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Abstract
In this work, we use the integral definition of the fractional Laplace operator and
study a sparse optimal control problem involving a fractional, semilinear, and elliptic
partial differential equation as state equation; control constraints are also considered.
We establish the existence of optimal solutions and first and second order optimality
conditions.Wealso analyze regularity properties for optimal variables.Wepropose and
analyze two finite element strategies of discretization: a fully discrete scheme, where
the control variable is discretizedwith piecewise constant functions, and a semidiscrete
scheme, where the control variable is not discretized. For both discretization schemes,
we analyze convergence properties and a priori error bounds.
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1 Introduction

Let d ∈ N be such that d ≥ 2. Let � ⊂ R
d be an open and bounded domain with

Lipschitz boundary ∂�. Define the cost functional

J (u, q) :=
ˆ
�

L(x, u)dx + λ

2
‖q‖2L2(�)

+ μ‖q‖L1(�), (1.1)

where L : � × R → R denotes a suitable Carathéodory function, λ > 0 corresponds
to the so-called regularization parameter, andμ > 0 denotes a sparsity parameter. The
necessary assumptions on L are deferred to Sect. 2.4. In this paper, we are interested
in the analysis and discretization of the following nonconvex and nondifferentiable
optimal control problem for a fractional, semilinear, and elliptic partial differential
equation (PDE): Find min J (u, q) subject to the state equation

(−�)su + a(·, u) = q in �, u = 0 in �c, (1.2)

where �c = R
d \ � and s ∈ (0, 1), and the control constraints

q ∈ Qad , Qad := {v ∈ L2(�) : α ≤ v(x) ≤ β a.e. x ∈ �}. (1.3)

We adopt the integral definition of the fractional Laplace operator (−�)s . For a smooth
function w : Rd → R, the operator (−�)s is defined as follows:

(−�)sw(x) := C(d, s)p.v.
ˆ
R
d

w(x) − w(y)

|x − y|d+2s dy,

C(d, s) := 22ss�(s + d
2 )

π
d
2 �(1 − s)

, (1.4)

where p.v. stands for the Cauchy principal value and C(d, s) is a normalization
constant. The necessary assumptions on the function a are deferred until Sect. 2.4.
The control bounds α and β are such that α < 0 < β; see [7, Remark 2.1] for a
discussion.

The optimal control problem under consideration involves a cost functional J that
contains the L1(�)-norm of the control variable. The study of this type of optimal
control problems ismainlymotivatedby the following twoobservations: First,‖·‖L1(�)

is a natural measure of the control cost for certain applications. Second, ‖·‖L1(�) leads
to sparsely supported optimal controls, i.e., optimal controls that are non-zero only
in a small region of the domain under consideration. This is a desirable property in
applications, for example in the optimal placement of discrete actuators [20]. From
a mathematical point of view, the analysis and discretization of the optimal control
problem considered here is anything but trivial and interesting, especially due to the
following considerations:

1. Fractional diffusion:The efficient approximationof problems involving the integral
fractional Laplacian carries two main difficulties. The first and most important is
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that (−�)s is a non-local operator [3, 10]. The second is the lack of boundary
regularity, which leads to reduced convergence rates [3, 5].

2. Non-linearity/Non-convexity: Since the state equation is a semilinear PDE, the
control problem is non-convex. Consequently, first order optimality conditions are
necessary conditions for local optimality; sufficiency requires the investigation of
second order optimality conditions [7, 22].

3. Non-differentiability: Due to the presence of ‖.‖L1(�) in the cost functional J , the
optimal control problem becomes non-differentiable (α < 0 < β). This leads to
some difficulties that do not occur in the differentiable case λ > 0 and μ = 0 [16,
17], especially when analyzing second order optimality conditions [7] and in the
study of finite element techniques [7, 23].

For the special case s = 1, there are several papers in the literature that provide
error estimates for finite element discretizations of control problems related to ours.
As far as we know, the first paper is [23], in which the authors consider a linear PDE
and propose several finite element strategies to discretize the admissible control set.
For all strategies considered, the authors obtain bounds for the error that occurs when
approximating the optimal control variable in L2(�). The semilinear scenariowas later
developed in [7]. In this paper, the authors develop two strategies for discretization:
one based on the variational discretization approach and another where the admissible
control set is discretized with piecewise constant functions. Based on a complete study
of second order optimality conditions, the authors obtain error estimates in L∞(�)

for the error that occurs when approximating all the optimal variables involved. We
would also like tomention [6] for the piecewise linear approximation of the admissible
control set and [2, 23] for a posteriori error analyses.

For the non-local and linear scenario, s ∈ (0, 1) and a ≡ 0, there are several papers
in which finite element strategies are analyzed. We refer the interested reader to [9] for
the analysis of a priori error bounds for the differentiable case λ > 0 and μ = 0 and
to the more recent work [24] for the analysis of a posteriori error bounds in the non-
differentiable scenario.We alsomention [15, 18], where the authors consider the linear
version of (1.1)–(1.3), but with the spectral definition of the fractional Laplacian. It
is important to mention that the treatment of discretizations of problems involving the
spectral and integral definitions of the fractional Laplacian is fundamentally different
due to regularity and discretization properties. The presentwork continues our research
in the area of fractional semilinear optimal control. It extends previous work [16, 17]
to a non-differentiable and sparse scenario. As far as we know, this paper is the first
to provide a complete analysis for the semilinear control problem (1.1)–(1.3), which
also includes the development and analysis of finite element strategies.

The structure of this article is as follows. In Sect. 2 we introduce the notation, the
functional framework and the assumptions that we will use in our work. In Sect. 3
we give an overview of (1.2) and its discretization by finite elements. In Sect. 4 we
present a weak formulation of (1.1)–(1.3), analyze existence results, and derive first
and second order optimality conditions; furthermore, regularity properties are also
analyzed. In Sect. 5, we introduce a fully discrete method and provide convergence
properties and error bounds. In Sect. 6, we develop a semidiscretization scheme and
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derive error bounds. We conclude our work with Sect. 7 in which we perform a numer-
ical experiment that illustrates the performance of the proposed methods.

2 Notation and Preliminary Remarks

Let us set the notation and recall some facts that will be useful later.

2.1 Notation

We denote by �c the complement of �. For normed spaces X and Y , we write
X ↪→ Y to denote that X is continuously embedded in Y . We denote by X ′ and
‖ · ‖X the dual and the norm ofX , respectively. The duality pairing betweenX and
X ′ is denoted by 〈·, ·〉X ,X ′ . When the spacesX andX ′ are clear from the context,
we simply write 〈·, ·〉. Let {xn}∞n=1 be a sequence inX . We denote by xn → x , xn⇀x ,
and xn ⇀

∗
x the strong, weak, and weak∗ convergence, respectively, of {xn}∞n=1 to x

in X as n ↑ ∞. Finally, a � b indicates that a ≤ Cb, where C is a positive constant
that does not depend on either a or b. The value ofC might change at each occurrence.

2.2 Subgradients and Subdifferentials

We denote R∪ {+∞} by R∞. Let j : Z → R∞ be a given function, where Z is a real
normed space, and let z be a point in Dom j , i.e., z ∈ Z is such that j(z) < ∞. An
element ζ ∈ Z ′ is called a subgradient of j at z if it satisfies the following subgradient
inequality [8, Chapter 4.1]:

j(y) − j(z) ≥ 〈ζ, y − z〉Z ′,Z ∀y ∈ Z . (2.1)

The set of all subgradients of j at z is denoted by ∂ j(z) and is called the subdifferential
of j at z. Of particular interest is the case where Z = L1(�) and j : Z → R

+
0 is

defined by j(z) = ‖z‖L1(�). Here,R
+
0 denotes the set of all nonnegative real numbers.

In this scenario, it follows that ζ ∈ ∂ j(z) if and only if

ζ(x) = 1 if z(x) > 0, ζ(x) = −1 if z(x) < 0, ζ(x) ∈ [−1, 1] if z(x) = 0,

for a.e. x ∈ � [19, Proposition 4.6.2]. For z, v ∈ L1(�), the directional derivative of
j at z in the direction v is given by

j ′(z; v) = lim
ρ↓0

j(z + ρv) − j(z)

ρ
=

ˆ
�+

z

vdx −
ˆ
�−

z

vdx +
ˆ
�0

z

|v|dx, (2.2)

where�+
z ,�

−
z , and�0

z denote the sets of points in�where z is positive, negative, and
zero, respectively. The identity on the left-hand side is the definition of the directional
derivative (see e.g. [4, Definition 2.44, Sect. 2.2.1]), while the identity on the right-
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hand side follows from elementary calculations in combination with the use of the
directional derivative of | · |; see also [7, identities (3.2)].

Let M ⊆ Z be nonempty. The functional IM : Z → R∞ defined by IM (z) = 0
if z ∈ M and IM (z) = +∞ if z ∈ Z \ M is called the indicator functional of M .
We note that IM is proper and convex if and only if M is nonempty and convex. Let
z ∈ M . It follows from (2.1) that ζ ∈ ∂IM (z) if and only if 〈ζ, y − z〉Z ′,Z ≤ 0 for all
y ∈ M .

2.3 Function Spaces

Let s ≥ 0 and let Rd � ξ �→ ι(ξ) = (1 + |ξ |2) s
2 ∈ R. With F we denote the Fourier

transform.We define the fractional Sobolev space Hs(Rd) := {v ∈ L2(Rd) : ιF(v) ∈
L2(Rd)}, which is endowed with the norm ‖v‖Hs (Rd ) := ‖ιF(v)‖L2(Rd ); see [21,
Definition 15.7] and [12, Chapter 1, Sect. 7].

We define H̃ s(�) as the closure of C∞
0 (�) in Hs(Rd). According to [13, Theorem

3.29], we have the characterization H̃ s(�) = {v ∈ Hs(Rd) : supp v ⊂ �}. We
endow the fractional Sobolev space H̃ s(�) with the following inner product and
norm:

(u, v)H̃ s (�)
:=

ˆ
R
d

ˆ
R
d

(u(x) − u(y))(v(x) − v(y))

|x − y|d+2 s
dxdy, ‖v‖H̃ s (�)

:= (v, v)
1
2

H̃ s (�)
.

We denote by H−s(�) the dual space of H̃ s(�). Finally, we introduce

A : H̃ s(�)×H̃ s(�) → R, A(u, v)=2−1C(d, s)(u, v)H̃ s (�)
, ‖v‖s := A(v, v)

1
2 .

