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ENRIQUE OTÁROLA, AND ABNER J. SALGADO

Abstract. We present three schemes for the numerical approximation of frac-
tional diffusion, which build on different definitions of such a non-local process.

The first method is a PDE approach that applies to the spectral definition and

exploits the extension to one higher dimension. The second method is the in-
tegral formulation and deals with singular non-integrable kernels. The third

method is a discretization of the Dunford-Taylor formula. We discuss pros and
cons of each method, error estimates, and document their performance with a

few numerical experiments.

1. Introduction

Diffusion is the tendency of a substance to evenly spread into an available space,
and is one of the most common physical processes. The classical models of diffusion,
which usually start from the assumption of Brownian motion [1, 57], lead to well
known models and even better studied equations. However, in recent times, it has
become evident that many of the assumptions that lead to these models are not
always satisfactory or even realistic at all. For this reason, new models of diffusion
have been introduced. These, as a rule, are not based on the postulate that the
underlying stochastic process is given by Brownian motion, so that the diffusion
is regarded as anomalous [87]. The evidence of anomalous diffusion processes has
been reported in physical and social environments, and corresponding models have
been proposed in various areas such as electromagnetic fluids [83], ground-water
solute transport [47], biology [40], finance [41], human travel [31] and predator
search patterns [115].

Of the many possible models of anomalous diffusion, we shall be interested here
in so-called fractional diffusion, which is a nonlocal process: to evaluate fractional
diffusion at a spatial point, information involving all spatial points is needed. Re-
cently, the analysis of such operators has received a tremendous attention: fractional
diffusion has been one of the most studied topics in the past decade [37, 38, 114].

The main goal of this work is to review different techniques to approximate the
solution of problems involving fractional diffusion. To make matters precise, we
will consider the fractional powers of the Dirichlet Laplace operator (−∆)s, which
we will simply call the fractional Laplacian. Given 0 < s < 1, a bounded Lipschitz
domain Ω ⊂ Rd, and a function f : Ω → R, we shall be concerned with finding
u : Ω→ R such that

(1.1) (−∆)su = f in Ω,

with vanishing Dirichlet boundary conditions (understood in a suitable sense). We
must immediately comment that the efficient approximation of solutions to (1.1)
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carries two essential difficulties. The first and most important one is that (−∆)s

is non-local. The second feature is the lack of boundary regularity, which leads to
reduced rates of convergence.

In what follows we review different definitions for the fractional Laplacian. For
functions defined over Rd, there is a natural way to define the fractional Laplacian
as a pseudo-differential operator with symbol |ξ|2s; namely, given a function w in
the Schwartz class S , set

(1.2) (−∆)sw := F−1
(
|ξ|2sFw

)
,

where F denotes the Fourier transform. The fractional Laplacian can be equiva-
lently defined by means of the following point-wise formula (see [78, Section 1.1]
and [50, Proposition 3.3])

(1.3) (−∆)sw(x) = C(d, s) p.v.

ˆ
Rd

w(x)− w(x′)
|x− x′|d+2s

dx′, C(d, s) =
22ssΓ(s+ d

2 )

πd/2Γ(1− s) ,

where p.v. stands for the Cauchy principal value and C(d, s) is a normalization
constant chosen so that definitions (1.2) and (1.3) coincide. This clearly displays
the non-local structure of (−∆)sw. We remark that, in the theory of stochastic
processes, expression (1.3) appears as the infinitesimal generator of a 2s-stable
Lévy process [18].

If Ω is a bounded domain, we consider two possible definitions of the fractional
Laplacian. For u : Ω → R, we first extend u by zero outside Ω and next use
definition (1.3). This gives the following reinterpretation of (1.1):

(1.4) (−∆)sũ = f in Ω, ũ = 0 in Ωc = Rd \ Ω,

where the operator (−∆)s is understood as in (1.3) and w̃ is the extension by zero
to Rd of a function w : Ω→ R in L2(Ω). This definition maintains the probabilistic
interpretation of the fractional Laplacian defined over Rd, that is, as the generator
of a random walk in Ω with arbitrarily long jumps, where particles are killed upon
reaching Ωc; see [32, Chapter 2]. The operator in (1.3) is well defined for smooth,
compactly supported functions. Consequently, (1.3) can be extended by density to
Hs(Ω) which, for s ∈ [0, 3/2), is defined by

(1.5) Hs(Ω) :=
{
w|Ω : w ∈ Hs(Rd), w|Rd\Ω = 0

}
.

When ∂Ω is Lipschitz this space is equivalent to Hs(Ω) = [L2(Ω), H1
0 (Ω)]s, the real

interpolation between L2(Ω) and H1
0 (Ω) [85, 118] when s ∈ [0, 1] and to Hs(Ω) ∩

H1
0 (Ω) when s ∈ (1, 3/2). In what follows, we will denote by H−s(Ω) the dual of

Hs(Ω) and by 〈·, ·〉 the duality pairing between these two spaces.
The second definition of (−∆)s relies on spectral theory [19]. Since −∆ :

D(−∆) ⊂ L2(Ω) → L2(Ω) is an unbounded, positive and closed operator with
dense domain D(−∆) = H1

0 (Ω) ∩ H2(Ω) and its inverse is compact, there is a
countable collection of eigenpairs {λk, ϕk}k∈N ⊂ R+×H1

0 (Ω) such that {ϕk}k∈N is
an orthonormal basis of L2(Ω) as well as an orthogonal basis of H1

0 (Ω). Fractional
powers of the Dirichlet Laplacian can be thus defined as

(1.6) (−∆)sw :=

∞∑
k=1

λskwkϕk, wk :=

ˆ
Ω

wϕk dx, k ∈ N,

for any w ∈ C∞0 (Ω). This definition of (−∆)s can also be extended by density
to the space Hs(Ω). We also remark that, for s ∈ [−1, 1], the space Hs(Ω) can
equivalently be defined by

Hs(Ω) =

{
w =

∞∑
k=1

wkϕk :

∞∑
k=1

λskw
2
k <∞

}
.
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These two definitions of the fractional Laplacian, the integral one involved in
problem (1.4) and the spectral one given as in (1.6), do not coincide. In fact, as
shown in [90], their difference is positive and positivity preserving, see also [35, 113].
This, in particular, implies that the boundary behavior of the solutions of (1.4) and
(1.6) is quite different. According to Grubb [64] the solution u of (1.4) is of the
form

(1.7) u(x) ≈ dist(x, ∂Ω)s + v(x),

with v smooth; hereafter dist(x, ∂Ω) indicates the distance from x ∈ Ω to ∂Ω. In
contrast, Caffarelli and Stinga [35] showed that solutions of (1.6) behave like

(1.8)
u(x) ≈ dist(x, ∂Ω)2s + v(x) 0 < s <

1

2
;

u(x) ≈ dist(x, ∂Ω) + v(x)
1

2
≤ s < 1.

This lack of boundary regularity is responsible for reduced rates of convergence.
The presence of the non-integrable kernel in (1.3) is a notorious numerical diffi-

culty that has hampered progress in the multidimensional case d > 1 until recently.
If Ω = Rd, the Caffarelli-Silvestre [37] extension converts (1.1) into the following
Dirichlet-to-Neumann map formulated in the cylinder C = Ω× (0,∞)

(1.9) div (yα∇U ) = 0 in C, ∂ναU = dsf on Rd × {0},
where y > 0 is the extended variable, ds := 21−2sΓ(1 − s)/Γ(s) is a positive nor-
malization constant that depends only on s, and the parameter α is defined as
α := 1− 2s ∈ (−1, 1). The relation between (1.1) and (1.9) is the following:

u = U (·, 0).

Cabré and Tan [33] and Stinga and Torrea [117] have shown that a similar extension
is valid for the spectral fractional Laplacian in a bounded domain Ω provided that
a vanishing Dirichlet condition is appended on the lateral boundary ∂LC = ∂Ω ×
(0,∞); see also [39, 29]. Although (1.9) is a local problem, and thus amenable to
PDE techniques, it is formulated in one higher dimension and exhibits a singular
character as y ↓ 0.

The solution to (1.1) with either definition (1.3) or (1.6) of the fractional Lapla-
cian can be represented using Dunford-Taylor integrals [81]. Let us first explain
the construction for definition (1.6). For s ∈ (0, 1) and w ∈ H−s(Ω) we have

(1.10) (−∆)−sw =
1

2πi

ˆ
C

z−s(z + ∆)−1w dz,

where C is a Jordan curve oriented to have the spectrum of −∆ to its right, and
z−s is defined using the principal value of Log(z). In addition, since the operator
−∆ is positive, one can continously deform the contour C onto the negative real
axis (around the branch cut) to obtain the so-called Balakrishnan formula

(1.11) (−∆)−sw =
sin(sπ)

π

ˆ ∞
0

µ−s(µ−∆)−1w dµ;

see also [122, Section IX.11] and [19, Section 10.4] for a different derivation of
(1.11) using semigroup theory. This formula will be the starting point for our
Dunford-Taylor approach for the spectral fractional Laplacian. These considera-
tions, however, cannot be carried out for the the integral fractional Laplacian (1.3)
since neither (1.10) or (1.11) are well defined quantities for this operator. There-
fore we will, instead, multiply (1.4) by a test function w, integrate over Rd and
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use Parseval’s equality to obtain the following weak formulation of (1.4): Given
f ∈ H−s(Ω) find u ∈ Hs(Ω) such that

(1.12)

ˆ
Rd
|ξ|sF−1(ũ)|ξ|sF−1(w̃) dξ = 〈f, w〉, ∀w ∈ Hs(Ω),

where z denotes the complex conjugate of z ∈ C. Using again the Fourier transform
and Parseval’s equality, the left hand side of the above relation can be equivalently
written as (see Theorem 4.5)

(1.13)
2 sin(sπ)

π

ˆ ∞
0

µ1−2s

ˆ
Ω

(
(−∆)(I − µ2∆)−1ũ(x)

)
w(x) dx dµ.

These ideas will be the starting point of the Dunford-Taylor method for the integral
fractional Laplacian (1.3).

The purpose of this paper is to present and briefly analyze three finite element
methods (FEMs) to approximate (1.1). The first will consider the spectral definition
(1.6), the second will deal with the integral definition (1.3), while the third approach
will be able to account for both operators by means of either (1.11) or (1.13). We
must immediately remark that for special domain geometries, such as when d = 2
and Ω is a rectangle, the use of spectral methods can be quite efficient but we do
not elaborate any further as we are interested in techniques that apply to general
domains. Our presentation is organized as follows: In Section 2, we present a
method that hinges on the extension (1.9) and uses PDE techniques. The second
method deals with the integral formulation and is discussed in Section 3. Finally,
the third method is based on exponentially convergent quadrature approximations
of (1.11) for the spectral Laplacian and of (1.13) for the integral Laplacian. They
are discussed in Section 4.

As usual, we write a . b to mean a ≤ Cb, with a constant C that neither de-
pends on a, b or the discretization parameters and might change at each occurrence.
Moreover, a ≈ b indicates a . b and b . a.

2. The Spectral Fractional Laplacian

In this section we deal with the spectral definition of the fractional Laplacian
(1.6) and, on the basis of (1.9), its discretization via PDE techniques as originally
developed in [93]. We must immediately remark that many of the results of this
section and section 4 extend to more general symmetric elliptic operators of the
form Lw = −div(A∇w) + cw, with A ∈ C0,1(Ω̄,GL(Rd)) symmetric and positive
definite and 0 ≤ c ∈ C0,1(Ω̄,R).

Let Ω be a convex polytopal domain. Besides the semi-infinite cylinder C =
Ω × (0,∞), we introduce the truncated cylinder CY = Ω × (0,Y ) with height Y
and its lateral boundary ∂LCY = ∂Ω × (0,Y ). Since we deal with objects defined
in both Rd and Rd+1, it is convenient to distinguish the extended variable y. For
x ∈ Rd+1, we denote

x = (x, y) = (x, xd+1), x ∈ Rd, y ∈ R+.

2.1. Extension Property. The groundbreaking extension (1.9) of Caffarelli and
Silvestre [37], valid for any power s ∈ (0, 1), is formulated in Rd. Cabré and Tan [33]
and Stinga and Torrea [117] realized that a similar extension holds for the spectral
Laplacian over Ω bounded; see also [39, 29]. This problem reads

(2.1) div (yα∇U ) = 0 in C, U = 0 on ∂LC, ∂ναU = dsf on Ω× {0},
where α = 1− 2s and the so-called conormal exterior derivative of U at Ω×{0} is

(2.2) ∂ναU = − lim
y→0+

yα∂yU (·, y).
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The limit in (2.2) must be understood in the distributional sense [33, 37, 39, 117].
With this construction at hand, the fractional Laplacian and the Dirichlet-to-
Neumann operator of problem (2.1) are related by

ds(−∆)su = ∂ναU in Ω.

