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The purpose of this work is to study an optimal control problem for a semilinear elliptic partial differential

equation with a linear combination of Dirac measures as a forcing term; the control variable corresponds

to the amplitude of such singular sources. We analyze the existence of optimal solutions and derive first

and, necessary and sufficient, second order optimality conditions. We develop a solution technique that

discretizes the state and adjoint equations with continuous piecewise linear finite elements; the control

variable is already discrete. We analyze the convergence properties of discretizations and obtain, in two

dimensions, an a priori error estimate for the underlying approximation of an optimal control variable.
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1. Introduction

In this work we are concerned with the analysis and discretization of an optimal control problem for

a semilinear elliptic partial differential equation (PDE) with a linear combination of Dirac measures as

a forcing term. To make matters precise, we let Ω ⊂ R
d , with d ∈ {2,3}, be an open, bounded, and

convex polytope with boundary ∂Ω and D be a finite ordered subset of Ω with cardinality ℓ := #D < ∞.

Given a desired state yd ∈ L2(Ω), a regularization parameter α > 0, and the cost functional

J(y,u) :=
1

2
‖y− yd‖

2
L2(Ω)+

α

2
‖u‖2

Rℓ , (1.1)

we shall be concerned with the following PDE-constrained optimization problem: Find minJ(y,u)
subject to the monotone, semilinear, and elliptic PDE

−∆y+ a(·,y) = ∑
z∈D

uzδz in Ω , y = 0 on ∂Ω , (1.2)

where δz corresponds to the Dirac delta supported at the interior point z ∈ D , and

u = {uz}z∈D ∈ R
ℓ : az 6 uz 6 bz ∀z ∈ D . (1.3)

Here, u denotes the control variable. The control bounds a = {az}z∈D and b = {bz}z∈D both belong to

R
ℓ and satisfy that az < bz for every z ∈ D . Assumptions on the nonlinear function a will be deferred

until Section 2.1.

PDE-constrained optimization problems involving measures have been previously considered in a

number of works. In particular, we mention the work by Casas & Kunisch (2014), in which the authors
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consider an optimal control problem where the state variable is governed by the semilinear elliptic

equation (1.2) but with a control variable u that is measure valued, i.e., u ∈ M (ω), where ω ⊂ Ω .

The main motivation behind this consideration is what the authors call sparsity promoting properties of

the control variable. In this framework, a complete analysis is provided for the state equation and the

optimization problem. In particular, first and second order optimality conditions are derived. However,

the work by Casas & Kunisch (2014) is not concerned with approximation.

For the special situation of the linear case a ≡ 0, there are a few works that consider the finite

element discretization of the optimal control problem previously introduced. In Gong et al. (2014), the

authors consider a discretization scheme based on the variational discretization approach and perform

an a priori error analysis (Gong et al., 2014, Theorem 3.7, item (i)). The authors operate under the fact

that the optimal state belongs to W
1,r
0 (Ω) for every r ∈ (1,d/(d − 1)). In contrast, an approach using

Muckenhoupt weights, weighted Sobolev spaces, and the corresponding weighted norm inequalities has

been explored in Antil et al. (2018). In such a work, the authors obtain the following convergence rates

for the error approximation of the optimal control variable: O(h2−ε) in two dimensions and O(h1−ε) in

three dimensions, where ε > 0 is arbitrarily small (Antil et al., 2018, Theorem 5.1); the error estimate

in two dimensions being improved in Theorem 5.8 below to O(h2| logh|3). The extension of such

weighted techniques for the case where the state equations are the Stokes equations has been considered

in Fuica et al. (2021). Related optimal control problems within the context of the active control of

sound and vibrations have been studied in Bermúdez et al. (2004) and Hernández & Otárola (2009),

respectively. Finally, we refer to the references Casas et al. (2012), Pieper & Vexler (2013), and Fuica

et al. (2019), where the authors study discretization techniques for an optimal control problem without

control constraints, but where the control is a regular Borel measure.

Apart from the fact that this exposition is the first to study a numerical scheme for the semilinear

optimal control problem minJ(y,u) subject to (1.2) and (1.3), the analysis itself comes with its own set

of difficulties. Below we list what we consider to be the most important contributions of our work:

(i) Error estimates for semilinear PDEs with Borel measures: For a basic finite element discretization

of (3.1), we obtain a L2-error estimate that is optimal in terms of regularity (Theorem 3.2). We

also derive a nearly–optimal, in terms of approximation, L1-error estimate (Theorem 5.3).

(ii) Existence and optimality conditions: We show the existence of at least one global solution to

our optimal control problem; see Theorem 4.1. Moreover, we analyze first and, necessary and

sufficient, second order optimality conditions in Sections 4.3 and 4.4, respectively.

(iii) Convergence of discretizations: We prove the existence of subsequences of global solutions of

suitable discrete problems that converge to a global solution of the continuous optimal control

problem (Theorem 5.5). We also prove that continuous strict local solutions can be approximated

by local minima of the aforementioned discrete problems (Theorem 5.6).

(iv) Error estimates: We derive in Theorem 5.8 an error estimate for the underlying approximation of

an optimal control variable in two dimensions that is nearly–optimal in terms of approximation.

We organize our presentation as follows. In Section 2 we present notation and gather some facts that

shall be useful for our purposes. In particular, we briefly review well-posedness results for semilinear

elliptic PDEs with singular forcing. Section 3.1 is our first original contribution. We obtain a L2-error

estimate for a standard finite element approximation of the aforementioned semilinear elliptic PDEs.

Section 4 is dedicated to the analysis of the semilinear optimal control problem. In particular, we derive

first and, necessary and sufficient, second order optimality conditions. Finally, in Section 5, we devise
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and analyze a suitable finite element discretization scheme for our semilinear optimal control problem:

we derive convergence results and obtain, in two dimensions, a priori error estimates.

2. Notation, assumptions, and preliminaries

Let us fix notation and the setting in which we will operate. Throughout this work, d ∈ {2,3} and Ω is

an open, bounded, and convex polytopal domain in R
d . We denote by ∂Ω the boundary of Ω .

If X and Y are Banach function spaces, we write X →֒ Y to denote that X is continuously

embedded in Y . We denote by X ′ and ‖ ·‖X the dual and the norm of X , respectively. We denote by

〈·, ·〉X ′,X the duality paring between X ′ and X ; we shall simply denote 〈·, ·〉 whenever the underlying

spaces are clear from the context. Let {xn}n∈N be a sequence in X . We will denote by xn → x and

xn ⇀ x the strong and weak convergence, respectively, of {xn}n∈N to x. We will use standard notation

for Sobolev spaces, norms, and seminorms. We denote by M (Ω) the space of Radon measures on Ω
– the space of regular Borel measures µ which are such that µ(K) < ∞ for every compact set K ⊂ R

d

(Evans & Gariepy, 1992, page 5) – and recall that M (Ω) can be identified with C0(Ω)′ – the dual of

the space of continuous functions in Ω̄ vanishing on ∂Ω (Folland, 1999, Theorem 7.17).

Given s ∈ (1,∞), we denote by s′ its Hölder conjugate, i.e., the real number such that 1/s+1/s′ = 1.

The relation A . B indicates that A 6CB, with a positive constant that does not depend on A, B, or the

underlying discretization parameters. The value of C might change at each occurrence.

2.1 Assumptions

We will operate under the following assumptions on a; see (Casas & Kunisch, 2014, Section 2). We

must, however, immediately mention that some of the results obtained in this work are valid under less

restrictive requirements; when possible we explicitly mention the assumptions on the nonlinear term a

that are required for a particular result.

(A.1) a = a(x,y) : Ω ×R→ R is a Carathéodory function that is monotone increasing in y for a.e. x in

Ω and satisfies the growth condition

|a(x,y)|6 |φ0(x)|+Ca|y|
r a.e. x ∈ Ω , ∀y ∈ R. (2.1)

Here, Ca > 0 is a constant, φ0 ∈ L1(Ω), r < ∞ if d = 2, and r < 3 if d = 3.

(A.2) a = a(x,y) : Ω ×R→ R is a Carathéodory function of class C1 with respect to y for a.e. x in Ω
and there exists φ1 ∈ Lq(Ω), with q > d/2, such that

0 6 ∂a
∂y
(x,y)6 |φ1(x)|+Ca|y|

r a.e. x ∈ Ω , ∀y ∈ R. (2.2)

Here, Ca > 0 is a constant, r < ∞ if d = 2, and r < 2 if d = 3.