We will use the following continuous and compact embedding results repeatedly.
Let s ∈ (0, 1). If r ∈ [1, 2d/(d − 2 s)], then Hs(�) ↪→ Lr(�) [1, Theorem 7.34]. If
r ∈ [1, 2d/(d − 2 s)), then the embedding is compact [10, Corollary 7.2].

2.4 Assumptions

We will operate under the following assumptions on a and L . However, we must
mention right away that some of the results obtained in this paper are also valid under
less restrictive conditions; when possible, we explicitly mention the assumptions on
a and L that are required to obtain a particular result.

(A.1) a : � × R → R is a Carathéodory function of class C2 with respect to the
second variable and a(·, 0) ∈ L2(�) ∩ Lr (�) for r > d/2s.

(A.2) ∂a
∂u (x, u) ≥ 0 for a.e. x ∈ � and for all u ∈ R.

(A.3) For all m > 0, there exists Cm > 0 such that

2∑

i=1

∣∣∣∣
∂ i a

∂ui
(x, u)

∣∣∣∣ ≤ Cm,

∣∣∣∣
∂2a

∂u2
(x, u) − ∂2a

∂u2
(x, v)

∣∣∣∣ ≤ Cm|u − v|
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for a.e. x ∈ � and u, v such that |u|, |v| ≤ m.

We note that it follows directly from (A.3) and the mean value theorem that a and
∂a
∂u are locally Lipschitz with respect to the second variable.

(B.1) L : � × R → R is a Carathéodory function of class C2 with respect to the
second variable and L(·, 0) ∈ L1(�).

(B.2) For all m > 0, there exist ψm, φm ∈ Lr (�) with r > d/2s such that

∣∣∣∣
∂L

∂u
(x, u)

∣∣∣∣ ≤ ψm(x),

∣∣∣∣
∂2L

∂u2
(x, u)

∣∣∣∣ ≤ φm(x)

for a.e. x ∈ � and u such that |u| ≤ m.

The following assumption is necessary to obtain further regularity properties for
optimal control variables and to derive error estimates.

(C.1) For all m > 0 and u ∈ [−m,m], ∂L
∂u (·, u) ∈ L2(�) and ∂2L

∂u2
(·, u) ∈ L

d
s (�).

3 Fractional Semilinear PDEs

Let s ∈ (0, 1) and let q ∈ Lr (�) with r > d/2s. We introduce the following weak
formulation for the fractional, semilinear, and elliptic PDE (1.2): Find u ∈ H̃ s(�)

such that

A(u, v) +
ˆ
�

a(x, u)vdx =
ˆ
�

qvdx ∀v ∈ H̃ s(�). (3.1)

Here, a = a(x, u) : �×R → R denotes a Carathéodory function which is monotone
increasing in u. We assume that for every m > 0 there exists ϕm ∈ L t(�) such that

|a(x, u)| ≤ ϕm(x) a.e. x ∈ �, u ∈ [−m,m], t = 2d/(d + 2s). (3.2)

If, in addition, a(·, 0) ∈ Lr (�) with r > d/2s, then (3.1) has a unique solution
u ∈ H̃ s(�) ∩ L∞(�), which satisfies the stability bound ‖u‖s + ‖u‖L∞(�) � ‖q −
a(·, 0)‖Lr (�) [16, Theorem 3.1].

Theorem 3.1 [Sobolev regularity] Let s ∈ (0, 1) and let q ∈ L2(�) ∩ Lr (�) with
r > d/2s. If a(·, 0) ∈ L2(�) and a is locally Lipschitz with respect to the second
variable, then the solution u of problem (3.1) belongs to Hs+κ−ε(�) for all 0 < ε < s,
where κ = 1

2 for 1
2 < s < 1 and κ = s − ε for 0 < s ≤ 1

2 . Moreover, we have the
bound

‖u‖Hs+κ−ε(�) � Cε−ν‖q − a(·, 0)‖L2(�) ∀ε ∈ (0, s),

where ν = 1
2 for 1

2 < s < 1 and ν = 1
2 + ν0 for 0 < s ≤ 1

2 . Here, ν0 and C denote
positive constants that depend on � and d and �, d, and s, respectively.

Proof The proof follows from a direct application of [5, Theorem 2.1 and inequality
(2.6)] using the fact that a is locally Lipschitz with respect to the second variable so
that ‖q − a(·, u)‖L2(�) � ‖q − a(·, 0)‖L2(�) + ‖u‖L2(�) � ‖q − a(·, 0)‖L2(�).
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3.1 Finite Element Discretization

We now present a finite element approximation of problem (3.1) under the additional
assumption that� is a Lipschitz polytope. Let {Th}h>0 be a collection of conforming
and quasi-uniform meshesTh made of closed simplices T , where h = max{hT : T ∈
Th} and hT = diam(T ). For each meshTh , we introduce the following standard finite
element space:

Vh := {vh ∈ C(�̄) : vh |T ∈ P1(T ) ∀T ∈ Th, vh = 0 on ∂�}. (3.3)

The discrete approximation of (3.1) is as follows: Find uh ∈ Vh such that

A(uh, vh) +
ˆ
�

a(x, uh)vhdx =
ˆ
�

qvhdx ∀vh ∈ Vh . (3.4)

The existence of a discrete solution follows from Brouwer’s fixed point theorem;
uniqueness follows from the monotonicity of a. Moreover, we have ‖uh‖s �
‖q‖H−s (�).

We now state a priori error estimates. For this purpose, we will assume that

|a(x, u) − a(x, v)| ≤ |φ(x)||u − v| (3.5)

for a.e. x ∈ � and u, v ∈ R. The function φ belongs to Ly(�), where y = d/2s.

Theorem 3.2 [a priori error estimates] Let s ∈ (0, 1) and let q ∈ Lr (�) with r >

d/2s. Let u ∈ H̃ s(�) be the solution to (3.1) and let uh ∈ Vh be its finite element
approximation obtained as the solution to (3.4). If a satisfies (3.5), then we have

‖u − uh‖s � ‖u − vh‖s ∀vh ∈ Vh . (3.6)

If, in addition, q ∈ L2(�), a is locally Lipschitz with respect to the second variable,
and a(·, 0) ∈ L2(�), then we have the error bound

‖u − uh‖s � hγ | log h|ϕ‖q − a(·, 0)‖L2(�). γ = min{s, 1
2 }. (3.7)

If, in addition, a satisfies the condition (3.5) with y = d/s, then we have

‖u − uh‖L2(�) � h2γ | log h|2ϕ‖q − a(·, 0)‖L2(�), γ = min{s, 1
2 }. (3.8)

Here, ϕ = ν if s �= 1
2 , ϕ = 1 + ν if s = 1

2 , and ν ≥ 1
2 is the constant in Theorem 3.1.

Proof The proof of (3.6) can be found in [16, Theorem 5.2]. The error estimates (3.7)
and (3.8) can be found in [17, Theorem 5.1] and [17, Theorem 5.2].

We conclude this section with the following convergence result.
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Lemma 3.3 [convergence] Let s ∈ (0, 1) and let uh ∈ Vh be the solution to

A(uh, vh) +
ˆ
�

a(x, uh)vhdx =
ˆ
�

qhvhdx ∀vh ∈ Vh,

where qh ∈ Lr (�) with r > d/2s. If a satisfies the condition (3.5), then we have
qh⇀q in Lr (�) �⇒ uh → u in Lr(�) as h → 0. Here, r ≤ 2d/(d − 2s).

Proof See [16, Proposition 5.3] for a proof. We note that in the statement of [16,
Proposition 5.3] it is assumed that � ∈ C2. However, this assumption does not play
any role and the same proof can be performed if � is a Lipschitz polytope.

4 The Optimal Control Problem

In this section, we present the following weak formulation for the optimal control
problem introduced in Sect. 1: Find

min{J (u, q) : (u, q) ∈ H̃ s(�) × Qad} (4.1)

subject to the fractional, semilinear and elliptic state equation

A(u, v) +
ˆ
�

a(x, u)vdx =
ˆ
�

qvdx ∀v ∈ H̃ s(�). (4.2)

Here, a = a(x, u) : � × R → R is a monotonically increasing in u Carathéodory
function that satisfies (3.2) anda(·, 0) ∈ Lr (�)with r > d/2s. As explained in Sect. 3,
problem (4.2) is well-posed under these assumptions on a. We therefore introduce the
control to state map S : Lr (�) → H̃ s(�) ∩ L∞(�) which, given a control q,
associates to it the unique state u that solves (4.2).

4.1 Existence of an Optimal Solution

We begin this section by introducing the concept of global solution. We say that
q̄ ∈ Qad is a global solution of (4.1)–(4.2) if J (Sq̄, q̄) ≤ J (Sq, q) for all q ∈ Qad .
The existence of an optimal solution (ū, q̄) ∈ H̃ s(�) × Qad for our optimal control
problem is as follows.

Theorem 4.1 [existence of an optimal solution] Let s ∈ (0, 1). Let L = L(x, u) :
� × R → R be a Carathéodory function. Assume that, for every m > 0, there exists
ϕm ∈ Lr (�) with r > d/2s and σm ∈ L1(�) such that

|a(x, u)| ≤ ϕm(x), |L(x, u)| ≤ σm(x) a.e. x ∈ �, u ∈ [−m,m]. (4.3)

Thus, (4.1)–(4.2) admits at least one solution (ū, q̄) ∈ H̃ s(�) ∩ L∞(�) × Qad .

123



Applied Mathematics & Optimization            (2025) 91:20 Page 9 of 32    20 

Proof Let {(uk, qk)}k∈N be a minimizing sequence, i.e., for k ∈ N, qk ∈ Qad and
uk = Sqk ∈ H̃ s(�) are such that J (uk, qk) → j := inf{J (Sq, q) : q ∈ Qad}
as k ↑ ∞. The arguments in the proof of [16, Theorem 4.1] show that, up to a
nonrelabeled subsequence, qk ⇀

∗
q̄ in L∞(�) and uk⇀ū in H̃ s(�) as k ↑ ∞, where

ū = Sq̄ . On the other hand, the Lebesgue dominated convergence theorem combined
with (4.3) and the fact that uk → ū in Lr(�) for every r < 2d/(d − 2s) show that
| ´

�
(L(x, uk(x)) − L(x, ū))dx | → 0 as k ↑ ∞. Since ‖ · ‖L1(�) and the square of

‖ · ‖L2(�) are continuous and convex in L1(�) and L2(�), respectively, we can arrive
at J (ū, q̄) ≤ j. This completes the proof.