The operator in (2.1) is in divergence form and thus amenable to variational
techniques. However, it is nonuniformly elliptic because the weight yα either blows
up for −1 < α < 0 or degenerates for 0 < α < 1 as y ↓ 0; the exceptional case α = 0
corresponds to the regular harmonic extension for s = 1

2 [33]. This entails dealing
with weighted Lebesgue and Sobolev spaces with the weight |y|α for α ∈ (−1, 1)
[29, 33, 37, 39]. Such a weight belongs to the Muckenhoupt class A2(Rd+1), which
is the collection of weights ω so that [52, 58, 61, 89, 120]

C2,ω = sup
B

( 
B

ω dx

)( 
B

ω−1 dx

)
<∞,

where the supremum is taken over all balls B in Rd+1 and
ffl
B

stands for the mean
value over B. The Muckenhoupt characteristic C2,ω appears in all estimates involv-
ing ω.

If D ⊂ Rd × R+, we define L2(yα, D) as the Lebesgue space for the measure
yα dx. We also define the weighted Sobolev space

H1(yα, D) =
{
w ∈ L2(yα, D) : |∇w| ∈ L2(yα, D)

}
,

where ∇w is the distributional gradient of w. We equip H1(yα, D) with the norm

(2.3) ‖w‖H1(yα,D) =
(
‖w‖2L2(yα,D) + ‖∇w‖2L2(yα,D)

) 1
2

.

The space H1(yα, D) is Hilbert with the norm (2.3) and C∞(D) ∩ H1(yα, D) is
dense in H1(yα, D) because |y|α ∈ A2(Rd+1) (cf. [61, Theorem 1], [76] and [120,
Proposition 2.1.2, Corollary 2.1.6]).

To analyze problem (2.1) we define the weighted Sobolev space

◦
H1
L(yα, C) =

{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
.

The following weighted Poincaré inequality holds [93, inequality (2.21)]

‖w‖L2(yα,C) . ‖∇w‖L2(yα,C) ∀w ∈ ◦
H1
L(yα, C).

Consequently, the seminorm on
◦
H1
L(yα, C) is equivalent to (2.3). For w ∈ H1(yα, C),

trΩ w denotes its trace onto Ω× {0} which satisfies [93, Proposition 2.5]

trΩ
◦
H1
L(yα, C) = Hs(Ω), ‖ trΩ w‖Hs(Ω) ≤ CtrΩ

‖w‖ ◦
H1
L(yα,C).

The variational formulation of (2.1) reads: find U ∈ ◦
H1
L(yα, C) such that

(2.4)

ˆ
C
yα∇U · ∇w dx = ds〈f, trΩ w〉 ∀w ∈

◦
H1
L(yα, C),

where, we recall that, 〈·, ·〉 corresponds to the duality pairing between H−s(Ω) and
Hs(Ω). The fundamental result of Caffarelli and Silvestre [37] for Ω = Rd and of
Cabré and Tan [33, Proposition 2.2] and Stinga and Torrea [117, Theorem 1.1] for

Ω bounded reads: given f ∈ H−s(Ω), if u ∈ Hs(Ω) solves (1.1) and U ∈ ◦
H1
L(yα, C)

solves (2.4), then

(2.5) u = trΩ U , ds(−∆)su = ∂ναU in Ω,

where the first equality holds in Hs(Ω), whereas the second one in H−s(Ω).



6 A. BONITO, J.P. BORTHAGARAY, R.H. NOCHETTO, E. OTÁROLA, AND A.J. SALGADO

2.2. Regularity. To study the finite element discretization of (2.4) we must un-
derstand the regularity of U . We begin by recalling that if u =

∑∞
k=1 ukϕk solves

(1.1), then uk = λ−sk fk, with fk being the k-th Fourier coefficient of f . The unique
solution U of problem (1.9) thus admits the representation [93, formula (2.24)]

U (x, y) =

∞∑
k=1

ukϕk(x)ψk(y).

The functions ψk solve the 2-point boundary value problem in R+

ψ′′k +
α

y
ψ′k = λkψk, in (0,∞); ψk(0) = 1, lim

y→∞
ψk(y) = 0.

Thus, if s = 1
2 , we have that ψk(y) = exp(−

√
λky) [33, Lemma 2.10]; and, if

s ∈ (0, 1) \ { 1
2}, then [39, Proposition 2.1]

ψk(y) = cs(
√
λky)sKs(

√
λky),

where cs = 21−s/Γ(s) and Ks denotes the modified Bessel function of the second
kind [2, Chap. 9.6]. Using asymptotic properties of Ks(ζ) as ζ ↓ 0 [2, Chapter 9.6],
and [100, Chap. 7.8], we obtain for y ↓ 0:

ψ′k(y) ≈ y−α, ψ′′k (y) ≈ y−α−1.

Exploiting these estimates, the following regularity results hold [93, Theorem 2.7].

Theorem 2.1 (global regularity of the α-harmonic extension). Let f ∈ H1−s(Ω),

where H1−s(Ω) is defined in (1.5) for s ∈ (0, 1). Let U ∈ ◦
H1
L(yα, C) solve (1.9)

with f as data. Then, for s ∈ (0, 1) \ { 1
2}, we have

(2.6) ‖∆xU ‖2L2(yα,C) + ‖∂y∇xU ‖2L2(yα,C) = ds‖f‖2H1−s(Ω),

and

(2.7) ‖∂yyU ‖L2(yβ ,C) . ‖f‖L2(Ω),

with β > 2α+ 1. For the special case s = 1
2 , we obtain

‖U ‖H2(C) . ‖f‖H1/2(Ω).

Comparing (2.6) and (2.7), we realize that the regularity of U is much worse
in the extended d+ 1 direction. Since Ω is convex, the following elliptic regularity
estimate is valid [63]:

(2.8) ‖w‖H2(Ω) . ‖∆xw‖L2(Ω) ∀w ∈ H2(Ω) ∩H1
0 (Ω).

This, combined with (2.6), yields the following estimate for the Hessian D2
xU in

the variable x ∈ Ω:

‖D2
xU ‖L2(yα,C) . ‖f‖H1−s(Ω).

Further regularity estimates in Hölder and Sobolev norms are derived in [35]. How-
ever, we do not need them for what follows.

2.3. Truncation. Since C is unbounded, problem (2.1) cannot be approximated
with standard finite element techniques. However, since the solution U of problem
(2.1) decays exponentially in y [93, Proposition 3.1], by truncating C to CY :=
Ω× (0,Y ) and setting a homogeneous Dirichlet condition on y = Y , we only incur
in an exponentially small error in terms of Y [93, Theorem 3.5]. If

◦
H1
L(yα, CY ) :=

{
w ∈ H1(yα, CY ) : w = 0 on ΓD

}
,
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where ΓD = ∂LCY ∪ Ω × {Y } is the Dirichlet boundary, then the aforementioned
problem reads:

(2.9) V ∈ ◦
H1
L(yα, CY ) :

ˆ
CY

yα∇V · ∇w dx = ds〈f, trΩ w〉 ∀w ∈
◦
H1
L(yα, CY ).

The following exponential decay rate is proved in [93, Theorem 3.5].

Lemma 2.2 (truncation error). If U and V denote the solutions of (2.4) and
(2.9), respectively, then

‖∇(U − V )‖L2(yα,C) . e−
√
λ1Y /4‖f‖H−s(Ω)

is valid, where λ1 denotes the first eigenvalue of the Dirichlet Laplace operator and
Y is the truncation parameter.

2.4. FEM: A Priori Error Analysis. The first numerical work that exploits the
groundbreaking identity (2.5), designs and analyzes a FEM for (2.1) is [93]; see also
[94, 101]. We briefly review now the main a priori results of [93].

We introduce a conforming and shape regular mesh T = {K} of Ω, where
K ⊂ Rd is an element that is isoparametrically equivalent either to the unit cube
[0, 1]d or the unit simplex in Rd. Over this mesh we construct the finite element
space

(2.10) U(T ) =
{
W ∈ C0(Ω̄) : W |K ∈ P1(K) ∀K ∈ T , W |∂Ω = 0

}
.

The set P1(K) is either the space P1(K) of polynomials of total degree at most 1,
when K is a simplex, or the space of polynomials Q1(K) of degree not larger than
1 in each variable provided K is a d-rectangle.

To triangulate the truncated cylinder CY we consider a partition IY of the in-
terval [0,Y ] with nodes ym, m = 0, · · · ,M , and construct a mesh TY of CY as the
tensor product of T and IY . The set of all triangulations of CY obtained with this
procedure is T.

For TY ∈ T, we define the finite element space

(2.11) V(TY ) =
{
W ∈ C0(C̄Y ) : W |T ∈ P1(K)⊗ P1(I) ∀T ∈ TY , W |ΓD = 0

}
,

where T = K × I and observe that U(T ) = trΩ V(TY ). Note that #TY = M #T ,
and that #T ≈Md implies #TY ≈Md+1.

The Galerkin approximation of (2.9) is the function V ∈ V(TY ) such that

(2.12)

ˆ
CY

yα∇V · ∇W dx = ds〈f, trΩW 〉 ∀W ∈ V(TY ).

Existence and uniqueness of V immediately follows from V(TY ) ⊂ ◦
H1
L(yα, CY ) and

the Lax-Milgram Lemma. It is trivial also to obtain a best approximation result à
la Céa, namely

(2.13) ‖∇(V − V )‖L2(yα,CY ) = inf
W∈V(TY )

‖∇(V −W )‖L2(yα,CY ).

This reduces the numerical analysis of (2.12) to a question in approximation theory,
which in turn can be answered by the study of piecewise polynomial interpolation
in Muckenhoupt weighted Sobolev spaces; see [93, 96]. Exploiting the Cartesian
structure of the mesh TY we are able to extend the anisotropic estimates of Durán
and Lombardi [53] to our setting [93, Theorems 4.6–4.8], [96]. The following error
estimates separate in each direction.
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Proposition 2.3 (anisotropic interpolation estimates). There exists a quasi inter-
polation operator ΠTY : L1(CY ) → V(TY ) that satisfies the following anisotropic
error estimates for all j = 1, . . . , d+ 1 and all T = K × I ∈ TY

‖w −ΠTY w‖L2(yα,T ) . hK‖∇xw‖L2(yα,ST ) + hI‖∂yw‖L2(yα,ST ),

‖∂xj (w −ΠTY w)‖L2(yα,T ) . hK‖∇x∂xjw‖L2(yα,ST ) + hI‖∂y∂xjw‖L2(yα,ST ),

where ST stands for the patch of elements of TY that intersect T , hK = |K|1/d and
hI = |I|.

As a first application of Proposition 2.3 we consider a quasiuniform mesh TY of
size h and set w = U . We estimate U −ΠTY U for y ≥ 2h as follows:ˆ Y

2h

yα‖∂y(U −ΠTY U )‖2L2(Ω) dy . h2

ˆ Y

h

yα
(
‖∂yyU ‖2L2(Ω) + ‖∇x∂yU ‖2L2(Ω)

)
dy.

For the first term we resort to (2.7), and recall that β > 2α+ 1 > α, to deduce

h2

ˆ Y

h

yα‖∂yyU ‖2L2(Ω) dy ≤ h2 sup
h≤y≤Y

yα−β
ˆ Y

0

yβ‖∂yyU ‖2L2(Ω) dy

≤ h2+α−β‖f‖2L2(Ω).

For the second term we use (2.6) instead to arrive at

h2

ˆ Y

h

yα‖∇x∂yU ‖2L2(Ω) dy ≤ h2

ˆ Y

0

yα‖∇x∂yU ‖2L2(Ω) dy . h2‖f‖2H1−s(Ω).

Combining the two estimates we derive the interpolation estimateˆ Y

2h

yα‖∂y(U −ΠTY U )‖2L2(Ω) dy . h2+α−β‖f‖2H1−s(Ω),

which is quasi-optimal in terms of regularity because 2 + α − β = 2(s − ε) and
∂yU ≈ y−α formally implies U ∈ Hs−ε(yα, C) for any ε > 0; however this estimate
exhibits a suboptimal rate. To restore a quasi-optimal rate, we must compensate
the behavior of ∂yyU by a graded mesh in the extended direction, which is allowed
by Proposition 2.3. Therefore, we construct a mesh IY with nodes

(2.14) ym = mγM−γY , m = 0, . . . ,M,

where γ > 3/(1 − α) = 3/(2s). Combining (2.13) with Proposition 2.3 we obtain
estimates in terms of degrees of freedom [93, Theorem 5.4 and Corollary 7.11].