(A.3) a = a(x,y) : Ω ×R→ R is a Carathéodory function of class C2 with respect to y for a.e. x in Ω
and there exists φ2 ∈ Lt(Ω) such that

∣

∣

∣

∂ 2a
∂y2 (x,y)

∣

∣

∣
6 |φ2(x)|+Ca|y|

r a.e. x ∈ Ω , ∀y ∈ R, (2.3)

where t > 1 if d = 2 and t > 3 if d = 3, Ca > 0 is a constant, r < ∞ if d = 2, and r < 1 if d = 3.
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The following comments are now in order. We first notice that our assumptions (A.1), (A.2), and

(A.3) are those stated in (A1), (A2), and (A3), respectively, in the work by Casas & Kunisch (2014).

Second, if (A.2) holds and a(·,0) ∈ L1(Ω), then (A.1) is satisfied. Third, if (A.3) holds, ∂a/∂y(·,0) ∈
Lq(Ω), for some q > d/2, and ∂a/∂y(x,y)> 0 for a.e. x in Ω and y ∈R, then (A.2) holds.

Further assumptions on a that will be particularly needed for performing an a priori error analysis

for a suitable finite element discretization will be deferred until Section 5.

3. Semilinear PDEs with singular forcing

Let Ω be an open and bounded domain with Lipschitz boundary, µ ∈ M (Ω), and a be such that (A.1)

holds. Let us introduce the following semilinear elliptic PDE with singular forcing: Find y such that

−∆y+ a(·,y) = µ in Ω , y = 0 on ∂Ω . (3.1)

The following notion of weak solution follows from (Casas & Kunisch, 2014, Section 2): y ∈ L1(Ω) is

a weak solution for problem (3.1) if a(·,y) ∈ L1(Ω) and
∫

Ω
[−y∆v+ a(x,y)v]dx =

∫

Ω
vdµ ∀v ∈ Z (Ω). (3.2)

Here, Z (Ω) := {v ∈ H1
0 (Ω) : ∆v ∈ C(Ω̄ )}. We immediately note that Z (Ω) ⊂ C0(Ω) and observe

that this property and the definition of Z (Ω) imply that all the terms involved in (3.2) are well defined.

The following result states the well-posedness of (3.2) and further regularity properties for the solu-

tion y; see (Boccardo & Gallouët, 1989, Theorem 3) and (Casas & Kunisch, 2014, Theorem 2.1).

THEOREM 3.1 (well-posedness) There exists a unique solution to (3.2). In addition, y ∈W
1,p
0 (Ω) and

‖∇y‖Lp(Ω) . ‖µ‖M (Ω)+ ‖a(·,0)‖L1(Ω) (3.3)

for every p < d/(d− 1). The hidden constant is independent of y, a, and µ .

The following remark is in order.

REMARK 3.1 (variational formulation) Since the solution y to problem (3.2) belongs to W
1,p
0 (Ω), for

every p < d/(d − 1), the following alternative weak formulation for problem (3.1) can be formulated

(Casas & Kunisch, 2014, Remark 2.3):

y ∈W
1,p
0 (Ω) :

∫

Ω
∇y ·∇vdx+

∫

Ω
a(x,y)vdx =

∫

Ω
vdµ ∀v ∈W

1,p′

0 (Ω). (3.4)

Here, p′ > d denotes the Hölder conjugate of p. Notice that, within the considered functional space

setting, all the terms involved in the weak formulation (3.4) are well defined.

3.1 Finite element discretization: an error estimate in L2(Ω)

In this section, we shall assume, in addition, that Ω is a convex polytope so that it can be triangulated

exactly. We thus introduce Th = {T}, a conforming partition of Ω̄ into closed simplices T with size

hT = diam(T ), and define h := max{hT : T ∈Th}. We denote by T= {Th}h>0 a collection of conform-

ing and quasi-uniform meshes Th, which are refinements of a common mesh T⋆. Given a mesh Th ∈ T,

we define the finite element space of continuous piecewise polynomials of degree one as

Vh := {vh ∈C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th}∩H1
0 (Ω). (3.5)
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We define the Galerkin approximation of the solution y to problem (3.4) by

yh ∈ Vh :

∫

Ω
∇yh ·∇vhdx+

∫

Ω
a(x,yh)vhdx =

∫

Ω
vhdµ ∀vh ∈Vh. (3.6)

The existence of a discrete solution yh, for a fixed mesh Th, follows from Brouwer’s fixed point theorem;

uniqueness follows from the monotonicity of a.

We derive an error estimate in L2(Ω) that is optimal with respect to regularity. This estimate, which

is of independent interest, extends the linear theory developed by Casas (1985) to a semilinear scenario.

THEOREM 3.2 (L2(Ω)-error estimate) Let a = a(x,y) : Ω ×R→ R be a Carathéodory function that is

monotone increasing in y for a.e. x ∈ Ω and satisfies (2.1). Assume, in addition, that

|a(x,y)− a(x,z)|6 |ψ(x)||y− z| a.e. x ∈ Ω , ∀y,z ∈ R, ψ ∈ Ls(Ω), (3.7)

where s = 2. If h is sufficiently small, then we have the optimal error estimate

‖y− yh‖L2(Ω) . h2− d
2 , (3.8)

with a hidden constant that is independent of y, yh, and h.

Proof. We proceed on the basis of a duality argument and begin the proof by introducing the nonnega-

tive function χ as follows:

χ(x) =
a(x,y(x))− a(x,yh(x))

y(x)− yh(x)
if y(x) 6= yh(x), χ(x) = 0 if y(x) = yh(x).

Observe that (3.7) guarantees that χ ∈ Ls(Ω). Let f ∈ L2(Ω) and let z and zh be the solutions to

(∇v,∇z)L2(Ω)+(χz,v)L2(Ω) = (f,v)L2(Ω) ∀v ∈ H1
0 (Ω), (3.9)

(∇vh,∇zh)L2(Ω)+(χzh,vh)L2(Ω) = (f,vh)L2(Ω) ∀vh ∈ Vh, (3.10)

respectively. Since Ω is Lipschitz, χ ∈ Lq(Ω), for some q > d/2, and f ∈ L2(Ω), we invoke (Stampac-

chia, 1965, Theorem 4.2) to deduce that z ∈ L∞(Ω). As a result, we have that f− χz ∈ L2(Ω). We are

thus in position to invoke standard elliptic regularity theory on the basis of the convexity of Ω to deduce

that z ∈ H2(Ω)∩H1
0 (Ω). Notice that, in view of the Sobolev embedding in (Adams & Fournier, 2003,

Theorem 4.12, Part I, Case C), we deduce the existence of r > d such that z ∈ W
1,r

0 (Ω). Let us also

observe that

(∇vh,∇(z− zh))L2(Ω)+(χ(z− zh),vh)L2(Ω) = 0 ∀vh ∈ Vh. (3.11)

We now bound ‖z− zh‖L∞(Ω). Let Ih : H2(Ω)∩H1
0 (Ω)→Vh be the Lagrange interpolation operator. A

standard interpolation error estimate combined with a finite element error estimate in L2(Ω) yield

‖Ihz− zh‖L2(Ω) 6 ‖Ihz− z‖L2(Ω)+ ‖z− zh‖L2(Ω) . h2|z|H2(Ω).

Let us now utilize an inverse inequality and ‖z− Ihz‖L∞(Ω) . hσ |z|H2(Ω), where σ = 2− d/2, to obtain

‖z− zh‖L∞(Ω) 6 ‖z− Ihz‖L∞(Ω)+ ‖Ihz− zh‖L∞(Ω) . hσ |z|H2(Ω)+ h−
d
2 ‖Ihz− zh‖L2(Ω) 6Chσ‖f‖L2(Ω),
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where C depends on ‖χ‖Ls(Ω). This error estimate shows, in particular, that zh ∈ L∞(Ω) uniformly with

respect to discretization; recall that z ∈ H2(Ω)∩H1
0 (Ω) →֒C(Ω̄ ).