4.2 First Order Necessary Optimality Conditions

In this section, we develop necessary first order optimality conditions for (4.1)–(4.2).
Since this problem is nonconvex, we discuss optimality conditions in the context of
local solutions: We say that q̄ ∈ Qad is a local solution in L2(�) for (4.1)–(4.2) if
there exists ε > 0 such that

J (Sq̄, q̄) ≤ J (Sq, q) ∀q ∈ Qad : ‖q − q̄‖L2(�) ≤ ε. (4.4)

The element q̄ is called a strict local solution in L2(�) for (4.1)–(4.2) if there exists
ε > 0 such that J (Sq̄, q̄) < J (Sq, q) for all q ∈ Qad\{q̄} such that ‖q− q̄‖L2(�) ≤ ε.

We now introduce F : L2(�) → R and j : L1(�) → R by

F(q) =
ˆ
�

L(x,Sq)dx + λ

2
‖q‖2L2(�)

, j(q) = ‖q‖L1(�). (4.5)

We also introduce the reduced cost functional j : Qad → R by j(q) = F(q)+μ j(q).
In what follows, we discuss differentiability properties for S and F .

Proposition 4.2 [differentiability properties of S] Let s ∈ (0, 1) and let r > d/2s.
Assume that (A.1)–(A.3) hold. Then, the control to state map S : Lr (�) → H̃ s(�)∩
L∞(�) is of class C2. In addition, if q, w ∈ Lr (�), then φ = S′(q)w ∈ H̃ s(�) ∩
L∞(�) corresponds to the unique solution to the problem

A(φ, v) +
ˆ
�

∂a

∂u
(x, u)φvdx =

ˆ
�

wvdx ∀v ∈ H̃ s(�), (4.6)

where u = Sq. If w1, w2 ∈ Lr (�), then ψ = S′′(q)(w1, w2) ∈ H̃ s(�) ∩ L∞(�)

corresponds to the unique solution to

A(ψ, v) +
ˆ
�

∂a

∂u
(x, u)ψvdx = −

ˆ
�

∂2a

∂u2
(x, u)φw1φw2vdx ∀v ∈ H̃ s(�), (4.7)

where u = Sq and φwi = S′(q)wi , with i ∈ {1, 2}.
Proof See [16, Theorem 4.3] for a proof.

123



   20 Page 10 of 32 Applied Mathematics & Optimization            (2025) 91:20 

To present the following result, we introduce the adjoint state p, which corresponds
to the solution to the problem: Find p ∈ H̃ s(�) ∩ L∞(�) such that

A(v, p) +
ˆ
�

∂a

∂u
(x, u)pvdx =

ˆ
�

∂L

∂u
(x, u)vdx ∀v ∈ H̃ s(�), (4.8)

where u = Sq ∈ H̃ s(�) ∩ L∞(�). Since ∂a/∂u(x, u) ≥ 0 for a.e. x ∈ � and for
all u ∈ R and ∂L/∂u(·, u) ∈ Lr (�) for every m > 0 and u ∈ [−m,m], the adjoint
problem (4.8) is well-posed.

Proposition 4.3 [differentiability properties of F] Let s ∈ (0, 1) and let r > d/2s.
Assume that (A.1)–(A.3) and (B.1)–(B.2) hold. Then, F : L2(�) ∩ Lr (�) → R is of
class C2. In addition, if q, w ∈ L2(�) ∩ Lr (�), then

F ′(q)w =
ˆ
�

(p + λq) wdx, (4.9)

where p solves (4.8). If w1, w2 ∈ L2(�) ∩ Lr (�), then we have

F ′′(q)(w1, w2) =
ˆ
�

(
∂2L

∂u2
(x, u)φw1φw2 + λw1w2 − p

∂2a

∂u2
(x, u)φw1φw2

)
dx, (4.10)

where u = Sq and φwi = S′(q)wi , with i ∈ {1, 2}.
Proof See [16, Proposition 4.5] for a proof.

The necessary first order optimality conditions are as follows.

Theorem 4.4 [first order optimality conditions] If q̄ ∈ Qad is a local solution to
(4.1)–(4.2), then there exists η̄ ∈ ∂ j(q̄) such that

ˆ
�

( p̄ + λq̄ + μη̄)(q − q̄)dx ≥ 0 ∀q ∈ Qad . (4.11)

Here, p̄ denotes the solution to (4.8) where u is replaced by ū = Sq̄ .
Proof Since q̄ is a local solution, there exists ε > 0 such that j(q̄) ≤ j(q) for every
q ∈ Qad such that ‖q̄ − q‖L2(�) ≤ ε. Let q ∈ Qad and let ρ ∈ (0, 1) be sufficiently
small so that qρ := q̄+ρ(q− q̄) = ρq+(1−ρ)q̄ ∈ Qad satisfies ‖q̄−qρ‖L2(�) ≤ ε.
Thus

0 ≤ j(qρ) − j(q̄) = [F(qρ) − F(q̄)] + μ[ j(qρ) − j(q̄)]. (4.12)

Note that j(qρ) − j(q̄) ≤ ρ( j(q) − j(q̄)) because j is convex. Dividing (4.12) by
ρ and taking the limit as ρ ↓ 0 yield 0 ≤ F ′(q̄)(q − q̄) + μ( j(q) − j(q̄)) for every
q ∈ Qad . This inequality can be rewritten as follows: q̄ ∈ Qad is such that

�(q̄) ≤ �(q) ∀q ∈ Qad , � : L2(�) → R, �(q) := F ′(q̄)q + μ j(q),
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i.e., q̄ is a globalminimizer of � overQad .Wemust thus have that 0 ∈ ∂(�+IQad )(q̄) =
∂�(q̄) + ∂IQad (q̄) [19, p. 134 and Proposition 4.5.1]. Here, IQad corresponds to the
indicator functional of Qad ; see Sect. 2.2. We now use that F ′(q̄) = ( p̄ + λq̄) and let
η̄ ∈ ∂ j(q̄) to arrive at −( p̄ + λq̄) − μη̄ ∈ ∂IQad (q̄). This allows us to conclude.

Let a, b ∈ R be such that a < b. We introduce the operator�[a,b] : L1(�) → Qad
by �[a,b](v) = min{b,max{a, v}} and present the following result.

Theorem 4.5 [projection formulas] If q̄, ū, p̄, and η̄ are as in the statement of Theorem
4.4, then

q̄(x) = �[α,β]
(
−λ−1 ( p̄(x) + μη̄(x))

)
, q̄(x) = 0 ⇔ | p̄(x)| ≤ μ, (4.13)

η̄(x) = �[−1,1]
(
−μ−1 p̄(x)

)
(4.14)

for a.e. x ∈ �. In particular, the subgradient η̄ ∈ ∂ j(q̄) is uniquely determined and
both q̄ and η̄ belong to H̃ s(�) ∩ L∞(�).

Proof The derivation of the projection formula for q̄ in (4.13) is standard in PDE-
constrained optimization. The equivalence q̄(x) = 0 ⇔ | p̄(x)| ≤ μ for a.e. x ∈ �

can be found in [7, Corollary 3.2]. The projection formula for η̄ in (4.14) can also be
found in [7, Corollary 3.2]. This formula directly guarantees the uniqueness of η̄. The
desired regularity properties for q̄ and η̄ follow from the projection formulas in (4.13)
and (4.14), the fact that max{0, τ } = (τ + |τ |)/2 for all τ ∈ R, and [14, Theorem 1].

4.3 Second Order Optimality Conditions

In this section, we assume that
d ∈ {2, 3}

and
s > d/4.

Let q̄ ∈ Qad be a local minimum and let η̄ ∈ ∂ j(q̄) be the corresponding subgradient.
We define

Cq̄ := {w ∈ L2(�) : w satisfies (4.16) and F ′(q̄)w + μ j ′(q̄;w) = 0}, (4.15)

where F ′(q̄)(·) and j ′(q̄, ·) are described in Proposition 4.3 and (2.2), respectively,
and

w(x) ≥ 0 if q̄(x) = α, w(x) ≤ 0 if q̄(x) = β. (4.16)

The set Cq̄ is a closed and convex cone in L2(�) [7, Proposition 3.4].
We formulate necessary second order optimality conditions as follows.

Theorem 4.6 [second order necessary optimality conditions] If q̄ ∈ Qad is a local
minimum of problem (4.1)–(4.2), then F ′′(q̄)w2 ≥ 0 for every w ∈ Cq̄ .

Proof The proof follows the same arguments as in [7, Theorem 3.7].
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To present the following result, for τ > 0, we introduce the cone

Cτ
q̄ :=

{
w ∈ L2(�) : w satisfies (4.16) and F ′(q̄)w + μ j ′(q̄;w) ≤ τ‖w‖L2(�)

}
.

Theorem 4.7 [equivalence] Let q̄ ∈ Qad be a local minimum and let η̄ ∈ ∂ j(q̄) be
the corresponding subgradient such that (4.11) holds. Then, the following statements
are equivalent:

(i) F ′′(q̄)w2 > 0 for all w ∈ Cq̄\{0}.
(ii) There exist τ, δ > 0 such that F ′′(q̄)w2 ≥ δ‖w‖2

L2(�)
for all w ∈ Cτ

q̄ .

Proof Since Cq̄ ⊂ Cτ
q̄ for every τ > 0, it is immediate that (i) implies (ii).

We now prove that (i) implies (ii). To do so, we follow the arguments of the proof
of [7, Theorem 3.8] and proceed by contradiction. Indeed, we assume the existence
of a sequence {vk}k∈N such that

vk ∈ C1/k
q̄ , F ′′(q̄)v2k < k−1‖vk‖2L2(�)

, k ∈ N.

Define wk := ‖vk‖−1
L2(�)

vk . Note that wk ∈ C1/k
q̄ because C1/k

q̄ is a cone. Moreover,

‖wk‖L2(�) = 1, F ′′(q̄)w2
k < k−1, k ∈ N. (4.17)

Since {wk}k∈N is uniformly bounded in L2(�), we can extract a nonrelabeled subse-
quence such that wk⇀w in L2(�) as k ↑ ∞. Note that w satisfies (4.16). Apply [7,
Lemma 3.5] to derive that F ′(q̄)w +μ j ′(q̄;w) ≥ 0. On the other hand, since j ′(q̄; ·)
is weakly lower semicontinuous in L2(�) and F ′(q̄)wk → F ′(q̄)w as k ↑ ∞ we
obtain

F ′(q̄)w + μ j ′(q̄;w) ≤ lim inf
k↑∞ F ′(q̄)wk + μ j ′(q̄;wk) ≤ lim inf

k↑∞ k−1 = 0.

