬂ'y, where v = min{s,1/2 — €} and € > 0.

In Figure we present, for s = 0.25 and s = 0.75, the experimental rates
of convergence for the L?(Q)-errors of the state and control variable as well as the
L2((0,T), H*(Q))-error of the state variable. We observe the predicted rates of con-

vergence for the L?(Q)-error of the control variable.

NI

7.4.2. Graded mesh. In this section we explore the computational performance
of the fully discrete scheme, that we have devised, when is used to approximate the
solution of the fractional optimal control problem on the basis of finite elements over
graded meshes on 2. When s € (1/2,1) and n = 2, the singular behavior of the
solution to the elliptic fractional Poisson problem can be compensated by using
a priori adapted meshes; see [2]. These graded meshes allow for an improvement on
the priori error estimate obtained in the resolution of the elliptic problem by using
quasiuniform meshes and are constructed as follows. In addition to shape regularity,
we assume that the meshes 7 have the following property: Given a mesh parameter
h >0 and k € [1,2] every element T' € .7 satisfies

hy ~ C(o)h" if TNON# 0, hp ~ C(o)hdist(T,0Q) D/ if TNoQ =0, (7.4)

where C'(0) depends only on the shape regularity constant o of the mesh 7. « relates
the mesh parameter h to the number of degrees of freedom, N, as follows:

N~h2ifke(1,2), N=h?|loghg|ifr=2. (7.5)
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—%— F* error state
|log N|N—0-5
—»%— L2 error state
— |1OgN|N—0.875
——

L2 error control

|log N|N—0-5

10! 102 103 10
N

Fi1G. 7.4. 2D example on granded meshes: Experimental rates of convergence for ||G—U7'9 ”L?(Q)’

6= U%llL2(0,1), 15 (@) and 12— Z% || L2(q) for s =0.75.

The optimal choice is kK = 2.

In Figure we present the experimental rates of convergence for [|0—U% || 12(q),
0 = USllz2(0,1), 5 () and ||Z — Z5||12(@) obtained by using graded meshes on
with grading parameter x = 2. We observe improved rates of convergence for the error
approximation of the state variable in both L?(Q)- and L?((0,T), H* (Q))-norms. We
note that this setting is not covered by the analysis developed in the previous sections;
the main missing ingredient being regularity estimates for the solution of over
bounded and Lipschitz domains Q x (0,T).

8. Conclusions. We have analyzed a control-constrained linear-quadratic op-
timal control problem for the fractional heat equation and derived existence and
uniqueness results, first order optimality conditions, and regularity estimates for the
optimal variables. We have proposed a fully discrete scheme to discretize the state
equation equation that relies on an implicit finite difference discretization in time
combined with a piecewise linear finite element discretization in space. We have de-
rived stability results and a L?(0,T; L?(£2)) a priori error estimate. Furthermore, we
have proposed a fully discrete scheme for the optimal control problem that discretizes
the control variable with piecewise constant functions, and derived a priori error es-
timates for it. Finally, we have illustrated the theory with one— and two—dimensional
numerical experiments.
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