Set f= y− yh ∈ L2(Ω). A density argument allows us to set v = y− yh in problem (3.9) and obtain

‖y− yh‖
2
L2(Ω) = (∇(y− yh),∇z)L2(Ω)+(χz,y− yh)L2(Ω)

= (∇(y− yh),∇(z− zh))L2(Ω)+(a(·,y)− a(·,yh),z− zh)L2(Ω).

We stress that, since there exists r > d such that z ∈ W
1,r
0 (Ω) and y− yh ∈ W

1,p
0 (Ω), for every p <

d/(d− 1), the term (∇(y− yh),∇(z− zh))L2(Ω) is well defined. Now, since y solves (3.4), we obtain

‖y− yh‖
2
L2(Ω) =

∫

Ω
(z− zh)dµ − (∇yh,∇(z− zh))L2(Ω)

− (a(·,y),z− zh)L2(Ω)+(a(·,y)− a(·,yh),z− zh)L2(Ω), (3.12)

upon utilizing that there exits r > d such that z ∈ W
1,r
0 (Ω) and that W

1,r
0 (Ω) →֒ C(Ω̄). We thus set

vh = yh in (3.11) to obtain, in view of the identity (3.12), the relation

‖y− yh‖
2
L2(Ω) =

∫

Ω
(z− zh)dµ +(χ(z− zh),yh)L2(Ω)

− (a(·,y),z− zh)L2(Ω)+(a(·,y)− a(·,yh),z− zh)L2(Ω). (3.13)

Since f= y− yh, this identity and the error bound ‖z− zh‖L∞(Ω) . hσ‖f‖L2(Ω) imply the estimate

‖y− yh‖L2(Ω) . hσ
(

‖µ‖M (Ω)+ ‖χyh‖L1(Ω)+ ‖a(·,y)‖L1(Ω)+ ‖Ψ‖L2(Ω)‖y− yh‖L2(Ω)

)

. (3.14)

In view of (2.1) and (3.3), we deduce ‖a(·,y)‖L1(Ω) . ‖φ0‖L1(Ω)+ [‖µ‖M (Ω)+ ‖a(·,0)‖L1(Ω)]
r. The

control of ‖χyh‖L1(Ω) follows from Hölder’s inequality, the triangle inequality and (3.3):

‖χyh‖L1(Ω) . ‖χ‖L2(Ω)

[

‖µ‖M (Ω)+ ‖a(·,0)‖L1(Ω)+ ‖y− yh‖L2(Ω)

]

. (3.15)

Replace the estimates obtained for ‖χyh‖L1(Ω) and ‖a(·,y)‖L1(Ω) into (3.14) and utilize the assumption

that h is sufficiently small so that the terms involving ‖y−yh‖L2(Ω) in (3.14) and (3.15) can be absorbed

in the left hand side of (3.14). These arguments yield the desired bound (3.8) and conclude the proof. �

4. The semilinear optimal control problem with singular sources

Let us precisely describe and analyze the semilinear optimal control problem with point sources intro-

duced in Section 1. We begin our studies by defining the set of admissible controls

Uad :=
{

u = {uz}z∈D ∈ R
ℓ : az 6 uz 6 bz ∀z ∈ D

}

, (4.1)

where a = {az}z∈D and b = {bz}z∈D both belong to R
ℓ and satisfy that az < bz for every z ∈ D . We

recall that D denotes a finite ordered subset of Ω with cardinality #D = ℓ. Notice that Uad is a nonempty,

closed, and bounded subset of Rℓ.
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We define the semilinear optimal control problem with point sources as follows: Find

min{J(y,u) : (y,u) ∈W
1,p
0 (Ω)×Uad} (4.2)

subject to the following weak formulation of the state equation: Find y ∈W
1,p
0 (Ω) such that

∫

Ω
∇y ·∇vdx+

∫

Ω
a(x,y)vdx = ∑

z∈D

uzv(z) ∀v ∈W
1,p′

0 (Ω), p < d/(d− 1), p′ > d. (4.3)

Here, p′ denotes the Hölder conjugate of p. Define G : W
1,p′

0 (Ω)→R by Gv=∑z∈D uzv(z) and observe

that G ∈ M (Ω). Let us now assume that a = a(x,y) : Ω ×R → R is a Carathéodory function that is

monotone increasing in y for a.e. x in Ω and satisfies (2.1). In view of this assumption and the fact that

G ∈ M (Ω), an application of Theorem 3.1 yields the existence of a unique solution y to problem (4.3).

In order to analyze our optimal control problem, we introduce the so-called control to state map

S : Uad →W
1,p

0 (Ω), which, given a control u ∈ Uad , associates to it the unique state y ∈W
1,p

0 (Ω) that

solves (4.3). We notice that the map S is bounded. In fact, Theorem 3.1 immediately yields the bound

‖∇(S u)‖Lp(Ω) . ∑
z∈D

|uz|+ ‖a(·,0)‖L1(Ω), p < d/(d− 1).

With S at hand, we introduce j : Uad →R by j(u) := J(S u,u). We recall that J is defined in (1.1).

4.1 Existence of optimal controls

The existence of an optimal state-control pair (ȳ, ū) ∈W
1,p
0 (Ω)×Uad is as follows.

THEOREM 4.1 (existence) Let Ω be an open and bounded domain with Lipschitz boundary and a be

such that (A.1) holds. Then, problem (4.2)–(4.3) admits at least one global solution (ȳ, ū).

Proof. Using the reduced cost functional j, our optimal control problem (4.2)–(4.3) reduces to: Mini-

mize j(u) over Uad . Let us now observe that, as a bounded and closed set in a finite dimensional space,

Uad is compact. On the other hand, the convergence results provided in (Casas & Kunisch, 2014, Theo-

rem 2.1) guarantee that j is continuous on Uad . With these ingredients at hand, the desired result follows

from the well known Weierstrass theorem. �

4.2 Differentiability properties of the control to state map S and the adjoint equation

In this section, we analyze differentiability properties of S and derive first order necessary optimality

conditions for (4.2)–(4.3). Since the control problem (4.2)–(4.3) is not convex, we discuss optimality

conditions in the context of local solutions.

4.2.1 Differentiability of the control to state map. We present the following result.

THEOREM 4.2 (differentiability of S ) Let Ω be an open and bounded domain with Lipschitz boundary.

If a is such that (A.1) and (A.2) hold, then the map S : Rℓ →W
1,p
0 (Ω) is of class C1 for p < d/(d−1).

In addition, if u,v ∈R
ℓ, then φ = S ′(u)v ∈W

1,p
0 (Ω) corresponds to the unique solution to

(∇φ ,∇v)L2(Ω)+
(

∂a
∂y
(·,y)φ ,v

)

L2(Ω)
= ∑

z∈D

vz〈δz,v〉 ∀v ∈W
1,p′

0 (Ω), y = S (u). (4.4)
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If, in addition, (A.3) holds, then S : Rℓ →W
1,p
0 (Ω) is of class C2 for p < d/(d − 1). Let u,v,w ∈ R

ℓ.

Then, ϕ = S ′′(u)(v,w) ∈W
1,p
0 (Ω) corresponds to the unique solution to

(∇ϕ ,∇v)L2(Ω)+
(

∂a
∂y
(·,y)ϕ ,v

)

L2(Ω)
=−

(

∂ 2a
∂y2 (·,y)φvφw,v

)

L2(Ω)
∀v∈W

1,p′

0 (Ω), y=S (u). (4.5)

Here, φv = S ′(u)v and φw = S ′(u)w.

Proof. We begin the proof by noticing that y 7→ a(·,y) is C1 as a map from W
1,p
0 (Ω) into L1(Ω)

for p < d/(d − 1). This result follows from an an adaption of the arguments elaborated in the proof

of (Tröltzsch, 2010, Lemma 4.12) combined with the fact that ∂a/∂y satisfies (2.2). The first order

differentiability of S thus follows from (Casas & Kunisch, 2014, Theorem 2.2). Alternatively, such a

result can be derived utilizing the arguments elaborated in the proof of (Tröltzsch, 2010, Theorem 4.17).