Theorem 2.4 (a priori error estimate). Let TY = T × IY ∈ T with IY satisfying
(2.14), and let V(TY ) be defined by (2.11). If V ∈ V(TY ) solves (2.12), we have

‖∇(U − V )‖L2(yα,C) . | log(#TY )|s(#TY )−1/(d+1)‖f‖H1−s(Ω),

where Y ≈ log(#TY ). Alternatively, if u denotes the solution of (1.1), then

‖u− U‖Hs(Ω) . | log(#TY )|s(#TY )−1/(d+1)‖f‖H1−s(Ω),

where U = trΩ V .

Remark 2.5 (domain and data regularity). The estimates of Theorem 2.4 hold only
if f ∈ H1−s(Ω) and the domain Ω is such that (2.8) is valid.

Remark 2.6 (quasi-uniform meshes). Let V ∈ V(TY ) solve (2.12) over a quasi-
uniform mesh TY of CY of size h. Combining (2.13) with the preceding discussion
and accounting for the missing domain Ω× (0, 2h), which yields a better estimate
[93], we obtain for Y ≈ | log h| and all ε > 0

‖∇(U − V )‖L2(yα,CY ) . hs−ε‖f‖H1−s(Ω),

where the hidden constant blows up if ε ↓ 0.
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Remark 2.7 (complexity). Except for a logaritmic factor, the error estimates of
Theorem 2.4 decay with a rate (#TY )−1/(d+1), where d is the dimension of Ω. The
FEM (2.12) is thus sub-optimal as a method to compute in Ω. This can be improved
to an error decay (#TY )−1/d with geometric grading; see Section 2.7.

Remark 2.8 (case s = 1
2 ). If s = 1

2 , we obtain the optimal estimate

‖∇(U − V )‖L2(CY ) . h‖f‖H1/2(Ω).

2.5. Numerical Experiments. We present two numerical examples for d = 2
computed within the deal.II library [15, 16] using graded meshes. Integrals are
evaluated with Gaussian quadratures of sufficiently high order and linear systems
are solved using CG with ILU preconditioner and the exit criterion being that the
`2-norm of the residual is less than 10−12.

2.5.1. Square Domain. Let Ω = (0, 1)2. Then

ϕm,n(x1, x2) = sin(mπx1) sin(nπx2), λm,n = π2
(
m2 + n2

)
, m, n ∈ N.

If f(x1, x2) = (2π2)s sin(πx1) sin(πx2), then u(x1, x2) = sin(πx1) sin(πx2), by (1.6)

and U (x1, x2, y) = 21−s/2πsΓ(s)−1 sin(πx1) sin(πx2)ysKs(
√

2πy) [93, (2.24)].
We construct a sequence of meshes {TYk}k≥1, where T is obtained by uniform

refinement and IYk is given by (2.14) with parameter γ > 3/(1− α). On the basis
of Theorem 2.4, the truncation parameter Yk is chosen to be

Yk ≥
2√
λ1

(logC − log(#TYk−1
)−1/3).

With this type of meshes,

‖u− trΩ Vk‖Hs(Ω) . ‖U − Vk‖ ◦H1
L(yα,C) . | log(#TYk)|s · (#TYk)−1/3,

which is near-optimal in U but suboptimal in u, since we should expect (see [30])

‖u− trΩ Vk‖Hs(Ω) . h2−s . (#TYk)−(2−s)/3.

Figure 2.5.1 shows the rates of convergence for s = 0.2 and s = 0.8 respectively.
In both cases, we obtain the rate given by Theorem 2.4.
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Figure 1. Computational rate of convergence for a square and
graded meshes. The left panel shows the rate for s = 0.2 and the
right one for s = 0.8. The experimental rate of convergence is
(#TY )−1/3, in agreement with Theorem 2.4.
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Figure 2. Computational rate of convergence for a circle with
graded meshes. The left panel shows the rate for s = 0.3 and the
right one for s = 0.7. The experimental rate of convergence is
(#TY )−1/3, in agreement with Theorem 2.4.

2.5.2. Circular Domain. If Ω = {x ∈ R2 : |x| < 1}, then

ϕm,n(r, θ) = Jm(jm,nr) (Am,n cos(mθ) +Bm,n sin(mθ)) , λm,n = j2
m,n,

where Jm is the m-th Bessel function of the first kind; jm,n is the n-th zero of Jm
and Am,n, Bm,n are normalization constants to ensure ‖ϕm,n‖L2(Ω) = 1.

If f = (λ1,1)sϕ1,1, then (1.6) and [93, (2.24)] show that u = ϕ1,1 and

U (r, θ, y) = 21−sΓ(s)−1(λ1,1)s/2ϕ1,1(r, θ)ysKs(
√

2πy).

We construct a sequence of meshes {TYk}k≥1 as in §2.5.1. With these meshes

‖U − Vk‖ ◦H1
L(yα,C) . | log(#TYk)|s(#TYk)−1/3,

which is near-optimal. Figure 2 shows the errors of ‖U − Vk‖H1(yα,CYk ) for s = 0.3

and s = 0.7. The results, again, are in agreement with Theorem 2.4.

2.6. FEM: A Posteriori Error Analysis. A posteriori error estimation and
adaptive finite element methods (AFEMs) have been the subject of intense research
since the late 1970’s because they yield optimal performance in situations where
classical FEM cannot. The a priori theory for (2.12) requires f ∈ H1−s(Ω) and Ω
convex for (2.8) to be valid; see Remark 2.5. If either of these does not hold, then
U may have singularities in the x-variables and Theorem 2.4 may not apply: a
quasi-uniform refinement of Ω would not result in an efficient solution technique.
An adaptive loop driven by an a posteriori error estimator is essential to recover
optimal rates of convergence. In what follows we explore this.

We first observe that we cannot rely on residual error estimators. In fact, they
hinge on the strong form of the local residual to measure the error. Let T ∈ TY
and ν be the unit outer normal to T . Integration by parts yieldsˆ

T

yα∇V · ∇W dx =

ˆ
∂T

yαW∇V · ν dσ −
ˆ
T

div(yα∇V )W dx.

Since α ∈ (−1, 1) the boundary integral is meaningless for y = 0. Even the very
first step in the derivation of a residual a posteriori error estimator fails! There is
nothing left to do but to consider a different type of estimator.

2.6.1. Local Problems over Cylindrical Stars. Inspired by [12, 88], we deal with the
anisotropy of the mesh in the extended variable y and the coefficient yα by con-
sidering local problems on cylindrical stars. The solutions of these local problems
allow us to define an anisotropic a posteriori error estimator which, under certain
assumptions, is equivalent to the error up to data oscillation terms.
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Given a node v on the mesh TY , we exploit the tensor product structure of
TY , and we write v = (v, w) where v and w are nodes on the meshes T and IY

respectively. For K ∈ T , we denote by N (K) and
◦N (K) the set of nodes and

interior nodes of K, respectively. We set

N (T ) =
⋃
K∈T

N (K),
◦N (T ) =

⋃
K∈T

◦N (K).

The star around v is Sv =
⋃
K3vK ⊂ Ω, and the cylindrical star around v is

Cv :=
⋃
{T ∈ TY : T = K × I, K 3 v} = Sv × (0,Y ) ⊂ CY .

For each node v ∈ N (T ) we define the local space

W(Cv) =
{
w ∈ H1(yα, Cv) : w = 0 on ∂Cv\Ω× {0}

}
,

and the (ideal) estimator ηv ∈W(Cv) to be the solution ofˆ
Cv
yα∇ηv · ∇w dx = ds〈f, trΩ w〉 −

ˆ
Cv
yα∇V · ∇w dx ∀w ∈W(Cv).

We finally define the local indicators Ev and global error estimators ETY as follows:

(2.15) Ev = ‖∇ηv‖L2(yα,Cv), E 2
TY

=
∑

v∈N (T )

E 2
v .

We have the following key properties [42, Proposition 5.14].

Proposition 2.9 (a posteriori error estimates). Let V ∈ ◦
H1
L(yα, CY ) and V ∈

V(TY ) solve (2.9) and (2.12) respectively. Then, the estimator defined in (2.15)
satisfies the global bound

‖∇(V − V )‖L2(yα,CY ) . ETY ,

and the local bound with constant 1 for any v ∈ N (TΩ)

Ev ≤ ‖∇(V − V )‖L2(yα,Cv).

These estimates provide the best scenario for a posteriori error analysis but they
are not practical because the local space W(Cv) is infinite dimensional. We further
discretize W(Cv) with continuous piecewise polynomials of degree > 1 as follows.
If K is a quadrilateral, we use polynomials of degree ≤ 2 in each variable. If K is
a simplex, we employ polynomials of total degree ≤ 2 augmented by a local cubic
bubble function. We tensorize these spaces with continuous piecewise quadratics
in the extended variable. We next construct discrete subspaces of the local space
W(Cv) and corresponding discrete estimators instead of (2.15). Under suitable
assumptions, Proposition 2.9 extends to this case [42, Section 5.4].

2.6.2. Numerical Experiment. We illustrate the performance of a practical version
of the a posteriori error estimator (2.15). We use an adaptive loop

SOLVE→ ESTIMATE→ MARK→ REFINE

with Dörfler marking. We generate a new mesh T ′ by bisecting all the elements
K ∈ T contained in the marked set M based on newest-vertex bisection method;
[97, 98]. We choose the truncation parameter as Y = 1 + 1

3 log(#T ′) [93, Remark

5.5]. We set M ≈ (#T ′)1/d and construct I ′Y by the rule (2.14). The new mesh
T ′Y = REFINE(M ) is obtained as the tensor product of T ′ and I ′Y .

We consider the data Ω = (0, 1)2 and f ≡ 1, which is incompatible for s < 1/2
because f does not have a vanishing trace whence f /∈ H1−s(Ω); see also [93, Section
6.3]. Therefore, we cannot expect an optimal rate for quasi-uniform meshes T in
Ω according to Theorem 2.4. Figure 3 shows that adaptive mesh refinement guided
by AFEM restores an optimal decay rate for s < 1/2.
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Figure 3. Computational rate of convergence of AFEM for d = 2
and s = 0.2, 0.4, 0.6 and s = 0.8. The left panel shows the error
vs. the number of degrees of freedom, the right one the total error
indicator. We recover the optimal rate #(TY )−1/3. For s < 1

2 , the

right hand side f ≡ 1 /∈ H1−s(Ω) and a quasiuniform mesh in Ω
does not deliver an optimal rate of convergence [93, Section 6.3].

2.7. Extensions and Applications. We conclude the discussion of this approach
by mentioning several extension and applications:

• Efficient solvers: Finding the solution to (2.9) entails solving a large linear system
with a sparse matrix. In [43] the construction of efficient multilevel techniques
for the solution of this problem was addressed. It was shown that multilevel tech-
niques with line smoothers over vertical lines in the extended direction perform
almost optimally; i.e., the contraction factor depends linearly on the number of
levels, and thus logarithmically on the problem size.

• Time dependent problems: In [95] the time dependent problem

(2.16) ∂γt u+ (−∆)su = f Ω× (0, T ), u(·, 0) = u0

was examined. Here ∂γt denotes the so-called Caputo derivative of order γ ∈
(0, 1), which is defined as follows [110]:

(2.17) ∂γt w(x, t) :=
1

Γ(1− γ)

ˆ t

0

1

(t− r)γ ∂rw(x, r) dr t > 0, x ∈ Ω.

It turns out that the solution of this problem is always singular as t ↓ 0 provided
the initial condition u0 6= 0. In fact, taking f = 0 and representing u in terms of
the Mittag-Leffler function [62] reveals that

u(x, t) =

(
1− tγ

Γ(1 + γ)
(−∆)s +O(t2γ)

)
u0(x) x ∈ Ω.

These heuristics led to the following regularity results shown in [95]

(2.18) ∂tu ∈ L logL(0, T ;H−s(Ω)), ∂2
ttu ∈ L2(tσ; 0, T ;H−s(Ω)), σ > 3− 2γ,

where L logL(0, T ) denotes the Orlicz space of functions w such that |w| log |w| ∈
L1(0, T ); see [74]. Using the extension property, problem (2.16) reduces to a
quasi-stationary elliptic equation with a dynamic boundary condition. Rates of
convergence for fully discrete schemes were derived in [95], which are consistent
with the regularity (2.18); this issue has been largely ignored in the literature.

The extension of these results to a space-time fractional wave equation, i.e.,
γ ∈ (1, 2] is currently under investigation [104].

