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Abstract. We propose and analyze an a posteriori error estimator for a PDE–constrained opti-
mization problem involving a nondifferentiable cost functional, the spectral fractional powers of the
Dirichlet Laplace operator as state equation and control–constraints. We realize fractional diffusion
as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation and propose an equivalent
problem with a local state equation. For such an equivalent problem, we design an a posteriori error
estimator which can be defined as the sum of four contributions: two contributions related to the
finite element approximation of the state and adjoint equations and two contributions that account
for the discretization of the control variable and its associated subgradient. The contributions re-
lated to the approximation of the state and adjoint equations rely on anisotropic error estimators
in Muckenhoupt Sobolev spaces. We prove that the proposed a posteriori error estimator is locally
efficient and, under suitable assumptions, reliable. We design an adaptive scheme that yields, for the
examples that we perform, optimal experimental rates of convergence.
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1. Introduction. The main goal of this work is the design and study of a poste-
riori error estimates for an optimal control problem that entails the minimization of a
nondifferentiable cost functional, a state equation that involves the spectral fractional
Laplacian and constraints on the control variable. To be precise, let Ω ⊂ Rn (n ≥ 1)
be a bounded and open polytopal domain with Lipschitz boundary ∂Ω, s ∈ (0, 1)
and ud : Ω → R be a desired state. For parameters σ > 0 and ν > 0, we define the
nonsmooth cost functional

J(u, z) :=
1

2
‖u− ud‖2L2(Ω) +

σ

2
‖z‖2L2(Ω) + ν‖z‖L1(Ω). (1.1)

We will be interested in the numerical approximation of the following nondifferentiable
PDE–constrained optimization problem: Find

min J(u, z), (1.2)

subject to the nonlocal state equation

(−∆)su = z in Ω, u = 0 on ∂Ω, (1.3)

and the constraints

a ≤ z(x′) ≤ b a.a. x′ ∈ Ω. (1.4)

For s ∈ (0, 1), the operator (−∆)s denotes the spectral fractional powers of the Dirich-
let Laplace operator, the so–called spectral fractional Laplacian. We must immedi-
ately comment that this definition and the classical one that is based on a pointwise
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2 E. Otárola

integral formula [36, 53, 55] do not coincide; their difference is positive and positivity
preserving [42]. In addition, we also comment that, since we are interested in the
nonsmooth scenario, we will assume, in (1.4), that the control bounds a, b ∈ R satisfy
that a < 0 < b. We refer the reader to [16, Remark 2.1] for a discussion.

The efficient approximation of problems involving the spectral fractional Lapla-
cian carries two essential difficulties. The first, and most important, is that (−∆)s is
a nonlocal operator [10, 11, 14, 56]. The second feature is the lack of boundary regu-
larity [13], which leads to reduced convergence rates [6, 43]. In fact, as [13, Theorem
1.3] shows, if ∂Ω is sufficiently smooth, then the solution u to problem (1.3) behaves
like

u(x′) ≈ dist(x′, ∂Ω)2s + v(x′), s ∈ (0, 1
2 ),

u(x′) ≈ dist(x′, ∂Ω) + v(x′), s ∈ ( 1
2 , 1),

(1.5)

where dist(x′, ∂Ω) denotes the distance from x′ to ∂Ω and v is a smooth function.
The case s = 1

2 is exceptional:

u(x′) ≈ dist(x′, ∂Ω)| log(dist(x′, ∂Ω))|+ v(x′), s = 1
2 , (1.6)

where v is, again, a smooth function; see [24] for Ω ⊂ R2 and ∂Ω smooth.
The aforementioned nonlocality difficulty can be overcame with the localization

results by Caffarelli and Silvestre [11]. When Ω = Rn, the authors of [11] proved that
any power of the fractional Laplacian can be realized as the Dirichlet-to-Neumann map
for an extension problem posed in the upper half–space Rn+1

+ . A similar extension
property is valid for the spectral fractional Laplacian in a bounded domain Ω [10, 14,
56]. The latter extension involves a local but nonuniformly elliptic PDE formulated
in the semi–infinite cylinder C = Ω× (0,∞):

div (yα∇U ) = 0 in C, U = 0 on ∂LC, ∂ναU = dsz on Ω× {0}, (1.7)

where ∂LC = ∂Ω× [0,∞) corresponds to the lateral boundary of C and ds = 2αΓ(1−
s)/Γ(s). The parameter α is defined as α = 1−2s ∈ (−1, 1) and the conormal exterior
derivative of U at Ω× {0} is

∂ναU = − lim
y→0+

yαUy; (1.8)

the limit is understood in the distributional sense. We shall refer to y as the extended
variable and to the dimension n + 1, in Rn+1

+ , the extended dimension of problem
(1.7). With the extension U at hand, we thus introduce the fundamental result by
Caffarelli and Silvestre [10, 11, 14, 56]: the Dirichlet-to-Neumann map of problem
(1.7) and the spectral fractional Laplacian are related by ds(−∆)su = ∂ναU in Ω.

The use of the extension problem (1.7) for the numerical approximation of the
spectral fractional Laplacian was first used in [43]. In such a work the authors intro-
duce the following solution scheme: Given a datum z, solve, on the basis of a finite
element discretization, the extension problem (1.7) and obtain V , thus set U = trΩ V
and arrive at an approximation of the solution u of problem (1.3). The main ad-
vantage of the scheme proposed in [43] is that it involves the resolution of the local
problem (1.7) and thus its implementation uses basic ingredients of finite element
analysis; its analysis, however, involves asymptotic estimates of Bessel functions [1],
to derive regularity estimates in weighted Sobolev spaces, elements of harmonic anal-
ysis [26, 41], and an anisotropic polynomial interpolation theory in weighted Sobolev
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spaces [27, 44]. Such an interpolation theory allows for tensor product elements that
exhibit an anisotropic feature in the extended dimension, that is in turn needed to
compensate the singular behavior of the solution U in the extended variable y [43,
Theorem 2.7], [6, Theorem 4.7].

Recently, and on the basis of the aforementioned numerical scheme, the authors
of [48] have provided an a priori error analysis for the optimal control problem (1.2)–
(1.4). This was mainly motivated by the following considerations:
• The fractional Laplacian has recently become of great interest in the applied sciences

and engineering: practitioners claim that it seems to better describe many processes.
A rather incomplete list of problems where fractional diffusion appears includes
finance [37, 49], turbulent flow [20], quasi–geostrophic flows models [12], models
of anomalous thermoviscous behaviors [21], biophysics [9], nonlocal electrostatics
[34], image processing [30], peridynamics [25, 52] and many others. It is then only
natural that interest in efficient approximation schemes for these problems arises
and that one might be interested in their control.

• The cost functional J involves an L1(Ω)–control cost term that leads to sparsely
supported optimal controls [16, 54, 60]; a desirable feature, for instance, in the
optimal placement of discrete actuators [54].

In [48], on the basis of the localization results of [10, 11, 14, 56], the authors first
consider an equivalent optimal control problem that involves the local elliptic PDE
(1.7) as state equation. Second, since (1.7) is posed on the semi–infinite cylinder
C = Ω× (0,∞), they propose a truncated optimal control problem on CY = Ω× (0,Y )
and derive an exponential error estimate with respect to the truncation parameter Y .
Then, they propose a scheme to approximate the truncated optimal control problem:
the first–degree finite element approximation on anisotropic meshes of [43] for the state
and adjoint equations and piecewise constant approximation for the optimal control
variable. The derived a priori error estimate reads as follows: Given ud ∈ H1−s(Ω)
and a, b ∈ R such that a < 0 < b, if Ω is convex, then

‖z̄− Z̄‖L2(Ω) . | logN |2sN−
1

n+1 , (1.9)

where Z̄ corresponds to the optimal control variable of the fully discrete scheme of [48,
Section 6] and N denotes the total number of degrees of freedom of the underlying
mesh. The adaptive finite element method (AFEM) that we propose in our work
is thus motivated, in addition to the search of a numerical scheme that efficiently
solves (1.2)–(1.4) with relatively modest computational resources, by the following
considerations:
• The a priori error estimate (1.9) requires the convexity of the domain Ω and com-

patibility conditions on the desired state ud that are expressed as ud ∈ H1−s(Ω): it
is required that ud vanishes on ∂Ω for s ∈ (0, 1

2 ]. If these conditions do not hold
then, the a priori error estimate (1.9) is not longer valid. In particular, the violation
of the latter condition implies that the adjoint state p̄ will behave as (1.5)–(1.6). On
the other hand, if the first condition (the convexity of the domain) is violated, then
both the state and adjoint state variables may exhibit singularities in the direction
of the x′ variables. An efficient technique to solve (1.2)–(1.4) must thus resolve
both of the aforementioned approximation issues.