Let us now observe that, since (A.3) holds, W
1,p
0 (Ω) ∋ y 7→ a(·,y) ∈ L1(Ω) is of class C2. The

second order differentiability of S thus follows from (Casas & Kunisch, 2014, Theorem 2.2). �

4.2.2 The adjoint equation. In order to formulate first order optimality conditions, we present a clas-

sical result: If ū ∈ Uad denotes a locally optimal control, then (Tröltzsch, 2010, Lemma 4.18)

j′(ū)(u− ū)> 0 ∀u ∈ Uad . (4.6)

Here, j′(ū) denotes the Gateâux derivative of j at ū. To explore this inequality, we introduce the adjoint

variable p as the unique solution to the adjoint equation: Find p ∈ H1
0 (Ω) such that

(∇w,∇p)L2(Ω)+
(

∂a
∂y
(·,y)p,w

)

L2(Ω)
= (y− yd ,w)L2(Ω) ∀w ∈ H1

0 (Ω), y = S u. (4.7)

In the following results, we explore regularity properties for p.

PROPOSITION 4.3 (global regularity properties of p) Let Ω be an open and bounded domain with

Lipschitz boundary. If a is such that (A.1) and (A.2) hold, then there exists q > 4 if d = 2 and q > 3 if

d = 3 such that p ∈ H1
0 (Ω)∩W

1,q
0 (Ω).

Proof. We proceed in three dimensions; the analysis in two dimensions is simpler. Since y ∈W 1,p(Ω),
the Sobolev embedding W 1,p(Ω) →֒ Lι(Ω), which holds for every ι < 3 (Adams & Fournier, 2003,

Theorem 4.12, Part I, Case C), and assumption (A.2) allow us to deduce the existence of q > d/2 such

that ∂a/∂y(·,y) ∈ Lq(Ω). On the other hand, we observe that y−yd ∈ L2(Ω). With these ingredients at

hand, we thus invoke (Stampacchia, 1965, Theorem 4.2) to deduce that p ∈ L∞(Ω). Let us now define

H : H1
0 (Ω)→ R, H(w) := (y− yd ,w)L2(Ω)−

(

∂a
∂y
(·,y)p,w

)

L2(Ω)
.

In what follows, we prove the existence of q> 3 such that H belongs to W−1,q(Ω). Let p be the Hölder

conjugate of q. Let us consider, at the moment, p such that 6/5 6 p< 3 (3/2 < q6 6). Observe that

‖y− yd‖W−1,q(Ω) = sup

v∈W
1,p
0 (Ω)

〈y− yd ,v〉

‖∇v‖Lp(Ω)
. ‖y− yd‖L2(Ω),

as a consequence of the standard Sobolev embedding W 1,p(Ω) →֒ L2(Ω) (Adams & Fournier, 2003,

Theorem 4.12, Part I, Case C). To bound the term ‖∂a/∂y(·,y)p‖W−1,q(Ω), we utilize Hölder’s inequality:

∥

∥

∥

∂a
∂y
(·,y)p

∥

∥

∥

W−1,q(Ω)
6 sup

v∈W
1,p
0 (Ω)

∥

∥

∥

∂a
∂y
(·,y)

∥

∥

∥

Lσ (Ω)

‖p‖L∞(Ω)‖v‖Lκ (Ω)

‖∇v‖Lp(Ω)
,

1

σ
+

1

κ
= 1.
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In view of the Sobolev embedding W 1,p(Ω) →֒ Lι (Ω), which holds for every ι < 3, and assumption

(A.2), we deduce the existence of q> 3 such that

∥

∥

∥

∂a
∂y
(·,y)p

∥

∥

∥

W−1,q(Ω)
.
∥

∥

∥

∂a
∂y
(·,y)

∥

∥

∥

Lq(Ω)
‖p‖L∞(Ω).

We have thus proved the existence of q> 3 such that H ∈W−1,q(Ω). The desired regularity result thus

follows an application of (Jerison & Kenig, 1995, Theorem 0.5). �

PROPOSITION 4.4 (local regularity properties) Let Ω1 ⋐Ω0 ⋐Ω , with Ω0 smooth. If, in addition to the

conditions of Proposition 4.3, we assume that Ω is convex, ∂a/∂y(·,y) ∈ L2(Ω), for every y ∈ R, and

yd ,∂a/∂y(·,y) ∈ Lt(Ω0), for every y ∈R, where t < ∞ if d = 2 and t < 3 if d = 3, then p ∈W 2,t(Ω1).

Proof. Since p ∈ L∞(Ω), we have that y− yd −
∂a
∂y
(·,y)p ∈ L2(Ω) and y− yd −

∂a
∂y
(·,y)p ∈ Lt(Ω0). The

desired result thus follows from (Behringer et al., 2019, Lemma 4.2):

‖p‖W2,t(Ω1)
6Ct

(

∥

∥

∥
y− yd −

∂a
∂y
(·,y)p

∥

∥

∥

Lt (Ω0)
+
∥

∥

∥
y− yd −

∂a
∂y
(·,y)p

∥

∥

∥

L2(Ω)

)

, (4.8)

where Ct behaves as Ct, with C > 0, as t ↑ ∞. This concludes the proof. �

4.3 First order optimality conditions

We are now in position to present first order necessary optimality conditions.

THEOREM 4.5 (first order optimality conditions) Let Ω be an open and bounded domain with Lipschitz

boundary. Let a be such that (A.1) and (A.2) hold. Then, every locally optimal control ū = {ūz}z∈D ∈
Uad for problem (4.2)–(4.3) satisfies the variational inequality

∑
z∈D

(p̄(z)+α ūz)(uz− ūz)> 0 ∀u = {uz}z∈D ∈ Uad, (4.9)

where the optimal adjoint state p̄ solves (4.7) with y replaced by ȳ = S ū.

Proof. We begin the proof by observing that the variational inequality (4.6) can be rewritten as follows:

0 6 j′(ū)(u− ū) = (S ū− yd,S
′(ū)(u− ū))L2(Ω)+ ∑

z∈D

α ūz(uz− ūz).

Since the second term on the right hand side of the previous expression is already present in the desired

variational inequality (4.9), we concentrate on the first term.

Define χ := S ′(ū)(u− ū) and observe that χ solves (4.4) with y and vz replaced by ȳ = S ū and

uz− ūz, respectively. Since there exists q> d such that p̄ ∈W
1,q

0 (Ω), we are allowed to set v = p̄ in the

problem that χ solves to obtain

(∇χ ,∇p̄)L2(Ω)+
(

∂a
∂y
(·, ȳ)χ , p̄

)

L2(Ω)
= ∑

z∈D

p̄(z)(uz− ūz). (4.10)

Now, we would like to set w = χ in problem (4.7) to conclude that

(∇χ ,∇p̄)L2(Ω)+
(

∂a
∂y
(·, ȳ)p̄,χ

)

L2(Ω)
= (ȳ− yd,χ)L2(Ω). (4.11)
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Unfortunately, χ /∈ H1
0 (Ω) and thus we need to justify (4.11) with a different argument. Let {ηn}n∈N be

a sequence in C∞
0 (Ω) such that ηn → χ in W

1,p
0 (Ω), as n ↑ ∞, for p < d/(d−1), with p being arbitrarily

close d/(d− 1). Setting w = ηn in (4.7) yields

(∇ηn,∇p̄)L2(Ω)+
(

∂a
∂y
(·, ȳ)p̄,ηn

)

L2(Ω)
= (ȳ− yd,ηn)L2(Ω).

Observe that |(∇(χ −ηn),∇p̄)L2(Ω)|6 ‖∇(χ −ηn)‖Lp(Ω)‖∇p̄‖
Lp′ (Ω) → 0 as n ↑ ∞; p′ being the Hölder

conjugate of p. Similarly, |(ȳ− yd,ηn)L2(Ω)− (ȳ− yd,χ)L2(Ω)| → 0 as n ↑ ∞. It thus suffices to analyze

In :=

∣

∣

∣

∣

(

∂a
∂y
(·, ȳ)p̄,χ

)

L2(Ω)
−
(

∂a
∂y
(·, ȳ)p̄,ηn

)

L2(Ω)

∣

∣

∣

∣

6 ‖χ −ηn‖Lq(Ω)‖p̄‖L∞(Ω)

∥

∥

∥

∂a
∂y
(·, ȳ)

∥

∥

∥

Lp(Ω)
,

where q ∈ (1,∞) is such that q < ∞ if d = 2 and q < 3 if d = 3 and p is such that p−1 + q−1 = 1. The

fact that p̄ ∈ L∞(Ω) follows from the results of Proposition 4.3. On the other hand, we observe that, in

view of (A.2), there exists q > d/2 such that ∂a
∂y
(·, ȳ) ∈ Lq(Ω). We thus utilize that

‖∇(χ −ηn)‖Lp(Ω) → 0 =⇒ ‖χ −ηn‖Lq(Ω) → 0, n ↑ ∞,

to conclude that In → 0 as n ↑ ∞.

