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A POSTERIORI ERROR ESTIMATES FOR SEMILINEAR OPTIMAL
CONTROL PROBLEMS*

ALEJANDRO ALLENDES!, FRANCISCO FUICA?, ENRIQUE OTAROLA$, AND DANIEL
QUEROY

Abstract. We devise and analyze a reliable and efficient a posteriori error estimator for a
semilinear control-constrained optimal control problem in two and three dimensional Lipschitz, but
not necessarily convex, polytopal domains. We consider a fully discrete scheme that discretizes the
state and adjoint equations with piecewise linear functions and the control variable with piecewise
constant functions. The devised error estimator can be decomposed as the sum of three contributions
which are associated to the discretization of the state and adjoint equations and the control variable.
We extend our results to a scheme that approximates the control variable with piecewise linear
functions and also to a scheme that approximates a nondifferentiable optimal control problem. We
illustrate the theory with two and three—dimensional numerical examples.

Key words. optimal control problems, semilinear equations, finite element approximations, a
posteriori error estimates.

AMS subject classifications. 35J61, 49J20, 49M25, 65N15, 65N30.

1. Introduction. In this work we will be interested in the design and analysis of
a posteriori error estimates for finite element approximations of a semilinear control—
constrained optimal control problem: the state equation corresponds to a Dirichlet
problem for a monotone, semilinear, and elliptic partial differential equation (PDE).
To describe our control problem, for d € {2,3}, we let  C R? be an open and bounded
polytopal domain with Lipschitz boundary 0f2. Notice that we do not assume that §2
is convex. Given a regularization parameter v > 0 and a desired state yo € L?(1Q),
we define the cost functional

1 v
(1) J(y,u) = §||y — yall72() + 5”“”%2(9)-

With these ingredients at hand, we define the semilinear elliptic optimal control prob-
lem as: Find min J(y,u) subject to the monotone, semilinear, and elliptic PDE

(2) —Ay+a(,y) =wuin Q, y =0 on 012,
and the control constraints
(3) € Upg, Upg:={veL*Q):a<v(r) <bae z€};

the control bounds a,b € R are such that a < b. Assumptions on the function a will
be deferred until section 2.2.
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2 A. ALLENDES, F. FUICA, E. OTAROLA, D. QUERO

The analysis of error estimates for finite element approximations of semilinear
optimal control problems has previously been considered in a number of works. The
article [5] appears to be the first to provide error estimates for the distributed optimal
control problem (1)—(3); notice that control constraints are considered. The authors of
this work propose a fully discrete scheme on quasi—uniform meshes that discretizes the
control variable with piecewise constant functions; piecewise linear functions are used
for the discretization of the state and adjoint variables. In two and three dimensions
and under the assumptions that €2 is convex, 9 is of class C1'!, and that the mesh-size
is sufficiently small, the authors derive a priori error estimates for the approximation
of the optimal control variable in the L?(Q)-norm [5, Theorem 5.1] and the L>(Q)-
norm [5, Theorem 5.2]; the ones derived in the L?(£2)-norm being optimal in terms of
approximation. The analysis performed in [5] was later extended in [11] to a scheme
that approximates the control variable with piecewise linear functions. The main
result of this work reads as follows: h3'||& — @z ||r2@) — 0 as h | 0 [11, Theorem
4.1], where 4> denotes the corresponding finite element approximation of the optimal
control variable u. Under a suitable assumption, this result was later improved to

_ _ 3/2
@ — 7|2 S h%%

see [14, section 10]. We conclude by providing a non-exhaustive list of extensions
available in the literature: boundary optimal control [15], sparse optimal control [12],
Dirichlet boundary optimal control [16], and state constrained optimal control [13].

While it is fair to say that the study of a priori error estimates for finite element
solution techniques of semilinear optimal control problems is matured and well under-
stood, the analysis of a posteriori error estimates is far from complete. An a posteriori
error estimator is a computable quantity that depends on the discrete solution and
data and is of primary importance in computational practice because of its ability to
provide computable information about errors and drive the so-called adaptive finite
element methods (AFEMs). The a posteriori error analysis for linear second-order
elliptic boundary value problems and the construction of AFEMs and their conver-
gence and optimal complexity have attained a mature understanding [1, 25, 29]. To
the best of our knowledge, the first work that provided an advance regarding a pos-
teriori error estimates for linear and distributed optimal control problems is [23]: the
devised residual-type a posteriori error estimator is proven to yield an upper bound
for the error [23, Theorem 3.1]. These results were later improved in [20] where the
authors explore a slight modification of the estimator of [23] and prove upper and
lower error bounds which include oscillation terms [20, Theorems 5.1 and 6.1]. Re-
cently, these ideas were unified in [22]. In contrast to these advances the a posteriori
error analysis for nonlinear optimal control problems is not as developed. To the best
of our knowledge, the first work that provides an advance on this matter is [24]. In
this work the authors derive a posteriori error estimates for such a class of problems
on Lipschitz domains and for nonlinear terms a which are such that

aa/ay(uy) € Wl’OO(_RuR)vR > 07 a('uy) € L2(Q)7y € Hl(Q)7 6a/ay > 0.

Under the assumption that estimate (27) holds, the authors devise an error estimator
that yields an upper bound for the corresponding error on the H*(Q2) x H*(Q) x L?(2)-
norm [24, Theorem 3.1]. We notice that no efficiency analysis is provided in [24]. We
conclude this paragraph by mentioning the approach introduced in [7] for estimating
the error in terms of the cost functional for linear/semilinear optimal control problems.
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ERROR ESTIMATES FOR A SEMILINEAR OPTIMAL CONTROL PROBLEM 3

This approach was later extended to problems with control constraints in [19, 30] and
state constraints in [8].

In this work, we propose an a posteriori error estimator for the optimal control
problem (1)—(3) that can be decomposed as the sum of three contributions: one re-
lated to the discretization of the state equation, one associated to the discretization
of the adjoint equation, and another one that accounts for the discretization of the
control variable. This error estimator is different to the one provided in [24]. On two
and three dimensional Lipschitz polytopes, we obtain global reliability and efficiency
properties. On the basis of the devised error estimator, we also design a simple adap-
tive strategy that exhibits, for the examples that we present, optimal experimental
rates of convergence for all the optimal variables. We also provide numerical evidence
that support the claim that our estimator outperforms the one in [24]; see section 8.
A few extensions of our theory are briefly discussed: piecewise linear approximation
of the optimal control and sparse PDE-constrained optimization.

The outline of this paper is as follows. In section 2 we set notation and assump-
tions employed in the rest of the work. In section 3 we review preliminary results
about solutions to (2). Basic results for the optimal control problem (1)—(3) as well
as first and second order optimality conditions are reviewed in section 4. The core of
our work are sections 5 and 6, where we design an a posteriori error estimator for a
suitable finite element discretization and show, in sections 5 and 6, its reliability and
efficiency, respectively. In section 7 we present a few extensions of the theory devel-
oped in previous sections. Finally, numerical examples presented in section 8 illustrate
the theory and reveal a competitive performance of the devised error estimator.

2. Notation and assumptions. Let us set notation and describe the setting
we shall operate with.

2.1. Notation. Throughout this work d € {2,3} and Q C R? is an open and
bounded polytopal domain with Lipschitz boundary 9. Notice that we do not assume
that Q is convex. If 2" and % are Banach function spaces, Z~ — % means that 2
is continuously embedded in #. We denote by 2" and || - || 2 the dual and norm,
respectively, of Z". The relation a < b indicates that a < Cb, with a positive constant
that depends neither on a, b nor the discretization parameter. The value of C' might
change at each occurrence.

2.2. Assumptions. We assume that the nonlinear function a involved in the
monotone, semilinear, and elliptic PDE (2) is such that:
(A1) a: QxR — R is a Carathéodory function of class C? with respect to the
second variable and a(-,0) € L?(Q).
(A.2) g—‘;(:t, y) > 0 for a.e. x € Q and for all y € R.
(A.3) For all M > 0, there exists a positive constant Cps such that

2

D

=1

%

for a.e. x € Q and |y| < M.
The following properties follow immediately from the previous assumptions. First,
a is monotone increasing in y for a.e. z € Q. In particular, for v,w € L?(Q), we have

(4) (a(-,v) —a(-,w),v —w)r2(q) > 0.