• The sparsity term ‖u‖L1(Ω), in the cost functional (1.2), yield an optimal control
that is non–zero only in sets of small support in Ω [16, 54, 60]. It is then natural,
to efficiently resolve such a behavior, the consideration of AFEMs.

We organize our exposition as follows: In Section 2 we recall the definition of
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the spectral fractional Laplacian, present the fundamental result by Caffarelli and
Silvestre [11] and recall elements from convex analysis. In Section 3 we recall the
numerical scheme proposed in [48] and review its a priori error analysis. Section 4,
that is a highlight of our contribution, is dedicated to the design and analysis of an
ideal a posteriori error estimator for our optimal control problem (1.2)–(1.4) that is
equivalent to the error. Since, the aforementioned estimator is not computable, we
propose, in Section 5 a computable one and show that is equivalent, under suitable
assumptions, to the error up to oscillation terms. Finally, in Section 6 we design
an AFEM, comment on some implementation details pertinent to the problem and
present numerical experiments that yield optimal experimental rates of convergence.

2. Notation and preliminaries. We adopt the notation of [43, 47]. Besides
the semi–infinite cylinder C = Ω × (0,∞), we introduce, for Y > 0, the truncated
cylinder with base Ω and height Y and its lateral boundary

CY = Ω× (0,Y ), ∂LCY = ∂Ω× (0,Y ),

respectively. Since we will be dealing with objects defined in Rn and Rn+1
+ , it will be

convenient to distinguish the extended variable y. For x ∈ Rn+1
+ , we write

x = (x′, y), x′ ∈ Rn, y ∈ (0,∞). (2.1)

The parameter α ∈ (−1, 1) and the power s of the spectral fractional Laplacian
(−∆)s are related by the formula α = 1− 2s.

The relation a . b indicates that a ≤ Cb, with a constant C which is independent
of a and b and the size of the elements in the mesh. The value of the constant C
might change at each occurrence.

2.1. The fractional Laplace operator. To define (−∆)s we invoke spectral
theory [7]. Since −∆ : D(−∆) ⊂ L2(Ω)→ L2(Ω) is an unbounded, positive and closed
operator with dense domain D(−∆) = H2(Ω)∩H1

0 (Ω) and its inverse is compact, the
eigenvalue problem: Find (λ, ϕ) ∈ R×H1

0 (Ω) \ {0} such that

(∇ϕ,∇v)L2(Ω) = λ(ϕ, v)L2(Ω) ∀v ∈ H1
0 (Ω)

has a countable collection of eigenpairs {λk, ϕk}k∈N ⊂ R+ ×H1
0 (Ω), with real eigen-

values enumerated in increasing order, counting multiplicities. In addition, {ϕk}k∈N
is an orthogonal basis of H1

0 (Ω) and an orthonormal basis of L2(Ω). With these
eigenpairs at hand, we define, for s ≥ 0, the fractional Sobolev space

Hs(Ω) =

{
w =

∞∑
k=1

wkϕk : ‖w‖2Hs(Ω) =

∞∑
k=1

λskw
2
k <∞

}
.

We denote by H−s(Ω) the dual space of Hs(Ω). The duality pairing between Hs(Ω)
and H−s(Ω) will be denoted by 〈·, ·〉. We thus define, with this functional space setting
at hand, and for s ∈ (0, 1), the spectral fractional Laplacian (−∆)s as follows:

(−∆)s : Hs(Ω)→ H−s(Ω), (−∆)sw :=

∞∑
k=1

λskwkϕk, wk =

ˆ
Ω

wϕk dx′, k ∈ N.
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2.2. An extension property. The operator in (1.7) is in divergence form and
thus amenable to variational techniques. However, since the weight yα either blows
up, for −1 < α < 0, or degenerates, for 0 < α < 1, as y ↓ 0, such a local operator
is nonuniformly elliptic; the case α = 0 is exceptional and corresponds to the regular
harmonic extension [10]. This entails dealing with Lebesgue and Sobolev spaces with
the weight yα for α ∈ (−1, 1) [10, 11, 14].

Let D ⊂ Rn+1 be open, and define L2(|y|α, D) as the Lebesgue space for the
measure |y|α dx. We also define the weighted Sobolev space H1(|y|α, D) := {w ∈
L2(|y|α, D) : |∇w| ∈ L2(|y|α, D)}, and the norm

‖w‖H1(|y|α,D) =
(
‖w‖2L2(|y|α,D) + ‖∇w‖2L2(|y|α,D)

) 1
2

. (2.2)

Since α = 1− 2s ∈ (−1, 1), |y|α belongs to Muckenhoupt class A2(Rn+1) [26, 29, 31,
41, 58]. This, in particular, implies that H1(|y|α, D) is Hilbert and that C∞(D) ∩
H1(|y|α, D) is dense in H1(|y|α, D) (cf. [58, Proposition 2.1.2, Corollary 2.1.6] and
[31, Theorem 1]).

To seek for a weak solution to problem (1.7), we introduce the weighted space

◦
H1
L(yα, C) :=

{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
.

We have the weighted Poincaré inequality [43, ineq. (2.21)],

‖w‖L2(yα,C) . ‖∇w‖L2(yα,C) ∀w ∈
◦
H1
L(yα, C),

This implies that the seminorm on
◦
H1
L(yα, C) is equivalent to (2.2). For w ∈ H1(yα, C),

trΩ w denotes its trace onto Ω× {0}. We recall ([43, Prop. 2.5] and [14, Prop. 2.1])

trΩ
◦
H1
L(yα, C) = Hs(Ω), ‖ trΩ w‖Hs(Ω) ≤ CtrΩ‖w‖ ◦H1

L(yα,C), CtrΩ > 0. (2.3)

We mention that CtrΩ
≤ d

− 1
2

s [19, Section 2.3] with ds = 2αΓ(1 − s)/Γ(s). This
property will be of importance in the a posteriori error analysis that we will perform.

Define the bilinear form

a :
◦
H1
L(yα, C)×

◦
H1
L(yα, C)→ R, a(w, φ) :=

1

ds

ˆ
C
yα∇w · ∇φ dx. (2.4)

The weak formulation of problem (1.7) thus reads: Find U ∈
◦
H1
L(yα, C) such that

a(U , w) = 〈z, w〉 ∀w ∈
◦
H1
L(yα, C). (2.5)

We conclude this section with the fundamental result by Caffarelli and Silvestre
[10, 11, 14, 56]: Let u solve (1.3). If U ∈

◦
H1
L(yα, C) solves (2.5), then u = trΩ U and

ds(−∆)su = ∂ναU in Ω.

2.3. Convex functions and subdifferentials. Let S be a real and normed
vector space. Let χ : S → R∪ {∞} be a convex and proper function and let v ∈ S be
such that χ(v) <∞. A subgradient of χ at v is an element v? ∈ S∗ that satisfies

(v?, w − v)S?,S ≤ χ(w)− χ(v) ∀w ∈ S, (2.6)
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where (·, ·)S?,S denotes the duality pairing between S∗ and S. We denote by ∂χ(v)
the set of all subgradients of χ at v; the so–called subdifferential of χ at v. As a
consequence of the convexity of χ, ∂χ(v) 6= ∅ for all points v in the interior of the
effective domain of χ.

We now present the following property which will be essential in our analysis: the
subdifferential is monotone, i.e.,

〈v? − w?, v − w〉S?,S ≥ 0 ∀v? ∈ ∂χ(v), ∀w? ∈ ∂χ(w). (2.7)

The reader is referred to [23, 50] for a detailed treatment on convex analysis.

3. A priori error estimates. In this section we briefly review the a priori error
analysis for the fully discrete approximation of the optimal control problem (1.1)–(1.4)
proposed and investigated in [48]. We also make clear the limitation of such a priori
error analysis, thereby justifying the quest for an a posteriori error analysis.

3.1. The extended optimal control problem. In view of the localization
results of [10, 11, 14, 56], we will consider a solution technique for (1.1)–(1.4) that
relies on the discretization of an equivalent problem: the extended optimal control
problem, which has as a main advantage its local nature. To present it, we first define
the set of admissible controls:

Zad = {w ∈ L2(Ω) : a ≤ w(x′) ≤ b a.a x′ ∈ Ω}, (3.1)

where a and b are real and satisfy the property a < 0 < b; see[16, Remark 2.1]. The
extended optimal control problem reads as follows: Find

min{J(trΩ U , z) : U ∈
◦
H1
L(yα, C), z ∈ Zad} (3.2)

subject to the linear and nonuniformly elliptic state equation

a(U , φ) = 〈z, trΩ φ〉 ∀φ ∈
◦
H1
L(yα, C). (3.3)

We recall that J is defined as in (1.2) with σ, ν > 0, and ud ∈ L2(Ω). This problem
admits a unique optimal pair (Ū , z̄) ∈

◦
H1
L(yα, C) × Zad. More importantly, it is

equivalent to the optimal control problem (1.2)–(1.4): trΩ Ū = ū.