Finally, we invoke (4.10) and (4.11) to obtain the relation (ȳ− yd ,χ)L2(Ω) = ∑z∈D p̄(z)(uz − ūz).
This concludes the proof. �

We conclude the section with the following projection formula: If ū = {ūz}z∈D ∈ Uad denotes a

local minimizer of problem (4.2)–(4.3), then, for every z ∈ D , we have the projection formula

ūz := Π[az,bz]

(

−α−1p̄(z)
)

, (4.12)

where, for t ∈ R, Π[az,bz](t) := max{az,min{bz, t}}.

4.4 Second order optimality conditions

In this section, we provide necessary and sufficient second order optimality conditions for (4.2)–(4.3).

4.4.1 Second order differentiability of j. Before providing second order optimality conditions, we

analyze second order differentiability properties for the reduced cost functional j.

PROPOSITION 4.6 (second order differentiability of the reduced cost functional j) Let Ω be an open

and bounded domain with Lipschitz boundary. If a satisfies (A.1), (A.2), and (A.3), then the reduced

cost functional j : Rℓ →R is of class C2. In addition, for u,v,w ∈ R
ℓ, we have

j′′(u)(v,w) =

∫

Ω
φvφwdx+ ∑

z∈D

αvzwz−

∫

Ω
p

∂ 2a

∂y2
(x,y)φvφwdx. (4.13)

Here, y = S u, φv = S ′(u)v, and φv = S ′(u)w.

Proof. Since Theorem 4.2 guarantees that S : Rℓ →W
1,p
0 (Ω) is twice continuously Fréchet differen-

tiable, it is immediate that j is of class C2. The identity (4.13) follows from computations similar to

those in (Tröltzsch, 2010, Section 4.10, page 241) upon noticing that

−

∫

Ω
p

∂ 2a

∂y2
(x,y)φvφwdx =

∫

Ω
(y− yd)ϕdx.
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Here, ϕ denotes the solution to (4.5). This identity follows from the density argument elaborated in the

proof of Theorem 4.5 combined with the fact that a satisfies (A.1)–(A.3). We observe that, in view of

(A.2), the results of Proposition 4.3 allow us to conclude that p∈ L∞(Ω) while assumption (A.3) reveals

that ∂ 2a/∂y2(·,y)φvφw ∈ L1(Ω). As a result, p∂ 2a/∂y2(·,y)φvφw ∈ L1(Ω) �

4.4.2 Second order necessary optimality conditions. Before presenting necessary and sufficient sec-

ond order optimality conditions, we introduce a few basic ingredients. Let us define

Ψ := {ψz}z∈D ∈ R
ℓ, ψz := p̄(z)+α ūz. (4.14)

Let us also introduce the cone of critical directions at ū ∈Uad :

Cū :=
{

v = {vz}z∈D ∈ R
ℓ satisfying (4.16) and, for z ∈ D , vz = 0 if ψz 6= 0

}

. (4.15)

The aforementioned condition (4.16) reads as follows: For every z ∈ D , we have

vz > 0 if ūz = az, vz 6 0 if ūz = bz. (4.16)

As stated in (Casas & Tröltzsch, 2015, Section 3.3), the following result follows from the stan-

dard Karush–Kuhn–Tucker theory of mathematical optimization in finite-dimensional spaces; see, for

instance, (Casas & Tröltzsch, 2015, Theorem 3.8) and (Luenberger, 2003, Section 6.3).

THEOREM 4.7 (second order necessary and sufficient optimality conditions) If ū ∈ Uad denotes a local

minimum for problem (4.2)–(4.3), then j′′(ū)v2 > 0 for all v ∈ Cū. Conversely, if ū ∈ Uad satisfies the

variational inequality (4.9) and the second order sufficient optimality condition

j′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, (4.17)

then there exists µ > 0 and σ > 0 such that

j(u)> j(ū)+
µ

2
‖ū−u‖2

Rℓ ∀u ∈ Uad : ‖ū−u‖
Rℓ 6 σ .

In particular, ū is a strict local solution to (4.2)–(4.3).

To present the following result, we define, for τ > 0, the cone

Cτ
ū :=

{

v = {vz}z∈D ∈ R
ℓ satisfying (4.16) and, for z ∈ D ,vz = 0 if |ψz|> τ

}

. (4.18)

The following result is immediate in view of our finite-dimensional setting.

THEOREM 4.8 (equivalent optimality conditions) Let ū ∈ Uad , ȳ ∈W
1,p
0 (Ω), and p̄∈ H1

0 (Ω) satisfy the

first order optimality conditions (4.3), (4.7), and (4.9). Then, (4.17) is equivalent to

∃κ ,τ > 0 : j′′(ū)v2 > κ‖v‖2
Rℓ ∀v ∈ Cτ

ū. (4.19)

5. Finite element approximation of the optimal control problem

In this section, we propose and analyze a finite element discretization scheme for the optimal control

problem (4.2)–(4.3). In particular, we analyze convergence properties and derive error estimates.

We begin our studies by providing convergence results related to a finite element discretization of

the state equation (4.3).
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5.1 The discrete state equation: convergence properties

We introduce the following finite element approximation of problem (4.3): Find yh ∈ Vh such that

∫

Ω
∇yh ·∇vhdx+

∫

Ω
a(x,yh)vhdx = ∑

z∈D

uzvh(z) ∀vh ∈Vh. (5.1)

We recall that Vh is defined in (3.5). The existence of a discrete solution yh ∈ Vh, for a fixed mesh Th,

follows from Brouwer’s fixed point theorem while uniqueness follows from the monotonicity of a.

We present the following convergence result.

THEOREM 5.1 (convergence properties) Let Ω be an open, bounded, and convex polytopal domain. Let

a be such that (A.1), (A.2), and (3.7) hold. Let y ∈ W
1,p

0 (Ω), for p < d/(d − 1), be the solution to the

state equation (4.3) and let yh ∈Vh be the solution to the discrete equation
∫

Ω
∇yh ·∇vhdx+

∫

Ω
a(x,yh)vhdx = ∑

z∈D

uz,hvh(z) ∀vh ∈ Vh, (5.2)

where uh = {uz,h}z∈D ∈ Uad . If uh → u in R
ℓ, then yh → y in L2(Ω) as h → 0.

Proof. We begin the proof with a simple application of the triangle inequality and write

‖y− yh‖L2(Ω) 6 ‖y− y‖L2(Ω)+ ‖y− yh‖L2(Ω),

where y denotes the solution to: Find y ∈W
1,p
0 (Ω) such that

∫

Ω
∇y ·∇vdx+

∫

Ω
a(x,y)vdx = ∑

z∈D

uz,hv(z) ∀v ∈W
1,p′

0 (Ω), p < d/(d− 1). (5.3)

To control ‖y− y‖L2(Ω), we write a(x,y)− a(x,y) as c0(y− y), where c0 :=
∫ 1

0 ∂a/∂y(x,ζ )dθ with

ζ := y+θ (y− y), and observe that y− y solves the problem

∫

Ω
∇(y− y) ·∇vdx+

∫

Ω
c0(y− y)vdx = ∑

z∈D

[uz−uz,h]v(z) ∀v ∈W
1,p′

0 (Ω), p < d/(d− 1).