Second, a and g—z are locally Lipschitz with respect to y, i.e., there exist positive
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4 A. ALLENDES, F. FUICA, E. OTAROLA, D. QUERO

constants Cyy and Ljs such that

da

(5)  |a(z,v) — a(z,w)| < Cplv —w|, 9y

0
(2,v) — a—Z(x,m < Latlo —wl,

for a.e z € 2 and v,w € R such that |v|, |Jw| < M.

3. Semilinear problem. In this section, we review some of the main results
related to the existence and uniqueness of solutions for problem (2). We also review
a posteriori error estimates for a particular finite element setting.

3.1. Weak formulation. Given f € L9(Q) with ¢ > d/2, we consider the
following weak problem: Find y € Hg(Q) such that

(6) (Vy, Vo) r2q) + (a(y),v)r20) = (f,0)12) Vv € HH(Q).

Invoking the main theorem on monotone operators [32, Theorem 26.A], [26, The-
orem 2.18] and an argument due to Stampacchia [27], [21, Theorem B.2], the following
result can be derived; see [14, Section 2] and [28, Theorem 4.8].

THEOREM 1 (well-posedness). Let f € LI(Q) with ¢ > d/2. Let a = a(x,y) :
Q xR = R be a Carathéodory function that is monotone increasing in y. If a(-,0) €
L4(Q), with ¢ > d/2, then, problem (6) has a unique solution y € Hg(Q) N L>(Q).
In addition, we have the estimate

IVyllzzc) + 1yl S If — al(-,0)|[Laq),
with a hidden constant that is independent of a and f.

3.2. Finite element discretization. We denote by 7 = {T'} a conforming
partition of  into simplices 7" with size hr := diam(7"). We denote by T the collection
of conforming and shape regular meshes that are refinements of an initial mesh 7.
We denote by . the set of internal (d — 1)-dimensional interelement boundaries S of
. T € 7, we define S as the subset of . that contains the sides of T'. For
S e, weset Ng = {TT, T}, where TT, T~ € J are such that S =TT NT~. In
addition, we define the star or patch associated to the element T' € 7 as

(7) NT:{T’eﬁzyTﬂYT/;é@}.

Given a mesh 7 € T, we define the finite element space of continuous piecewise
polynomials of degree one as

(8) V(T):={vgy €CQ) :vz|r e P(T)V T € 7}N Hy(Q).

Given a discrete function vg € V(.7), we define, for any internal side S € ., the
jump or interelement residual [Vvz - V] by

[Vvz -v] =v" Vog|p +v - Vog|r,

where T, v~ denote the unit normals to S pointing towards T, T~ € .7, respec-
tively, which are such that T+ # T~ and 9TT NIT~ = S.
We define the Galerkin approximation to problem (6) by

9)  yzeV(T): (Vyz,Vvz)rx o + (al,yz),v7)2@ = (f;v7) @)

for all vo € V(). Standard results yield the existence and uniqueness of a discrete
solution y .

This manuscript is for review purposes only.
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3.3. A posteriori error analysis for the semilinear equation. Let f €
L?(Q) and let a = a(z,y) : & x R — R be as in the statement of Theorem 1 with
a(-,0) € L?(2). Let us assume, in addition, that a is locally Lipschitz with respect
to y. With the notation introduced in section 3.2 at hand, we define the following a
posteriori local error indicators and error estimator

£ = h7llf — aCy2) T2y + holl[Vys -Vl Teomon), €7 = Y &
Tes

respectively. Notice that since a is locally Lipschitz with respect to y and a(-,0) €
L3(Q), the residual term hZ | f — a(-, yg)H%Q(T) is well-defined.
We present the following reliability result and, for the sake of readability, a proof.

THEOREM 2 (global reliability of £7). Let f € L*(Q) and let a = a(z,y) :
Q xR — R be as in the statement of Theorem 1 with a(-,0) € L*(Q). Let us assume,
in addition, that a is locally Lipschitz with respect to y. Let y € H(2) N L>(Q) be
the unique solution to problem (6) and yz € V(7)) its finite element approzimation
obtained as the solution to (9). Then
IV —yz)lre) S Ez-

The hidden constant is independent of y, y, the size of the elements in the mesh 7,
and #.7 .

Proof. Let v € H}(€). Since y solves (6), we invoke Galerkin orthogonality and
an elementwise integration by parts formula to arrive at

(V(y —yz), Vo)r2(q) + (al,y) — al,y7),v)2(0)
= Z (f —alz,yz))(v — Izv)dz + Z /[[Vyg.uﬂ(v—lgv)dx,
Tez T sex S

where Iz : LY(Q) — V() denotes the Clément interpolation operator [10, 18].
Standard approximation properties for I s and the finite overlapping property of stars
allow us to conclude that

(V(y —yz), Vo)rz) + (al-,y) —aly7),v)r2Q) S

1
2
(Z hollf —al,yz) 22 + holl[Vys 'VHH%?(BT\QQ)> Vvl 22(q)-
Tes

Set v =y — yz € Hi(Q) and invoke property (4) to conclude. d

4. A semilinear optimal control problem. In this section, we precisely de-
scribe a weak version of the optimal control problem (1)—(3), which reads as follows:

(10) min{J(y, u) : (y,u) € Hy () x Uaa}
subject to the monotone, semilinear, and elliptic state equation
(11) (Vy, Vo) L2y + (a(-,9),v) 2 @) = (u,0) 2 ¥ v € Hy ().

The existence of an optimal state-control pair is as follows; see [9, Theorem 6.16],
[28, Theorem 4.15], and [14, Theorem 6].

THEOREM 3 (existence of the solution). Suppose that assumptions (A.1)—(A.3)
hold. Then, the optimal control problem (10)—(11) admits at least one solution (§,u) €
HHQ) N L>®(Q) x Ugq-
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6 A. ALLENDES, F. FUICA, E. OTAROLA, D. QUERO

4.1. First order necessary optimality conditions. To formulate first order
optimality conditions for problem (10)—(11), we introduce the so-called control-to-
state map S : LI(Q) — HI(Q) N L>(Q) (¢ > d/2), which, given a control u €
L1(Q) C U,q, associates to it the unique state y that solves (11). With this operator
at hand, we introduce the reduced cost functional

. 1 v
j(u) == J(Su,u) = §||5U —yall T2 + §||U||2L2(Q)-

Suppose that assumptions (A.1)—(A.3) hold, then the control-to-state map S is
Fréchet differentiable from L9(Q) into Hg () N L>°(Q) (¢ > d/2) [28, Theorem 4.17].
As a consequence, if 4 denotes a local optimal control for problem (10)—(11), we thus
have the variational inequality [28, Lemma 4.18]

(12) J(@w—1u)>0 Vuée Uy.

Here, j'(u) denotes the Gatedux derivative of the functional j in @. To explore (12)
we introduce the adjoint variable p € HE(Q) N L% (2) as the unique solution to the
adjoint equation

(13) (Vw, Vp)r2(q) + (%Z(',y)p, w) = (y —yao,w)r2) Y we Hy(Q),

L2(Q)

where y = Su solves (11). Problem (13) is well-posed.

With these ingredients at hand, we present the desired necessary optimality con-
dition for our PDE—constrained optimization problem; see [28, Theorem 4.20] and [5,
Theorem 3.2].

THEOREM 4 (first order necessary optimality conditions). Suppose that assump-
tions (A.1)—(A.3) hold. Then, every local optimal control @ € Uyq for problem (10)—
(11) satisfies, together with the adjoint state p € H}(Q) N L*>(Q), the variational
imequality

(14) (p+ v, u— ’l_l,)Lz(Q) >0 Vue Uy

Here, p denotes the solution to (13) with y replaced by §j = St.

We now introduce the projection operator ITj, y) : LY(Q) — Uyq as
(15) [y ) (v) := min{b, max{v,a}} a.e in Q.

With this projector at hand, we present the following result: The local optimal control
@ satisfies (14) if and only if

(16) a(x) = H[am](—l/_lﬁ(:z:)) a.e. ¢ € Q.

In particular, this formula implies that 4 € H'(Q) N L>°(Q); see [21, Theorem A.1].