3.2. The truncated optimal control problem. The previously defined PDE–
constrained optimization problem involves the state equation (3.3), which is posed on
the semi–infinite cylinder C = Ω×(0,∞). Consequently, it cannot be directly approx-
imated with standard finite element techniques. However, in view of the exponential
decayment of the optimal state in the extended variable [43, Proposition 3.1], it is
suitable to propose the following truncated optimal control problem. Find

min{J(trΩ v, r) : v ∈
◦
H1
L(yα, CY ), r ∈ Zad}

subject to the truncated state equation

aY (v, φ) = 〈r, trΩ φ〉 ∀φ ∈
◦
H1
L(yα, CY ). (3.4)

Here,

◦
H1
L(yα, CY ) =

{
w ∈ H1(yα, CY ) : w = 0 on ∂LCY ∪ Ω× {Y }

}
,
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and the bilinear form aY :
◦
H1
L(yα, CY )×

◦
H1
L(yα, CY )→ R is defined by

aY (w, φ) =
1

ds

ˆ
CY

yα∇w · ∇φ dx. (3.5)

This optimal control problem admits a unique optimal solution (v̄, r̄) ∈
◦
H1
L(yα, CY )×

Zad. In addition, such a pair is optimal if and only if v̄ solves (3.4) and

(trΩ p̄+ σr̄ + νt̄, r − r̄)L2(Ω) ≥ 0 ∀r ∈ Zad, (3.6)

where t̄ ∈ ∂ψ(̄r) and p̄ ∈
◦
H1
L(yα, CY ) solves the truncated adjoint problem

aY (φ, p̄) = (trΩ v̄ − ud, trΩ φ)L2(Ω) ∀φ ∈
◦
H1
L(yα, CY ). (3.7)

The convex and Lipschitz function ψ is defined as follows:

ψ : L1(Ω)→ R, ψ(r) :=

ˆ
Ω

|r(x′)|dx′. (3.8)

The following approximation result shows how (v̄, r̄) approximates (Ū , z̄)
Proposition 3.1 (exponential convergence). Let (Ū , z̄) ∈

◦
H1
L(yα, C)× Zad and

(v̄, r̄) ∈
◦
H1
L(yα, CY )×Zad be the solutions to the extended and truncated optimal control

problems, respectively. Then,

‖z̄− r̄‖L2(Ω) . e−
√
λ1Y /4 (‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
,

‖∇
(
Ū − v̄

)
‖L2(yα,C) . e−

√
λ1Y /4 (‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
;

λ1 corresponds to the first eigenvalue of −∆.
Proof. See [48, Theorem 5.2].
We conclude the section with the following projection formulas that follow from

[48, Corollary 3.7]. To present them, we first introduce the following nonlinear pro-
jection operator [57, Section 2.8]

Π[a,b] : L2(Ω)→ Zad, Π[a,b](x
′) = min{b,max{a, x′}}, (3.9)

where a and b denote real constants.
Proposition 3.2 (projection formulas). If r̄, v̄, p̄ and t̄ denote the optimal

variables associated to the truncated optimal control problem, then

r̄(x′) = Π[a,b]

(
− 1

σ
(trΩ p̄(x

′) + νt̄(x′))

)
, (3.10)

r̄(x′) = 0 ⇔ | trΩ p̄(x
′)| ≤ ν, (3.11)

t̄(x′) = Π[−1,1]

(
−1

ν
trΩ p̄(x

′)

)
. (3.12)

3.3. A fully discrete scheme for the fractional optimal control problem.
In what follows we briefly recall the fully discrete scheme proposed in [48] and review
its a priori error analysis. To accomplish this task, we will assume in this section that

‖w‖H2(Ω) . ‖∆x′w‖L2(Ω) ∀w ∈ H2(Ω) ∩H1
0 (Ω). (3.13)
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This regularity assumption holds if, for instance, Ω is convex [32].
Before describing the aforementioned solution technique, we briefly recall the

finite element approximation of [43] for the state equation (2.5).
Let TΩ = {K} be a conforming and shape regular mesh of Ω into cells K that

are isoparametrically equivalent either to the unit cube [0, 1]n or the unit simplex in
Rn [8, 22, 28]. Let IY be a partition of [0,Y ] with mesh points

y` =

(
`

M

)γ
Y , γ >

3

(1− α)
=

3

2s
> 1, ` = 0, . . . ,M. (3.14)

We construct a mesh TY over the cylinder CY as TY = TΩ ⊗ IY , the tensor product
triangulation of TΩ and IY . The set of all the obtained meshes is denoted by T.
Notice that, owing to (3.14), the meshes TY are not shape regular but satisfy: if
T1 = K1 × I1 and T2 = K2 × I2 are neighbors, then there is µ > 0 such that

hI1h
−1
I2
≤ µ, hI = |I|.

This condition allows for anisotropy in the extended variable y [27, 43, 44], which is
needed to compensate the rather singular behavior of U , solution to (3.3). We refer
the reader to [43] for details.

With the mesh TY ∈ T at hand, we define the finite element space

V(TY ) =
{
W ∈ C0(CY ) : W |T ∈ P1(K)⊗ P1(I) ∀T ∈ TY , W |ΓD = 0

}
, (3.15)

where ΓD = ∂LCY ∪ Ω× {Y } is the Dirichlet boundary. If the base K of the element
T = K × I is a cube, P1(K) stand for Q1(K) – the space of polynomials of degree
not larger that one in each variable. When K is a simplex, the space P1(K) is P1(K),
i.e., the set of polynomials of degree at most one. We also define U(TΩ) = trΩ V(TY ).
Notice that U(TΩ) corresponds to a P1 finite element space over TΩ.

We now describe the fully discrete optimal control problem. To accomplish this
task, we first introduce the discrete sets

Zad(TΩ) = Zad ∩ P0(TΩ), P0(TΩ) = {Z ∈ L∞(Ω) : Z|K ∈ P0(K) ∀K ∈ TΩ} .

The fully discrete optimal control problem thus reads as follows: Find

min{J(trΩ V,Z) : V ∈ V(TY ), Z ∈ Zad(TΩ)}

subject to

aY (V,W ) = (Z, trΩW )L2(Ω) ∀W ∈ V(TY ). (3.16)

We recall that J and aY are defined by (1.1) and (3.5), respectively. Standard argu-
ments guarantee the existence of a unique optimal pair (V̄ , Z̄) ∈ V(TY ) × Zad(TΩ).
In view of the results of [43, 47], we invoke the discrete solution V̄ ∈ V(TY ) and set

Ū := trΩ V̄ . (3.17)

We have thus obtained a fully discrete approximation (Ū , Z̄) ∈ U(TΩ) × Zad(TΩ) of
(ū, z̄) ∈ Hs(Ω)× Zad, the solution to the fractional optimal control problem.

The optimality conditions for the fully discrete optimal control problem read as
follows: the pair (V̄ , Z̄) ∈ V(TY )×Zad(TΩ) is optimal if and only if V̄ ∈ V(TY ) solves
(3.16) and

(trΩ P̄ + σZ̄ + νΛ̄, Z − Z̄)L2(Ω) ≥ 0 ∀Z ∈ Zad(TΩ), (3.18)
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where Λ̄ ∈ ∂ψ(Z̄) and the optimal discrete adjoint state P̄ ∈ V(TY ) solves

aY (W, P̄ ) = (trΩ V̄ − ud, trΩW )L2(Ω) ∀W ∈ V(TY ). (3.19)

To write an priori error estimates for the aforementioned scheme, we first observe
that #TY = M #TΩ, and that #TΩ ≈ Mn. Consequently, #TY ≈ Mn+1. Thus, if
TΩ is quasi–uniform, we have that hTΩ ≈ (#TΩ)−1/n.

Theorem 3.3 (fractional control problem: error estimate). Let (V̄ , Z̄) ∈ V(TY )×
Zad(TΩ) be the optimal pair for the fully discrete optimal control problem. Let Ū ∈
U(TΩ) be defined as in (3.17). If Ω verifies (3.13) and ud ∈ H1−s(Ω), then

‖z̄− Z̄‖L2(Ω) . | log(#TY )|2s(#TY )
−1
n+1

(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
, (3.20)

and

‖ū− Ū‖Hs(Ω) . | log(#TY )|2s(#TY )
−1
n+1

(
‖r̄‖H1(Ω) + ‖ud‖H1−s(Ω)

)
, (3.21)

where the truncation parameter Y , in the truncated optimal control problem, is chosen
such that Y ≈ log(#TY ). The hidden constants in both inequalities are independent
of the discretization parameters and the continuous and discrete optimal variables.