Since both y and y belong to W
1,p
0 (Ω) for every p< d/(d−1), we deduce that ζ = y+θ (y−y)∈ Lr(Ω)

for every r < ∞ if d = 2 and for every r < 3 if d = 3 (Adams & Fournier, 2003, Theorem 4.12, Part I,

Case C). Consequently, (A.2) guarantees that ∂a/∂y(·,ζ ) ∈ Lq(Ω) for some q > d/2. We are thus in

position to invoke the stability estimate of (Stampacchia, 1965, Theorem 9.1) to arrive at

‖∇(y− y)‖Lp(Ω) . ‖u−uh‖Rℓ → 0, h → 0. (5.4)

We now control ‖y− yh‖L2(Ω). Since y ∈W
1,p
0 (Ω) solves (5.3) and yh ∈ Vh solves (5.2), an immediate

application of the error estimate of Theorem 3.2 yields the existence of h△ > 0 such that

‖y− yh‖L2(Ω) . h2−d/2 ∀h 6 h△. (5.5)

The hidden constant is independent of h, but depends on ‖uh‖Rℓ , ‖χ‖L2(Ω), ‖a(·,0)‖L1(Ω), ‖φ0‖L1(Ω),

and r as in assumption (A.1). We observe that, since {uh}h>0 ⊂ Uad is convergent to u ∈ Uad as h → 0,

it is uniformly bounded with respect to discretization. A collection of the convergence property (5.4)

and the error estimate (5.5) allows us to conclude. �
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5.2 The discrete adjoint equation: local error estimates in maximum norm

Let us introduce the following finite element approximation of problem (4.7): Find ph ∈Vh such that

∫

Ω
∇vh ·∇phdx+

∫

Ω

∂a
∂y
(x,y)phvhdx =

∫

Ω
(y− yd)vhdx ∀vh ∈ Vh. (5.6)

In the following result, we present a two-dimensional local error estimate in maximum norm.

THEOREM 5.2 (an error estimate in maximum norm: d = 2) Let Ω ⊂ R
2 be an open, bounded, and

convex polygonal domain. Let a be such that (A.1) and (A.2) hold. Let Ω1 ⋐ Ω0 ⋐ Ω with Ω0 smooth.

If, in addition, ∂a/∂y(·,y) ∈ Lq(Ω), for every y ∈ R, where q > 2, and yd ,∂a/∂y(·,y) ∈ Lt (Ω0), for

every y ∈ R, where t < ∞, then there exists h⋆ > 0 such that

‖p− ph‖L∞(Ω1) . h2| logh|2 (5.7)

for every h 6 h⋆. Here, the hidden constant is independent of h.

Proof. We begin the proof with a simple application of the triangle inequality and write

‖p− ph‖L∞(Ω1) 6 ‖p− qh‖L∞(Ω1)+ ‖qh− ph‖L∞(Ω1),

where qh ∈ Vh solves (5.6) but with ∂a/∂y(·,y)ph replaced by ∂a/∂y(·,y)p. A key ingredient in favor

of the definition of qh is that (∇(p− qh),∇vh)L2(Ω) = 0 for every vh ∈ Vh. Let Λ1 be a smooth domain

such that Ω1 ⋐Λ1 ⋐Ω0. We thus invoke (Schatz & Wahlbin, 1977, Corollary 5.1) and (Behringer et al.,

2019, Proposition 4.3) to conclude the existence of h0 ∈ (0,1) and C > 0 such that, for any vh ∈Vh,

‖p− qh‖L∞(Ω1) . | log lh|‖p− vh‖L∞(Λ1)+ l−
d
2 ‖p− qh‖L2(Λ1)

∀h 6 h0.

Here, l is such that dist(Ω1,∂Λ1)> l, dist(Λ1,∂Ω)> l, and Ch 6 l. In view of the assumptions on a and

the convexity of Ω , the results of Proposition 4.4 guarantee that p ∈ H2(Ω)∩W 2,t(Λ1), where t is as in

the statement of the theorem. The H2(Ω)-regularity of p follows from the fact that ∂a/∂y(·,y)∈ L2(Ω),
for every y ∈ R, and that p ∈ L∞(Ω); see Proposition 4.3. We can thus obtain

‖p− qh‖L∞(Ω1) 6C1| logh|h2− d
t ‖∇2p‖Lt(Λ1)+C2h2|p|H2(Ω)

6Ct | logh|h2− d
t C+C2h2|p|H2(Ω),

(5.8)

where C1,C2 and Ct are positive constants that are independent of h and p and C= C(y,yd ,a,p) collects

the terms appearing in the right hand side of estimate (4.8). Inspired by (Schatz & Wahlbin, 1982, page

3), we set t = | logh|, for h sufficiently small, and use that Ct behaves as Ct as t ↑ ∞, to obtain the error

estimate ‖p− qh‖L∞(Ω1) . h2| logh|2.
We now control ‖qh − ph‖L∞(Ω1). To accomplish this task, we first notice that

qh − ph ∈ Vh :

∫

Ω
∇(qh − ph) ·∇vhdx =

∫

Ω

∂a
∂y
(x,y)(ph −p)vhdx ∀vh ∈Vh. (5.9)

Let p be the solution to the associated continuous problem, i.e.,

p ∈ H1
0 (Ω) :

∫

Ω
∇p ·∇vdx =

∫

Ω

∂a
∂y
(x,y)(ph −p)vdx ∀v ∈ H1

0 (Ω). (5.10)
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In what follows, we obtain a stability bound for p in L∞(Ω) on the basis of a basic Sobolev embedding

and the stability bound in (Jerison & Kenig, 1995, Theorem 0.5). In fact, we have

‖p‖L∞(Ω) . ‖∇p‖Lr(Ω) .
∥

∥

∥

∂a
∂y
(·,y)

∥

∥

∥

Lq(Ω)
‖ph −p‖L2(Ω), (5.11)

where r > 2 and q > 2. We thus control ‖qh − ph‖L∞(Ω1) as follows: ‖qh − ph‖L∞(Ω1) 6 ‖(qh − ph)−
p‖L∞(Ω1)+ ‖p‖L∞(Ω1). Since qh − ph solves (5.9) and p solves (5.10), i.e, qh − ph corresponds to a finite

element approximation of p, we obtain

‖(qh − ph)− p‖L∞(Ω1) . h1− d
r ‖∇p‖Lr(Ω) . ‖∇p‖Lr(Ω).

Consequently, we obtain ‖qh − ph‖L∞(Ω1) . ‖ph − p‖L2(Ω) . h2|p|H2(Ω). This estimate combined with

the error bound ‖p− qh‖L∞(Ω1) . h2| logh|2 yield (5.7). �

5.3 The discrete state equation: an error estimate in L1(Ω)

In this section, we follow the ideas developed in (Leykekhman & Vexler, 2013, Theorem 4.1) and (Gong

et al., 2014, Lemma 4.2) and derive an error estimate in L1(Ω) for the finite element approximation (5.1)

of the semilinear state equation (4.3). Notice that, since D ⊂ Ω and D is finite, dist(D ,∂Ω)> 0 so that

we can conclude the existence of smooth subdomains Ω0 and Ω1 such that D ⊂ Ω1 ⋐ Ω0 ⋐ Ω .

THEOREM 5.3 (an error estimate in L1(Ω): d = 2) Let Ω ⊂ R
2 be an open, bounded, and convex

polygonal domain. Let a be such that (A.1) holds. Assume, in addition, that a(·,0) ∈ L2(Ω) and that

(3.7) holds with ψ ∈ Ls(Ω), where s > 2. Let Ω0 and Ω1 be smooth subdomains such that D ⊂ Ω1 ⋐

Ω0 ⋐ Ω . If ψ ∈ Lt(Ω0), for every t < ∞, then, there exists h⊲⊳ > 0 such that

‖y− yh‖L1(Ω) . h2| logh|2 (5.12)

for every h 6 h⊲⊳. Here, the hidden constant is independent of h.

Proof. Define χ , z, and zh as in the proof of Theorem 3.2. Set f = sgn(y− yh) ∈ L∞(Ω) as a forcing

term in problem (3.9). A density argument allows us to set v = y− yh in problem (3.9) and obtain

‖y− yh‖L1(Ω) = (∇(y− yh),∇(z− zh))L2(Ω)+(a(·,y)− a(·,yh),z− zh)L2(Ω).

We now exploit the fact that y solves (4.3) to arrive at

‖y− yh‖L1(Ω) =∑
z

uz(z(z)− zh(z))+(χ(z− zh),yh)L2(Ω)− (a(·,yh),z− zh)L2(Ω) =: I+ II+ III. (5.13)

We first estimate II+ III upon exploiting the H2(Ω)-regularity of z:

|(χ(z− zh),yh)L2(Ω)− (a(·,yh),z− zh)|6
(

‖χyh‖L2(Ω)+ ‖a(·,yh)‖L2(Ω)

)

‖z− zh‖L2(Ω) . h2|z|H2(Ω).