4.2. Second order sufficient optimality condition. We follow [14, 17] and
present necessary and sufficient second order optimality conditions.

Let @ € Uyq satisty the first order optimality conditions (11), (13), and (14).
Define p := p + va. In view of (14), it follows that

=0 ae zeQifa<u<hb,
p(z) 0 ae zeQifu=a,
0 ae xeQifu="0.

This manuscript is for review purposes only.
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Define the cone of critical directions
Cy := {v € L*(Q) satisfying (17) and v(x) = 0 if p(z) # 0},
with

an v(x){zo ae. z € Qif a(z)

:a7
<0 ae zeQifu(z)=>n.

We are now in conditions to present second order necessary and sufficient opti-
mality conditions; see [14, Theorem 23].

THEOREM 5 (second order necessary and sufficient optimality conditions). Sup-
pose that assumptions (A.1)—(A.3) hold. If u € Uaq is local minimum for problem
(10)—(11), then

" (@)v* >0 YwveCCy.

Conversely, if (y,p,u) € HE(Q) x H}(Q) x Uqq satisfies the first order optimality
conditions (11), (13), and (14), and

" (@)w? >0 YweCy\ {0},
then, there exist ;n > 0 and € > 0 such that
3(u) = (@) + Sllu =) ¥ u € Uoa N Bu(@),
where B (@) denotes the closed ball in L?(S) with center at @ and radius €.
Define
(18) C7 := {v € L*(Q) satistying (17) and v(z) = 0 if [p(x)| > 7}.

The next result will be of importance for deriving a posteriori error estimates for
the numerical discretizations of (10)—(11) that we will propose; see [14, Theorem 25].

THEOREM 6 (equivalent optimality condition). Suppose that assumptions (A.1)—
(A.3) hold. If u € Ugq satisfies (14) then, the following statements are equivalent:

(19) J"(@v* >0 Yuwvely\ {0},
and
(20) > 00 (@ > pllvf|fag, VveCr.

We close this section with the following estimate: Let u, h,v € L*°(Q) and M > 0
be such that max{[|ul|ze(qy, [|P||z~@)} < M. Then, there exists Cy > 0 such that
[28, Lemma 4.26]

(21) 15" (u + h)v? = j" (u)v?] < Omllhll =@y l|vlZ2(q)-
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4.3. Finite element discretization. We present a finite element discretization
of our optimal control problem. The approximation of the optimal control @ is done
by piecewise constant functions: 4o € Ugq(7 ), where

Uoa(F) :=U(F)NUga, U(T):={ug € L) : uzlp € Po(T)V T € T}

The optimal state and adjoint state are discretized using the finite element space
V() defined in (8). In this setting, the discrete counterpart of (10)—(11) reads as
follows: Find min J(yz,us) subject to the discrete state equation

(22)  y7€V(T): (Vyz,Vug)rea) +(aly7),v7)r2@) = (Ugr,v7) 1200
for all v, € V(.7) and the discrete constraints v, € Ugq(.7). This problem admits

at least a solution [14, section 7]. In addition, if %, denotes a local solution, then

(Pg +vig,ug —lUg)r2q) =20 Vug € Ud(T),

where p € V(.7) is such that

(23)  (Vwz,Vbz)re) + (2—;(', gﬂ)ﬁﬂawﬂ) =7 — Yo W) 200

L2(Q)

for all w, € V(7).
Define, on the basis of the projection operator (15), the auxiliary variable

(24) U= H[aﬁb](—u_lﬁy).
Notice that @ € U,q satisfies the following variational inequality [28, Lemma 2.26)
(25) (f)g—I—I/ﬁ,U—ﬂ)L2(Q) >0 YVueUyy.

The following result is instrumental for our a posteriori error analysis.

THEOREM 7 (auxiliary estimate). Suppose that assumptions (A.1)—(A.3) hold.
Let @ € Ugyq be a local solution to (10)—(11) satisfying the sufficient second order
optimality condition (19), or equivalently (20). Let M be a positive constant such that
max{||@ + 0.7 (@ — )| Lo (), [|T — Ul L)} <M with 07 € (0,1). Let iz be a local
minimum of the discrete optimal control problem and  be a mesh such that

(26) 1P — D7 || Lo () < min{vu(2Cu) ™", 7/2}.
Then @ —u € C} and

(27) Sl — 2 < ('(@) - /(@) (@ - a).

The constant Cy is given by (21) while the auziliary variable @ is defined in (24).

Proof. We proceed in two steps:
Step 1. Let us assume, for the moment, that « — u € C7, with C7 defined in
(18). Since u satisfies the sufficient second order optimality condition (20), we are

thus allow to set v = @ — @ there. This yields

(28) plla = allfa) < 4" (@) (@ —a)*.
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On the other hand, in view of the mean value theorem, we obtain, for some 65 € (0, 1),
(7' (@) = j' (@) (@ - a) = j"()(a - u)?,

with ( = @+ 05 (@ — @). Thus, in view of (28), we arrive at

(29) plla =l Zaq) < (7'(@) = 5 (@) (@ —a) + (7" (@) - j"(¢)) (@ - @)*.

Since M > 0 is such that max{|[|@ + 07 (@ — )| L~ (q), [|& — U][ L)} <M and j is of
class C? in L?(2), we can thus apply (21) to derive

(7" (@) = 3" ()@ = @)* < Cwlla — all L= () 1@ — @l 720y,

where we have also used that 87 € (0, 1). Invoke (16) and (24), the Lipschitz property
of the projection operator I, v}, defined in (15), and assumption (26), to arrive at

. . - 1= = - | T -
(" (@) = 3"(O)@ = w)* < Cwv ™ = P ll=@ @ = @iz () < Sl = UllZe)-

Replacing this inequality into (29) allows us to conclude the desired inequality (27).

Step 2. We now prove that 4 — u € CZ. Since @ € Ugyq, we can immediately
conclude that & —u > 0 if 4 = a and that w — @ < 0 if @ = b. These arguments reveal
that v = @ — @ satisfies (17). It thus suffices to verify the remaining condition in (18).
To accomplish this task, we first use the triangle inequality and invoke the Lipschitz
property of Il 1), in conjunction with (26), to obtain

(30) D+ v — (p7 + va)| o) < 2/p —D7llLe@) < T

Now, let & € Q be such that p(&) = (p+ va)(§) > 7. Since 7 > 0, this implies
that u(¢) > —v~1p(€). Therefore, from the projection formula (16), we conclude that
w(€) = a. On the other hand, since £ € Q is such that (p + vu)(§) > 7, from (30) we
can conclude that

Pz +va)(§) =pz(§) +vi(s) > 0,

and thus that @(¢) > —v~'po(€). This, on the basis of the definition of the auxiliary
variable @, given in (24), yields that @(§) = a. Consequently, @(§) = a(§) = a,
and thus (¢ — @)(§) = 0. Similar arguments allow us to conclude that, if p(¢) =
(p+vu)(€) < —7, then (@ — u)(€) = 0. This concludes the proof. 0

5. A posteriori error analysis: Reliability estimates. In this section, we
devise and analyze an a posteriori error estimator for the discretization (22)—(23) of
the optimal control problem (10)—(11).

To simplify the exposition of the material, we define, for (v,w,z) € HE(Q) x
HY(Q) x L*(Q), the norm

(31) (v, w, 2)llg = [[Vv][ 2y + [[Vwllz2(0) + |12l L2(0)-

The goal of this section is to obtain an upper bound for the error in the norm
[I-llo. This will be obtained on the basis of estimates on the error between the solution
to the discretization (22)—(23) and auxiliary variables that we define in what follows.

Let § € H(Q) be the solution to

(32) (V§, Vo)) + (a(- 9),0)2(0) = (g, 0) 2(q) ¥ v € Hy(9).

This manuscript is for review purposes only.
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Define

(33) &3 = h7lluz _a('aﬂﬂ)H%?(T) +hT||[[V§9'V]]||2L2(aT\aQ)a £2 = Z Exr
TeT

An application of Theorem 2 immediately yields the a posteriori error bound

(34) IV —97)l2) S Est-

Let p € HY(Q) be the solution to

(35)  (Vw, V)rao) + (5205700, = (17 — Yo, w)pay Y w € HY(Q).