Proof. See [48, Theorem 6.4].
We stress that the results of Theorem 3.3 are valid if and only if Ω satisfies (3.13)

and ud ∈ H1−s(Ω). These conditions guarantee that the optimal control variable z̄
and r̄ belong to H1

0 (Ω); see [48, Theorem 3.9].
We conclude this section by defining the following auxiliary variables that will be

of importance in the a posteriori error analysis that we will perform:

v ∈
◦
H1
L(yα, CY ) : aY (v , φ) = (Z̄, trΩ φ)L2(Ω) ∀φ ∈

◦
H1
L(yα, CY ), (3.22)

and

p ∈
◦
H1
L(yα, CY ) : aY (φ, p) = (trΩ V̄ − ud, trΩ φ)L2(Ω) ∀φ ∈

◦
H1
L(yα, CY ). (3.23)

4. An ideal a posteriori error estimator. The main goal of this work is
the derivation and analysis of a computable a posteriori error estimator for problem
(1.2)–(1.4). An a posteriori error estimator is a computable quantity that provides
information about the local quality of the underlying approximated solution. It is an
essential ingredient of AFEMs, which are iterative methods that improve the quality
of the approximated solution and are based on loops of the form

SOLVE→ ESTIMATE→ MARK→ REFINE. (4.1)

A posteriori error estimators are the heart of the step ESTIMATE. The theory for
linear and second–order elliptic boundary value problems is well–established. We refer
the reader to [39, 45, 46, 59] for an up to date discussion that also includes the design
of AFEMs, convergence results, and optimal complexity.

The a posteriori error analysis for finite element approximations of constrained
optimal control problems is currently under development; the main source of difficulty
being its inherent nonlinear feature. Starting with the pioneering work [38], several
authors have contributed to its advancement. For an up to date survey on a pos-
teriori error analysis for optimal control problems we refer the reader to [3, 35, 51].
In contrast to these advances, the theory for optimal control problems involving a



10 E. Otárola

sparsity functional, as (1.2), is much less developed. To the best of our knowledge
the only works that provides an advance concerning this matter are [60] and [2]. In
[60], the authors propose a residual–type a posteriori error estimator and prove that
it yields an upper bound for the approximation error of the state and control variables
[60, Theorem 6.2]. These results have been recently complemented in [2], by deriving
local efficiency estimates, and extended, by also deriving an a posteriori error analysis
when the optimal control is discretized with piecewise linear functions and when the
so–called variational discretization approach is considered.

In this work, we follow [33, 35, 38] and design an a posteriori error estimator
for problem (1.2)–(1.4). To accomplish this task, it is essential to have at hand an
error estimator for the truncated state equation (3.4). Such an equation involves a
nonuniformly elliptic operator with a variable coefficient yα that vanishes (0 < α < 1)
or blows up (−1 < α < 0) as y ↓ 0. Consequently, the design of error estimators
for (3.4) is far from being trivial: In fact, a simple computation reveals that the
usual residual estimator does not apply. In addition, numerical evidence shows that
anisotropic refinement in the extended dimension is essential to observe experimental
rates of convergence. In [19] an a posteriori error estimator based on the solution of
weighted local problems on cylindrical stars is proposed for (3.4). It is inspired by
the ideas that lead to the estimators introduced in [15, 40] that are in turn inspired
by the work of Babuška and Miller [5].

As a first step, in the derivation of an error estimator for (1.2)–(1.4), we explore an
ideal anisotropic estimator that can be decomposed as the sum of four contributions:

E 2
ocp = E 2

V + E 2
P + E 2

Z + E 2
Λ . (4.2)

The error indicators EV and EP , that are related to the finite element approximation
of the state and adjoint equations, (3.4) and (3.7) respectively, follow from [19] and
are constructed upon solving local problems on cylindrical stars. They allow for
the nonuniform coefficient yα, in the state and adjoint equations, and the anisotropic
meshes in the family T. The error indicators EZ and EΛ are related to the discretization
of the control variable and the associated subgradient. We refer to this estimator
as ideal since the computation of EV and EP involve the resolution of problems in
infinite dimensional spaces. We derive, in Section 4, the equivalence between the ideal
estimator (4.2) and the error without oscillation terms. Such an equivalence relies on
a geometric condition imposed on the mesh that is independent of the exact optimal
variables and is computationally implementable. This ideal estimator sets the basis
to define, in Section 5, a computable error estimator, which is also decomposed as the
sum of four contributions. This computable estimator is, under certain assumptions,
equivalent, up to data oscillations terms, to the error.

Finally, we would like to mention that the aforementioned a posteriori analysis is
of value not only for (1.2)–(1.4) but also for optimal control problems that requires
the consideration of anisotropic meshes since rigorous anisotropic error estimates for
such problems are scarce in the literature.

4.1. Preliminaries. We follow [19, Section 5.1] and introduce some notation
and terminology. Given a node z on TY , in view of (2.1), we write z = (z′, z′′) where
z′ and z′′ correspond to nodes on TΩ and IY respectively.

Given K ∈ TΩ, we denote by N (K) and
◦N (K) the set of nodes and interior nodes

of K, respectively. We also define

N (TΩ) = ∪{N (K) : K ∈ TΩ},
◦N (TΩ) = ∪{ ◦N (K) : K ∈ TΩ}.
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Given T ∈ TY , we define N (T ),
◦N (T ), and then N (TY ) and

◦N (TY ) accordingly.
Given z′ ∈ N (TΩ), we define

Sz′ :=
⋃
{K ∈ TΩ : K 3 z′} ⊂ Ω

and the cylindrical star around z′ as

Cz′ :=
⋃
{T ∈ TY : T = K × I, K 3 z′} = Sz′ × (0,Y ) ⊂ CY . (4.3)

Given a cell K ∈ TΩ we define the patch SK as SK :=
⋃
z′∈K Sz′ . For T ∈ TY ,

we define the patch ST similarly. Given z′ ∈ N (TΩ) we define its cylindrical patch as

Dz′ :=
⋃
{Cw′ : w′ ∈ Sz′} ⊂ CY .

Finally, for each z′ ∈ N (TΩ) we set hz′ := min{hK : K 3 z′}.
4.2. Local weighted Sobolev spaces. In what follows we define the local

weighted Sobolev spaces that will be useful for our analysis.
Definition 4.1 (local weighted Sobolev spaces). Given z′ ∈ N (TΩ), we define

W(Cz′) =
{
w ∈ H1(yα, Cz′) : w = 0 on ∂Cz′ \ Ω× {0}

}
, (4.4)

where Cz′ denotes the cylindrical star around z′ and is defined as in (4.3).
In view of the fact that yα belongs to the class A2(Rn+1), the space W(Cz′) is

Hilbert [26, 29, 31, 41, 58]. In addition, we have that [14, Proposition 2.1]

‖ trΩ w‖L2(Sz′ )
≤ CtrΩ

‖∇w‖L2(yα,Cz′ ) ∀w ∈W(Cz′), CtrΩ
≤ d−

1
2

s (4.5)

4.3. Auxiliary variables. In the next section we will propose an error estimator
whose analysis relies on two auxiliary variables, that we will denote by r̃ and λ̃ and
define in what follows. With the operator Π[a,b], defined as in (3.9), at hand, we define

λ̃(x′) := Π[−1,1]

(
−1

ν
trΩ P̄ (x′)

)
, r̃ := Π[a,b]

(
− 1

σ

(
trΩ P̄ (x′) + νλ̃(x′)

))
. (4.6)

In the next result we derive two important properties that will be essential in the
a posteriori error analysis that we will perform.

Lemma 4.2. Let r̃ ∈ Zad and λ̃ ∈ L∞(Ω) be defined as in (4.6). Then r̃ can be
characterized by the variational inequality

(trΩ P̄ + σr̃ + νλ̃, r − r̃)L2(Ω) ≥ 0 ∀r ∈ Zad, (4.7)

and λ̃ ∈ ∂ψ(̃r).
Proof. The variational inequality (4.7) follows immediately from the arguments

elaborated in the proof of [57, Lemma 2.26]. It thus suffices to prove that λ̃ ∈ ∂ψ(̃r).
To accomplish this task, we first assume that r̃(x′) = 0. In view of the definition of
λ̃, we immediately conclude that λ̃(x′) ∈ [−1, 1]. Let us now assume that r̃(x′) > 0.
This, and (4.6), implies that

trΩ P̄ (x′) + νλ̃(x′) < 0 ⇐⇒ λ̃(x′) < −1

ν
trΩ P̄ (x′) =⇒ λ̃(x′) = 1.