• Nonlinear problems: Elliptic and parabolic obstacle problems with the spectral
fractional Laplacian were considered in [92] and [103], respectively. Rates of con-
vergence for their FEM approximation were derived, and this required a careful
combination of Sobolev regularity, as in Theorem 2.1, and Hölder regularity of
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the solution [36, 34]. In addition, a positivity preserving interpolant that is stable
in anisotropic meshes and weighted norms had to be constructed.

• PDE constrained optimization and optimal control : Optimal control problems
where the state equation is given by either a stationary or parabolic equation
with a spectral fractional Laplacian were studied in [8] and [10], respectively.
Existence and uniqueness of optimal pairs was obtained, as well as their regu-
larity. In both cases fully discrete schemes were designed and their convergence
shown. The results of [8] were later improved upon considering piecewise lin-
ear approximation of the optimal control variable [102] and adaptive algorithms
[9]. Sparse optimal control for the spectral fractional Laplacian was studied in
[105]. Finally, reference [11] presents the design and analysis of an approximation
scheme for an optimal control problem where the control variable corresponds to
the order of the fractional operator [116].

• Near optimal complexity : According to Remark 2.7, the FEM on anisotropic
meshes with radical grading (2.14) is suboptimal. This deficiency can be cured
by exponential grading in the extended variable y and suitable exploitation of
analyticity properties of U (·, y) in y. This leads to a hybrid FEM that combines
the hp-version in y with the h-version in Ω and exhibits an error decay (#TY )−1/d

provided f ∈ H1−s(Ω) [17, 86]. Dealing with incompatible f /∈ H1−s(Ω) is open
although this is responsible for boundary singularities governed by (1.8).

3. The Integral Fractional Laplacian

Here we consider the discretization of the integral definition of the fractional
Laplacian (1.4). In view of the definition (1.5) of the space Hs(Ω), and the fractional
Poincaré inequality

‖w‖L2(Ω) . |w|Hs(Rd) ∀w ∈ Hs(Ω),

we may furnish Hs(Ω) with the Hs(Rd)-seminorm. We also define the bilinear form
J·, ·K : Hs(Ω)×Hs(Ω)→ R,

(3.1) Ju,wK :=
C(d, s)

2

¨
Q

(u(x)− u(x′))(w(x)− w(x′))
|x− x′|d+2s

dx′ dx,

where Q = (Ω × Rd) ∪ (Rd × Ω) and C(d, s) was defined in (1.3). We denote by
9 ·9 the norm that J·, ·K induces, which is just a multiple of the Hs(Rd)-seminorm.
The weak formulation of (1.4) is obtained upon multiplying (1.3) by a test function
w ∈ Hs(Ω), integrating over x ∈ Ω and exploiting symmetry to make the difference
w(x)− w(x′) appear. With the functional setting we have just described at hand,
this problem is formulated as follows: find u ∈ Hs(Ω) such that

(3.2) Ju,wK = 〈f, w〉 ∀v ∈ Hs(Ω).

Applying the Lax-Milgram lemma immediately yields well-posedness of (3.2).
Although the energy norm 9 · 9 involves integration on Ω × Rd, this norm can

be localized. In fact, due to Hardy’s inequality [44, 54], the following equivalences
hold [5, Corollary 2.6]:

‖w‖Hs(Ω) ≤ 9w9 . ‖w‖Hs(Ω), if s ∈ (0, 1/2),

|w|Hs(Ω) ≤ 9w9 . |w|Hs(Ω), if s ∈ (1/2, 1).

When s = 1/2, since Hardy’s inequality fails, it is not possible to bound the

H
1
2 (Rd)-seminorm in terms of the H

1
2 (Ω)-norm for functions supported in Ω. How-

ever, for the purposes we pursue in this work, it suffices to notice that the estimate

9w9 . |w|
H

1
2

+ε(Ω)

holds for all w ∈ H 1
2 +ε(Ω).
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From this discussion, it follows that the energy norm may be bounded in terms
of fractional–order norms on Ω. Thus, in order to estimate errors in the energy
norm, we may bound errors within Ω.

3.1. Regularity. We now review some results regarding Sobolev regularity of so-
lutions to problem (3.2) that are useful to deduce convergence rates of the finite
element scheme proposed below. Regularity results for the fractional Laplacian
have been recently obtained by Grubb [64] in terms of Hörmander µ-spaces [66].
The work [5] has reinterpreted these in terms of standard Sobolev spaces. The fol-
lowing result, see [27, 64], holds for domains with smooth boundaries, a condition
that is too restrictive for a finite element analysis.

Theorem 3.1 (smooth domains). Let s ∈ (0, 1), Ω be a domain with ∂Ω ∈ C∞,
f ∈ Hr(Ω) for some r ≥ −s, u be the solution of (1.4) and α = min{s+r, 1/2−ε},
with ε > 0 arbitrarily small. Then, u ∈ Hs+α(Ω) and the following regularity
estimate holds:

‖u‖Hs+α(Ω) . ‖f‖Hr(Ω),

where the hidden constant depends on the domain Ω, the dimension d, s and α.

As a consequence of the previous result, we see that smoothness of the right
hand side f does not ensure that solutions are any smoother than Hs+ 1

2−ε(Ω); see
also [121]. We illustrate this phenomenon with the following example.

Example 3.2 (limited regularity). We follow [60, 106] and consider Ω = B(0, 1) ⊂
Rd and f ≡ 1. Then the solution to (3.2) is given by

(3.3) u(x) =
Γ(d2 )

22sΓ(d+2s
2 )Γ(1 + s)

(1− |x|2)s+,

where t+ = max{t, 0}.

The lack of a lifting property for the solution to (3.2) can also be explained by the
fact that the eigenfunctions of this operator have reduced regularity [27, 65, 108].
This is in stark contrast with the spectral fractional Laplacian (1.6), discussed in
Section 2.2, whose eigenfunctions coincide with those of the Laplacian and thus are
smooth functions if the boundary of the domain is regular enough.

On the other hand, Hölder regularity results for (3.2) have been obtained in
[107]. They give rise to Sobolev estimates for solutions in terms of Hölder norms of
the data, that are valid for rough domains. More precisely, we have the following
result; see [5].

Theorem 3.3 (Lipschitz domains). Let s ∈ (0, 1) and Ω be a Lipschitz domain

satisfying the exterior ball condition. If s ∈ (0, 1/2), let f ∈ C 1
2−s(Ω); if s = 1/2,

let f ∈ L∞(Ω); and if s ∈ (1/2, 1), let f ∈ Cβ(Ω) for some β > 0. Then, for every

ε > 0, the solution u of (3.2) belongs to Hs+ 1
2−ε(Ω), with

‖u‖
Hs+

1
2
−ε(Ω)

.
1

ε
‖f‖?,

where ‖·‖? denotes the C
1
2−s(Ω), L∞(Ω) or Cβ(Ω), correspondingly to whether s is

smaller, equal or greater than 1/2, and the hidden constant depends on the domain
Ω, the dimension d and s.

In case s > 1/2, the theorem above ensures that the solution u belongs at least to

H1
0 (Ω). It turns out that to prove the full Hs+ 1

2−ε-regularity, an intermediate step
is to ensure that the gradient of u is actually an L2-function. Following [28], this
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fact can be proved studying the behavior of the fractional seminorms | · |H1−δ(Ω),
which usually blow up as δ → 0:

(3.4) lim
δ→0

δ|w|2H1−δ(Ω) = C(d)|w|2H1(Ω) ∀w ∈ L2(Ω).

Therefore, the technique used in [5] to prove Theorem 3.3 consists of first proving
that the left-hand side of (3.4) remains bounded as δ → 0 for the solution u of
(3.2), whence u ∈ H1(Ω), and next analyzing the regularity of the gradient of u.

As already stated in (1.7), the solution to (3.2) behaves like dist(x, ∂Ω)s for
points x close to the boundary ∂Ω. This can clearly be seen in Example 3.2 and
explains the reduced regularity obtained in Theorems 3.1 and 3.3. To capture this
behavior, we develop estimates in fractional weighted norms, where the weight is a
power of the distance to the boundary. Following [5] we introduce the notation

δ(x, x′) = min
{

dist(x, ∂Ω),dist(x′, ∂Ω)
}
,

and, for ` = k + s, with k ∈ N and s ∈ (0, 1), and κ ≥ 0, we define the norm

‖w‖2H`κ(Ω) := ‖w‖2Hk(Ω) +
∑
|β|=k

¨
Ω×Ω

|Dβw(x)−Dβw(x′)|2
|x− x′|d+2s

δ(x, x′)2κ dx′ dx.

and the associated space

(3.5) H`
κ(Ω) :=

{
w ∈ H`(Ω): ‖w‖H`κ(Ω) <∞

}
.

Although we are interested in the case κ ≥ 0, we recall that in the definition
of weighted Sobolev spaces Hk

κ(Ω), with k being a nonnegative integer, arbitrary
powers of δ can be considered [75, Theorem 3.6]. On the other hand, global versions
H`
κ(Rd) are defined integrating in the space Rd and taking δ as before, but some

restrictions must be taken into account to ensure their completeness. A sufficient
condition is that the weight belongs to the Muckenhoupt class A2(Rd) [73]. In this
context, this implies that if |κ| < 1/2 then the spaces H`

κ(Rd) are complete.

Remark 3.4 (explicit solutions). In radial domains, spaces like (3.5) have been used
to characterize the mapping properties of the fractional Laplacian. In particular,
when Ω is the unit ball, upon defining the weight ω(x) = 1 − |x|2, an explicit
eigendecomposition of the operator w 7→ (−∆)s(ωsw) is obtained in [6, 55]. The
eigenfunctions are products of solid harmonic polynomials and radial Jacobi poly-
nomials or, in one dimension, Gegenbauer polynomials. Mapping properties of the
fractional Laplacian can thus be characterized in terms of weighted Sobolev spaces
defined by means of expansions on these polynomials.

The regularity in the weighted Sobolev spaces (3.5) reads as follows [5, Proposi-
tion 3.12].

Theorem 3.5 (weighted Sobolev estimate). Let Ω be a bounded, Lipschitz domain
satisfying the exterior ball condition, s ∈ (1/2, 1), f ∈ C1−s(Ω) and u be the solution
of (3.2). Then, for every ε > 0 we have u ∈ H1+s−2ε

1/2−ε (Ω) and

‖u‖H1+s−2ε
1/2−ε (Ω) .

1

ε
‖f‖C1−s(Ω),

where the hidden constant depends on the domain Ω, the dimension d and s.

It is not straightforward to extend Theorem 3.5 to s ∈ (0, 1/2] since, in this case,
we cannot invoke Theorem 3.3 to obtain that the solution u belongs to H1(Ω).
Circumventing this would require to introduce a weight to obtain, for some κ > 0,
that u ∈ H1−ε

κ (Ω) for some κ > 0. However, for this is necessary to obtain a
weighted version of (3.4) which, to the best of our knowledge, is not available in
the literature. In spite of this, the numerical experiments we have carried out
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using graded meshes and s ∈ (0, 1/2] show the same order of convergence as for
s ∈ (1/2, 1); see Table 1 below.

The proof of Theorem 3.5 presented in [5] also shows that, if f ∈ Cβ(Ω) for some
β ∈ (0, 2− 2s), ` < min{β + 2s, κ+ s+ 1/2}, then we have

(3.6) |u|H`κ(Ω) .
1

(β + `− 2s)(1 + 2(κ− s− `)) |f |Cβ(Ω),

where the hidden constant depends only on Ω and the dimension d. This shows
that increasing the exponent κ of the weight allows for the differentiability order `
to increase as well. In principle, there is no restriction on κ above; however, in the
next subsection we exploit this weighted regularity by introducing approximations
on a family of graded meshes. There we show that the order of convergence (with
respect to the number of degrees of freedom) is only incremented as long as κ < 1/2.

3.2. FEM: A Priori Error Analysis. The numerical approximation of the solu-
tion to (3.2) presents an immediate difficulty: the kernel of the bilinear form (3.1)
is singular, and consequently, special care must be taken. For this reason, most
existing approaches restrict themselves to the one dimensional case (d = 1). Explo-
rations in this direction can be found using finite elements [49], finite differences [67]
and Nyström methods [6]. For several dimensions the literature is rather scarce. A
Monte Carlo algorithm that avoids dealing with the singular kernel was proposed
in [77].