)L?(Q)

Define, for T' € .7, the local error indicators

(36) 52d,T = h2T||Z79 —Ya — 8—( yﬂ)pyllm + hrl|[Vpe - Vﬂ”m(aT\aQ)

and the a posteriori error estimator

@) ad_<zs )

TeT

The following result yields an upper bound for the error ||V (p — p7)||L2(q) in
terms of the computable quantity &,q4.

LEMMA 8 (estimate for p — ps). Suppose that assumptions (A.1)-(A.3) hold.
Let @ € Ugyq be a local solution to (10)—(11). Let ug be a local minimum of the
discretization (22)—(23) with §o and pg being the associated state and adjoint state,
respectively. Then, the auxiliary variable p, defined in (35), satisfies

(38) IV®—p7)12@) S Ead-

The hidden constant is independent of the solution to (10)—(11), its finite element
approximation, the size of the elements in the mesh 7, and #7 .

Proof. We proceed as in the proof of Theorem 2. Let w € H}(Q). Since p
solves (35), we invoke Galerkin orthogonality and an elementwise integration by parts
formula to conclude that

(Vw’ V(ﬁ — ﬁg))LQ(Q) + (g_Z(agy)(ﬁ _ﬁy)aw> £2(Q)

+ ) ([Vpo vl w—Izw)Le(s).

L2(T) Ses

Standard approximation properties for I & and the finite overlapping property of stars
allow us to conclude that

<

(Vo V(5 = pr))zcon + (85 92) 0~ p7)w) | %

1
2

<Z hilliz —ya — —( yy)pyIle + he||[Vpz - VHHL?(BT\()Q ) [Vwllr2().-
TeT

Set w = p — pz and invoke assumption (A.2) to conclude. d
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We define a global error estimator associated to the discretization of the optimal
control variable as follows:

2
(39) 5§t,T = [l — @9”%2@)7 Eet = <Z 53t,T> :

TeT

We recall that the auxiliary variable @ is defined as in (24).
The following two auxiliary variables, related to @ € U,q C L*(Q2), will be of
particular importance for our analysis. The variable § € H}(Q), which solves

(V§, Vo) 2() + (a(- 9),v) L2(q) = (@,0) 2y ¥ v € Hy(),

and p € Hi(£), which is defined as the solution to

(ku vﬁ)Lz(Q) + (g_Z(ag)ﬁu ’U}) 5

L2(9) = (g - yQ,w)LQ(Q) Ywe HOI(Q)

After all these definitions and preparations, we define an a posteriori error esti-
mator for the optimal control problem (10)—(11), which can be decomposed as the
sum of three contributions:

(40) 2 =EL +E2,+E.

ocp *
The estimators &y, Eqd, and ., are defined as in (33), (37), and (39), respectively.
We are now ready to state and prove the main result of this section.

THEOREM 9 (global reliability).  Suppose that assumptions (A.1)—(A.3) hold.
Let @ € Ugyq be a local solution to (10)—(11) satisfying the sufficient second order
condition (19), or equivalently (20). Let ug be a local minimum of the associated
discrete optimal control problem with y& and ps being the corresponding state and
adjoint state, respectively. Let T be a mesh such that (26) holds, then

(41) |||(§—§971_7—I797@—ﬁ9)|||9 Sgocp-

The hidden constant is independent of the continuous and discrete optimal variables,
the size of the elements in the mesh 7, and #.7 .

Proof. We proceed in four steps.
Step 1. The goal of this step is to control the term |4 — @7 || 2(q). We begin with
a simple application of the triangle inequality and write

(42) |l — 1tz < |u—1dllr2q) + ot

where @ := I}, (—u‘lﬁy) and & is defined as in (39). Let us now bound the first
term on the right hand side of (42). To accomplish this task, we set u = @ in (14)
and v = @ in (25) to obtain

—j (@) (a—1u) =—(p+vi, i —u)r2q) <0, — (D7 + Vi, i — ) r2q) > 0.
In light of these estimates, we invoke (27) to obtain

B — il < 5'(0) (@ — @) — /(@) (@ — @) < §'(@) (@ — )

=P+ v, —u)r2) < (P — D7, U — U)L2(0)-
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Adding and subtracting the auxiliary variable p, defined as the solution to (35), and
utilizing basic inequalities we arrive at

(43) l|a— ﬂ”%?(sz) S D —=Dlle2) + 1D = 7 llLz))llt — @l L2 ) -

We now invoke a Poincaré inequality and the error estimate ||V (p—p7)|12(q) S ad;
which follows from (38), to obtain

(44) @ —allL2) S IVEP = D)llL2@) + Eaa-
The rest of this step is dedicated to estimate the term [|V(p — p)|/z2(q). To
accomplish this task, we first notice that, for every w € H}(Q), p— p € Hg () solves

(Vwa V(ZN) _ﬁ))L2(Q) + (g_g(ag)ﬁ - g_g('agg)ﬁv w) = (g - gﬁvw)L2(Q)'

L2(Q)

Set w = p — p and invoke a generalized Holder’s inequality to obtain

V6=l + (2 DG-515-7) .,

= (=975 — Dz + ([32(:97) = 3(.9)] .5 — 1)

<19 = 57l @l — bl + | 35, 57) = 55,0 , o Wollzocoyllp = plloco

da

Since 7,y € L*(2) and F2

is locally Lipschitz with respect to y, we obtain

IV = D)720) S 10— 7220 (15 = Bll2c) + 18l La@ 1P — BllLaey) -
We thus use a Poincaré inequality and the embedding H'(Q) < L*() to arrive at
(45) IV@B = D)2 ST =972 (1 + VD] L2(0))-
Stability estimates for the problems that p and y solve yield the estimate
. 1

IVDllrz0) S lyallzz@) + vz llze) S lvallzz@) + pI1€2]7,
where p = max{]|al, |b|}. Replacing this estimate into (45), and invoking, again, a
Poincaré inequality, we obtain
(46) VB =Dz S N9 =97l SIV(G = 92)llL2 @),

with a hidden constant that is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh 7, and #.7 but depends on the
continuous problem data.

We now turn our attention to bounding the term [|V(7 — §7)| 12 in (46). To
accomplish this task, we invoke the auxiliary variable g, defined as the solution to
(32), and use the triangle inequality to obtain

(47) IV(@ =97 )2 S IV@ = 9)lz2@) + Ests

where we have also used the a posteriori error estimate (34). It thus suffices to bound
V(5 — 9)llL2(2)- To do this, we first notice that § — § € Hj(€2) solves the problem:

(48) (V(T—1), V)20 + (al-, ) —al(-,9),v)r2(q) = (G—u7,v)r2) Vv € Hy(Q).

This manuscript is for review purposes only.
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Set v = § — ¢ and invoke the fact that a is monotone increasing in y (4) to arrive at
IV(@ =92 S |t — a2y = Ect- Replacing this estimate into (47) and the
obtained one into (46) yield

(49) VB =D)Lz S Est + Eer-
On the basis of (42), (44) and (49), we conclude the a posteriori error estimate
(50) ||ﬂ’ - ﬂyHLZ(Q) S Eaqg + Est + Ect.

Step 2. The goal of this step is to bound ||V (7 — ¥7)|/12(q). To accomplish this
task, we invoke the auxiliary state ¢, defined as the solution to (32) and apply the
triangle inequality. In fact, we have

(51) IV(@ =97 )2 S IV@ = 9)lz2) + Est,

where we have also used the a posteriori error estimate (34). It thus suffices to
estimate |[|[V(7 — 9)|z2(q). To achieve this goal, we invoke the state equation (11),
with u replaced by @, problem (32), and the monotony of the nonlinear term a (4).
These arguments reveal that

IV@G = D720 < (V@ —9), V(G — 02 + (al,7) — al-,9), 5 — §) 120
=(U—17,9 -9 St —tzl2@) V(@ = 92

Consequently, [|[V(7 — 9)llz2() S @ — @7| 12(q). Replacing this estimate into (51)
and utilizing (50) allow us to conclude that

(52) IV —92)l22() S Ead + Est + Ect

Step 3. We now bound the term [|V(p — p7)|[z2(q). To accomplish this task,
we add and subtract p, defined as the solution to (35), and use, again, the triangle
inequality to obtain that

(53) IV —p7)2) S IIV® = D)llzz2) + Eads

where we have also used the a posteriori error estimate (38). It thus suffices to bound
V(P —D)llr2(). Set w = p — p in the weak problem that p — p solves. This yields
— A\ (12 da N\ (7 3) & 5
V6= + (2C0G-P5-0),,
= (G—To.D—D da(. ) —9e(. 0V p.p—
_(y Ya,p p)Lz(Q)'i‘([ay(uy?) By(’y)} b, p p)LZ(Q).