Analogously, we obtain that, if r̃(x′) < 0, then λ̃(x′) = −1. In conclusion, λ̃ ∈ L∞(Ω)
satisfies that

λ̃(x′) = 1, r̃(x′) > 0, λ̃(x′) = −1, r̃(x′) < 0, λ̃(x′) ∈ [−1, 1], r̃(x′) = 0.

This, that is equivalent to λ̃ ∈ ∂ψ(̃r), concludes the proof.
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4.4. A posteriori error analysis. In this section we design and study an ideal
a posteriori error estimator for (1.2)–(1.4). We refer to such an estimator as ideal since
it involves the resolution of local problems on the infinite dimensional spaces W(Cz′);
the estimator is therefore not computable. However, it will provide the intuition to
propose, in Section 5, a computable error estimator. We prove that it is equivalent
to the error without oscillation terms; see Theorems 4.4 and 4.5 below.

We define the ideal a posteriori error estimator as the sum of four contributions:

E 2
ocp(V̄ , P̄ , Z̄, Λ̄; TY ) = E 2

V (V̄ , Z̄; N (TΩ)) + E 2
P (P̄ , V̄ ; N (TΩ))

+ E 2
Z(Z̄, P̄ ; TΩ) + E 2

Λ(Λ̄, P̄ ; TΩ), (4.8)

where V̄ , P̄ , Z̄ and Λ̄ denote the optimal variables associated to the fully discrete
optimal control problem defined in Section 3.3. In what follows, we describe each
contribution in (4.8) separately. To accomplish this task, we define the bilinear form

az′ : W(Cz′)×W(Cz′)→ R, az′(w, φ) =
1

ds

ˆ
Cz′

yα∇w · ∇φdx. (4.9)

The first contribution in (4.8) corresponds to the a posteriori error estimator of
[19, Section 5.3]. Let us define, for z′ ∈ N (TΩ),

ζz′ ∈W(Cz′) : az′(ζz′ , ψ) = 〈Z̄, trΩ ψ〉 − az′(V̄ , ψ) ∀ψ ∈W(Cz′). (4.10)

With this definition at hand, we define the posteriori error indicators and estimator

E 2
V (V̄ , Z̄; Cz′) = ‖∇ζz′‖2L2(yα,Cz′ ), E 2

V (V̄ , Z̄; N (TΩ)) =
∑

z′∈N (TΩ)

E 2
V (V̄ , Z̄; Cz′). (4.11)

We now describe the second contribution in (4.8). Let us define, for z′ ∈ N (TΩ),

χz′ ∈W(Cz′) : az′(χz′ , ψ) = 〈trΩ V̄ − ud, trΩ ψ〉 − az′(ψ, P̄ ) ∀ψ ∈W(Cz′). (4.12)

We thus define the posteriori error indicators and estimator

E 2
P (P̄ , V̄ ; Cz′) = ‖∇χz′‖2L2(yα,Cz′ ), E 2

P (P̄ , V̄ ; N (TΩ)) =
∑

z′∈N (TΩ)

E 2
P (P̄ , V̄ ; Cz′). (4.13)

The third contribution in (4.8) is defined as follows:

EZ(Z̄, P̄ ;K) = ‖Z̄ − r̃‖L2(K), E 2
Z(Z̄, P̄ ; TΩ) =

∑
K∈TΩ

E 2
Z(Z̄, P̄ ;K), (4.14)

where the auxiliary variable r̃ is defined as in (4.6).
Finally, and having in mind the definition of the auxiliary variable λ̃ , given as in

(4.6), we define the fourth contribution in (4.8) as follows:

EΛ(Λ̄, P̄ ;K) = ‖Λ̄− λ̃‖L2(K), E 2
Λ(Λ̄, P̄ ; TΩ) =

∑
K∈TΩ

E 2
Z(Λ̄, P̄ ;K). (4.15)

Since V̄ can be seen as the finite element approximation of v , defined in (3.22),
within the space V(TY ), the following result follows from [19, Proposition 5.14]:

‖∇(v − V̄ )‖L2(yα,CY ) . EV (V̄ , Z̄; N (TΩ)).
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Similarly,

‖∇(p − P̄ )‖L2(yα,CY ) . EP (P̄ , V̄ ; N (TΩ)).

These estimates are essential to prove the estimate (4.22) below.
Remark 4.3 (implementable geometric condition). The results of [19, Section

5.3] are valid under an implementable geometric condition that allows for the consid-
eration of graded meshes in Ω and anisotropy in the extended variable y; the latter
being necessary for optimal approximation. Having graded meshes in Ω is essential
to compensate the singularities in the x′–variables that appear due to the violation
of compatibility conditions on the forcing terms. In what follows we will assume the
following condition over T: there exists CT > 0 such that, for TY ∈ T, we have

hY ≤ CThz′ , (4.16)

for all interior nodes z′ of TΩ. The term hY denotes the largest size among all the ele-
ments in the mesh IY . We finally mention that this condition is fully implementable.

To present the following result we define the errors eV := v̄ − V̄ , eP := p̄ − P̄ ,
eZ = r̄ − Z̄, eΛ = t̄− Λ̄, the vector e = (eV , eP , eZ , eΛ), and the norm

�e�2 := ‖∇eV ‖2L2(yα,CY ) + ‖∇eP ‖2L2(yα,CY ) + ‖eZ‖2L2(Ω) + ‖eΛ‖2L2(Ω). (4.17)

4.4.1. Reliability. We now prove a global reliability property for Eocp, which is
defined as in (4.8); the proof combines the arguments of [4] with elements of Sections
2.3 and 4.3.

Theorem 4.4 (global upper bound). Let (v̄, p̄, r̄, t̄) ∈
◦
H1
L(yα, CY )×

◦
H1
L(yα, CY )×

Zad×L∞(Ω) be the optimal variables associated to the truncated optimal control prob-
lem of Section 3.2 and (V̄ , P̄ , Z̄, Λ̄) ∈ V(TY )×V(TY )×Zad(TΩ)×P0(TΩ) its numerical
approximation as is described in Section 3.3. If (4.16) holds, then

�e� . Eocp(V̄ , P̄ , Z̄, Λ̄; TY ), (4.18)

where the hidden constant is independent of the continuous and discrete optimal vari-
ables, the size of the elements in the meshes TΩ and TY , and #TΩ and #TY .

Proof. We proceed in five steps.
Step 1. Applying the triangle inequality we immediately observe that

‖r̄ − Z̄‖2L2(Ω) ≤ 2‖r̄ − r̃‖2L2(Ω) + 2‖r̃ − Z̄‖2L2(Ω) = 2‖r̄ − r̃‖2L2(Ω) + 2E 2
Z , (4.19)

where EZ = EZ(Z̄, P̄ ; TΩ) corresponds to the error estimator associated to the optimal
control variable, defined in (4.14), and r̃ denotes the auxiliary control variable defined
in (4.6).

Step 2. The previous estimate reveals that it thus suffices to bound ‖r̄− r̃‖L2(Ω).
To accomplish this task, we set r = r̃ in (3.6) and r = r̄ in (4.7) and add the obtained
inequalities to arrive at

σ‖r̄ − r̃‖2L2(Ω) ≤ (trΩ(p̄− P̄ ), r̃ − r̄)L2(Ω) + ν(t̄− λ̃, r̃ − r̄)L2(Ω), (4.20)

where λ̃ is defined as in (4.6), t̄ ∈ ∂ψ(̄r) and p̄ and P̄ solve (3.7) and (3.19), respectively.
Invoking the results of Lemma 4.2 we obtain that λ̃ ∈ ∂ψ(̃r). This, in view of (2.7),
implies that

(t̄− λ̃, r̃ − r̄)L2(Ω) ≤ 0,
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and thus that

σ‖r̄ − r̃‖2L2(Ω) ≤ (trΩ(p̄− P̄ ), r̃ − r̄)L2(Ω). (4.21)

Step 3. The control of the right hand side of (4.21) follows from [4, Theorem 4.2].
In fact, we have that

‖∇eV ‖L2(yα,CY ) + ‖∇eP ‖L2(yα,CY ) + ‖eZ‖L2(Ω) . Eocp(V̄ , P̄ , Z̄, Λ̄; TY ). (4.22)

Step 4. We now control the error in the approximation of the subgradient, i.e.,
‖t̄− Λ̄‖L2(Ω). To accomplish this task, we first apply the triangle inequality and write

‖t̄− Λ̄‖L2(Ω) ≤ ‖t̄− λ̃‖L2(Ω) + ‖λ̃− Λ̄‖L2(Ω).