To obtain the last inequality we used that wk ∈ C1/k
q̄ . This proves that F ′(q̄)w +

μ j ′(q̄;w) = 0 and thus that w ∈ Cq̄ .
We now prove that w ≡ 0. Since (i) holds, it suffices to prove that F ′′(q̄)w2 ≤ 0.

To accomplish this task, we use the characterization (4.10) and write

F ′′(q̄)w2
k =

ˆ
�

(
∂2L

∂u2
(x, ū)φ2

k + λw2
k − p̄

∂2a

∂u2
(x, ū)φ2

k

)
dx . (4.18)

Here, φk = S′(q̄)wk ∈ H̃ s(�) ∩ L∞(�) solves (4.6) with u and w replaced by
ū = S(q̄) andwk , respectively and p̄ ∈ H̃ s(�)∩ L∞(�) solves (4.8) with u replaced
by ū. Sincewk⇀w in L2(�) as k ↑ ∞, we deduce that φk⇀φ = S′(q̄)w in H̃ s(�) as
k ↑ ∞. Note that φ solves (4.6) with u replaced by ū. This convergence result and the
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compact embedding of Sect. 2.3 show thatφk → φ in Lr(�) for every r < 2d/(d−2s).
Thus, we invoke the assumptions (A.3) and (B.2) and obtain

∣∣∣∣
ˆ
�

∂2L

∂u2
(x, ū)

(
φ2
k − φ2

)
dx

∣∣∣∣ ≤
∥∥∥∥
∂2L

∂u2
(·, ū)

∥∥∥∥
Lr (�)

‖φk − φ‖Lt (�)‖φk + φ‖Lt (�),

∣∣∣∣
ˆ
�

∂2a

∂u2
(x, ū) p̄

(
φ2
k − φ2

)
dx

∣∣∣∣ ≤
∥∥∥∥
∂2a

∂u2
(·, ū)

∥∥∥∥
Lr (�

· ‖ p̄‖L∞(�)‖φk − φ‖Lt (�)‖φk + φ‖Lt (�).

Here r−1 + 2t−1 = 1. Note that, since r > d/2s, we have that t < 2d/(d − 2s).
Since the square of ‖·‖L2(�) is continuous and convex in L

2(�), the aforementioned
convergence results based on (4.18) and (4.17) yield

F ′′(q̄)w2 ≤ lim inf
k→∞ F ′′(q̄)w2

k ≤ 0.

The condition (i), which reads: F ′′(q̄)w2 > 0 for all w ∈ Cq̄\{0}, therefore implies
that w = 0 and that F ′′(q̄)w2

k → 0 as k ↑ ∞.
After proving that w = 0, we conclude the proof by arriving at a contradiction.

We begin by noting that wk⇀0 in L2(�) implies that φk → 0 in Lr(�) for every
r < 2d/(d − 2s). We use the latter convergence result and ‖wk‖L2(�) = 1 to obtain

F ′′(q̄)w2
k = λ +

ˆ
�

(
∂2L

∂u2
(x, ū)φ2

k − p̄
∂2a

∂u2
(x, ū)φ2

k

)
dx → λ > 0, k ↑ ∞.

This is a contradiction because F ′′(q̄)w2
k → 0 as k ↑ ∞. This concludes the proof.

We conclude this section with second order sufficient optimality conditions.

Theorem 4.8 [sufficient second order optimality conditions] Let (ū, p̄, q̄, η̄) ∈
H̃ s(�) × H̃ s(�) × Qad × ∂ j(q̄) satisfy the first order optimality conditions (4.2),
(4.8), and (4.11). If F ′′(q̄)w2 > 0 for all w ∈ Cq̄\{0}, then there exist δ > 0 and
ε > 0 such that

j(q) ≥ j(q̄) + δ
4‖q − q̄‖2L2(�)

∀q ∈ Qad : ‖q − q̄‖L2(�) ≤ ε.

Proof The proof follows the same arguments as in [7, Theorem 3.9].

4.4 Regularity Properties

Let q̄ be a local minimum of problem (4.1)–(4.2). In this section, we provide regularity
results for all involved optimal control variables, i.e., q̄, ū, p̄, and η̄. To accomplish
this task, we assume that the conditions (A.1)–(A.3) and (B.1)–(B.2) hold together
with the additional property (C.1).
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To present the following result, we define

�(L, u) =
∥∥∥∥
∂L

∂u
(·, u)

∥∥∥∥
L2(�)

. (4.19)

Theorem 4.9 [regularity properties] Let q̄ be a local minimum of (4.1)–(4.2) and let
ū, p̄, and η̄ be the associated optimal variables. Then, ū, p̄, q̄, η̄ ∈ Hs+κ−ε(�) for
all ε ∈ (0, s), where κ = 1

2 for 1
2 < s < 1 and κ = s − ε for 0 < s ≤ 1

2 . Moreover,

‖ū‖Hs+κ−ε(�) � ε−ν‖q̄ − a(·, 0)‖L2(�), (4.20)

‖ p̄‖Hs+κ−ε(�) � ε−ν�(L, ū), (4.21)

and

‖q̄‖Hs+κ−ε(�) + ‖η̄‖Hs+κ−ε(�) � ε−ν [1 + �(L, ū)] , (4.22)

where ν = 1
2 for 1

2 < s < 1 and ν = 1
2 + ν0 for 0 < s ≤ 1

2 , with ν0 = ν0(�, d) > 0.
The hidden constant in all inequalities is independent of ε.

Proof Since q̄ ∈ Qad ⊂ L2(�)∩ Lr (�) and a is locally Lipschitz with respect to the
second variable and satisfies (A.1), the desired regularity property for ū follows from
Theorem 3.1. We recall that ū ∈ L∞(�) and that ‖ū‖L∞(�) � ‖q̄ − a(·, 0)‖Lr (�).
We now focus on the optimal adjoint variable p̄. We first note that since ū ∈ L∞(�)

and, for every m > 0, |∂L/∂u(x, u)| ≤ ψm(x) for a.e. x ∈ � and u ∈ [−m,m],
with ψm ∈ Lr (�), we can conclude that p̄ ∈ L∞(�) [16, Theorem 3.1]. With this
regularity result, we invoke the assumptions (A.3) and (C.1) to arrive at

∂L

∂u
(·, ū) − ∂a

∂u
(·, ū) p̄ ∈ L2(�).

Thus, an application of [5, Theorem 2.1 and inequality (2.6)] show that p̄ ∈
Hs+κ−ε(�) together with the estimate

‖ p̄‖Hs+κ−ε(�) � ε−ν
(
�(·, ū) + ‖ p̄‖L2(�)

)
� ε−ν�(·, ū).

We note that since ū ∈ L∞(�) and the assumption (A.3) holds, |∂a/∂u(x, ū)| ≤ Cm

for a.e. x ∈ �. The desired regularity property for η̄ and part of the estimate in (4.22)
follow from the projection formula (4.14), the fact that max{0, τ } = (τ + |τ |)/2 for
all τ ∈ R, and [14, Theorem 1], which applies because s + κ − ε = s + 1

2 − ε < 3
2

if 1
2 < s < 1 and s + κ − ε = 2s − 2ε ≤ 1 − 2ε < 3

2 if 0 < s ≤ 1
2 . The desired

regularity property for q̄ follows the same arguments. This concludes the proof.

5 A Fully Discrete Scheme for the Optimal Control Problem

Before we begin our analysis, we would like to mention that in this section we assume
that� is a Lipschitz polytope. In the following, we propose and analyze the following
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fully discrete finite element approximation of our optimal control problem (4.1)–(4.2):
Find min J (uh, qh) subject to the discrete state equation

A(uh, vh) +
ˆ
�

a(x, uh)vhdx =
ˆ
�

qhvhdx ∀vh ∈ Vh (5.1)

and the control constraints qh ∈ Qad,h . Here, Qad,h := Qad ∩ Qh , where Qh :=
{qh ∈ L∞(�) : qh |T ∈ P0(T ) ∀T ∈ Th}.Vh denotes the finite element space defined
in (3.3).

The existence of at least one optimal solution is standard. To provide first order
optimality conditions, we introduce Fh : L2(�) → R and jh : Qh → R to be such
that

Fh(q) =
ˆ
�

L(x,Shq)dx + λ

2
‖q‖2L2(�)

, jh(qh) = ‖qh‖L1(�),

where Sh : Qad,h → Vh denotes the discrete control to state map.
First order optimality conditions for the fully discrete scheme are as follows.

Theorem 5.1 [first order optimality conditions] If q̄h ∈ Qad,h is a local solution to
the fully discrete scheme, then there exists η̄h ∈ ∂ jh(q̄h) such that

ˆ
�

( p̄h + λq̄h + μη̄h)(qh − q̄h)dx ≥ 0 ∀qh ∈ Qad,h . (5.2)

Here, p̄h is the solution to the discrete adjoint equation: Find p̄h ∈ Vh such that

A(vh, p̄h) +
ˆ
�

∂a

∂u
(x, ūh) p̄hvhdx =

ˆ
�

∂L

∂u
(x, ūh)vhdx ∀vh ∈ Vh, (5.3)

where ūh = Shq̄h .

Proof The proof follows the same arguments as in Theorem 4.4.

Analogous to the continuous case, we obtain projection formulas, but now on a
discrete level.

Theorem 5.2 [discrete projection formulas] If q̄h ∈ Qad,h and η̄h ∈ ∂ jh(q̄h) are as
in the statement of Theorem 5.1, then for every T ∈ Th, we have the formulas

q̄h |T = �[α,β]
[
−1

λ

(
1

|T |
ˆ
T
p̄hdx + μη̄h |T

)]
, (5.4)

q̄h |T = 0 ⇔ 1

|T |
∣∣∣∣
ˆ
T
p̄hdx

∣∣∣∣ ≤ μ, (5.5)

η̄h |T = �[−1,1]
(

− 1

μ|T |
ˆ
T
p̄hdx

)
. (5.6)

In particular, the subgradient η̄h ∈ ∂ jh(q̄h) is uniquely determined.
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Proof From the variational inequality (5.2) we have that, for every qT ∈ [α, β],
(ˆ

T
p̄hdx + [λq̄h |T + μη̄h |T ] |T |

)
(qT − q̄h |T ) ≥ 0.