This identity, in view of a generalized Holder’s inequality, the local Lipschitz property
of g—;, with respect to the y variable, and assumption (A.2), allows us to arrive at

IV(p— ﬁ)”%mz) SNy —vzllz2@) 1P — Pll2) + 1Dl La@)llp — Dl L))

Using similar ideas to the ones that lead to (45) and (46), we can conclude that

(54) IV = D)l S IV@ —77)lL20)-
Replacing (52) into (54), and the obtained one into (53), we obtain
(55) ||v(ﬁ_l_)9)||L2(Q) Sgad‘ngt + Eet.
Step 4. Combining (50), (52), and (55) allows us to arrive at (41). This concludes
the proof. O
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6. A posteriori error analysis: Efficiency estimates. In this section, we
prove the local efficiency of the a posteriori error indicators £, and £,q4,7 and the
global efficiency of the a posteriori error estimator £,.,. To accomplish this task, we
will proceed on the basis of standard residual estimation techniques [1, 29].

Let us begin by introducing the following notation: for an edge/face or trian-
gle/tetrahedron G, let V(G) be the set of vertices of G. With this notation at hand,
we recall, for T € . and S € ., the definition of the standard element and edge
bubble functions [1, 29]

or = (d+ 1)(d+1) H Avs Ps = d’ H Al
vev(T) VEV(S)

respectively, where T" C Ng and ), are the barycentric coordinates of T'. Recall that
Ns denotes the patch composed of the two elements of .7 that share S.

The following identities are essential to perform an efficiency analysis. First, since
7 € H(2) solves (11), an elementwise integration by parts formula implies that

(56) (VU —¥7), Vu)r2() + (al-,9) —a(-,97),v)L2Q) = (@ — U7,v)2(0)

+ ) (ar —a(g7).v)ry) + 3 ([Viz - v],v)12s)
TeT Ses

for all v € H}(Q). Second, since p solves (13), similar arguments yield

(57) (Vw, V(B = bz + (55 0)E-pr)w) | = (G- 7,w))

L2(Q)

+([BCa) - 260 prw) o+ 3 (V5 - dwdiags)
Ses

+ <(§ﬁ - Py - g—’;(',ﬂﬂ)ﬁﬁ,w)mm

+(Z7ya — ya, w)L2(T))
Tes

for all w € H}(Q). Here, 25 denotes the L?-projection onto piecewise linear, over
7, functions.
We are ready to prove the local efficiency of the indicator £ defined in (33).

THEOREM 10 (local efficiency of Es). Suppose that assumptions (A.1)—(A.3)
hold. Let @ € Ugyq be a local solution to (10)—(11). Let g be a local minimum of the
discretization (22)—(23) with §o and pg being the associated state and adjoint state,
respectively. Then, for T € 7, the local error indicator Estr satisfies

68) Lt SV = 2)ll2wry + holly — Gzl 2wy + hellt — @l L2,
where N is defined as in (7). The hidden constant is independent of the continuous
and discrete optimal variables, the size of the elements in the mesh 7, and #7 .
Proof. We estimate each term in the definition of the local error indicator &g 7,
given in (33), separately.
Step 1. Let T € 7. We first bound the element term h%||iz —a(-, gjy)H%Q(T). To

accomplish this task, we invoke standard residual estimation techniques [1, 29]. Set
v=¢r(tg —a(-,§7)) in (56). Then, standard properties of the bubble function @1
combined with basic inequalities yield

iz —a( §52) |72y S (W IV@G = §2) L2y + 6 — @z | 21y
+Hla(,7) —al,52)|lL2(m) lag — al-, 52)| L2 (1)

This manuscript is for review purposes only.
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This, in view of the local Lipschitz property of a with respect to y (5), implies that

hilliz — a( g7)72ry S IV@G = 52)122(r)
+htlla— sl ee + W79 = 9772 0)-
Step 2. Let T € 7 and S € 7. We bound hr||[Vir - V]||7:(s) in (33), ie., the

jump or interelement residual term. To accomplish this task, we set v = pg[Vyz - V]
in (56) and utilize standard bubble functions arguments to obtain

Vg7 vl S D (b IV@ = 92)ll2e) + (@l 9) = al97)| L2
T'eNs
1
@ —az|rz2 + a7 — al g7)le2ery) b2 IIVIZ - v]liL2(s).-
Using, again, the local Lipschitz property of a with respect to y we arrive at
brllVEz Ve S Y (I9@ - 57)3a0r)
T'eNs
+ WG = 57 ey + Wla = e ) -
The collection of the estimates derived in Steps 1 and 2 concludes the proof. 0O

We now continue with the study of the local efficiency properties of the estimator
Eqq defined in (37).

THEOREM 11 (local efficiency of £,4). Suppose that assumptions (A.1)—(A.3)
hold. Let @ € Uyq be a local solution to (10)—(11). Let Gz be a local minimum of the
discretization (22)—(23) with §& and pg being the associated state and adjoint state,
respectively. Then, for T € 7, the local error indicator Eqq1 satisfies
(59)  Eaar SIVE@ = D7)2ve) + A+ h)7 — Gzl L2

+hr (18 = bz lleewr + lye = Payallzomn) »

where N is defined as in (7). The hidden constant is independent of the continuous
and discrete optimal variables, the size of the elements in the mesh 7, and # 7 .

Proof. We estimate each term in the definition of the local error indicator Eqq, 7,
given in (36), separately.
Step 1. Let T € 7. A simple application of the triangle inequality yields

helliz —yo — 52, 92)P7 || L2 (1)
< hrlliz — Prya = 3, 57)07 | L2y + bl P7ya — yoll L2 (r)-

To estimate the first term on the right hand side of the previous estimate and also to
simplify the presentation of the material, we define

Ry = g7 — Paya — 2—;(» Yy7)p7-
Now, set w = 7R in (57) and invoke basic inequalities to arrive at
1/2¢qa = = a
(60) o R8> (1) S UV (B — B) | Loery |V (0rRGD) |y
+ lerRl sz (15— 57l 2y + 132 ¢ B = b)) + 1 Pva - vl

+1122(,9) — 82 52 1B s o R8s -
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Since R4 € HY(T), we have | R3or|| g () S IIV(RYor) || 22(r). On the basis of
(60), standard inverse inequalities and bubble functions arguments yield

61) %R 20y S hp' VB = D)Lz oy + 152, 0) (B = Br)ll 2y
+hpt 1520, 9) = 5o g2) | 2 1Pz L ooy + 15 = G2l 22 () + |2 790 — yall L2 ().

Stability estimates for the problems that p» and ¢ solve yield the estimate

_ _ 1
62)  pzlla ) < 1p7lla @) S llvallzz@) + lvallzze) S llvallzz@) + o122,

where p = max{|al, |b|}. Replacing this estimate into (61), invoking the local Lipschitz
property of a with respect to the variable y (5) and assumption (A.3), we conclude

(63)  hrl|R¥ N 2) SIV® —p2)2r) + hrllp — P2
+ (L +ho)l|g = gzllL2cr) + hrl| Paye — yollL2(r)-

Notice that the hidden constant is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh 7, and #.7 but depends on the
continuous problem data.