Here we present a direct finite element approximation in arbitrary dimensions.
Following §2.4 we denote by T a conforming and shape regular mesh of Ω, consisting
of simplicial elements K of diameter bounded by h. In order to present a unified
approach for the whole range s ∈ (0, 1) we only consider approximations of (3.2)
by continuous functions. For s < 1/2 it is possible to consider piecewise constants,
but we do not explore this here. With the finite element space U(T ) defined as in
(2.10), the finite element approximation of (3.2) is then the unique solution to the
problem: find U ∈ U(T ) such that

(3.7) JU,W K = 〈f,W 〉 ∀W ∈ U(T ).

From this formulation it immediately follows that U is the projection (in the energy
norm) of u onto U(T ). Consequently, we have a Céa-like best approximation result

9u− U9 = inf
W∈U(T )

9u−W 9 .

Thus, in order to obtain a priori rates of convergence, it just remains to bound the
energy-norm distance between the discrete spaces and the solution. One difficult
aspect of dealing with fractional seminorms is that they are not additive with
respect to domain decompositions. Nevertheless, it is possible to localize these
norms [59]: for all w ∈ Hs(Ω) we have

|w|2Hs(Ω) ≤
∑
K∈T

[ˆ
K

ˆ
SK

|w(x)− w(x′)|2
|x− x′|d+2s

dx′ dx+
C(d, σ)

sh2s
K

‖w‖2L2(K)

]
,

where SK is the patch associated with K ∈ T and σ denotes the shape-regularity
parameter of the mesh T . From this inequality it follows that, to obtain a priori
error estimates, it suffices to compute interpolation errors over the set of patches
{K × SK}K∈T . The reduced regularity of solutions implies that we need to re-
sort to quasi-interpolation operators; we work with the Scott-Zhang operator ΠT

[112]. Local stability and approximation properties of this operator were studied
by Ciarlet Jr. in [45].
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Proposition 3.6 (quasi-interpolation estimate). Let K ∈ T , max{1/2, s} < ` ≤ 2,
s ∈ (0, 1), and ΠT be the Scott-Zhang operator. If w ∈ H`(Ω), then

ˆ
K

ˆ
SK

|(w −ΠT w)(x)− (w −ΠT w)(x′)|2
|x− x′|d+2s

dx′ dx . h2`−2s
K |w|2H`(SK),

where the hidden constant depends on d, σ, ` and blows up as s ↑ 1.

The interpolation estimate of Proposition 3.6 shows that, if the meshsize is suf-
ficiently small, we deduce an a priori error bound in the energy norm.

Theorem 3.7 (energy error estimate for quasi-uniform meshes). Let u denote the
solution to (3.2) and denote by U ∈ U(T ) the solution of the discrete problem (3.7),
computed over a mesh T consisting of elements with maximum diameter h. Under
the hypotheses of Theorem 3.3 we have

9u− U9 . h
1
2 | log h|‖f‖?,

where the hidden constant depends on Ω, s and σ, and ‖ · ‖? denotes the C
1
2−s(Ω),

L∞(Ω) or Cβ(Ω), correspondingly to whether s is smaller, equal or greater than
1/2.

This estimate hinges on the regularity of solutions provided by Theorem 3.3,
and thus it depends on Hölder bounds for the data. We now turn our attention
to obtaining a priori error estimates in the L2(Ω)-norm. Using Theorem 3.1, an
Aubin-Nitsche duality argument can be carried out. The proof of the following
proposition follows the steps outlined in [27, Proposition 4.3].

Proposition 3.8 (L2-error estimate). Let u denote the solution to (3.2) and denote
by U ∈ U(T ) the solution of the discrete problem (3.7), computed over a mesh T
consisting of elements with maximum diameter h. Under the hypotheses of Theorem
3.1 we have

‖u− U‖L2(Ω) . hα+β‖f‖Hr(Ω),

where α = min{s+ r, 1/2− ε}, β = min{s, 1/2− ε}, ε > 0 may be taken arbitrarily
small and the hidden constant depends on Ω, s, d, σ, α and blows up when ε→ 0.

Finally, for s ∈ (1/2, 1) and d = 2, we take advantage of Theorem 3.5, from
which further information about the boundary behavior of solutions is available. We
propose a standard procedure often utilized in connection with corner singularities
or boundary layers arising in convection-dominated problems. An increased rate
of convergence is achieved by resorting to a priori adapted meshes. To obtain
interpolation estimates in the weighted fractional Sobolev spaces defined by (3.5),
we introduce the following Poincaré inequality [5, Proposition 4.8].

Proposition 3.9 (weighted fractional Poincaré inequality). Let s ∈ (0, 1), κ ∈
[0, s) and a domain S which is star-shaped with respect to a ball. Then, for every
w ∈ Hs

κ(S), it holds

‖w − w‖L2(S) . ds−κS |w|Hsκ(S),

where w =
ffl
S
w dx, dS = diam(S) and the hidden constant depends on the chunki-

ness parameter of S and the dimension d.

This inequality yields sharp quasi-interpolation estimates near the boundary of
the domain, where the weight δ involved in (3.5) degenerates. Such bounds in turn
lead to estimates for the Scott-Zhang operator in weighted fractional spaces. We
exploit them for two-dimensional problems (d = 2) by constructing graded meshes
as in [63, Section 8.4]. In addition to shape regularity, we assume that our meshes T
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satisfy the following property: there is a number µ ≥ 1 such that given a meshsize
parameter h and K ∈ T , we have

(3.8) hK ≤ C(σ)

{
hµ, K ∩ ∂Ω 6= ∅,
hdist(K, ∂Ω)(µ−1)/µ, K ∩ ∂Ω = ∅.

where the constant C(σ) depends only on the shape regularity constant σ of the
mesh T . The parameter µ relates the meshsize h to the number of degrees of
freedom because (recall that d = 2)

#T ≈
{
h−2, µ ≤ 2,

h−µ, µ > 2.

It is now necessary to relate the parameter µ with the exponent κ of the weight δ
in estimate (3.6). Increasing the parameter µ corresponds to raising κ and thereby
allowing an increase of the differentiability order `. However, if µ > 2 this gain is
compensated by a growth in the number of degrees of freedom. Following [5], it
turns out that the optimal parameter is µ = 2 and we have the following result.

Theorem 3.10 (energy error estimates for graded meshes). Let Ω ⊂ R2 and U ∈
U(T ) be the solution to (3.7), computed over a mesh T that satisfies (3.8) with
µ = 2. In the setting of Theorem 3.5 we have

9u− U9 . (#T )−
1
2 | log(#T )| 12 ‖f‖C1−s(Ω),

where the hidden constant depends on σ and blows up as s→ 1/2.

3.3. Implementation. Let us now discuss key details about the finite element
implementation of (3.2) for d = 2. If {φv} are the nodal piecewise linear basis
functions of U(T ), defined as in (2.10), then the entries of the stiffness matrix
A = (Avw) are

Avw = Jφv, φwK =
C(d, s)

2

¨
Q

(φv(x)− φv(x′))(φw(x)− φw(x′))
|x− x′|2+2s

dx′ dx.

Two numerical difficulties — coping with integration on unbounded domains
and handling the non-integrable singularity of the kernel — seem to discourage a
direct finite element approach. However, borrowing techniques from the boundary
element method [111], it is possible to compute accurately the entries of the matrix
A. We next briefly outline the main steps of this procedure. For full details, we
refer to [4] where a finite element code to solve (3.2) is documented.

The integrals involved in the computation of A should be carried over R2. For
this reason it is convenient to consider a ball B containing Ω and such that the
distance from Ω to Bc is an arbitrary positive number. This is needed in order to
avoid difficulties caused by lack of symmetry when dealing with the integral over Ωc

when Ω is not a ball. Together with B, we introduce an auxiliary triangulation TA

on B \ Ω such that the complete triangulation TB over B (that is TB = T ∪ TA)
remains admissible and shape-regular.

We define, for 1 ≤ `,m ≤ #TB and K`,Km ∈ TB ,

Iv,w`,m :=

ˆ
K`

ˆ
Km

(φv(x)− φv(x′))(φw(x)− φw(x′))
|x− x′|2+2s

dx′ dx,

Jv,w
` :=

ˆ
K`

ˆ
Bc

φv(x)φw(x)

|x− x′|2+2s
dx′ dx,

(3.9)

whence we may write

Avw =
C(d, s)

2

#TB∑
`=1

(
#TB∑
m=1

Iv,w`,m + 2Jv,w
`

)
.
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We reiterate that computing the integrals Iv,w`,m and Jv,w
` is challenging for different

reasons: the former involves a singular integrand if K` ∩Km 6= ∅, while the latter
needs to be calculated in an unbounded domain.

We first tackle the computation of Iv,w`,m in (3.9). If K` and Km do not touch,
then the integrand is a regular function and can be integrated numerically in a
standard fashion. On the other hand, if K`∩Km 6= ∅, then Iv,w`,m bears some resem-
blances to typical integrals appearing in the boundary element method. Indeed, the
quadrature rules we employ are analogous to the ones presented in [111, Chapter
5]. Basically, the scheme consists of the following steps:

• Consider parametrizations χ` : K̂ → K` and χm : K̂ → Km such that the edge or
vertex shared by K` and Km is the image of the same edge/vertex in the reference

element K̂. If K` and Km coincide, simply use the same parametrization twice.
• Decompose the integration domain into certain subsimplices and then utilize

Duffy-type transformations to map these subdomains into the four-dimensional
unit hypercube.

• Since the Jacobian of these Duffy transformations is regularizing, each of the inte-
grals may be separated into two parts: a highly singular but explicitly integrable
part and a smooth, numerically tractable part.

The second difficulty lies in the calculation of Jv,w
` , namely, dealing with the

unbounded domain Bc. We write

Jv,w
` =

ˆ
K`

φv(x)φw(x)%(x) dx, %(x) :=

ˆ
Bc

1

|x− x′|2+2s
dx′,

and realize that we need to accurately compute %(x) at each quadrature point
x ∈ K` ∩ Ω̄. To do so, there are two properties we can take advantage of: the
radiality of % and the fact that % is smooth up to the boundary of Ω because,
for x ∈ Ω̄ and x′ ∈ Bc |x − x′| > dist(Ω, Bc) > 0. Therefore, the values of % at
quadrature nodes can be precomputed with an arbitrary degree of precision.

3.4. Numerical Experiments. We present the outcome of two experiments posed
in Ω = B(0, 1) ⊂ R2.

3.4.1. Rate of Convergence in Energy Norm. Following Example 3.2 we have that,
if f ≡ 1, then the solution to (3.2) is given by (3.3). Table 1 shows computational
rates of convergence in the energy norm for several values of s, both for uniform and
graded meshes. These rates are in agreement with those predicted by Theorems
3.7 and 3.10. Moreover, we observe an increased order of convergence for s ≤ 1/2
and graded meshes which is not accounted for in Theorem 3.10.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uniform meshes 0.497 0.496 0.498 0.500 0.501 0.505 0.504 0.503 0.532

Graded meshes 1.066 1.040 1.019 1.002 1.066 1.051 0.990 0.985 0.977

Table 1. Example 3.4.1: Computational rates of convergence for
(3.2) posed in the unit ball with right-hand side f ≡ 1. Errors are
measured in the energy norm with respect to the meshsize param-
eter h. The second row corresponds to uniform meshes, while the
third to graded meshes, with µ = 2 in (3.8).
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3.4.2. Rate of Convergence in L2-Norm. Remark 3.4 states that a family of explicit
solutions for (3.2) is available in the unit ball. A subclass of solutions in that family

may be expressed in terms of the Jacobi polynomials P
(α,β)
k : [−1, 1]→ R. We set

f(x) =

(
Γ(3 + s)

21−s

)2

P
(s,0)
2 (2|x|2 − 1),

so that the solution to (3.2) is given by [55, Theorem 3]

u(x) = (1− |x|2)s+ P
(s,0)
2 (2|x|2 − 1).

We compute the orders of convergence in L2(Ω) for s ∈ {0.25, 0.75}; according to
Proposition 3.8, it is expected to have order of convergence 0.75 for s = 0.25 and 1
for s = 0.75 with respect to the meshsize h. The results, summarized in Table 2,
agree with the predicted rates of convergence.

h s = 0.25 s = 0.75
0.0383 0.0801 0.01740
0.0331 0.0698 0.01388
0.0267 0.0605 0.01104
0.0239 0.0556 0.00965
0.0218 0.0513 0.00849

Table 2. Example 3.4.2: Errors in the L2-norm for s = 0.25 and
s = 0.75. The estimated orders of convergence with respect to the
meshsize are, respectively, 0.7669 and 1.2337.

3.5. FEM: A Posteriori Error Analysis. Since solutions of (3.2) have reduced
regularity, and assembling the stiffness matrixA entails a rather high computational
cost, it is of interest to devise suitable AFEMs. We now present a posteriori error
estimates of residual type and ensuing AFEM; we follow [99].