The projection formula (5.4) can be derived from this inequality. The sparse property
(5.5) and the projection formula (5.6) are derived in [7, equivalence (4.4b)] and [7,
formula (4.4c)], respectively.

We conclude this section with the following error bounds for the discretization of
the adjoint equation and the corresponding subdifferential variables by finite elements.
These error bounds hold under the assumption that discrete solutions uh of the problem
(5.1) are uniformly bounded in L∞(�), i.e.,

∃C > 0 : ‖uh‖L∞(�) ≤ C ∀h > 0. (5.7)

To present a proof of some of the aforementioned error bounds, we introduce Ph :
L2(�) → Qh , the orthogonal projection operator on piecewise constant functions. As
a final ingredient, we let {q̄h}h>0 ⊂ Qad,h be a sequence of local minima of the fully
discrete optimal control problems such that ‖q̄ − q̄h‖L2(�) → 0 as h → 0, where q̄
corresponds to a local solution of (4.1)–(4.2); see Theorems 5.4 and 5.5 below.

We are now ready to present error bounds.

Theorem 5.3 [error bounds] Let η̄ ∈ ∂ j(q̄) be as in Theorems 4.4 and 4.5, and let p̄ be
the solution to (4.8) with u replaced by ū = Sq̄ . Let η̄h ∈ ∂ jh(q̄h) be as in Theorems
5.1 and 5.2, and let p̄h be the solution to (5.3). Let us assume that (A.1)–(A.3), (B.1)–
(B.2), (C.1), and (5.7) hold. Then, we have

‖ p̄ − p̄h‖s � hγ | log h|ϕ + ‖q̄ − q̄h‖L2(�), γ = min{s, 1
2 }, (5.8)

‖ p̄ − p̄h‖L2(�) + ‖η̄ − η̄h‖L2(�) � h2γ | log h|2ϕ + ‖q̄ − q̄h‖L2(�), (5.9)

where ϕ = ν if s �= 1
2 , ϕ = 1+ ν if s = 1

2 , and ν ≥ 1
2 is the constant in Theorem 3.1.

Proof The error estimates for p̄ − p̄h in H̃ s(�) and L2(�) can be found in [17,
Theorem 6.2, estimate (6.17)] and [17, Theorem 6.2, estimate (6.18)], respectively.
It is worth noting that in the proof of [17, Theorem 6.2] it is assumed that ∂L/∂u is
locally Lipschitz with respect to the second variable. This assumption can be removed
at the expense of having the assumption on the second derivative in (C.1). It remains
to prove the estimate for η̄ − η̄h in L2(�). To do this, we use the projection formulas
for η̄ and η̄h , which are given in (4.14) and (5.6), respectively, and arrive at

‖η̄ − η̄h‖L2(�) ≤ μ−1‖ p̄ − Ph p̄h‖L2(�). (5.10)

A simple application of a triangle inequality thus results in ‖η̄− η̄h‖L2(�) ≤ μ−1‖ p̄−
Ph p̄‖L2(�) + Cμ−1‖ p̄ − p̄h‖L2(�) using the fact that Ph is stable in L2(�). The
regularity property for p̄ derived in Theorem 4.9, namely, p̄ ∈ Hs+κ−ε(�), where κ
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and ε are the same as in the stament of Theorem 4.9, and a basic error estimate for the
orthogonal projection Ph yield

‖ p̄ − Ph p̄‖L2(�) � h2γ | log h|ν�(L, ū), γ = min{s, 1
2 }. (5.11)

This and the derived error estimate for p̄− p̄h in L2(�) allow us to complete the error
estimate (5.9). This completes the proof.

5.1 Convergence of Discretizations

We begin this section with a convergence result that guarantees that a sequence of dis-
crete global solutions {q̄h}h>0 contains subsequences that converge to global solutions
of problem (4.1)–(4.2) as h → 0.

Theorem 5.4 [convergence of discrete global solutions] Let us assume that (A.1)–
(A.3), (B.1)–(B.2), and (C.1) hold. Let h > 0 and let q̄h ∈ Qad,h be a global solution
to the fully discrete control problem. Then, there exist nonrelabeled subsequences
of {q̄h}h>0 such that q̄h ⇀

∗
q̄ in the weak∗ topology of L∞(�) as h → 0 and q̄

corresponds to a global solution of the continuous control problem (4.1)–(4.2). Fur-
thermore,

lim
h→0

‖q̄ − q̄h‖L2(�) = 0, lim
h→0

jh(q̄h) = j(q̄). (5.12)

If, in addition, (5.7) holds, then

‖η̄ − η̄h‖L2(�) → 0 (5.13)

as h → 0.

Proof Since {q̄h}h>0 ⊂ Qad,h is uniformly bounded in L∞(�), we can extract a
nonrelabeled subsequence such that q̄h ⇀

∗
q̄ in the weak∗ topology of L∞(�) as

h → 0. In the following, we prove that the limit q̄ is a global solution to (4.1)–(4.2).
Let q̄ ∈ Qad be a global solution to (4.1)–(4.2) and define qh = Ph q̄ ∈ Qh .We note

that according to the definition of Ph , qh is such that qh |T = ´
T q̄(x)dx/|T | for each

T ∈ Th . This immediately guarantees that qh ∈ Qad,h , because q̄ ∈ Qad . We now
take advantage of the fact that q̄ ∈ Hs+κ−ε(�), where κ and ε are as in the statement
of Theorem 4.9, and a basic error estimate for Ph to deduce that ‖q̄ − qh‖L2(�) → 0
as h → 0. We now use the global optimality of q̄ ∈ Qad in conjunction with the fact
that q̄ ∈ Qad , a convergence result based on Lemma 3.3 and the fact that q̄h ⇀

∗
q̄ in

the weak∗ topology of L∞(�) as h → 0, the global discrete optimality of q̄h ∈ Qad,h
combined with the fact that qh ∈ Qad,h , and another convergence result based on
Lemma 3.3 and the fact that ‖q̄ − qh‖L2(�) → 0 as h → 0 to obtain

j(q̄) ≤ j(q̄) ≤ lim inf
h→0

jh(q̄h) ≤ lim sup
h→0

jh(q̄h) ≤ lim sup
h→0

jh(qh) = j(q̄).

As a result, we have obtained that j(q̄) ≤ j(q̄) ≤ j(q̄), which guarantees the global
optimality of q̄ . We also proved that jh(q̄h) → j(q̄) as h → 0.
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We now prove that ‖q̄ − q̄h‖L2(�) → 0 as h → 0. Due to Lemma 3.3, we have
that ūh = Shq̄h → ū = Sq̄ in Lr(�) for every r ≤ 2d/(d − 2s). From this follows
| ´

�
(L(x, ūh) − L(x, ū))dx | → 0 as h → 0. Since jh(q̄h) → j(q̄) as h → 0, we

obtain

λ

2
‖q̄h‖2L2(�)

+ μ‖q̄h‖L1(�) → λ

2
‖q̄‖2L2(�)

+ μ‖q̄‖L1(�), h → 0. (5.14)

Define g = sign(q̄) ∈ L∞(�). Let h > 0. We note that, since |q̄h | ≥ q̄h in �, we
have

‖q̄h‖L1(�) −
ˆ
�

q̄hgdx=
ˆ
�+
q̄

(|q̄h | − q̄h) dx+
ˆ
�−
q̄

(|q̄h | + q̄h) dx+
ˆ
�0
q̄

|q̄h |dx ≥ 0.

This bound, the limit in (5.14), and the fact that q̄h ⇀
∗

q̄ in the weak∗ topology of
L∞(�) as h → 0, allow us to obtain the following result:

0 ≤ lim
h→0

[
λ

2
‖q̄h − q̄‖2L2(�)

+ μ

(
‖q̄h‖L1(�) −

ˆ
�

q̄hgdx

)]

=
(
λ

2
‖q̄‖2L2(�)

+ μ‖q̄‖L1(�)

)
− λ

2
‖q̄‖2L2(�)

− μ‖q̄‖L1(�) = 0.

This immediately implies that ‖q̄h − q̄‖L2(�) → 0 as h → 0.
The convergence of the term ‖η̄ − η̄h‖L2(�) follows immediately from Theorem

5.3. This concludes the proof.

To present the next result, we introduce Bε(q̄) := {q ∈ L2(�) : ‖q̄−q‖L2(�) ≤ ε}.
Theorem 5.5 [convergence to a local solution] Let the assumptions of Theorem 5.4
hold. If q̄ is a strict local minimum of the control problem (4.1)–(4.2), then there
exist h† > 0 and a sequence {q̄h}0<h<h† of local minima of the fully discrete control
problems such that (5.12) and (5.13) hold.

Proof Since q̄ is a strict local minimum of (4.1)–(4.2), there exists ε > 0 such that q̄
is the unique solution to the following problem: Find min{j(q) : q ∈ Qad ∩ Bε(q̄)}.

We now introduce the following discrete problem for each h > 0: Findmin{jh(qh) :
qh ∈ Qad,h ∩ Bε(q̄)}. We note that there exists h� > 0 so that for each h ∈ (0, h�) the
discrete function Phq̄ belongs to Qad,h ∩ Bε(q̄). Consequently, Qad,h ∩ Bε(q̄) is not
empty and the previously introduced discrete problem admits a solution.