Step 2. Let T € 7 and S € 7. Now we bound the jump term [|[[Vpz - V]| L2(s)
in (36). To accomplish this task, we set w = [Vpz - v]ps in (57) and proceed with
similar arguments as the ones used in (60)—(61). We thus obtain

IZEIFE (h#llV(p—py)lle(Tf) + 15 - Bz llzecrn
T'eNs
+ 17 = g7z + 18 2y + 12790 — vall L2
1
T B oy 122 ) — g—Z(',ﬂﬂ)Hm(Tq)hﬂH[Vﬁﬂ Wloas)

Finally, utilize the stability estimate (62), the local Lipschitz continuity of g—‘;(-,y)
with respect to y (5), and estimate (63), to conclude

1
hilllVhg - vlllL2s) S Z (IV@ — D7)l 2cry + hellp — D7 || 2er)
T'eNs

+(L+ ho)|J — Jzlle2ry + hel| Paya — yallLza) -
Combine the estimates derived in Steps 1 and 2 to arrive at the desired estimate (59).0

The results of Theorems 10 and 11 immediately yield the global efficiency of £,p.
To derive such a result, we define, for w € L?(12),

osc(w, T) = (Z h||w — fgzyw”%?(T)) ‘

TeT

THEOREM 12 (global efficiency of ). Suppose that assumptions (A.1)—(A.3)
hold. Let @ € Uyq be a local solution to (10)—(11). Let Gz be a local minimum of the
discretization (22)—(23) with §o and pg being the associated state and adjoint state,
respectively. Then, the error estimator Eocp, defined in (40), satisfies

Eocp SNP— D7 lar) + 19— 7l (@) + |t — 7| r2) + osc(ya, ).
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The hidden constant is independent of the continuous and discrete optimal variables,
the size of the elements in the mesh 7, and #7 .

Proof. We begin by invoking the definition of the global indicator £, given by
(33), and the local efficiency estimate (58) to arrive at

(64) Est SIV(Y = 97)|lL2( + diam(Q)||y — g7 ||L2(q) + diam(Q)[|[a — @7 12(q)-
On the other hand, in view of (37), the efficiency estimate (59) provides the bound

(65) Eaa SNV —D7)12(0) + (1 + diam())[|§ — 7| £2(0)
+ diam(Q)|[p — p7||L2(q) + osc(ya, 7).
It thus suffices to control .. In view of (39), a trivial application of the triangle
inequality yields
Eet < |Ju =1l 20 + |2 — G720
= | (—v'P7) = Mg (= D)2 + & — 07| L2(0)
where Il ) is defined as in (15). This estimate, in conjunction with the Lipschitz
property of Il[, ) and a Poincaré inequality, implies
(66) Et SVTHIV(D7 — D)2 + 1t — @zl L2(o)-
The proof concludes by gathering the estimates (64), (65), and (66). O

7. Extensions. We present a few extensions of the theory developed in the
previous sections.

7.1. Piecewise linear approximation. In this section, we consider a similar
finite element discretization as the one introduced in section 4.3 with the difference
that to approximate the optimal control variable & we employ piecewise linear func-
tions i.e., tz € Ugq,1(.7), where

Uad,l(y) = Ul(y) NUgq, Ul(y) = {’uy S C(Q) : ’uy|T S ]Pl(T) VTe y}

The following discrete optimal control problem can thus be proposed: Find

min J(yo,uz) subject to the discrete state equation

67)  yreV(T): (Vys,Vvz)rze) +(al,yz),v7)r20) = (g, v7) 200

for all v, € V(.7) and the discrete control constraints u, € Ugq,1(7). The well-
posedness of this solution technique as well as first order optimality conditions follow
from [11, Theorem 3.3]. For a priori error estimates, we refer the reader to [11,
Theorem 4.1] and [14, section 10].

We propose an a posteriori error estimator that accounts for the discretization
of the state, adjoint state, and control variables when the error, in each one of these
variables, is measured in the L?(Q)-norm. As it is customary when performing an a
posteriori error analysis based on duality, we assume that  is convex.

Assume that we have at hand, a posteriori error estimators E,; and E,q such that

(68) 19— 97llL200) S Est, 1D —pzllrz) S Fad-
Define, for (v, w,z) € L?(Q) x L*(Q) x L?*(2), the norm
[(v,w,2)[l@ == |vllL2@) + Wl L2) + 2]l L2(0) -

We present the following global reliability result.
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THEOREM 13 (global reliability). Suppose that assumptions (A.1)—(A.3) hold.
Let a € Ugq be a local solution to (10)—(11) satisfying the sufficient second order
condition (19), or equivalently (20). Let ug be a local minimum of the associated
discrete optimal control problem with iy and pz being the corresponding state and
adjoint state, respectively. Let 7 be a mesh such that (26) holds, then

(69) 1§ —97,p—Dp7,u—tz)la S Est + Eaa + Ear-

The hidden constant is independent of the continuous and discrete optimal variables,
the size of the elements in the mesh ., and #7 .

Proof. The proof of the estimate (69) follows closely the arguments developed in
the proof of Theorem 9. In fact, with the estimate (43) at hand, we arrive at

(70)  Nu—dllz2@) SIP =Dl + 1P — Pzl S 1P~ Pll2) + Ead,

where we have used (68). We now use of a Poincaré inequality in conjunction with
the first estimate in (46) to obtain

(71) 1P = Pllr2) SIVEG =D)Lz S N9~ 77l20)-

The hidden constant is independent of the continuous and discrete optimal variables,
the size of the elements in the mesh 7, and #Z but depends on the continuous
problem data.

To control ||§ — J7||12(q) We invoke the auxiliary state § defined as the solution
to (32) and apply the triangle inequality. With these arguments we obtain

(72) 19 =972 < NG —9llz2) + 119 — 972 S 19— 9llz2@) + Est,

where we have also used (68). To bound || — §/z2(q) we set v = § — ¢ in problem
(48). This, in view of the fact that a is monotone increasing with respect to y, yields

N9 = 9llz2) SIV@ = D2 St —tzlL2) = Eet-

Replacing this estimate into (72), and the obtained one into (71), we obtain the
estimate [|p — pllz2() S Est +Ect. This, in view of (70), reveals the a posteriori error
estimate

|t —tz|L2) S Est + Eaq + Ect-

The control of || — ¥z | r2(q) and ||[p — p7|2(q) follow similar arguments as the
ones elaborated in the proof of Theorem 9. For brevity, we skip details. d

7.2. Sparse PDE—constrained optimization. Define ¢ : L'(Q) — R by
Y(u) := |lul|L1(q). In this section, we present a posteriori error estimates for a semi-
linear optimal control problem that involves the nondifferentiable cost functional

~ 1 v
Iy, w) = Iy, u) + 99 (u) = Slly ~ yoll 7z + §||u||%2(sz> + O|ull L)

Here, ¥ > 0 denotes a sparsity parameter and v > 0 corresponds to the so-called
regularization parameter. The linear case has been investigated in [2]. The cost func-
tional J involves the L'(Q)-norm of the control variable, which is a natural measure
of the control cost, and leads to sparsely supported optimal controls [12, 31].

We consider the following sparse PDE—constrained optimization problem: Find
min{J(y,u) : (y,u) € H}(Q) x Uuq} subject to (11). This problem admits at least

This manuscript is for review purposes only.
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one optimal solution (7,%) € Hg(€2) X Ugq. In addition, if % is a local minimum, then
there exists § € H3(2), p € HE(Q), and X € 9¢(u) such that (11) and (13) hold and

(]5+V’ﬁ+195\,u—@)L2(Q) >0 VueUy;

see [12, Theorem 3.1]. The following characterizations for the optimal control % and
its associated subgradient A hold [12, Corollary 3.2]:

Nz) =T_1 17 (97 'p(2)), a(z) =Ty (—v " [p(z) + IA(z)]) ae. x €.

We propose the following discrete optimal control problem: Find minJ(yo,us)
subject to (67) and the discrete control constraints ug € Uyq(7). The existence of
solutions for this scheme as well as first order optimality conditions follow from [12,
section 4].

Define the cones

Cq : = {v € L*(Q) satisfying (17) and j'(a)v + 9 (@;v) = 0},

€7 - = {v € L*(Q) satisfying (17) and j'(@)v + 9’ (% v) < 7l|v||p2(0) }-
Necessary and sufficient second order optimality conditions follow from [12, Theorem
3.7 and 3.9]: If @ is a local minimum, then j”(@)v? > 0 for all v € €. Conversely,
let @ € Uyg and A € 0(a) satisfy the associated first order optimality conditions. If

J"(w)v? > 0 for all v € €5 \ {0}, then @ is a local minimum. In addition, we have the
equivalence [12, Theorem 3.8]

(73)  j"(@)v? >0V € €\ {0} <= Fu,7>0:5"(a)v? >u||v||L2(Q Yo € €7.