We estimate the energy error 9u−U9 in terms of the residual R := f−(−∆)sU
in H−s(Ω). To do so, we need to address two important issues: localization of the
norm in H−s(Ω) and a practical computation of R.

To localize fractional norms we deviate from [59] and perform a decomposition on
stars Sv = supp φv, the support of the basis functions φv associated with node v and
diameter hv. Exploiting the partition of unity property

∑
v φv = 1, and Galerkin

orthogonality Ju− U, φvK = 0 for all v ∈ Ω, we can write, for every w ∈ Hs(Ω)

Ju−U,wK = 〈R, w〉 =
∑
v

〈R, wφv〉 =
∑
v

〈R, (w−w̄v)φv〉 =
∑
v

〈(R−R̄v)φv, w−w̄v〉,

where w̄v ∈ R are weighted mean values computed as w̄v = 0 provided v ∈ ∂Ω and,
otherwise,

w̄v :=
〈w, φv〉
〈φv, 1〉

∀ v ∈ Ω.

The values of R̄v ∈ R are yet to be chosen. We see that R =
∑

v(R−R̄v)φv where
each term (R − R̄v)φv ∈ H−s(Sv) has support in Sv. We have the following two
estimates for dual norms proved in [99, Lemmas 1 and 2].

Lemma 3.11 (localized upper bound of dual norm). Let G ∈ H−s(Ω) be decom-
posed as G =

∑
v gv with gv ∈ H−s(Sv) vanishing outside Sv. We then have for

0 < s < 1

‖G‖2H−s(Ω) ≤ (d+ 1)
∑
v

‖gv‖2H−s(Sv)
.
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A key practical issue is then how to evaluate ‖gv‖H−s(Sv) for gv = (R − R̄v)φv.

For second order operators, R splits into an L2-component in element interiors
(provided f ∈ L2(Ω)) and a singular component supported on element boundaries.
In contrast, the residual R = f − (−∆)sU does not have a singular component and
its absolutely continuous part is not always in L2(Ω) for all 0 < s < 1 no matter
how smooth f might be. This is related to singularities of (−∆)sφv(x) as x tends
to the skeleton of Sv because φv is continuous, piecewise linear. Using that [119,
Theorem XI.2.5]

(−∆)s : W̃ t
p(Ω)→W t−2s

p (Ω), t ∈ R, p > 1,

is a continuous pseudo-differential operator of order 2s, and φv ∈ W̃
1+ 1

p−ε
p (Ω) for

any ε > 0, we deduce

(−∆)sU ∈ Lp(Ω)
1

p
> 2s− 1.

This motivates the following estimate, whose proof is given in [99, Lemma 2].

Lemma 3.12 (upper bound of local dual norm). Let gv ∈ Lp(Sv) satisfy
´
Sv
gv dx =

0 for each v ∈ Ω. If 0 < s < 1 and 1 ≤ p <∞ satisfies 1
p <

s
d + 1

2 , then

‖gv‖H−s(Sv) . h
s+ d

2− dp
v ‖gv‖Lp(Sv).

However, to be able to apply Lemma 3.12 the Lebesgue exponent p must satisfy

2s− 1 <
1

p
<
s

d
+

1

2
.

We note that for s < 3
4 we can choose p = 2 for any dimension d. However, for

3
4 ≤ s < 1 we need to take 1 < p < 2. For d = 1, 2 this condition is satisfied for any

s < 1, but for d = 3 we have the unfortunate constraint s < 9
10 .

We can now choose R̄v as

R̄v :=

´
Sv
Rφv dx´

Sv
φv dx

, v ∈ Ω

and R̄v = 0 otherwise, so that the local contributions satisfy
´
Sv

(R−R̄v)φv dx = 0

and we can then apply the bound of Lemma 3.12. The following upper a posteriori
error estimate is derived in [99, Theorem 1].

Theorem 3.13 (upper a posteriori bound). Let f ∈ Lp(Ω) and 1 < p < ∞, 0 <
s < 1 satisfy the restriction 2s− 1 < 1

p <
s
d + 1

2 , then

‖u− U‖2H−s(Ω) .
∑
v

h
2
(
s+ d

2− dp
)

v ‖(R− R̄v)φv‖2Lp(Sv)
.

This error analysis has two pitfalls. The first one, alluded to earlier, is a restric-
tion on s for d > 2. The second one is the actual computation of (−∆)sφv(x) for
d > 1, which is problematic due to its singular behavior as x tends to the skeleton
on T . This is doable for d = 1 and we refer to [99, Section 8] for details and
numerical experiments. This topic is obviously open for improvement.

3.6. Extensions and Applications. We conclude the discussion by mentioning
extensions and applications of this approach:

• Eigenvalue problems: The eigenvalue problem for the integral fractional Lapla-
cian arises, for example, in the study of fractional quantum mechanics [79]. As
already mentioned, a major difference between the spectral fractional Laplacian
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and the integral one is that, for the second one, eigenfunctions have reduced reg-
ularity. In [27], conforming finite element approximations were analyzed and it
was shown that the Babuška-Osborn theory [13] holds in this context. Regularity
results for the eigenfunctions are derived under the assumption that the domain
is Lipschitz and satisfies the exterior ball condition. Numerical evidence on the
non-convex domain Ω = (−1, 1)2 \ [0, 1)2 indicates that the first eigenfunction is
as regular as the first one on any smooth domain. This is in contrast with the
Laplacian.

• Time dependent problems: In [3], problem (2.16) with γ ∈ (0, 2] and the integral
definition of (−∆)s was considered. Regularity of solutions was studied and a
discrete scheme was proposed and analyzed. The method is based on a standard
Galerkin finite element approximation in space, as described here, while in time
a convolution quadrature approach was used [68, 80].

• Non-homogeneous Dirichlet conditions: An interpretation of a non-homogeneous
Dirichlet condition g for the integral fractional Laplacian is given by using (1.3)
upon extension by g over Ωc. In [7] a mixed method for this problem is proposed;
it is based on the weak enforcement of the Dirichlet condition and the incorpo-
ration of a certain non-local normal derivative as a Lagrange multiplier. This
non-local derivative is interpreted as a non-local flux between Ω and Ωc [51].

• Non-local models for interface problems: Consider two materials with permittiv-
ities/diffusivities of opposite sign, and separated by an interface with a corner.
Strong singularities may appear in the classical (local) models derived from elec-
tromagnetics theory. In fact, the problem under consideration is of Fredholm
type if and only if the quotient between the value of permittivities/diffusivities
taken from both sides of the interface lies outside a so-called critical interval,
which always contains the value −1. In [26] a non-local interaction model for the
materials is proposed. Numerical evidence indicates that the non-local model
may reduce the critical interval and that solutions are more stable than for the
local problem.

4. Dunford-Taylor Approach for Spectral and Integral Laplacians

In this section we present an alternative approach to the ones developed in the
previous sections. It relies on the Dunford-Taylor representation (1.11)

u = (−∆)−sf =
sin(sπ)

π

ˆ ∞
0

µ−s(µ−∆)−1f dµ

for the spectral fractional Laplacian (1.6). For the integral fractional Laplacian
(1.2), instead, it hinges on the equivalent representation (1.13) of (1.12):ˆ

Rd
|ξ|sF−1(ũ)|ξ|sF−1(w̃) dξ

=
2 sin(sπ)

π

ˆ ∞
0

µ1−2s

ˆ
Ω

(
(−∆)(I − µ2∆)−1ũ(x)

)
w(x) dxdµ.

(4.1)

In (4.1), the operators −∆ and I−µ2∆ are defined over Rd, something to be made
precise in Theorem 4.5.

In each case, the proposed method is proved to be efficient on general Lipschitz
domains Ω ⊂ Rd. They rely on sinc quadratures and on finite element approxi-
mations of the resulting integrands at each quadrature points. While (1.11) allows
for a direct approximation of the solution, the approximation of (1.13) leads to
a non-conforming method where the action of the stiffness matrix on a vector is
approximated.

We recall that the functional spaces Hs(Ω) are defined in (1.5) for s ∈ [0, 3/2).
We now extend the definition Hs(Ω) = Hs(Ω) ∩H1

0 (Ω) for s ∈ (1, 2].
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4.1. Spectral Laplacian. We follow [24, 25] and describe a method based on
the Balakrishnan representation (1.11). In order to simplify the notation, we set
L := −∆ : D(L)→ L2(Ω) and define the domain of Lr, for r ∈ R, to be

D(Lr) := {v ∈ L2(Ω) : Lrv ∈ L2(Ω)};
this is a Banach space equipped with the norm

‖v‖D(Lr) := ‖Lrv‖L2(Ω).

We also define the solution operator T : H−1(Ω) → H1
0 (Ω) by Tf := v, where

for F ∈ H−1(Ω), v ∈ H1
0 (Ω) is the unique solution ofˆ

Ω

∇v · ∇w dx = F (v), ∀w ∈ H1
0 (Ω).

This definition directly implies that D(L) = range(T |L2(Ω)).

4.1.1. Finite Element Discretization. For simplicity, we assume that the domain Ω
is polytopal so that it can be partitioned into a conforming subdivision T . We
recall that U(T ) ⊂ H1

0 (Ω) stands for the subspace of globally continuous piecewise
linear polynomials with respect to T ; see Section 2.4. We denote by ΠT the L2(Ω)-
orthogonal projection onto U(T ) and by LT : U(T ) → U(T ) the finite element
approximation of L, i.e., for V ∈ U(T ), LT V ∈ U(T ) solvesˆ

Ω

(LT V )W dx =

ˆ
Ω

∇V · ∇W dx, ∀W ∈ U(T ).

We finally denote by TT the inverse of LT , the finite element solution operator,
and by h the maximum diameter of elements in T .

With these notations, we are in the position to introduce the finite element
approximation U ∈ U(T ) of u in (1.10):

(4.2) U :=
sin(sπ)

π

ˆ ∞
0

µ−s(µ+ LT )−1ΠT f dµ.

The efficiency of the approximation of u by U depends on the efficiency of the
finite element solver (TT ΠT )f (i.e. for the standard Laplacian), which is dictated
by the regularity of Tf . This regularity aspect has been intensively discussed in the
literature [14, 20, 48, 69, 72, 91]. In this exposition, we make the following general
assumption.

Definition 4.1 (elliptic regularity). We say that T satisfies a pick-up regularity
of index 0 < α ≤ 1 on Ω if for 0 ≤ r ≤ α, the operator T is an isomorphism from
H−1+r(Ω) to H1+r(Ω).

Notice that α = 1 when Ω is convex, whence this definition extends (2.8) to
general Lipschitz domains.

Assuming a pick-up regularity of index α, for any r ∈ [0, 1], we have

‖Tw − TT ΠT w‖Hr(Ω) . h2α∗‖Tw‖Hα+1(Ω) . h2α∗‖w‖Hα−1(Ω)

where α∗ := 1
2

(
α+ min(1− r, α)

)
. The proof of the above estimate is classical and

is based on a duality argument (Nitsche’s trick); see e.g. [25, Lemma 6.1]. Notice
that α∗ < α when 1 − α < r, i.e, the error is measured with regularity index too
large to take full advantage of the pick-up regularity in the duality argument.

We expect that approximation (4.2) of the fractional Laplacian problem delivers
the same rate of convergence

(4.3) ‖u− U‖Hr(Ω) . h2α∗‖u‖H1+α(Ω) . h2α∗‖f‖H1+α−2s(Ω),

but the function U in (4.2) is well defined provided f ∈ L2(Ω), i.e. 1 + α− 2s ≥ 0.
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Before describing the finite element approximation result, we make the follow-
ing comments. The solution u = L−sf belongs to D(L(1+α)/2) provided that
f ∈ D(L(1+α)/2−s). Hence, estimates such as (4.3) rely on the characterization
of D(Lr/2) for r ∈ (0, 1 + α]. For 0 ≤ r ≤ 1, the spaces D(Lr/2) and Hr(Ω)
are equivalent, as they are both scale spaces which coincide at r = 0 and r = 1.
Furthermore, assuming an elliptic regularity pick-up of index 0 < α ≤ 1, this
characterization extends up to 1 + α [25, Theorem 6.4 and Remark 4.2].

Theorem 4.2 (finite element approximation). Assume that T satisfies a pick-
up regularity of index α ∈ (0, 1] on Ω. Given r ∈ [0, 1] with r ≤ 2s, set γ :=
max{r+ 2α∗− 2s, 0} and α∗ := 1

2

(
α+ min(1− r, α)

)
. If f ∈ Hδ(Ω) for δ ≥ γ, then

‖u− U‖Hr(Ω) ≤ Chh2α∗‖f‖Hδ(Ω),

where

Ch .

 log(2/h), when δ = γ and r + 2α∗ ≥ 2s,
1, when δ > γ and r + 2α∗ ≥ 2s,
1, when δ = 0 and 2s > r + 2α∗.