Let h ∈ (0, h�) and let q̄h ∈ Qad,h ∩ Bε(q̄) be a global solution of the afore-
mentioned discrete problem. The arguments elaborated in the proof of Theorem 5.4
show the existence of a nonrelabeled subsequence of {q̄h}0<h<h� such that it con-
verges strongly in L2(�) as h → 0 to a global solution of the following problem:
Find min{j(q) : q ∈ Qad ∩ Bε(q̄)}. As mentioned at the beginning of the proof, this
problem admits a unique solution q̄ . Consequently, the whole sequence {q̄h}0<h<h�
must converge to q̄ in L2(�) as h → 0. As a result, there exists h† ∈ (0, h�) such that
the constraint q̄h ∈ Qad,h ∩ Bε(q̄) is not active for h ≤ h†, i.e., q̄h solves the fully
discrete scheme. This concludes the proof.
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5.2 Error Estimates

This section is dedicated to the derivation of error estimates. For this purpose, we
assume that d ∈ {2, 3} and s > d/4 andwe let {q̄h}h>0 ⊂ Qad,h be a sequence of local
minima of the fully discrete optimal control problems such that ‖q̄− q̄h‖L2(�) → 0 as
h → 0, where q̄ corresponds to a local solution of (4.1)–(4.2); see Theorems 5.4 and
5.5. The main goal of this section is to obtain an error estimate for q̄ − q̄h in L2(�),
namely

‖q̄ − q̄h‖L2(�) � h2γ | log h|2ϕ ∀h ≤ h�, γ = min
{
s, 1

2

}
, (5.15)

where ϕ = ν if s �= 1
2 , ϕ = 1 + ν if s = 1

2 , ν ≥ 1
2 is as in Theorem 3.1, and h� > 0

is the constant in Theorem 5.6 below.
The following result is helpful to obtain (5.15).

Theorem 5.6 [instrumental error estimate] Let us assume that (A.1)–(A.3), (B.1)–
(B.2), (C.1), and (5.7) hold. Let q̄ ∈ Qad satisfy the second order optimality condition
(i), or equivalently (ii) in Theorem 4.7. If (5.15) is false, then there exists h� > 0 such
that

C‖q̄ − q̄h‖2L2(�)
≤ [F ′(q̄h) − F ′(q̄)](q̄h − q̄) ∀h ∈ (0, h�], (5.16)

where C := 2−1δ and δ is the constant that appears in the item (ii) of Theorem 4.7.

Proof In a first step,we invoke theC2 regularity of F in L2(�)∩Lr (�), with r > d/2s
(cf. Proposition 4.3), the L2(�)-convergence of q̄h to q̄ as h → 0, and the mean value
theorem to conclude the existence of ε > 0 and hε > 0 such that

[F ′(q̄h) − F ′(q̄)](q̄h − q̄) ≥ F ′′(q̄)(q̄h − q̄)2 − δ

2
‖q̄h − q̄‖2L2(�)

∀h ≤ hε . (5.17)

It therefore suffices to prove that q̄h − q̄ ∈ Cτ
q̄ for some τ > 0 and for every h ≤ hτ ,

where hτ > 0, to apply item (ii) of Theorem 4.7 and deduce (5.16) with h� :=
min{hτ , hε}. Therefore, the rest of the proof is devoted to proving that q̄h − q̄ ∈ Cτ

q̄ .
Since (5.15) is false, there are sequences {h�}∞�=1 and {q̄h�}∞�=1 such that h� → 0

as � ↑ ∞ and
(h2γ� | log h�|2ϕ)−1‖q̄ − q̄h�‖L2(�) → ∞

as h� → 0. In the following, we omit the subindex � to simplify notation. For each
h > 0, we define the function vh := (q̄h − q̄)/‖q̄h − q̄‖L2(�). Since {vh}h>0 is
uniformly bounded in L2(�), there exists a nonrelabeled subsequence such that vh⇀v

in L2(�) as h → 0.Wenowprove the existence of τ > 0 and hτ > 0 such that vh ∈ Cτ
q̄

for every h ≤ hτ . The fact that every vh satisfies the sign conditions (4.16) is trivial.
It is therefore sufficient to prove that

F ′(q̄)vh + μ j ′(q̄; vh) ≤ τ ∀h ≤ hτ . (5.18)

Since [7, Lemma 3.5] guarantees that F ′(q̄)vh + μ j ′(q̄; vh) ≥ 0, which holds for
every h > 0 because vh ∈ L2(�) satisfies (4.16), we will obtain (5.18) with the help
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of the limit F ′(q̄)vh + μ j ′(q̄; vh) → 0 as h → 0. This will be now the focus of the
proof.

Let us first note that the arguments developed in the proof of [16, Theorem 7.4]
based on the weak convergence vh⇀v in L2(�) as h → 0 show that

{
F ′(q̄)v + μ

ˆ
�

η̄vdx

}
= lim

h→0

{
F ′(q̄h)vh + μ

ˆ
�

η̄hvhdx

}
≤ 0. (5.19)

This is the place where we use the assumption that (5.15) is false; see the proof
of [16, Theorem 7.4, p. 22] for details. On the other hand, F ′(q̄)v + μ

´
�
η̄vdx =´

�
[ p̄ + λq̄ + μη̄]vdx ≥ 0 as a consequence of the variational inequality (4.11) and

the fact that v satisfies (4.16). The relation F ′(q̄)v + μ
´
�
η̄vdx = 0 can be derived

from this.
We now prove that j ′(q̄; vh) → ´

�
η̄vdx as h → 0; recall that j ′(q̄; ·) is defined

in (2.2). To do this, we first note that vh⇀v in L2(�) as h → 0 yields

lim
h→0

{ˆ
�+
q̄

vhdx −
ˆ
�−
q̄

vhdx

}
=

ˆ
�+
q̄

vdx −
ˆ
�−
q̄

vdx . (5.20)

We now study
´
�0
q̄
|vh |dx , where �0

q̄ = {x ∈ � : q̄(x) = 0}. In view of (4.13), the

set �0
q̄ can be rewritten as �0

q̄ = {x ∈ � : | p̄(x)| ≤ μ}. We decompose this set as
follows:

�0
q̄ = �+

μ ∪ �−
μ ∪ �less

μ , �+
μ := {x ∈ � : p̄(x) = μ},

�−
μ := {x ∈ � : p̄(x) = −μ}, �less

μ := {x ∈ � : | p̄(x)| < μ}.

With these sets at hand, we can write the integral
´
�0
q̄
|vh |dx as follows:

ˆ
�0
q̄

|vh |dx =
ˆ
�less

μ

|vh |dx +
ˆ
�+

μ

|vh |dx +
ˆ
�−

μ

|vh |dx := Jh + Kh + Lh . (5.21)

In the following, we proceed in three steps to examine the three preceding terms.
Step 1. We study the limit value of Jh as h → 0. For this purpose, for each h > 0

and T ∈ Th , we introduce the average p̄h,T := ´
T p̄hdx/|T |. We also define

T1,h := {T ∈ Th : | p̄h,T | ≤ μ}, �1,h := �less
μ ∩ T1,h, (5.22)

T2,h := {T ∈ Th : | p̄h,T | > μ}, �2,h := �less
μ ∩ T2,h . (5.23)

In an abuse of notation, here and in what follows, byT1,h andT2,h , we will indistinc-
tively denote either these sets or the union of the triangles that comprise them.

We now note that for each T ∈ T1,h , q̄h |T = 0 as a consequence of (5.5). Thus,

vh(x)|T = q̄h(x) − q̄(x)

‖q̄h − q̄‖L2(�)

∣∣∣∣
T

= −q̄(x)

‖q̄h − q̄‖L2(�)

∣∣∣∣
T

= 0
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for a.e. x ∈ �less
μ ∩ T and for each T ∈ T1,h due to (4.13). As a result, we obtain

ˆ
�1,h

|vh |dx =
∑

T∈T1,h

ˆ
T∩�less

μ

|vh |dx = 0 �⇒ Jh =
ˆ
�less

μ

|vh |dx =
ˆ
�2,h

|vh |dx .

We now bound
´
�2,h

|vh |dx . For this purpose we let T ∈ T2,h and note that

0 < |μ − | p̄(x)|| < || p̄h,T | − | p̄(x)||

for a.e. x ∈ �less
μ ∩ T . Integrating over �less

μ ∩ T results in

0 ≤
ˆ
T∩�less

μ

|μ − | p̄||2dx <

ˆ
T

||Ph p̄h | − | p̄||2dx ≤ ‖Ph p̄h − p̄‖2L2(T )
.

Summing over all elements T in T2,h and using the arguments from the proof of
Theorem 5.3 which guarantee that ‖Ph p̄h − p̄‖L2(�) → 0 as h → 0, it follows that
|�2,h | → 0 as h → 0. This implies that

lim
h→0

Jh = 0. (5.24)

Step 2. We now study the limit value of Kh as h → 0. To do this, we define

T3,h := {T ∈ Th : p̄h,T < −μ}, �3,h := �+
μ ∩ T3,h, (5.25)

T4,h := {T ∈ Th : p̄h,T > +μ}, �4,h := �+
μ ∩ T4,h, (5.26)

and �5,h := �+
μ ∩ T1,h , where T1,h is defined in (5.22). If we proceed as at the

beginning of Step 1, we can deduce that vh(x) = 0 for a.e. x ∈ �5,h . Consequently,

Kh =
ˆ
�+

μ

|vh |dx =
ˆ
�3,h

|vh |dx +
ˆ
�4,h

|vh |dx .

Let T ∈ T3,h . By definition, p̄h,T < −μ. Recall that p̄(x) = μ for a.e. x ∈ �+
μ .

Thus,

0 ≤ 4μ2|T∩�+
μ | =

ˆ
T∩�+

μ

(μ−(−μ))2dx <

ˆ
T
( p̄−Ph p̄h)

2dx = ‖ p̄−Ph p̄h‖2L2(T )
.