The following comments are now in order. First, since Ω is convex and the underlying refinement

is quasi-uniform, we invoke (Brenner & Scott, 2008, Theorem 8.5.3) to obtain the existence of h△ > 0

such that yh ∈ W
1,p

0 (Ω) uniformly with respect to discretization for h 6 h△. With this result at hand,

we now utilize that χ ∈ Ls(Ω) with s > 2 to immediately deduce that χyh ∈ L2(Ω) in two dimensions.
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On the other hand, in view of the fact that a(·,0) ∈ L2(Ω), it follows that ‖a(·,yh)‖L2(Ω) is uniformly

bounded with respect to discretization.

It thus suffices to estimate the term I in (5.13). Observe that z is such that

(∇v,∇z)L2(Ω) = (sgn(y− yh)− χz,v)L2(Ω) ∀v ∈ H1
0 (Ω).

We can thus invoke (Behringer et al., 2019, Lemma 4.2) to obtain

‖z‖W2,t(Ω1)
6Ct

(

∥

∥sgn(y− yh)− χz
∥

∥

Lt(Ω0)
+
∥

∥sgn(y− yh)− χz
∥

∥

L2(Ω)

)

,

where t is as in the statement of the theorem. A local argument as the one developed in the proof of

Theorem 5.2 yields the bound

|I|. ‖u‖
Rℓ‖z− zh‖L∞(Ω1) . h2| logh|2‖u‖

Rℓ .

This concludes the proof. �

5.4 The discrete optimal control problem

We propose the following finite element discretization of the optimal control problem (4.2)–(4.3): Find

min{J(yh,uh) : (yh,uh) ∈Vh ×Uad} (5.14)

subject to the discrete state equation: Find yh ∈ Vh such that

∫

Ω
∇yh ·∇vhdx+

∫

Ω
a(x,yh)vhdx = ∑

z∈D

uz,hvh(z) ∀vh ∈ Vh. (5.15)

The existence of at least one solution follows from the arguments developed in the proof of Theorem

4.1. Let us introduce the discrete map Sh : Uad ∋ uh 7→ yh ∈Vh, where yh denotes the solution to (5.15),

and define the reduced cost functional jh : Uad ∋ uh 7→ J(Shuh,uh)∈R. With these ingredients at hand,

we formulate first order optimality conditions: every discrete locally optimal control ūh ∈ Uad satisfies

j′h(ūh)(uh − ūh)> 0 ∀uh = {uz,h}z∈D ∈ Uad. (5.16)

This variational inequality leads to the following projection formula: If ūh denotes a local minimizer of

the discrete optimal control problem, then, for every z ∈ D , we have the projection formula

ūz,h := Π[az,bz]

(

−α−1p̄h(z)
)

, (5.17)

where, for t ∈ R, Π[az,bz](t) := max{az,min{bz, t}}. Here, p̄h denotes the solution to the following

discrete adjoint problem: Find p̄h ∈ Vh such that

∫

Ω
∇p̄h ·∇vhdx+

∫

Ω

∂a
∂y
(x, ȳh)p̄hvhdx =

∫

Ω
(ȳh − yd)vhdx ∀vh ∈ Vh. (5.18)

5.5 An auxiliary error estimate

In this section, we derive an auxiliary error estimate that will be of fundamental importance to perform

an a priori error analysis for the discretization introduced in Section 5.4.
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THEOREM 5.4 (an auxiliary error estimate: d = 2) Let Ω ⊂R
2 be an open, bounded, and convex polyg-

onal domain. Let a be such that (A.1) and (A.2) hold. Assume, in addition, that ∂a/∂y = ∂a/∂y(x,y) is

Lipschitz in y for a.e. x ∈ Ω and that a satisfies a(·,0) ∈ L2(Ω), ∂a/∂y(·,y) ∈ Lq(Ω), for every y ∈ R,

where q > 2, and that (3.7) holds with ψ ∈ Ls(Ω), where s > 2. Let Ω0 and Ω1 be smooth subdomains

such that D ⊂ Ω1 ⋐ Ω0 ⋐ Ω . If, in addition, ψ ,yd ,∂a/∂y(·,y) ∈ Lt(Ω0), for every t < ∞, then we have

|( j′(u)− j′h(u))v|. h2| logh|3‖v‖
Rℓ . (5.19)

for every h 6 h†. Here, u,v ∈R
ℓ and the hidden constant is independent of h.

Proof. We begin the proof by noticing that

j′(u)v = ∑
z∈D

(p(z)+αuz)vz, j′h(u)v = ∑
z∈D

(p̂h(z)+αuz)vz,

where p ∈ H1
0 (Ω)∩H2(Ω) solves (4.7) with y = S u and p̂h solves (5.6) with y being replaced by yh,

i.e., the solution to (5.1). With these identities at hand, we obtain

|( j′(u)− j′h(u))v|6 ∑
z∈D

[

|p(z)− ph(z)|+ |ph(z)− p̂h(z)|
]

|vz|=: ∑
z∈D

[Iz+ IIz] |vz|,

where ph denotes the solution to (5.6). Let z ∈ D . Invoke Theorem 5.2 to arrive at Iz . h2| logh|2. We

now control IIz. To accomplish this task, we observe that ph − p̂h ∈ Vh is such that

(∇(ph − p̂h),∇vh)L2(Ω)+
(

∂a
∂y
(·,y)(ph − p̂h),vh

)

L2(Ω)

=
(

y− yh,vh

)

L2(Ω)
+
((

∂a
∂y
(·,yh)−

∂a
∂y
(·,y)

)

p̂h,vh

)

L2(Ω)
∀vh ∈Vh.

We thus utilize an inverse inequality and a stability estimate for the previous problem to obtain

‖ph − p̂h‖
2
L∞(Ω) . i2h‖∇(ph − p̂h)‖

2
L2(Ω) . i2h‖y− yh‖L1(Ω)‖ph − p̂h‖L∞(Ω)

+ i2h

∥

∥

∥

(

∂a
∂y
(·,yh)−

∂a
∂y
(·,y)

)

p̂h

∥

∥

∥

L1(Ω)
‖ph − p̂h‖L∞(Ω), (5.20)

where ih =(1+ | logh|)
1
2 (Brenner & Scott, 2008, Lemma 4.9.2). Invoke the fact that ∂a/∂y= ∂a/∂y(x,y)

is Lipschitz in y for a.e. x ∈ Ω and then the error estimate (5.12) to obtain

IIz . ‖ph − p̂h‖L∞(Ω) . i2h
(

1+ ‖p̂h‖L∞(Ω

)

‖y− yh‖L1(Ω) . i2hh2| logh|2.

Collect the derived estimates for Iz and IIz to obtain (5.19). �

5.6 The discrete optimal control problem: convergence of discretizations

We now provide a convergence result that, in essence, guarantees that a sequence of global solutions

{ūh}h>0 of the discrete optimal control problems contains subsequences that converge, as h → 0, to

global solutions of the continuous optimal control problem.

THEOREM 5.5 (convergence to global solutions) Let Ω be an open, bounded, and convex polytopal

domain. Let a be such that (A.1), (A.2), and (3.7) hold. Let h > 0 and let ūh be a global solution of the

discrete optimal control problem (5.14)–(5.15). Then, there exist nonrelabeled subsequences {ūh}h>0

such that ūh → ū in R
ℓ, as h → 0, with ū being a global solution to the continuous optimal control

problem (4.2)–(4.3). In addition, we have limh→0 jh(ūh) = j(ū).
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Proof. Since {ūh}h>0 ⊂ Uad is uniformly bounded in R
ℓ, then there exists a nonrelabeled subsequence

{ūh}h>0 such that ūh → ū in R
ℓ as h → 0. Let us prove that ū is a global solution to (4.2)–(4.3). To

accomplish this task, we let ũ ∈ Uad be a global solution to (4.2)–(4.3) and let {ũh}h>0 ⊂ Uad be such

that ũh → ũ in R
ℓ as h → 0. Since ũ is optimal for the continuous problem (4.2)–(4.3) and, for every

h > 0, ūh is a global solution to the discrete optimal control problem (5.14)–(5.15), we obtain

j(ũ)6 j(ū) = lim
h→0

jh(ūh)6 lim
h→0

jh(ũh) = j(ũ). (5.21)

We observe that, since ūh → ū and ũh → ũ in R
ℓ as h → 0, Theorem 5.1 reveals that Shūh → S ū

and that Shũh → S ũ in L2(Ω) as h → 0. Consequently, it is immediate that jh(ūh) → j(ū) and that

jh(ũh)→ j(ũ) as h → 0. In view of (5.21), we conclude that ū is a global solution to (4.2)–(4.3). �
We now provide a second convergence result: every strict local minimum of the continuous problem

(4.2)–(4.3) can be approximated by local minima of the discrete optimal control problems (5.14)–(5.15).