4.2. Sinc Quadrature. It remains to put in place a sinc quadrature [82] to ap-
proximate the integral in (4.2). We use the change of variable µ = ey so that

U =
sin(sπ)

π

ˆ ∞
−∞

e(1−s)y(ey + LT )−1ΠT f dy.

Given k > 0, we set

N+ :=

⌈
π2

4sk2

⌉
, N− :=

⌈
π2

4(1− s)k2

⌉
, and y` := k`,

and define the sinc quadrature approximation of U by

(4.4) Uk :=
sin(sπ)

π
k

N+∑
`=−N−

e(1−s)y`(ey` + LT )−1ΠT f.

The sinc quadrature consists of uniformly distributed quadrature points in the y
variable, and the choice of N+ and N− makes it more robust with respect to s.

The decay when |z| → +∞ and holomorphic properties of the integrand z−s(z−
L)−1 in the Dunford-Taylor representation (1.10) guarantee the exponential con-
vergence of the sinc quadrature [25, Theorem 7.1].

Theorem 4.3 (sinc quadrature). For r ∈ [0, 1], we have

‖U − Uk‖Hr(Ω) . e−π
2/(2k)‖f‖Hr(Ω).

To compare with Theorem 2.4, we take r = s and assume that Ω is convex,
which allows for any α in (0, 1]. We choose a number of sinc quadrature points
N+ ≈ N− ≈ log(1/h) so that sinc quadrature and finite element errors are balanced.
Therefore, Theorems 4.2 and 4.3 yield for the Dunford-Taylor method

‖u− Uk‖Hs(Ω) . (#T )−2α∗/d‖f‖Hσ(Ω),

where σ := max(2α∗ − s, s) and (#T )−1/d ≈ h for quasi-uniform subdivisions,
provided we discard logarithmic terms. In contrast, the error estimate of Theorem
2.4 for the extension method reads, again discarding log terms,

‖u− U‖Hs(Ω) . (#TY )−1/(d+1)‖f‖H1−s(Ω)

and was derived with pick-up regularity α = 1. We first observe the presence of
the exponent d + 1, which makes the preceding error estimate suboptimal. This
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can be cured with geometric grading in the extended variable and hp-methodology.
Section 2.7 and [17, 86] show that this approach yields the following error estimate

‖u− U‖Hs(Ω) . (#T )−1/d‖f‖H1−s(Ω),

with #T degrees of freedom, after discarding logarithmic terms. This estimate
exhibits quasi–optimal linear order for the regularity f ∈ H1−s(Ω). We also see that
the Dunford-Taylor method possesses the optimal rate of convergence 2α∗ = 2−s >
1 allowed by polynomial interpolation theory for smoother datum f ∈ Hσ(Ω):
σ = 2(1 − s) when s ≤ 2/3 and σ = s when s > 2/3. We may also wonder
what regularity of f would lead to the same linear order of convergence as the
extension method, that requires f ∈ H1−s(Ω). We argue as follows: if s ≤ 1

2 ,

then f ∈ H1−s(Ω); otherwise, if s > 1
2 , then f ∈ Hs(Ω). We thus realize that the

regularity of f is the same for s ≤ 1
2 but it is stronger for s > 1

2 .
It is worth mentioning that the Dunford-Taylor algorithm seems advantageous

in a multi-processor context as it appears to exhibit good strong and weak scaling
properties. The former consists of increasing the number of processors for a fixed
number of degrees of freedom, while for the latter, the number of degrees of freedom
per processor is kept constant when increasing the problem size. We refer to [46]
for a comparison of different methods.

Remark 4.4 (implementation). The method based on (4.4) requires N+ + N− + 1
independent standard Laplacian finite element solves for each quadrature points y`:

V ` ∈ U(T ) : ey`
ˆ

Ω

V ` W dx+

ˆ
Ω

∇V ` · ∇W dx =

ˆ
Ω

fW dx ∀W ∈ U(T ),

which are then aggregated to yield Uk:

Uk =
sin(sπ)

π
k

N+∑
`=−N−

e(1−s)y`V `.

Implementation of this algorithm starting from a finite element solver for the Pois-
son problem is straightforward. Numerical illustrations matching the predicted
convergence rates of Theorems 4.2 and 4.3 are provided in [24].

4.2.1. Extensions. We now discuss several extensions.

• Symmetric operators and other boundary conditions. The operator L = −∆ can
be replaced by any symmetric elliptic operators as long as the associated bilinear
form (u,w) 7→

´
Ω
Lu w remains coercive and bounded in H1

0 (Ω). Different bound-
ary conditions can be considered similarly as well. However, it is worth pointing
out that the characterization of D(Lr) depends on the boundary condition and
must be established.

As an illustration, Figure 4 depicts the approximations using parametric sur-
face finite element [56] of the solution to

(4.5) (−∆Γ)su = 1 on Γ, u = 0 on ∂Γ,

where ∆Γ is the surface Laplacian on Γ ⊂ R3, either the side boundary of a
cylinder or given by

Γ :=
{

(x1 + 2 sin(x3), x2 + 2 cos(x3), 10x3) ∈ R3 : (x1, x2, x3) ∈ S2, x3 ≥ 0
}
.(4.6)

• Regularly accretive operators. The class of operators L can be extended further
to a subclass of non-symmetric operators. They are the unbounded operators
associated with coercive and bounded sesquilinear forms in H1

0 (Ω) (regularly
accretive operators [71]). In this case, fractional powers cannot be defined using
a spectral decomposition as in (1.6) but rather directly using the Dunford-Taylor
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Figure 4. Dunford-Taylor Method: Numerical approximation of
the solution to the spectral Laplacian problem (4.5) on an hyper-
surface (darker = smaller values; lighter = larger values). (Left)
s = 0.8 and Γ is the side boundary of a cylinder of radius 1 and
height 2; (Right) s = 0.5 and Γ is given by (4.6).

representation (1.10) and the Balakrishnan formula (1.11), which remain valid.
The bottleneck is the characterization of the functional spaces D(Lr/2) in terms
of Sobolev regularity. It turns out that for −1 < r < 1, we have that D(Lr/2) is
the same as for the symmetric operator [70]

D(Lr/2) = D((L+ L∗)r/2) = Hr(Ω),

where L∗ denotes the adjoint of L. This characterization does not generally
hold for r = 1 (Kato square root problem [71]). McKintosh [84] proved that
D(L1/2) = H1(Ω) = H1

0 (Ω) for sesquilinear forms of the type

(ψ,ϕ) 7→
ˆ

Ω

(B∇ψ · ∇ϕ+ β1 · ∇ψϕ+ ψβ2 · ∇ϕ+ cψϕ) dx,

where B ∈ L∞(Ω,GL(Rd)), β1, β2 ∈ L∞(Ω,Rd) and c ∈ L∞(Ω) are such that
the form is coercive and bounded. This characterization is extended in [25,
Theorem 6.4] up to r = 1 + α so that similar convergence estimates to those in
Theorems 4.2 and 4.3 are established. To illustrate the method for non-symmetric
operators, we consider the following example(

−∆ +

(
1
1

)
· ∇
)s

u = 1, in Ω, u = 0 on ∂Ω,

where Ω = (−1, 1)2 \ [0, 1)2 is a L-shaped domain. Figure 5 reports the fully
discrete approximations given by (4.4) for s = 0.2, 0.5, 0.8.

• Space and time fractional diffusion. In [22, 21] the space-time fractional problem

∂γt u+ (−∆)su = f, u(0) = u0,

is studied, where ∂γt denotes the so-called Caputo derivative of order γ ∈ (0, 1];
see (2.17). The solution of the space-time fractional problem is given by [109]

u(t) = eγ,1(−tγLs)u0 +

ˆ t

0

ξγ−1eγ,γ(−ξγLs)f(t− ξ) dξ,

where, again in this case, a Dunford-Taylor representation can be used to write

eγ,µ(−tγLs) =
1

2πi

ˆ
C

eγ,µ(−tγzs)(z − L)−1 dz

and eγ,µ defined on C is the Mittag-Leffler function. Because of the presence
of eγ,µ, the contour C cannot be deformed onto the negative real axis anymore,
which prevents a representation like in (1.11). Instead, the sinc quadrature is
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Figure 5. Dunford-Taylor Method: Approximation of the solu-
tion to fractional advection - diffusion problem on a L-shaped do-
main. (Left) Solution with isolines for s = 0.5. (Right) Plots of
u for s = 0.2, 0.5, 0.8 on the segment from the corner opposite to
the re-entrant corner (of coordinate (-1,1)) to the re-entrant corner
(of coordinate (0,0)). It appears that the boundary layer intensity
(but not its width) at the re-entrant corner depends on the power
fraction s.

performed directly on a hyperbolic parametrization of C in the complex plane.
Nevertheless, we obtain the error estimates

‖u(t)− Uk(t)‖L2(Ω) .
(
t−γα∗/sh2α∗ + t−γe−c/k

)
‖u0‖L2(Ω),

when f = 0 and where α∗ := min(α, s−) with s− denoting any number strictly
smaller than s. Here c is a constant independent of h and k. We refer the reader
to [22, 21] for estimates measuring the error in higher norms or for improved
results (in the singularity when t → 0) when u0 is smoother. Note that the
representation used does not need a time-stepping method for the initial value
problem.

When u0 = 0 instead, a graded (a-priori known and depending on γ) mesh
in time towards t = 0 is put forward. A midpoint quadrature scheme (second
order) in time for a total of N log(N ) time steps yields the error estimates

‖u(t)− Uk,N (t)‖L2(Ω) . t(1−α∗/s)γh2α∗‖f‖L2((0,t)×Ω)

+ max{tγ , t3/2+γ}N−2‖f‖H2(0,t;L2(Ω))

+ log(N )e−c/k‖f‖L∞(0,t;L2(Ω)).

Notice that the method exhibits second order convergence rate (up to a loga-
rithmic term) with respect to the number of time intervals. Again, we refer to
[21, 22] for more details as well as additional estimates when measuring the error
in higher order norms.

4.3. Integral Laplacian. The strategy used for the spectral Laplacian in the pre-
vious section cannot be used for the integral Laplacian. In fact, formulas like (1.10)
are not well defined (the integral Laplacian is not strictly positive).

Instead, we rely on the following equivalent representation of the bilinear form
(4.1) in the weak formulation (1.12). Recall that fractional order Sobolev spaces in
Rd are defined and normed by

Hr(Rd) =

{
w ∈ L2(Rd) : ‖w‖Hr(Rd) =

(ˆ
Rd

(1 + |ξ|2)r/2|F (w)(ξ)|2 dξ

)1/2

<∞
}
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for r > 0, and that the notation w̃ stands for the zero extension of w outside Ω so
that w ∈ Hr(Ω) if and only if w̃ ∈ Hr(Rd) for r ∈ [0, 3/2); see definition (1.5).

Theorem 4.5 (equivalent representation). Let s ∈ (0, 1) and 0 ≤ r ≤ s. For
η ∈ Hr+s(Rd) and θ ∈ Hs−r(Rd),ˆ

Rd
|ξ|r+sF (η)(ξ) |ξ|s−rF (θ)(ξ) dξ

=
2 sin(sπ)

π

ˆ ∞
0

µ1−2s

ˆ
Rd

(
(−∆)(I − µ2∆)−1η

)
θ dxdµ.

To prove the above theorem, it suffices to note that using Parseval’s theoremˆ
Rd

(
(−∆)(I − µ2∆)−1η

)
θ dx =

ˆ
Rd

|ξ|2
1 + µ2|ξ|2 F (η)(ξ)F (θ)(ξ) dξ.

and use the change of variable t = µ|ξ| together with the relationˆ ∞
0

t1−2s

1 + t2
dt =

π

2 sin(πs)
.

For more details, we refer to [23, Theorem 4.1].
In order to make the above representation more amenable to numerical methods,

for ψ ∈ L2(Rd), we define v(ψ, µ) := v(µ) ∈ H1(Rd) to be the solution to

(4.7)

ˆ
Rd
v(µ)φ dx+ µ2

ˆ
Rd
∇v(µ) · ∇φ dx = −

ˆ
Rd
ψφdx, ∀φ ∈ H1(Rd).