We now use the definition of λ̃, given by (4.6), and the the fact that Π[−1,1], defined
as in (3.9), is a Lipschitz continuous map, to arrive at

‖t̄− Λ̄‖2L2(Ω) . ‖Π[−1,1](− 1
ν trΩ p̄)−Π[−1,1](− 1

ν trΩ P̄ )‖2L2(Ω) + E 2
Λ(Λ̄, P̄ ; TΩ)

. ‖ trΩ(p̄− P̄ )‖2L2(Ω) + E 2
Λ(Λ̄, P̄ ; TΩ) . Eocp(V̄ , P̄ , Z̄, Λ̄; TY ).

(4.23)

Step 5. The desired estimate (4.18) follows from (4.22) and (4.23). This concludes
the proof.

4.4.2. Efficiency. We now continue with the study of the a ideal posteriori error
estimator Eocp and derive its local efficiency. In order to present the next result we
define the constant C(ds, σ, ν), that depends only on ds, the regularization parameter
σ and the sparsity parameter ν, by

C(ds, σ, ν) = max{2d−1
s , d

− 1
2

s + 1, d
− 1

2
s (ν−1 + 2σ−1 + d

− 1
2

s ), 1}. (4.24)

Theorem 4.5 (local lower bound). Let (v̄, p̄, r̄, t̄) ∈
◦
H1
L(yα, CY ) ×

◦
H1
L(yα, CY ) ×

Zad×L∞(Ω) be the optimal variables associated to the truncated optimal control prob-
lem of Section 3.2 and (V̄ , P̄ , Z̄, Λ̄) ∈ V(TY )×V(TY )×Zad(TΩ)×P0(TΩ) its numerical
approximation as is described in Section 3.3. If z′ ∈ N (TΩ), then

EV (V̄ , Z̄; Cz′) + EP (P̄ , V̄ ; Cz′) + EZ(Z̄, P̄ ;Sz′) + EΛ(Λ̄, P̄ ;Sz′) ≤ C(ds, σ, ν)

·
(
‖∇eV ‖L2(yα,Cz′ ) + ‖∇eP ‖L2(yα,Cz′ ) + ‖eZ‖L2(Sz′ )

+ ‖eΛ‖L2(Sz′ )

)
, (4.25)

where C(ds, σ, ν) depends only on ds, σ, and ν and is defined as in (4.24).
Proof. We proceed in five steps.
Step 1. The objective of this step is to study the efficiency properties of the

local indicator EV defined in (4.11). Let z′ ∈ N (TΩ). Thus, on the basis of the fact
ζz′ ∈W(Cz′) solves (4.10) and that 〈̄r, trΩ ζz′〉 = aY (v̄, ζz′) = az′(v̄, ζz′), which follows
from setting φ = ζz′ in (3.4), we obtain that

E 2
V (V̄ , Z̄; Cz′) = az′(ζz′ , ζz′) = 〈̄r, trΩ ζz′〉+ 〈Z̄ − r̄, trΩ ζz′〉 − az′(V̄ , ζz′)

= az′(v̄ − V̄ , ζz′) + 〈Z̄ − r̄, trΩ ζz′〉. (4.26)

Use now the local version of the trace estimate (4.5) with CtrΩ ≤ d
− 1

2
s and the defini-

tion of the local bilinear form az′ , given by (4.9), to conclude that

E 2
V (V̄ , Z̄; Cz′) ≤

(
d−1
s ‖∇eV ‖L2(yα,Cz′ ) + d

− 1
2

s ‖eZ‖L2(Sz′ )

)
‖∇ζz′‖L2(yα,Cz′ ),
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which, on the basis of (4.11), immediately yields the local efficiency of EV :

EV (V̄ , Z̄; Cz′) ≤ d−1
s ‖∇eV ‖L2(yα,Cz′ ) + d

− 1
2

s ‖eZ‖L2(Sz′ )
. (4.27)

Step 2. Similar arguments to the ones that lead to (4.26) reveal that

E 2
P (P̄ , V̄ ; Cz′) = az′(χz′ , eP )− 〈trΩ eV , trΩ χz′〉,

where χz′ ∈W(Cz′) solves (4.12). Thus,

EP (P̄ , V̄ ; Cz′) ≤ d−1
s ‖∇eP ‖L2(yα,Cz′ ) + d−1

s ‖∇eV ‖L2(yα,Cz′ ). (4.28)

Step 3. The goal of this step is to obtain local efficiency properties for the indicator
EΛ, given by (4.15). To accomplish this task, we invoke the projection formula (3.12)
for t̄ and the definition of λ̃, given by (4.6), to obtain, for z′ ∈ N (TΩ), that

EΛ(Λ̄, P̄ ;Sz′) ≤ ‖Λ̄− t̄‖L2(Sz′ )
+ ‖Π[−1,1](− 1

ν trΩ p̄)−Π[−1,1](− 1
ν trΩ P̄ )‖L2(Sz′ )

.

This, in view of the Lipschitz continuity of the operator Π[−1,1] and the local trace
estimate (4.5), implies that

EΛ(Λ̄, P̄ ;Sz′) ≤ ‖eΛ‖L2(Sz′ )
+ ν−1d

− 1
2

s ‖∇eP ‖L2(yα,Cz′ ). (4.29)

Step 4. In this step we study the efficiency properties of EZ , which is defined by
(4.14). We proceed using similar arguments to the ones that lead to (4.29). In fact,
let z′ ∈ N (TΩ) and invoke the projection formula (3.10), for r̄, and the definition of
r̃, given by (4.6). We thus obtain that

EZ(Z̄, P̄ ;Sz′) ≤ ‖Z̄ − r̄‖L2(Sz′ )

+
∥∥∥Π[a,b]

[
− 1
σ (trΩ p̄+ νt̄)

]
−Π[a,b]

[
− 1
σ

(
trΩ P̄ + νλ̃

)]∥∥∥
L2(Sz′ )

,

which, in view of the Lipschitz continuity of Π[a,b], implies that

EZ(Z̄, P̄ ;Sz′) ≤ ‖Z̄ − r̄‖L2(Sz′ )
+

1

σ
‖ trΩ(p̄− P̄ )‖L2(Sz′ )

+
ν

σ
‖t̄− λ̃‖L2(Sz′ )

.

We now invoke the local trace estimate (4.5) and the fact that λ̃ = Π[−1,1](− 1
ν trΩ P̄ )

to arrive at

EZ(Z̄, P̄ ;Sz′) ≤ ‖eZ‖L2(Sz′ )
+ 2σ−1d

− 1
2

s ‖∇eP ‖L2(yα,Cz′ ). (4.30)

Step 5. We thus conclude the proof of the local efficiency property (4.25) by
collecting the estimates (4.27), (4.28), (4.29), and (4.30).

Remark 4.6 (Local efficiency of each contribution). The arguments elaborated
in the proof of Theorem 4.5 reveal that each contribution EV , EP , EΛ and EZ is locally
efficient; see estimates (4.27), (4.28), (4.29), and (4.30). In addition, we mention that
the constants involved in such efficiency results are fully computable and depend only
on ds, ν, and σ.
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5. A computable a posteriori error estimator. The results of Theorems 4.4
and 4.5 show that the a posteriori error estimator Eocp, defined as in (4.8), is globally
reliable and locally efficient. Notice that both properties do not involve any oscillation
term. Consequently, the error estimator Eocp is equivalent to the error �e�. However,
it has an insurmountable drawback: it requires, for each node z′, the computation of
the contributions EV and EP that in turn requires the resolution of the local problems
(4.10) and (4.12), respectively. Since the latter problems are posed on the infinite–
dimensional space W(Cz′), the error estimator (4.8) is thus not computable. In spite
of this fact, and as we will see in this section, it provides the intuition to define an
anisotropic and computable posteriori error estimator that allows for the nonuniform
coefficient yα in both, the state and the adjoint equations.

Let us begin our discussion with the following definition.
Definition 5.1 (discrete local spaces). For z′ ∈ N (TΩ), we define

W(Cz′) =
{
W ∈ C0(Cz′) : W |T ∈ P2(K)⊗ P2(I) ∀T = K × I ∈ Cz′ ,
W |∂Cz′\Ω×{0} = 0

}
.

If K is a quadrilateral, P2(K) stands for Q2(K). When K is a simplex, P2(K)
corresponds to P2(K) ⊕ B(K), where B(K) stands for the space spanned by a local
cubic bubble function.