THEOREM 5.6 (convergence to strict local solutions) Let the assumptions of Theorem 5.5 hold. Let

ū be a strict local minimum of (4.2)–(4.3). Then, there exist h∇ > 0 and a sequence of local minima

{ūh}0<h6h∇
of the discrete control problems such that ūh → ū in R

ℓ and jh(ūh)→ j(ū) in R as h → 0.

Proof. Since ū is a strict local minimum of problem (4.2)–(4.3), there exists ε > 0 such that ū is the

unique solution to min{ j(u) : u ∈ Uad ∩Bε(ū)}, where Bε(ū) := {u ∈ Uad : ‖u− ū‖
Rℓ 6 ε}. Let us now

introduce, for h > 0, the discrete optimization problems:

min{ jh(u) : u ∈ Uad ∩Bε(ū)}. (5.22)

In view of the fact that Uad ∩ Bε(ū) is nonempty and compact, problem (5.22) admits at least one

solution. Let h > 0 and let ūh ∈ Uad be a solution to (5.22). The arguments elaborated in the proof

of Theorem 5.5 reveal the existence of nonrelabeled subsequences {ūh}h>0 that converge to solutions

to min{ j(u) : u ∈ Uad ∩Bε(ū)}. Since the latter minimization problem admits a unique solution, we

must have that ūh → ū in R
ℓ as h → 0 for the whole sequence. This, in particular, guarantees that the

constraint ūh ∈ Bε(ū) is not active for h sufficiently small. As a result, ūh is a solution to the discrete

optimal control problem (5.14)–(5.15). This concludes the proof. �

5.7 The discrete optimal control problem: error estimates

Let ū be a local minimum of the continuous optimal control problem and let {ūh}h>0 be a sequence of

local minima of the discrete optimal control problems such that ‖ū− ūh‖Rℓ → 0 as h → 0; see Theorems

5.5 and 5.6. In what follows, we derive an error estimate for the error ū− ūh in R
ℓ.

PROPOSITION 5.7 (an instrumental bound) Let Ω be an open, bounded, and convex polytopal domain.

Let a be such that (A.1), (A.2), (A.3), and (3.7) hold. Assume that, in addition, ∂a/∂y(·,y) ∈ Lq(Ω),
for every y ∈R, where q> 2. If ū ∈ Uad is a local minimum of (4.2)–(4.3) that satisfies the second order

condition (4.17), or equivalently (4.19), then there exists h∆ > 0 such that

κ
2
‖ū− ūh‖

2
Rℓ 6

(

j′(ūh)− j′(ū)
)

(ūh − ū) (5.23)

for every h < h∆ .

Proof. We proceed on the basis of two steps.
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Step 1. We first prove that, for h > 0 sufficiently small, ūh − ū belongs to Cτ
ū for some τ > 0. Since

ūh ∈ Uad , it is immediate that ūh − ū satisfies the sign condition (4.16). It thus suffices to verify the

remaining condition in (4.18). To accomplish this task, we introduce the discrete variable Ψh as follows:

Ψh := {ψz,h}z∈D ∈ R
ℓ, ψz,h := p̄h(z)+α ūz,h.

Since ūh → ū in R
ℓ, the results of Theorem 5.1 guarantee that ȳh → ȳ in L2(Ω) as h → 0, which in turns

implies that p̄h → p̄ in C(Ω̄ ) as h → 0. We can thus deduce the existence of h† > 0 such that

‖Ψh −Ψ‖
Rℓ < τ ∀h 6 h†, (5.24)

where, we recall that,Ψz is defined in (4.14). Let z∈D be arbitrary but fixed and assume that ψz > τ > 0.

In view of the projection formula (4.12), we immediately conclude that ūz = az. On the other hand, from

(5.24) we can obtain that ψz,h > 0 and thus that ūz,h > −α−1p̄h(z). This, on the basis of the projection

formula (5.17), yields ūz,h = az. Consequently, ūz = ūz,h = az. Similar arguments allow us to obtain that,

if ψz <−τ < 0, then ūz = ūz,h = bz. Since z ∈ D is arbitrary, we can finally conclude that ūh − ū ∈ Cτ
ū.

Step 2. Since ūh − ū ∈ Cτ
ū, with Cτ

ū defined in (4.18), and ū satisfies (4.17), we are allowed to set

v = ūh − ū in (4.19) to arrive at

κ‖ūh − ū‖2
Rℓ 6 j′′(ū)(ūh − ū)2. (5.25)

On the other hand, in view of the mean value theorem we obtain, for some θh ∈ (0,1),

( j′(ūh)− j′(ū))(ūh − ū) = j′′(û)(ūh − ū)2,

where û = ū+θh(ūh − ū). With (5.25) at hand, we can thus arrive at

κ‖ūh − ū‖2
Rℓ 6 ( j′(ūh)− j′(ū))(ūh − ū)+ ( j′′(ū)− j′′(û))(ūh − ū)2. (5.26)

Invoke the fact that j′′ is continuous in R
ℓ, θh ∈ (0,1), and that ūh → ū in R

ℓ, to deduce the existence

of h‡ > 0 such that
∣

∣( j′′(ū)− j′′(û))(ūh − ū)2
∣

∣6
κ

2
‖ūh − ū‖2

Rℓ ∀h 6 h‡.

Replacing this inequality into (5.26) yields the desired inequality (5.23). This concludes the proof. �

We conclude by presenting the following a priori error estimate for the approximation of an optimal

control variable.

THEOREM 5.8 (a priori error estimate: d = 2) Let the assumptions of Theorem 5.4 and Proposition 5.7

hold. If ū ∈ Uad is a local minimum of (4.2)–(4.3) that satisfies (4.17), then there exists h⋆ > 0 such that

‖ū− ūh‖Rℓ . h2| logh|3 ∀h < h⋆, (5.27)

with a hidden constant that is independent of h.

Proof. Adding and subtracting the term j′h(ūh)(ū− ūh) in the right hand side of (5.23) yields

κ
2
‖ū− ūh‖

2
Rℓ 6

(

j′(ū)− j′h(ūh)
)

(ū− ūh)+
(

j′h(ūh)− j′(ūh)
)

(ū− ūh).

We now invoke the continuous and discrete first order optimality conditions, (4.6) and (5.16), respec-

tively, to obtain j′(ū)(ū− ūh)6 0 and − j′h(ūh)(ū− ūh)6 0. Consequently,

κ
2
‖ū− ūh‖

2
Rℓ 6

(

j′h(ūh)− j′(ūh)
)

(ū− ūh).

Utilize the auxiliary error estimate of Theorem 5.4 to immediately arrive at the desired bound (5.27). �
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REMARK 5.1 (optimality) The error estimate of Theorem 5.8 is nearly–optimal in terms of approxima-

tion (nearly because of the presence of the log-term).
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ANTIL, H., OTÁROLA, E. & SALGADO, A. J. (2018) Some applications of weighted norm inequalities to the

error analysis of PDE-constrained optimization problems. IMA J. Numer. Anal., 38, 852–883.

BEHRINGER, N., MEIDNER, D. & VEXLER, B. (2019) Finite element error estimates for optimal control problems

with pointwise tracking. Pure Appl. Funct. Anal., 4, 177–204.
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DRELICHMAN, I., DURÁN, R. G. & OJEA, I. (2020) A weighted setting for the numerical approximation of the

Poisson problem with singular sources. SIAM J. Numer. Anal., 58, 590–606.

ERN, A. & GUERMOND, J.-L. (2004) Theory and practice of finite elements. Applied Mathematical Sciences,

vol. 159. Springer-Verlag, New York, pp. xiv+524.

EVANS, L. C. & GARIEPY, R. F. (1992) Measure theory and fine properties of functions. Studies in Advanced

Mathematics. CRC Press, Boca Raton, FL, pp. viii+268.

FOLLAND, G. B. (1999) Real analysis. Pure and Applied Mathematics (New York), second edn. John Wiley &

Sons, Inc., New York, pp. xvi+386.
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