Define, for a.e. z € (2, the auxiliary variables

(11) M) =Ty (07 5s@) (@) =Ty (—v7 [P (@) + 02@)] ).
To present a posteriori error estimates, we define the error indicators

5529,T = ||5\ - 5\9‘||2L2(:r)a 5czt,:r = [la — ﬁﬁ||2L2(T)

and error estimators

(75) (Zssﬂ>l, ct—<ZsctT>l.

TeT TeT

THEOREM 14 (global reliability). Suppose that assumptions (A.1)—(A.3) hold.
Let u € Uyq be a local solution to the sparse PDE-constrained optimization problem
satisfying the sufficient second order condition (73). Let ug be a local minimum
of the associated discrete optimal control problem with Gz, Pz, and Az being the
corresponding state, adjoint state, and subgradient, respectively. Let Z be a mesh
such that (27) holds with @ as in (74), then

|||(ﬂ_§yaﬁ—]57,ﬂ—@7)|||gl + ||5\ - X3||L2 Q) < gst +gad+gct+gsq

The hidden constant is independent of the continuous and discrete optimal variables,
the size of the elements in the mesh 7, and #7 .
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Proof. Since (27) is assumed to hold and it does not involve the nondifferentiable
term v, the estimate of the error associated to the state, adjoint state, and control
variables is as presented in the proof of Theorem 9. It thus suffices to control the
error associated to the approximation of the subgradient X\. To accomplish this task,
we invoke (75) and immediately conclude that

(76) IAN=Azllr2@) < X = M2 + Esg-

The Lipschitz property of II|_; ;; and a Poincaré inequality yield

A=Az <O7HIP = D7llzz@) S IVE—p7)lL2@)-
Replace this estimate into (76) and invoke (55) to conclude. O

Remark 15 (feasibility of estimate (27)). Notice that @ coincides with the discrete
approximation of 4 when the so—called variational discretization scheme is employed.
For such an approximation scheme and within the framework of a priori error esti-
mates, inequality (27) is proven in [12, section 5] and [12, Lemma 4.6].

8. Numerical results. In this section, we conduct a series of numerical exam-
ples that illustrate the performance of the devised a posteriori error estimator E¢p
defined in (40).

All the experiments have been carried out with the help of a code that we imple-
mented using C++. All matrices have been assembled exactly and global linear systems
were solved using the multifrontal massively parallel sparse direct solver (MUMPS)
[3, 4]. The right hand sides and terms involving the functions a(-, y) and yq, the ap-
proximation errors, and the error estimators are computed by a quadrature formula
which is exact for polynomials of degree nineteen (19) for two dimensional domains
and degree fourteen (14) for three dimensional domains.

For a given partition .7, we seek (§5,05,U45) € V(T) X V(T) x Uga(7) that
solves the discrete problem (22)—(23). This optimality system is solved by using a
Newton—type primal-dual active set strategy as described in Algorithms 2 and 3.
To be precise, Algorithm 2 presents a variant of the well-known primal—dual active
set strategy that can be found, for instance, in [28, section 2.12.4]. On the other hand,
Algorithm 3 describes the also well-known Newton method [6, section 4.4.1]. To
present the latter, we define X(.7) :=V(7) x V(7)) x U(.7) and introduce, for ¥ =
(yz,p7,uz) and © = (vg,wz,t7) in X(T), the operator Fg : X(T) = X(T) as

(Vyz,Vog)r2) + (a(,y7) —uz,v7)r2)
(F7 (), 0) := | (Vwz,Vps)rz9) + (%Z(-,yy)py —yr tyews) o
(V71H9p9(1 —Xa — Xb) +ugl—axa — bxo, tﬁ)Lz(Q)

Here, I1» denotes L2-projection operator onto piecewise constant functions over 7
and (-,-) denotes the duality pairing between X (.7)" and X(.7). In addition,

Xa Xo €ERFZ . 1=(1,...,1)T e R*7,

Given an initial guess ¥y = (y%,p%,u%) € X(7) and k € Ny, we consider the
following Newton iteration:
Vi1 = Vi +,

where the incremental term n=(0ys,0pz,duy) € X(7) solves
(77)  (F5(Tr)(0),0) = —(F7(¥k),0) VO =(vy,wgs,ty) € X(T).
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Here, F, (¥})(n) denotes the Gateaux derivate of Fir in Uy, = (y%., p%,, u”;) evaluated
at the direction 7.

Once the discrete solution is obtained, we use the local error indicator Eoep, T,
defined as,

(78) ggcp,T = 5s2t,T + 53d,T + 5§t,T7

to drive the adaptive procedure described in Algorithm 1. A sequence of adaptively
refined meshes is thus generated from the initial meshes shown in Figure 1. The total
number of degrees of freedom is Ndof = 2dim(V(.7)) + dim(U(7)).

Finally, we define e, :=y — 9y, ep :=p — Pz, €y, := U — Uz, and the total error
e := (ey,ep,ey). To measure the total error we use llello = ll(ey, ep, €u)llq, where
Il - llo is defined as in (31).

Fic. 1. The initial meshes used when the domain Q0 is a L-shape (Ezample 1) and a cube
(Example 2).

Algorithm 1 Adaptive algorithm.

Input: Initial mesh %, constraints a and b, and regularization parameter v;

Set: i = 0.

Active set strategy:

1: Choose an initial discrete guess (y%.,p%.,u% ) € V(7)) x V(%) x U(%);

2: Compute [j7,,pz7,07] = Active-Set[7;,a,b,v,y% ,p% ,ul ] by using Algo-
rithm 2;

Adaptive loop:

3: For each T € .7; compute the local error indicator Eycp r defined in (78);

4: Mark an element T’ € .7 for refinement if EgcpﬁT > L maxpiez, EgcpﬁT,;

5: From step 4, construct a new mesh, using a longest edge bisection algorithm. Set
1 <1+ 1 and go to step 1.

In order to simplify the construction of exact solutions, we incorporate an extra
source term f € L°°(f2) in the state equation (11). With such a modification, the
right hand side of (11) now reads (f + u,v)r2(q).

Example 1. We let Q = (=1,1)2\ [0,1) x (=1,0], a(-,y) = arctan(y), a = —40,
b=—0.1,and v € {1073,1074,1075} . The exact optimal state and adjoint state are
given, in polar coordinates (r,6) with 6 € [0,37/2], by

5(r,0) = p(r,0) = sin (7/2(rsin 0) + 1) sin (7/2(r cos 8) 4+ 1) /% sin(20/3).
The purpose of this numerical example is threefold. First, we compare the per-
formance of our adaptive FEM with uniform refinement. Second, we investigate the

performance of the devised a posteriori error estimator when varying the parameter
v. Third, we compare the performance of our error estimator with the one presented
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Algorithm 2 Active set algorithm

Input: Mesh 7, constraints a and b, regularization parameter v and initial guess
(yog,pog,ug)lde V(yl)d V(7) ldU(g) ld T s ld . old

1: Define x2 = (xg'$)re 7, X' = (Xg'9)re 7 € R*7 with x4, xg!4 € {0,1}.

Set: 7 =0. S

2: Compute [ygl,pjgl, 9—1] Newton[.7,a,b, v, x2'%, x¢', v’y , p’y, u’y] by using
Algorithm 3.

3: For each T' € .7 compute

new 1 if — Iy ( J+1) < a, new 1 if — g ( J+1) > b,
Xa,T — Xo, T =

0 otherwise 0 otherwise,

where II7 denotes the L?—projection onto piecewise constant functions over T.
o 1 1 1
4T > (GG — X8+ e — x891) =0, set (57, D7, 0z) = (v P ulfh).

TeT
old new old new

Otherwise, set x5' := x2, x5'¢ := x¢°", and j < j + 1, and go to step 2.

Algorithm 3 Newton method

Input: Mesh 7, constraints a and b, regularization parameter v, initial guess
(v%, 0%, u%) € V(T) x V(T) x U(F) and Xa, x» € R*7;

Set: k£ =0.