With the discrete space W(Cz′) at hand, we thus define the discrete functions ηz′

and θz′ as follows:

ηz′ ∈ W(Cz′) : az′(ηz′ ,W ) = 〈Z̄, trΩW 〉 − az′(V̄ ,W ) (5.1)

for all W ∈ W(Cz′), and

θz′ ∈ W(Cz′) : az′(W, θz′) = 〈trΩ V̄ − ud, trΩW 〉 − az′(W, P̄ ) (5.2)

for all W ∈ W(Cz′). Notice that problems (5.1) and (5.2) correspond to the Galerkin
approximations of problems (4.10) and (4.12), respectively.

Inspired in the definition of the ideal estimator Eocp, given by (4.8), we define its
computable counterpart, which we denote by Eocp, as follows:

E2
ocp(V̄ , P̄ , Z̄, Λ̄; TY ) = E2

V (V̄ , Z̄; N (TΩ)) + E2
P (P̄ , V̄ ; N (TΩ))

+ E2
Z(Z̄, P̄ ; TΩ) + E2

Λ(Λ̄, P̄ ; TΩ). (5.3)

We recall that V̄ , P̄ , Z̄, and Λ̄ denote the optimal variables associated to the fully
discrete optimal control problem of Section 3.3.

In what follows we describe each contribution in (5.3). First, having ηz′ ∈ W(Cz′)
at hand, defined as in (5.1), we define the local error indicators and error estimator,
associated to the state equation, as

E2
V (V̄ , Z̄; Cz′) = ‖∇ηz′‖2L2(yα,Cz′ ) (5.4)

and

E2
V (V̄ , Z̄; N (TΩ)) =

∑
z′∈N (TΩ)

E2
V (V̄ , Z̄; Cz′), (5.5)

respectively. The second contribution in (5.3), that is associated to the discretization
of the adjoint equation, is defined similarly. We define the local error indicators and
error estimator as

E2
P (P̄ , V̄ ; Cz′) = ‖∇θz′‖2L2(yα,Cz′ ) (5.6)
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and

E2
P (P̄ , V̄ ; N (TΩ)) =

∑
z′∈N (TΩ)

E2
P (P̄ , V̄ ; Cz′), (5.7)

respectively. The third and fourth contributions, EZ and EΛ, associated to the dis-
cretization of the control and its subgradient, are defined exactly as in (4.14) and
(4.15), respectively.

5.1. Efficiency. The next result shows the local efficiency of the computable a
posteriori error estimator Eocp.

Theorem 5.2 (local lower bound). Let (v̄, p̄, r̄, t̄) ∈
◦
H1
L(yα, CY ) ×

◦
H1
L(yα, CY ) ×

Zad×L∞(Ω) be the optimal variables associated to the truncated optimal control prob-
lem of Section 3.2 and (V̄ , P̄ , Z̄, Λ̄) ∈ V(TY )×V(TY )×Zad(TΩ)×P0(TΩ) its numerical
approximation as is described in Section 3.3. If z′ ∈ N (TΩ), then

EV (V̄ , Z̄; Cz′) + EP (P̄ , V̄ ; Cz′) + EZ(Z̄, P̄ ;Sz′) + EΛ(Λ̄, P̄ ;Sz′) ≤ C(ds, σ, ν)

·
(
‖∇eV ‖L2(yα,Cz′ ) + ‖∇eP ‖L2(yα,Cz′ ) + ‖eZ‖L2(Sz′ )

+ ‖eΛ‖L2(Sz′ )

)
, (5.8)

where C(ds, σ, ν) depends only on ds, σ and ν and is defined as in (4.24).
Proof. The local efficiency properties of the estimators EΛ and EZ are derived

in (4.29) and (4.30), respectively. The local efficiency of EV and EP follow similar
arguments to the ones that lead to (4.27) and (4.28). For brevity, we skip details.

Remark 5.3 (strong efficiency). The lower bound (5.8) does not involve any
oscillation term and, in addition, it is fully computable in the sense that the involved
constant, C(ds, σ, ν) is known. These properties imply a strong concept of efficiency:
the relative size of the local error indicator dictates mesh refinement, which is inde-
pendent of fine structure of the data.

5.2. Reliability. We now analyze the reliability properties of the computable a
posteriori error estimator Eocp. To accomplish this task, we introduce, for z′ ∈ N (TΩ),
the local oscillation of f ∈ L2(Ω) as

osc(f ;Sz′) = hsz′‖f − fz′‖L2(Sz′ )
, fz′ |K =

 
K

f, (5.9)

where hz′ = min{hK : K 3 z′}. We also define the global oscillation of f as

osc2(f ; TΩ) =
∑

z′∈N (TΩ)

osc2(f ;Sz′). (5.10)

With these definition at hand, we define, for z′ ∈ N (TΩ), the total error indicator

E2(V̄ , P̄ , Z̄, Λ̄; Cz′) = E2
ocp(V̄ , P̄ , Z̄, Λ̄; Cz′) + osc2(trΩ V̄ − ud;Sz′), (5.11)

which will be essential in the MARK module of the AFEM that we will propose in
Section 6.

Let KTΩ
= {Sz′ : z′ ∈ N (TΩ)}. We set KY = KTΩ

× (0,Y ) and, for any
M ⊂ KTΩ

, MY = M × (0,Y ) and

E2(V̄ , P̄ , Z̄, Λ̄; MY ) =
∑

Sz′∈M

E2(V̄ , P̄ , Z̄, Λ̄; Cz′), (5.12)
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where, we recall that Cz′ = Sz′ × (0,Y ).

Remark 5.4 (Marking). We follow [17, Remark 4.4] and comment that, the
AFEM of Section 6 will utilize the total error indicator (5.11), namely the sum of the
computable error estimator and the oscillation term, for marking. If the estimate

Eocp(V̄ , P̄ , Z̄, Λ̄; KY ) ≥ Cosc(trΩ V̄ − ud; KTΩ)

holds for C > 0, marking with respect to the total error indicator could be avoided.
This estimate holds for the residual estimator with C = 1. However, it does not
hold for other error estimators as the one that we are analyzing in this work. The
oscillation cannot be removed for marking without further assumptions. We refer the
reader to [17] for a complete discussion on this matter.

Notice that, since V̄ corresponds to the finite element approximation of v , defined
in (3.22), within the space V(TY ), we have that [19, Theorem 5.37]:

‖∇(v − V̄ )‖L2(yα,CY ) . EV (V̄ , Z̄; N (TΩ)).

Notice that the oscillation of Z̄ vanishes since it is a piecewise constant function on
TΩ. Similarly, we have that

‖∇(p − P̄ )‖L2(yα,CY ) . EP (P̄ , V̄ ; N (TΩ)) + osc(trΩ V̄ − ud; TΩ).

We now state the global reliability of the computable error estimator Eocp.
Theorem 5.5 (global upper bound). Let (v̄, p̄, r̄, t̄) ∈

◦
H1
L(yα, CY )×

◦
H1
L(yα, CY )×

Zad×L∞(Ω) be the optimal variables associated to the truncated optimal control prob-
lem of Section 3.2 and (V̄ , P̄ , Z̄, Λ̄) ∈ V(TY )×V(TY )×Zad(TΩ)×P0(TΩ) its numerical
approximation as described in Section 3.3. If (4.16) and [19, Conjecture 5.28] hold,
then

�e� . E(V̄ , P̄ , Z̄, Λ̄; KY ), (5.13)

where the hidden constant is independent of the continuous and discrete optimal vari-
ables, the size of the elements in the meshes TΩ and TY , and #TΩ and #TY .

Proof. The proof of the estimate (5.13) follows closely the arguments developed
in the proof of Theorem 4.4; the difference being the use of the computable error
indicator Eocp instead of the ideal estimator Eocp.

Remark 5.6 (Conjecture). The proof of Theorem 5.5 is valid under the assump-
tion that there exists an operator Mz′ that verifies the conditions stipulated in [19,
Conjecture 5.28]. The construction ofMz′ is an open problem. The numerical exper-
iments performed for the state equation and the ones that we perform in Section 6
provide computational evidence that the bound (5.13) holds with no oscillation terms
and thus indirect evidence of the existence of the aforementioned operator Mz′ with
the requisite properties [19, (5.29)–(5.31)].

6. Numerical Experiments. In this section we explore computationally the
performance of the computable a posteriori error estimator Eocp, defined as in (5.3),
with a series of numerical examples. To accomplish this task, we start, in the next
section, with the design of an AFEM that is based on iterations of the loop (4.1).