Summing over all elements T in T3,h we obtain |�3,h | → 0 as h → 0. To complete
the proof of this step, we let T ∈ T4,h . Note that p̄h,T > μ. Using the projection
formulas (5.4) and (5.6), we can deduce that q̄h |T < 0. This implies that vh(x) < 0
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for a.e. x ∈ T ∩ �+
μ . As a result, |vh(x)| = −vh(x) for a.e. x ∈ T ∩ �+

μ . Thus,

lim
h→0

Kh = − lim
h→0

ˆ
�4,h

vhdx = − lim
h→0

ˆ
�4,h

vhdx − lim
h→0

ˆ
�3,h

vhdx

− lim
h→0

ˆ
�5,h

vhdx = − lim
h→0

ˆ
�+

μ

vhdx = −
ˆ
�+

μ

vdx . (5.27)

To obtain the first relation, we used that
´
�3,h

|vh |dx → 0 as h → 0. This follows
from |�3,h | → 0 as h → 0 and ‖vh‖L2(�) = 1 for each h > 0. The second relation
follows from the fact that

´
�3,h

vhdx → 0 as h → 0 and
´
�5,h

vhdx = 0 for each

h > 0. The third relation is a consequence of �+
μ = �3,h ∪ �4,h ∪ �5,h . Finally, the

last relation follows from the use of the weak convergence vh⇀v in L2(�) as h → 0.
Step 3. Using arguments similar to those in Step 2 we arrive at

lim
h→0

Lh =
ˆ
�−

μ

vdx . (5.28)

Collecting (5.21), (5.24), (5.27), and (5.28) we conclude that

lim
h→0

ˆ
�0
q̄

|vh |dx = −
ˆ
�+

μ

vdx +
ˆ
�−

μ

vdx . (5.29)

Afterwe have proved (5.29)we use (5.20) and the fact that η̄(x) = 1 for a.e. x ∈ �+
q̄

and x ∈ �−
μ and that η̄(x) = −1 for a.e. x ∈ �−

q̄ and x ∈ �+
μ to deduce that

lim
h→0

j ′(q̄; vh) =
ˆ
�+
q̄

vdx −
ˆ
�−
q̄

vdx −
ˆ
�+

μ

vdx +
ˆ
�−

μ

vdx

=
ˆ
�+
q̄

η̄vdx +
ˆ
�−
q̄

η̄vdx +
ˆ
�+

μ

η̄vdx +
ˆ
�−

μ

η̄vdx

=
ˆ
�

η̄vdx . (5.30)

To obtain the last equality we have used that ‖vh‖L1(�less
μ ) → 0, which follows from

(5.24), and that vh⇀v in L2(�) as h → 0 to conclude that v = 0 a.e. in �less
μ .

The limit (5.30) and the relation (5.19) allows us to conclude that

lim
h→0

(
F ′(q̄)vh + μ j ′(q̄; vh)

) = 0.

Since F ′(q̄)vh + μ j ′(q̄; vh) ≥ 0 for each h > 0, we deduce the existence of τ > 0
and hτ > 0 such that F ′(q̄)vh + μ j ′(q̄; vh) ≤ τ for all h ≤ hτ . This concludes the
proof.

We now provide a proof for the main result of this section.

123



Applied Mathematics & Optimization            (2025) 91:20 Page 23 of 32    20 

Theorem 5.7 [error bound for the approximation of an optimal control] Let us assume
that (A.1)–(A.3), (B.1)–(B.2), (C.1), and (5.7) hold. Let q̄ ∈ Qad satisfy the second
order optimality condition (i), or equivalently (ii) in Theorem 4.7. Then, there is
h� > 0 so that the estimate (5.15) holds.

Proof We proceed by contradiction: If we assume that (5.15) is false, then there exists
h� > 0 such that the estimate (5.16) of Theorem 5.6 holds for every h ∈ (0, h�].
Based on the instrumental error estimate (5.16), we use the continuous and discrete
optimality conditions, (4.11) and (5.2), respectively, to obtain [7, ineq. (4.14)]

C‖q̄ − q̄h‖2L2(�)

≤ [F ′
h(q̄h) − F ′(q̄h)](q̄ − q̄h) + [F ′

h(q̄h) − F ′(q̄)](Phq̄ − q̄)

+
[
F ′(q̄)(Phq̄ − q̄) + μ

ˆ
�

η̄(Phq̄ − q̄)dx

]
+ μ

ˆ
�

(η̄ − η̄h)(q̄h − q̄)dx

+μ

ˆ
�

(η̄h − η̄)(Phq̄ − q̄)dx := Ih + IIh + IIIh + IVh + Vh, ∀h ≤ h�.

In the following, we proceed in several steps and estimate each of the terms Ih , IIh ,
IIIh , IVh , and Vh individually.

Step 1. We first control the term IVh . To do this, we first use that η̄ ∈ ∂ j(q̄) and
the definition of the subgradient given in (2.1) to obtain

ˆ
�

η̄(q̄h − q̄)dx ≤ ‖q̄h‖L1(�) − ‖q̄‖L1(�).

Since η̄h ∈ ∂ jh(q̄h), the characterization in [7, eq. (4.3)] leads to the conclusion that

ˆ
�

η̄h(q̄ − q̄h)dx =
ˆ
�

η̄hq̄dx − ‖q̄h‖L1(�) ≤ ‖q̄‖L1(�) − ‖q̄h‖L1(�).

Consequently, we can control the term IVh as follows:

IVh ≤ μ
(‖q̄h‖L1(�) − ‖q̄‖L1(�) + ‖q̄‖L1(�) − ‖q̄h‖L1(�)

) = 0. (5.31)

Step 2. We estimate IIIh . To do so, we use the characterization of F ′(q̄) described
in (4.9) and standard properties for the orthogonal projection operator Ph to obtain

IIIh =
ˆ
�

( p̄ + λq̄ + μη̄ − Ph ( p̄ + λq̄ + μη̄))(Phq̄ − q̄)dx

≤ (‖ p̄ − Ph p̄‖L2(�) + μ‖η̄ − Ph η̄‖L2(�)

) ‖q̄ − Phq̄‖L2(�).

(5.32)

Here, p̄ ∈ H̃ s(�) ∩ L∞(�) denotes the solution to (4.8) with u replaced by ū = Sq̄ .
The control of the error ‖ p̄−Ph p̄‖L2(�) follows from a standard error estimate forPh

in conjunction with the regularity property p̄ ∈ Hs+κ−ε(�) for all ε ∈ (0, s), where
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κ = 1
2 for 1

2 < s < 1 and κ = s − ε for 0 < s ≤ 1
2 (see Theorem 4.9). In fact, we

have
‖ p̄ − Ph p̄‖L2(�) � h2γ | log h|ν�(L, ū), γ = min{s, 1

2 }, (5.33)

where ν = 1
2 for 1

2 < s < 1 and ν = 1
2 + ν0 for 0 < s ≤ 1

2 , with ν0 = ν0(�, d) > 0.
The term �(L, ū) is defined in (4.19). Similarly, we have

‖q̄ − Phq̄‖L2(�) + ‖η̄ − Ph η̄‖L2(�) � h2γ | log h|ν [1 + �(L, ū)] . (5.34)

If we replace the estimates obtained in (5.33) and (5.34) into (5.32), we obtain

IIIh � h4γ | log h|2ν [1 + �(L, ū)]2 . (5.35)

Step 3. An estimate for the term Vh follows easily from the definition of Ph and
the estimate (5.34) derived in the previous step:

Vh = μ

ˆ
�

(Ph η̄ − η̄)(Phq̄ − q̄)dx � h4γ | log h|2ν [1 + �(L, ū)]2 . (5.36)

Step 4. The aim of this step is to estimate the term Ih . To accomplish this task, we
introduce the variables û ∈ H̃ s(�) and p̂ ∈ H̃ s(�), which solve, respectively,

A(û, v) +
ˆ
�

a(x, û)vdx =
ˆ
�

q̄hvdx ∀v ∈ H̃ s(�)

and

A( p̂, v) +
ˆ
�

∂a

∂u
(x, û) p̂vdx =

ˆ
�

∂L

∂u
(x, û)vdx ∀v ∈ H̃ s(�).

With these variables, we can rewrite and estimate the term Ih as follows:

Ih =
ˆ
�

[
( p̄h + λq̄h) − ( p̂ + λq̄h)

]
(q̄ − q̄h)dx

≤ 1

C
‖ p̄h − p̂‖2L2(�)

+ C

4
‖q̄ − q̄h‖2L2(�)

. (5.37)

To obtain the last inequality, we used Young’s inequality. Here, C = 2−1δ is the
constant that appears in Theorem 5.6.

The rest of this step is dedicated to bound the term ‖ p̄h − p̂‖L2(�). For this purpose,

we introduce p̃ as the solution to: Find p̃ ∈ H̃ s(�) such that

A( p̃, v) +
ˆ
�

∂a

∂u
(x, ūh) p̃vdx =

ˆ
�

∂L

∂u
(x, ūh)vdx ∀v ∈ H̃ s(�).

We note that, in view of (5.7) and the assumptions on a and L all terms in this weak
formulation are well-posed. With the variable p̃ at hand, the triangle inequality in
L2(�)yields‖ p̄h− p̂‖L2(�) ≤ ‖ p̄h− p̃‖L2(�)+‖ p̃− p̂‖L2(�).Tobound‖ p̄h− p̃‖L2(�),
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we use that p̄h corresponds to the finite element approximation of p̃withinVh . Indeed,
an application of a suitable modification of Theorem [17, Theorem 6.1] yields

‖ p̄h − p̂‖L2(�) � h2γ | log h|2ϕ�(L, ūh). (5.38)

We note that the same arguments we used to derive the regularity results for p̄ in
Theorem 4.9 also apply to p̃ with a similar estimate. It remains to bound the term
‖ p̃ − p̂‖L2(�). To do this, we first note that p̃ − p̂ is such that

p̃ − p̂ ∈ H̃ s(�) : A( p̃ − p̂, v) +
ˆ
�

∂a

∂u
(x, û)( p̃ − p̂)vdx

=
ˆ
�

∂2L

∂u2
(x, uθ )(ūh − û)vdx

+
ˆ
�

∂2a

∂u2
(x, uϑ)(û − ūh) p̃vdx (5.39)

for all v ∈ H̃ s(�), where uθ := û + θh(ūh − û) and uϑ := ūh + ϑh(û − ūh)
with θh, ϑh ∈ (0, 1). Given the assumptions (C.1) and (5.7), the L∞(�)-regularity
of p̃, and Hölder’s inequality we have that all terms in (5.39) are well-defined. We
now invoke a stability estimate for problem (5.39), assumptions (A.3) and (C.1), the
L∞(�)-regularity of p̃, and the embedding Hs(�) ↪→ Lr(�), which holds for every
r ≤ 2d/(d − 2 s), to derive the estimates

‖ p̃ − p̂‖L2(�) � ‖ p̃ − p̂‖s
≤

∥∥∥∥

(
∂2L

∂u2
(·, uθ ) − ∂2a

∂u2
(·, uϑ) p̃

)
(ūh − û)

∥∥∥∥
H−s (�)

�
(∥∥∥∥

∂2L

∂u2
(·, uθ )

∥∥∥∥
L

d
s (�)

+ ‖ p̃‖L∞(�)

)
‖ūh − û‖L2(�)

� h2γ | log h|2ϕ‖q̄h − a(·, 0)‖L2(�). (5.40)

To obtain the last estimate, we used the fact that ūh corresponds to the finite element
approximation of û withinVh and Theorem 3.2. If we replace the estimates (5.38) and
(5.40) in (5.37), we obtain that

Ih ≤ Ch4γ | log h|4ϕ (‖q̄h − a(·, 0)‖L2(�) + �(L, ūh)
)2 + C

4
‖q̄ − q̄h‖2L2(�)

. (5.41)

Step 5. In this step, we bound IIh . To do this, we use the definition of the orthogonal
projection operator Ph and the regularity properties of p̄ and q̄ to obtain

IIh =
ˆ
�

(( p̄h + λq̄h − ( p̄ + λq̄))(Phq̄ − q̄)dx =
ˆ
�

( p̄h − p̄)(Phq̄ − q̄)dx

+ λ‖Phq̄ − q̄‖2L2(�)
≤ ‖ p̄h − p̄‖L2(�)‖Phq̄ − q̄‖L2(�) + λ‖Phq̄ − q̄‖2L2(�)

.