Using this notation along with definition (1.5) of Hs(Ω), we realize that for η, θ ∈
Hs(Ω) with s ∈ (0, 1), we haveˆ

Rd
|ξ|sF (η̃)(ξ) |ξ|sF (θ̃)(ξ) dξ =

2 sin(sπ)

π

ˆ ∞
0

µ−1−2s
( ˆ

Ω

(
η + v(η̃, µ)

)
θ dx

)
dµ;

note that v(η̃, µ) does not vanish outside Ω. This prompts the definition

(4.8) a(η, θ) :=
2 sin(sπ)

π

ˆ ∞
0

µ−1−2s
(ˆ

Ω

(
η + v(η̃, µ)

)
θ dx

)
dµ,

for η, θ ∈ Hs(Ω). The above representation is the starting point of the proposed
numerical method. The solution u ∈ Hs(Ω) of the fractional Laplacian satisfies

(4.9) a(u,w) = 〈f, w〉 ∀w ∈ Hs(Ω).

We discuss in Section 4.3.4 a Strang’s type argument to assess the discretization
error from the consistency errors generated by the approximation of a(·, ·) using
sinc quadratures, domain truncations, and finite element discretizations.

4.3.1. Sinc Quadrature. We proceed as in Section 4.2 for the spectral Laplacian
and use the change of variable µ = e−

1
2y to arrive at

a(η, θ) =
sin(sπ)

π

ˆ ∞
−∞

esy
(ˆ

Ω

(
η + v(η̃, µ(y))

)
θ dx

)
dy.

Given a quadrature spacing k > 0, N+ and N− two positive integers, the sinc
quadrature approximation of a(·, ·) is given by

(4.10) ak(η, θ) :=
sin(sπ)

π
k

N+∑
`=−N−

esy`
ˆ

Ω

(
η + v(η̃, µ(y`))

)
θ dx.

Notice that we only emphasize the dependency in k in the approximation of a(·, ·)
as we will select N+ and N− as a function of k.

The consistency error between ak(·, ·) and a(·, ·) is described in the following
result. We simply note that, as for the spectral Laplacian discussed in Section 4.1,
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the proof of Theorem 4.6 is given in [23, Theorem 5.1 and Remark 5.1] and relies
on the holomorphic property and decay as µ→∞ of the integrand in (4.8).

Theorem 4.6 (quadrature consistency). Given θ ∈ Hs(Ω) and η ∈ Hδ(Ω) with
s < δ ≤ min(2 − s, σ), where σ stands for any number strictly smaller than 3/2.

Set N+ :=
⌈

π2

2k2(δ−s)

⌉
and N− :=

⌈
π2

4sk2

⌉
. Then, we have

|a(η, θ)− ak(η, θ)| . max

(
1

δ − s ,
1

s

)
e−π

2/(4k)‖η‖Hδ(Ω)‖θ‖Hs(Ω).

4.3.2. Truncated Problems. The sinc approximation of a(·, ·) defined by (4.10) re-
quires the computation of v(η̃, µ(y`)) for each quadrature point y` (here η ∈ Hβ(Ω)
for some s < β < 3/2 is fixed). This necessitates, according to (4.7), the approx-
imations of (I − µ(y`)

2∆)−1 on Rd. The proposed method relies on truncations
of this infinite domain problem and uses standard finite elements on the resulting
bounded domains. As we shall see, the truncated domain diameter must depend
on the quadrature point y`.

We let B be a convex bounded domain containing Ω and the origin of Rd. With-
out loss of generality, we assume that the diameter of B is 1. For a truncation
parameter M , we define the dilated domains

BM (µ) :=

{
{y = (1 + µ(1 +M)x : x ∈ B}, µ ≥ 1,
{y = (2 +M)x : x ∈ B}, µ < 1,

and for ψ ∈ L2(Rd), the associated functions vM (µ) := vM (ψ, µ) ∈ H1
0 (BM (µ))

satisfying ˆ
BM (µ)

vM (µ)w dx+ µ2

ˆ
BM (µ)

∇vM (µ) · ∇w dx

= −
ˆ
BM (µ)

ψw dx ∀w ∈ H1
0 (BM (µ));

(4.11)

compare with (4.7). The exponential decay of the function v(η̃, µ) yields

‖v(η̃, µ)− vM (η̃, µ)‖L2(BM (µ)) . e−max(1,µ)cM/µ‖η‖L2(Ω),

where c is a constant independent of M and µ (see [23, Lemma 6.1]). As a conse-
quence, the truncation consistency in using

ak,M (η, θ) :=
sin(sπ)

π
k

N+∑
`=−N−

esy`
ˆ

Ω

(η + vM (η̃, µ(y`)))θ dx

instead of ak(η, θ) decays exponentially fast as a function of M [23, Theorem 6.2].

Theorem 4.7 (truncation consistency). For M sufficiently large, there is positive
constant c independent of M and k such that for all η, θ ∈ L2(Ω)

|ak(η, θ)− ak,M (η, θ)| . e−cM‖η‖L2(Ω)‖θ‖L2(Ω).

4.3.3. Finite Element Discretization. We now turn our attention to the finite ele-
ment approximation of vM (η̃, µ) defined by (4.11). For simplicity, we assume that
the domain Ω is polytopal so that it can be partitioned into a conforming subdivision
T with elements of maximum diameter h as in Section 4.1.1. Generic constants
below may depend on the shape regularity and quasi-uniformity constants of T
without mention of it.

We need two subspaces of globally continuous piecewise linear polynomials. The
first one, U(T ) ⊂ H1

0 (Ω), is defined in (2.10) relative to the partition T . The
second subspace, denoted U(T M (µ)), has a similar definition but relative to the
subdivision T M (µ) of BM (µ(y`)). We impose that the partitions T M (µ) match
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in Ω, which implies that restrictions of functions in U(T M (µ)) are continuous
piecewise linears over T . We refer to [23] for details on the constructions of such
partitions, which is the bottleneck of the proposed method.

We now define for any ψ ∈ L2(Rd) the finite element approximation VM (µ) =
VM (ψ, µ) ∈ U(T M (µ)) of the function vM (µ) to beˆ

BM (µ)

VM (µ)W dx+ µ2

ˆ
BM (µ)

∇VM (µ) · ∇W dx

= −
ˆ
BM (µ)

ψW dx ∀W ∈ U(T M (µ)).

The fully discrete approximation of the bilinear form a(·, ·) then reads

ak,MT (Ξ,Θ) :=
sin(sπ)

π
k

N+∑
`=−N−

esy`
ˆ

Ω

(
Ξ + VM (Ξ̃, µ(y`))

)
Θ dx ∀Ξ,Θ ∈ U(T ).

Note that VM (Ξ̃, µ) is piecewise linear over T and the sum Ξ + VM (Ξ̃, µ) is easy

to perform. The consistency error between ak,M (·, ·) and ak,MT (·, ·) is given next;
see [23, Theorem 7.6] for a proof.

Theorem 4.8 (finite element consistency). If β ∈ (s, 3/2) and α ∈ (0,min(s, 1/2)),
then the following estimate is valid

|ak,M (Ξ,Θ)− ak,MT (Ξ,Θ)| . | log h|hβ+α−s‖Ξ‖Hβ(Ω)‖Θ‖Hs+α(Ω),

for all Ξ,Θ ∈ U(T ).

4.3.4. Strang’s Lemma. In addition to the three consistency estimates described
above, Strang’s Lemma requires the U(T )-ellipticity of the fully discrete form

ak,MT (·, ·). To show this, [23] invokes Theorem 4.6 (quadrature consistency) with
δ := min{2− s, β} and an inverse estimate to write for Ξ,Θ ∈ U(T )

|ak(Ξ,Θ)− a(Ξ,Θ)| . e−π
2/(4k)hs−δ‖Ξ‖Hs(Ω)‖Θ‖Hs(Ω).

This, together with the monotonicity property

ak,MT (Ξ,Θ) ≥ ak(Ξ,Θ),

and the coercivity of the exact bilinear form a(·, ·) in Hs(Ω), yields the U(T )-

ellipticity of ak,MT (·, ·) provided

(4.12) e−π
2/(4k)hs−δ ≤ c

for an explicit constant c.
The fully discrete approximation Uk,M ∈ U(T ) of u satisfying (4.9) is given by

ak,MT (Uk,M ,W ) =

ˆ
Ω

fW dx ∀W ∈ U(T ).

To measure the discrepancy between u and Uk,M in Hs(Ω), we assume the addi-
tional regularity u ∈ Hβ(Ω) for some β ∈ (s, 3/2). The expected regularity of u,
solution to the integral fractional Laplacian, is discussed in Theorems 3.1 and 3.3.
The theorem below, proved in [23, Theorem 7.8]), guarantees that the proposed
method delivers an optimal rate of convergence (up to a logarithmic factor).

Theorem 4.9 (error estimate). Assume that (4.12) holds and that u ∈ Hβ(Ω) for
some β ∈ (s, 3/2). Then there is a constant c independent of h, M , and k such
that

‖u− Uk,M‖Hs(Ω) .
(
e−π

2/(4k) + e−cM + | log h|hβ−s
)
‖u‖Hβ(Ω).
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We also refer to [23, Theorem 7.8] for further discussions on mesh generation,
matrix representation of the fully discrete scheme, and a preconditioned iterative
method.

Notice that the error estimate stated in Theorem 4.9 for quasi-uniform meshes
is of order about h1/2 and is similar to the one derived for the integral method
in Theorem 3.7. To see this, we choose β = s + 1

2 − ε with ε > 0 arbitrary,
which is consistent with the regularity of u guaranteed by Theorem 3.3, along with
M ≈ log(1/h) and N+ ≈ N− ≈ | log h|2 to balance the three sources of errors. It
is worth mentioning that using graded meshes for d = 2, Theorem 3.10 states an
optimal linear rate of convergence (up to a logarithmic factor) provided s ∈ (1/2, 1).
Whether such a strategy applies to the Dunford-Taylor method remains open.

4.3.5. Numerical Experiment. To illustrate the method, we depict in Figure 6 the
approximation Uk,M for s = 0.3, f = 1, and Ω = B(0, 1), the unit ball in R3.

Figure 6. Dunford-Integral Method: Numerical approximation
of the solution to the fractional integral Laplacian for s = 0.3 and
f = 1 in the unit ball of R3 (darker = 0.0, whiter = 0.7). The lines
represent the isosurfaces {u(x) = k/10} for k = 0, ..., 7.
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[94] R.H. Nochetto, E. Otárola, and A.J. Salgado. A PDE approach to numerical fractional

diffusion. In Proceedings of the 8th International Congress on Industrial and Applied Math-

ematics, pages 211–236. Higher Ed. Press, Beijing, 2015.
[95] R.H. Nochetto, E. Otárola, and A.J. Salgado. A PDE approach to space-time fractional

parabolic problems. SIAM J. Numer. Anal., 54(2):848–873, 2016.
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a foreword by S. M. Nikol′skĭı, Translated from the 1987 Russian original, Revised by the

authors.
[111] S.A. Sauter and C. Schwab. Boundary element methods, volume 39 of Springer Series in

Computational Mathematics. Springer-Verlag, Berlin, 2011. Translated and expanded from

the 2004 German original.
[112] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying

boundary conditions. Math. Comp., 54(190):483–493, 1990.

[113] R. Servadei and E. Valdinoci. On the spectrum of two different fractional operators. Proc.
Roy. Soc. Edinburgh Sect. A, 144(4):831–855, 2014.

[114] L. Silvestre. Regularity of the obstacle problem for a fractional power of the Laplace operator.

Comm. Pure Appl. Math., 60(1):67–112, 2007.
[115] D. Sims, E. Southall, N. Humphries, G. Hays, C. Bradshaw, J. Pitchford, A. James,

M. Ahmed, A. Brierley, M. Hindell, D. Morritt, M. Musyl, D. Righton, E. Shepard, V. Wear-
mouth, R. Wilson, M. Witt, and J. Metcalfe. Scaling laws of marine predator search be-

haviour. Nature, 451(7182):1098–1102, 2008.
[116] J. Sprekels and E. Valdinoci. A new type of identification problems: optimizing the fractional

order in a nonlocal evolution equation. SIAM J. Control Optim., 55(1):70–93, 2017.

[117] P.R. Stinga and J.L. Torrea. Extension problem and Harnack’s inequality for some fractional

operators. Comm. Partial Differential Equations, 35(11):2092–2122, 2010.
[118] L. Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3 of Lecture

Notes of the Unione Matematica Italiana. Springer, Berlin, 2007.
[119] M.E. Taylor. Pseudodifferential operators. Princeton Mathematical Series, vol. 34., 1981.
[120] B.O. Turesson. Nonlinear potential theory and weighted Sobolev spaces, volume 1736 of

Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.
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