6.1. Design of the AFEM. We describe the four modules in (4.1):
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• SOLVE: Given the anisotropic mesh TY ∈ T, we compute the unique solution
(V̄ , P̄ , Z̄, Λ̄) ∈ V(TY )×V(TY )×Zad(TΩ)×P0(TΩ) to the fully discrete optimal
control problem of Section 3.3:

(V̄ , P̄ , Z̄, Λ̄) = SOLVE(TY ).

The aforementioned discrete problem is solved by using the active set strategy
of [54, Algorithm 2].

• ESTIMATE: With the discrete solution at hand, we compute, for each z′ ∈
N (TΩ), the local error indicator Eocp, which we define as follows:

Eocp(V̄ , P̄ , Z̄, Λ̄; Cz′) = EV (V̄ , Z̄; Cz′) + EP (P̄ , V̄ ; Cz′)
+ EZ(Z̄, P̄ ;Sz′) + EΛ(Λ̄, P̄ ;Sz′).

The local indicators EV , EP , EZ , and EΛ are defined as in (5.4), (5.6), (4.14),
and (4.15), respectively. Once the local indicator Eocp is obtained, we compute
the local oscillation term

osc(trΩ V̄ − ud;Sz′)

and then construct the total error indicator E, which is defined as in (5.11):{
E(V̄ , P̄ , Z̄, Λ̄;Sz′)

}
Sz′∈KTΩ

= ESTIMATE(V̄ , P̄ , Z̄, Λ̄; TY ), (6.1)

where KTΩ
= {Sz′ : z′ ∈ N (TΩ)}. Notice that, for notational convenience,

we replaced Cz′ by Sz′ in (6.1).
• MARK: We follow the numerical evidence presented in [35, Section 6] and use

the maximum strategy as a marking technique for our AFEM: Given θ ∈ [0, 1]
and the set of indicators obtained in the previous step, we select the set

M = MARK
({

E(V̄ , P̄ , Z̄, Λ̄;Sz′)
}
Sz′∈KTΩ

)
⊂ KTΩ ,

that contains the stars Sz′ in KTΩ that satisfies

E(V̄ , P̄ , Z̄, Λ̄;Sz′) ≥ θEmax(V̄ , P̄ , Z̄, Λ̄),

where Emax(V̄ , P̄ , Z̄, Λ̄) := max{E(V̄ , P̄ , Z̄, Λ̄;Sz′) : Sz′ ∈ KTΩ
}.

• REFINEMENT: We bisect all the elements K ∈ TΩ that are contained in
M with the newest–vertex bisection method [45, 46] and create a new mesh
T ′Ω. In the truncated optimal control problem, we choose the truncation
parameter Y as Y = 1+(1/3) log(#T ′Ω). As a consequence of this election, the
approximation and truncation errors are balanced [43, Remark 5.5]. Next, we
generate a new mesh in the extended dimension, which we denote by I ′Y . The
latter is constructed on the basis of (3.14): the number of degrees of freedom
M is chosen to be a sufficiently large number in order to guarantee condition
(4.16). This is achieved by first designing a partition I ′Y with M ≈ (#T ′Ω)1/n

and checking (4.16). If this condition is not satisfied, we increase the number
of mesh points until we obtain the desired result. Consequently,

T ′Y = REFINE(M ), T ′Y := T ′Ω ⊗ I ′Y .
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6.2. Implementation. The proposed AFEM is implemented within the MAT-
LAB software library iFEM [18]. The stiffness matrices associated to the finite ele-
ment approximation of the state and adjoint equations are assembled exactly, while
the forcing terms, in both equations, are computed with the help of a quadrature
formula that is exact for polynomials of degree 4. The optimality system associated
to the fully discrete control problem of Section 3.3 is solved by using the active–set
strategy of [54, Algorithm 2].

To compute ηz′ , which is defined as in (5.1), we follow [19, Section 6]: we loop
around each node z′ ∈ N (TΩ) and collect data about the cylindrical star Cz′ . We
thus assemble the small linear system in (5.1) and solve it with the built-in direct
solver of MATLAB. The integrals that involve the weight yα and discrete functions
are computed exactly, while the ones that also involve data functions are computed
element–wise by a quadrature formula that is exact for polynomials of degree 7. The
computation of θz′ , which is defined as in (5.2), is similar.

In the MARK step, we modify the estimator from star–wise to element–wise. To
do this, we first scale the nodal–wise estimator as E 2

z′/(#Sz′) and then, compute

E 2
K :=

∑
z′∈K

E 2
z′ , K ∈ TΩ.

Consequently, we have that
∑
K∈TΩ

E 2
K =

∑
z′∈N (TΩ) E 2

z′ . The cell–wise data oscilla-
tion is thus defined as

oscK(f)2 := h2s
K ‖f − f̄K‖2L2(K),

where f̄K = |K|−1
´
K
f dx′. The data oscillation is computed using a quadrature

formula that is exact for polynomials of degree 7.
We finally mention that all the computations that we present in the next section

are done without explicitly enforcing the mesh restriction (4.16), which provide ex-
perimental evidence to support the fact that (4.16) is nothing but an artifact in our
proofs.

6.3. L–shaped domain with incompatible data. The a priori theory of [48]
relies on the assumptions that Ω is convex and ud belongs to H1−s(Ω); the latter
implies that ud vanishes on ∂Ω for s ∈ (0, 1

2 ]. Let us thus consider a case where these
conditions are not met:

• The regularization and sparsity parameters are σ = 0.1 and ν = 0.5 when
s ≤ 1

2 and σ = 0.05 and ν = 0.1 when s > 1
2 .

• The control bounds a and b are such that a = −0.3 and b = 0.3.
• The domain Ω = (−1, 1)2 \ (0, 1)× (−1, 0) is non-convex.
• The desired state is ud = 1. Notice that ud is not compatible, in the sense

that ud /∈ H1−s(Ω) for s ∈ (0, 1
2 ]. This has as a consequence that the singular

behavior (1.5)–(1.6) for the optimal adjoint variable p̄ is expected.
• The parameter θ that governs the module MARK is θ = 0.5.

The results of Figure 6.1 show that the AFEM proposed in Section 6.1 delivers
optimal experimental rates of convergence for the total error estimator E and all
choices of the parameter s considered.

In Figure 6.2 we present, for s = 0.3 (left) and s = 0.9 (right), the computa-
tional rates of convergence for each of the four contributions of the computable error
estimator Eocp: EV , EP , EZ , and EΛ. It can be observed that, in both cases, each
contribution decays with the optimal rate #(TY )−1/3.
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Fig. 6.1. Computational rates of convergence for our anisotropic AFEM with incompatible de-
sired data ud and a non-convex domain Ω = (−1, 1)2 \(0, 1)×(−1, 0); n = 2 and s = 0.3, 0.4, 0.6, 0.7,
and s = 0.8. The panel shows the decrease of the total error indicator E with respect to the number
of degrees of freedom (DOFs). In all the presented cases the optimal rate (#TY )−1/3 is achieved.
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Fig. 6.2. Computational rates of convergence for the contributions EV , EP , EZ , and EΛ of
the computable and anisotropic a posteriori error estimator Eocp. We have considered n = 2, an
incompatible desired data ud, and a non-convex domain Ω = (−1, 1)2 \ (0, 1)× (−1, 0). The panels
show the decrease of the contributions EV , EP , EZ , and EΛ with respect to the number of degrees of
freedom for s = 0.3 (left panel) and s = 0.8 (right panel). In both cases we recover the optimal rate
(#TY )−1/3 for each contribution.

Finally, in Figure 6.3 we present the adaptive meshes obtained by our AFEM
after 11 iterations and the corresponding finite element approximations of the optimal
control variable z̄. Several conclusions can be drawn:

• Geometric singularities and fractional diffusion behavior : Since ud = 1, ud is
an incompatible forcing term for the adjoint equation (−∆)sp̄ = ū− ud when
s ∈ (0, 1

2 ], As a consequence, it can be observed that, when s = 0.2 (Figure
6.3a) and s = 0.3 (Figure 6.3b), our AFEM localizes an important density of
degrees of freedom near the boundary of the domain Ω. This is to compensate
the singular behavior (1.5)–(1.6) that is inherent to fractional diffusion with
incompatible data. When s = 0.8 (Figure 6.3c) and s = 0.9 (Figure 6.3d),
the incompatibility of the desired data do not occur and then the optimal
adjoint state do not exhibits boundary layers. Our AFEM is thus focused on
resolving the reentrant corner.
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• Sparse optimal controls: The fact that cost functional J involves the term
‖z‖L1(Ω) leads to sparsely supported optimal controls. Figures 6.3a–6.3d are
particular instances of this feature. In addition, and in particular in Figure
6.3a, it can be observed that the error estimator Eocp also focuses on refining
the interface, i.e., the boundary of the active set.
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