1: Given (y%,p%,u*), compute the incremental n = (0yz,dp,,0u,) € V(T) x
V() x U(T) as the solution to (77).

2: Set ( k+1 ylvulgl) (ygvpgauﬂ) (5y955p975u9)

3: If maX{||5y9||Loo @ 10p7 L= @), 10ugz|Le@} < 1075, set (yo,p7,uz) =

(yyl,plyl kH) Otherwise, set k < k + 1 and go to step 1.

in [24, section 3]. To present the error estimator of [24], we introduce

6st = 55757 Qiad = 5‘adv Qict,T = hTHVﬁﬂ“LZ(T)v ct = <Z éct T) ;
TeT

where & and E,q are defined as in (33) and (37), respectively. The total error
indicator can thus be defined as follows [24, section 3]:

(79) Qfocp T = Qfgt,T + ind,T + Qfgt,T-

This error indicator can be used to perform the adaptive FEM of Algorithm 1
with Eoep, 1 replaced by €,¢p 7. We shall denote by ¢, ¢,, and ¢, the approximation
errors related to the state, adjoint state, and control variables, respectively, when the
error indicator &, 1 is considered in Algorithm 1. We measure the total error of
the underlying AFEM with [lello = lI(¢y, ¢p, ¢u)llo, where || - llq is defined in (31).
Finally, we introduce the effectivity indices T¢ := Eocp/llello and YTe := Eocp/ el
In Figures 2 and 3 we present the results obtained for Example 1. In Figure 2 we
present, for v = 1073, experimental rates of convergence for all the individual contri-
butions of the total error ||e|lg when uniform and adaptive refinement are considered.
We also present the adaptively refined mesh obtained after 24 adaptive loops. We ob-
serve that our adaptive loop outperforms uniform refinement. In addition, we observe
optimal experimental rates of convergence for all the individual contributions of the
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total error [lefln. We also observe that most of the adaptive refinement occurs near
to the interface of the control variable and the geometric singularity of the L-shaped
domain, which attests to the efficiency of the devised estimator; see subfigure (C).
In Figure 3, we present, for v € {1074,107°}, experimental rates of convergence for
the all the contributions of the total errors [lellq and [lellg and all the individual con-
tributions of the a posteriori error estimators &£,., and &, as well as the effectivity
indices T¢ and Ye. We observe that the behavior of the individual contributions
of the total errors and error estimators associated to the state and adjoint variables
are quite similar for both adaptive strategies. However, we observe an important
difference when we compare the individual contributions associated to the control
variable. In fact, as it can be observed from subfigures (B.3) and (D.3), the error
norm |[e, || z2(q) do not exhibit an optimal experimental rate of convergence, while the
error norm ||e,||z2(q) associated to our devised AFEM based on the error estimator
Eocp does. Finally, we observe, from subfigures (E) and (F), that the effectivity index
YT¢ is close to 1 for the two different values of v that we consider. This shows the
accuracy of the proposed a posteriori error estimator &£,., when used in the adaptive
loop described in Algorithm 1.

Errors with unif. refinement Errors with adap. refinement
olVeylLae S Veyll 120y
SlIVeylliz@ SNVepllLaa)
el 2 *lewllz2 )
--Ndof "1/ ---Ndof ~*/2

102 10* 10°
Ndof
(®)

Fic. 2. FExample 1. Ezxperimental rates of convergence for the individual contributions
IVeyllLz(ay: IVepllL2(ay: and lleull2(q) for uniform (A) and adaptive refinement (B) and the

24th adaptively refined mesh (C) for v = 1073,
Example 2. We let Q = (0,1)%, a = —80, b = 100, and v = 10~3. We consider

10%e¢ cos(4n§), if€<0
=10 = ’ ’
f(x1, 22, 73) , ya(r1, 2, 73) { 0, if € >0,
where & = £(21, 72, 73) = 4(x1 — 0.5)% + 4(x3 — 0.5)% + 4(z3 — 0.5)% — 1.
The purpose of this numerical example is to investigate the performance of the de-
vised error estimator when different choices of the nonlinear function a are considered.
Let us, in particular, consider

ai(y) = 10y> —2;  as(-,y) = 10arctan(80y) — 5; as3(-,y) = 10sinh(3y) — 2.

In Figure 4 we present the results obtained for Example 2. We show, for the
considered three different nonlinear functions a, experimental rates of convergence
for all the individual contributions of the error estimator &, and the obtained 25th
adaptively refined meshes. We observe optimal experimental rates of convergence for
all the individual contributions of the error estimator &£,cp.

8.1. Conclusions. We present the following conclusions:
e Most of the refinement occurs near to the interface of the control variable. This
attests to the efficiency of the devised estimator. When the domain involves geometric
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Estimator contributions  Error contributions Estimator contributions  Error contributions

for v = 1074 for v = 1074 for v = 1075 for v = 1075
State error estimators State errors State error estimators State errors
101 SEu S| Veyllrz) 101 SE S| VeyllL2 )
0 Se,, 10° <[ Veyll L2 S 10° <IVeyl 2@
o -Ndof '/ Ndof —'/2 o - Ndof~1/2 Ndof 172
10 107" 10 101
1 »
10 102 . 107
102 1073 = 1108 1073
102 10* 10° 102 10* 10° 102 10* 10° 102 10* 10°
Ndof Ndof Ndof Ndof
(A.1) (B.1) (c.1) (D.1)
Adjoint error estimator: Adjoint errors Adjoint error estimator: Adjoint errors
S Ead < Vepllz S Ead S Vepl| L2
1 4 1 v
10 BCu 100 Vel 2| 10 . BCa 10° Vel 20
- Ndof —'/2 -Ndof /2 ---Ndof /2 Ndof /2
10° ; 4 3 10° 4
10~ 10~
107" R 107" R
10~ 10~
1072 2 4 6 2 4 6 1072 2 4 6 2 4 ; 6
10 10 10 10 10 10 10 10 10 10 10 10
Ndof Ndof Ndof Ndof
(A.2) (B.2) (C.2) (D.2)
Control error estimator; Control errors Control error estimator 'S
102 Klewllz2) | 102 *Ect oL S Jlew || L2 o)
. ey L2(2) &y %HLZ;Q)
10 -Ndof '/2 - Ndof—1/2 dof—1/2
10° 10°
10°
1072 By o 1072 ,
10~
102 10*  10° 102 10* 10°© 102 10* 10° 102 10* 10°©
Ndof Ndof Ndof Ndof
(A.3) (B.3) (C.3) (D.3)

Effectivity indices for v = 107% %ﬂ"ectivity indices for v = 107°

AYe
>*<Te
1.11 2
1 1.1
” 0.0404 (o} 0.027
102 10* 106 102 10* 10°®
Ndof Ndof

Fi1c. 3. Ezample 1. Ezperimental rates of convergence for all the contributions of Eocp (A.1)—
(A.3) and €oep (C.1)—(C.3), experimental rates of convergence for all the contributions of the total
errors llellq (B.1)—(B.8) and llellq (D.1)-(D.8), and the effectivity indices Te and Y g with v = 10~4
(E) and v =10"° (F).

singularities, refinement is also being performed in regions that are close to them. This
shows a competitive performance of the a posteriori error estimator.

e All the individual contributions of the total error [le|lq exhibit optimal experimental
rates of convergence for all the experiments and the nonlinear functions a considered
in the experiments that we have performed.

e The devised a posteriori error estimator, defined in (40), is able to recognize the
interface of 4. This estimator also delivers, for all the numerical experiments that
we have performed, optimal experimental rates of convergence. This is not the case
when the error estimator (79) is used in Algorithm 1.
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a = aq a = as a = as
Estimator contributions Estimator contributions Estimator contributions
1 1
10 10 10"
10°
10° 100
107"
101 -2 -1

10 10
10'10210%10%10%10®% 10'10210%10%10%10® 10'10210%10%10%10°
Ndof

(B.1) (B.2) (B.3)

Fic. 4. Ezample 2: Experimental rates of convergence for Est, Eqq, and Ect (A.1)-(A.3) and

adaptively refined meshes obtained after 25 adaptive loops (B.1)-(B.3) with v = 1073.
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