123



   20 Page 26 of 32 Applied Mathematics & Optimization            (2025) 91:20 

Use the estimates (5.34) and (5.9), as well as Young’s inequality, to obtain

IIh ≤ Ch4γ | log h|4ϕ [1 + �(L, ū)]2 + C

4
‖q̄ − q̄h‖2L2(�)

. (5.42)

Step 6. Through the collection of (5.31), (5.35), (5.36), (5.41), and (5.42), we
conclude that (5.15) holds, which is a contradiction. This concludes the proof.

As a corollary, we present the following estimate for η̄ − η̄h .

Corollary 5.8 [error bound for the approximation of an optimal subgradient] In the
framework of Theorem 5.7, we have the error bound

‖η̄ − η̄h‖L2(�) � h2γ | log h|2ϕ ∀h ≤ h�, γ = min
{
s, 1

2

}
, (5.43)

where ϕ = ν if s �= 1
2 , ϕ = 1+ ν if s = 1

2 , and ν ≥ 1
2 is the constant in Theorem 3.1.

Proof The error bound is an immediate consequence of Theorems 5.3 and 5.7.

6 A Semidiscrete Scheme for the Optimal Control Problem

In the following, we propose a semidiscretization strategy based on the variational
discretization approach [11]. Here, only the state space is discretized (the control
space is not discretized). The semidiscrete approach is as follows: Find min J (uh,q)
subject to

A(uh, vh) +
ˆ
�

a(x, uh)vhdx =
ˆ
�

qvhdx ∀vh ∈ Vh, (6.1)

and the control constraints q ∈ Qad . Standard arguments show that there is at least
one optimal solution to this problem. Furthermore, as in Theorem 4.4, it can be proved
that if q̄ ∈ Qad denotes a local solution, then there exists η̄ ∈ ∂ j(q̄) such that

ˆ
�

( p̄h + λq̄ + μη̄)(q − q̄)dx ≥ 0 ∀q ∈ Qad . (6.2)

Here, p̄h solves the problem (5.3), where ūh corresponds to the solution of (6.1) with
q replaced by q̄. As in Theorem 4.5, the following projection formulas can be derived
for every x ∈ �:

q̄(x) = �[α,β]
(
−λ−1( p̄h(x) + μη̄(x))

)
, q̄(x) = 0 ⇔ | p̄h(x)| ≤ μ, (6.3)

η̄(x) = �[−1,1]
(
−μ−1 p̄h(x)

)
. (6.4)

Since q̄ and η̄ implicitly depend on h, we will use the notation q̄h and η̄h in the
following. Assuming that discrete solutions ūh of (6.1) are uniformly bounded in
L∞(�) and that (A.1)–(A.3), (B.1)–(B.2), and (C.1) hold, we can provide error bounds
for the approximation error of the adjoint state and subdifferential variables. The
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error estimate for the latter is simpler than that in Theorem 5.3 because of the bound
‖η̄ − η̄h‖L2(�) ≤ μ−1‖ p̄ − p̄h‖L2(�). Furthermore, minor adjustments in the proofs
of the Theorems 5.4 and 5.5 lead to the following convergence results.

• Let h > 0 and let q̄h ∈ Qad be a global solution of the semidiscrete scheme. Then,
there exist nonrelabeled subsequences of {q̄h}h>0 such that q̄h ⇀

∗
q̄ in L∞(�)

as h → 0 and q̄ corresponds to a global solution to (4.1)–(4.2). In addition, the
convergence results (5.12) and (5.13) hold.

• If q̄ ∈ Qad is a strict local minimum of the control problem (4.1)–(4.2), then there
exists a sequence of local minima {q̄h}0<h<h† of the semidiscrete scheme such
that (5.12) and (5.13) hold.

We now derive the error bound for the semidiscrete scheme given in (6.6). For this
purpose, we assume that d ∈ {2, 3} and s > d/4 and we let {q̄h} ⊂ Qad be a sequence
of local minima of such a scheme such that q̄h → q̄ in L2(�) as h → 0, where
q̄ ∈ Qad is a local solution to (4.1)–(4.2). In a first step, we provide an instrumental
result that is analogous to Theorem 5.6.

Theorem 6.1 [instrumental error estimate] Let us assume that (A.1)–(A.3), (B.1)–
(B.2), (C.1) and (5.7) hold. Let q̄ ∈ Qad satisfy the second order optimality condition
(i), or equivalently (ii) in Theorem 4.7. Then, there exists h∗ > 0 such that

C‖q̄ − q̄h‖2L2(�)
≤ [F ′(q̄h) − F ′(q̄)](q̄h − q̄) ∀h ∈ (0, h∗], (6.5)

where C = 2−1δ and δ is the constant that appears in the item (ii) of Theorem 4.7.

Proof The proof follows analogous arguments as in the proof of Theorem 5.6. The
main modifications are the redefinitions of the sets

�1,h := {x ∈ �less
μ : | p̄h(x)| ≤ μ}, �2,h := {x ∈ �less

μ : | p̄h(x)| > +μ},
�3,h := {x ∈ �+

μ : p̄h(x) < −μ}, �4,h := {x ∈ �+
μ : p̄h(x) > +μ},

and �5,h := {x ∈ �+
μ : | p̄h(x)| ≤ μ}. For the sake of simplicity, we skip the details.

We now derive the main result of this section.

Theorem 6.2 [error bound for the approximation of an optimal control] Let us assume
that (A.1)–(A.3), (B.1)–(B.2), (C.1), and (5.7) hold. Let q̄ ∈ Qad satisfy the second
order optimality condition (i), or equivalently (ii) in Theorem 4.7. Then, there exists
h• > 0 such that

‖q̄ − q̄h‖L2(�) � h2γ | log h|2ϕ ∀h ≤ h• γ = min
{
s, 1

2

}
, (6.6)

where ϕ = ν if s �= 1
2 , ϕ = 1+ ν if s = 1

2 , and ν ≥ 1
2 is the constant in Theorem 3.1.
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Fig. 1 Experimental rates of convergence for ‖ū − ūh‖s and ‖ p̄ − p̄h‖s considering the fully discrete
(A.1)–(A.2) and semidiscrete schemes (B.1)–(B.2) for s ∈ {0.2, 0.4, 0.6, 0.8}

Proof We proceed as in the proof of Theorem 5.7 and use the instrumental error
bound (6.5) and the variational inequalities (4.11) and (6.2) with q = q̄h and q = q̄ ,
respectively, to obtain (cf. [7, Theorem 5.1])

C‖q̄− q̄h‖2L2(�)
≤ [F ′

h(q̄h)− F ′(q̄h)](q̄− q̄h)+μ

ˆ
�

(η̄− η̄h)(q̄h − q̄)dx ∀h ≤ h∗.

We immediately notice that the first and second terms on the right-hand side of the
previous inequality correspond to Ih and IVh , respectively, from the proof of Theorem
5.7. These terms, Ih and IVh , are estimated in (5.41) and (5.31), respectively.

7 Numerical Examples

We present a numerical experiment that illustrates the performance of the fully and
semidiscrete methods presented Sects. 5 and 6, respectively, when used to approxi-
mate a solution of the control problem (4.1)–(4.2). A MATLAB implementation is
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Fig. 2 Experimental rates of convergence for ‖ū − ūh‖L2(�) and ‖ p̄ − p̄h‖L2(�) considering the fully
discrete (C.1)–(C.2) and semidiscrete schemes (D.1)–(D.2) for s ∈ {0.2, 0.4, 0.6, 0.8}

used for the experiment, and the methods are solved using a semi-smooth Newton
method.

The setting of the experiment is as follows: we set d = 2,� = B(0, 1), and λ = 1,
where B(0, 1) denotes the unit disc. We let a(·, u) = u3 and L(·, u) = (u − u�)2/2,
where u� is such that the exact optimal state and the optimal adjoint state are

ū(x) = p̄(x) = (22s�2 (1 + s))−1(1 − |x |2)s+, t+ = max{0, t}. (7.1)

We also consider a = −1, b = 1, and s ∈ {0.2, 0.4, 0.6, 0.8}. Note that we go beyond
the theory presented and illustrate the performance of the methods for different values
of s in (0, 1). Additionally, for s ≤ 0.5, we set μ = 0.6, and for s > 0.5, we choose
μ = 0.25.

Figures 1, 2, and 3 show the results for the fully discrete and semidiscrete schemes.
Figure1 shows the experimental convergence rates for ‖ū − ūh‖s and ‖ p̄ − p̄h‖s for
s ∈ {0.2, 0.4, 0.6, 0.8}. The experimental convergence rates for ‖ū − ūh‖L2(�) and
‖ p̄− p̄h‖L2(�) are shown inFig. 2,while the results for‖q̄−q̄h‖L2(�) and‖η̄−η̄h‖L2(�)
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are shown in Fig. 3. It can be observed that when s ≥ 0.5 the experimental convergence
rates for all involved approximation errors are in agreement with the error estimates
obtained in Sects. 5.2 and 6.

Fig. 3 Experimental rates of convergence for ‖q̄ − q̄h‖L2(�) and ‖η̄ − η̄h‖L2(�) considering the fully
discrete (E.1)–(E.2) and semidiscrete schemes (F.1)–(F.2) for s ∈ {0.2, 0.4, 0.6, 0.8}
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Fig. 4 Finite element solutions q̄h (left) and η̄h (right), obtained by the semidiscrete scheme with s = 0.4.
The sparse behavior in the control variable q̄h is evident. In addition, a singular behavior can be observed
for η̄h near the boundary ∂�
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