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1. Introduction. In this work we shall be interested in the analysis and dis-15

cretization of a pointwise tracking optimal control problem for a semilinear ellip-16

tic partial differential equation (PDE). This PDE-constrained optimization problem17

entails the minimization of a cost functional that involves point evaluations of the18

state; control constrains are also considered. Let us make this discussion precise. Let19

Ω ⊂ Rd, with d ∈ {2, 3}, be an open, bounded, and convex polytope with boundary20

∂Ω and D be a finite ordered subset of Ω with cardinality #D < ∞. Given a set of21

desired states {yt}t∈D ⊂ R, a regularization parameter α > 0, and the cost functional22

(1.1) J(y, u) :=
1

2

∑
t∈D

(y(t)− yt)2
+
α

2
‖u‖2L2(Ω),23

the problem under consideration reads as follows: Find min J(y, u) subject to the24

monotone, semilinear, and elliptic PDE25

(1.2) −∆y + a(·, y) = u in Ω, y = 0 on ∂Ω,26

and the control constraints27

(1.3) u ∈ Uad, Uad := {v ∈ L2(Ω) : a ≤ v(x) ≤ b a.e. x ∈ Ω}.28

The control bounds a, b ∈ R are such that a < b. Assumptions on the function a will29

be deferred until section 2.2.30

The analysis of a priori error estimates for finite element approximations of dis-31

tributed semilinear optimal control problems has previously been considered in a32

number of works. To the best of our knowledge, the work [5] appears to be the33
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2 A. ALLENDES, F. FUICA, E. OTÁROLA

first to provide error estimates for a such class of problems; control constraints are34

also considered. Within a general setting, the authors consider the cost functional35

J(y, u) :=
´

Ω
L(x, y, u)dx, where L satisfies the conditions stated in [5, assumption36

A2], and devise finite element techniques to solve the underlying optimal control37

problem. To be precise, the authors propose a fully discrete scheme on quasi–uniform38

meshes that utilize piecewise constant functions to approximate the control variable39

and piecewise linear functions to approximate the state and adjoint variables. As-40

suming that Ω ⊂ Rd, with d ∈ {2, 3}, is a convex domain with a boundary ∂Ω of41

class C1,1 and the mesh–size is sufficiently small, the authors derive a priori error42

estimates for the approximation of the optimal control variable in the L2(Ω)-norm [5,43

Theorem 5.1] and the L∞(Ω)-norm [5, Theorem 5.2]; the one derived in the L2(Ω)-44

norm being optimal in terms of approximation. Since the publication of [5], several45

additional studies have enriched our understanding within such a scenario. We re-46

fer the reader to [14] for references and also for an up-to-date discussion including47

linear approximation of the optimal control, the so-called variational discretization48

approach, superconvergence and postprocessing step, and time dependent problems.49

For the particular case a ≡ 0, there are several works available in the literature50

that provide a priori error estimates for finite element discretizations of (1.1)–(1.3).51

In two and three dimensions and utilizing that the associated adjoint variable be-52

longs to W 1,r
0 (Ω), for every r < d/(d − 1), the authors of [19] obtain a priori and53

a posteriori error estimates for the so-called variational discretization of (1.1)–(1.3);54

the state and adjoint equations are discretized with continuous piecewise linear fi-55

nite elements. The following rates of convergence for the error approximation of the56

control variable are derived [19, Theorem 3.2]: O(h) in two dimensions and O(h1/2)57

in three dimensions. Later, the authors of [9] analyze a fully discrete scheme that58

approximates the optimal state, adjoint, and control variables with piecewise linear59

functions and obtain a O(h) rate of convergence for the error approximation of the60

control variable in two dimensions [9, Theorem 5.1]. The authors of [9] also analyze61

the variational discretization scheme and derive a priori error estimates for the error62

approximation of the control variable in [9, Theorem 5.2]. In [4], the authors invoke63

the theory of Muckenhoupt weights and weighted Sobolev spaces to provide error64

estimates for a numerical scheme that discretizes the control variable with piecewise65

constant functions; the state and adjoint equations are discretized with continuous66

piecewise linear finite elements. In two and three dimenions, the authors derive a67

priori error estimates for the error approximation of the optimal control variable; the68

one in two dimensions being nearly-optimal in terms of approximation [4, Theorem69

4.3]. In three dimensions the estimate behaves as O(h1/2| log h|); it is suboptimal in70

terms of approximation. This has been recently improved in [7, Theorem 6.6]. We71

finally mention the works [23] and [6] for extensions of the aforementioned results to72

the Stokes system.73

In contrast to the aforementioned advances and to the best of our knowledge,74

this exposition is the first one that studies approximation techniques for a pointwise75

tracking optimal control problem involving a semilinear elliptic PDE. In what follows,76

we list, what we believe are, the main contributions of our work:77

• Existence of an optimal control: Assuming that a = a(x, y) is a Carathéodory78

function that is monotone increasing and locally Lipschitz in y with a(·, 0) ∈79

L2(Ω), we show that our control problem admits at least a solution; see80

Theorem 3.1.81

• Optimality conditions: We obtain first order optimality conditions in Theo-82

rem 3.3. Under additional assumptions on a, we derive second order necessary83
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and sufficient optimality conditions with a minimal gap; see section 3.3. Since84

the cost functional of our problem involves point evaluations of the state, we85

have that p̄ ∈W 1,r
0 (Ω) /∈ H1

0 (Ω)∩C(Ω̄), where r < d/(d−1). This requires a86

suitable adaption of the arguments available in the literature [14, section 6],87

[32]. The arguments in [14, section 6] utilize that p̄ ∈W 2,p(Ω) with p > d.88

• Convergence of discretization and error estimates: We prove that the se-89

quence {ūh}h>0 of global solutions of suitable discrete control problems con-90

verge to a solution of the continuous optimal control problem. We also derive91

a nearly-optimal local error estimate in maximum–norm for semilinear PDEs92

in Theorem 4.1, which is instrumental for proving that the error approxima-93

tion of the control variable converges with rate O(h| log h|), when measured94

in the L2-norm. The analysis involves estimate in L∞-norm and W 1,p-spaces,95

combined with having to deal with the variational inequality that character-96

izes the optimal control and suitable second order optimality conditions. This97

subtle intertwining of ideas is one of the highlights of this contribution.98

The outline of this manuscript is as follows. In section 2 we introduce the notation99

and functional framework we shall work with and briefly review basic results for100

semilinear elliptic PDEs. In section 3 we analyze a weak version of the optimal control101

problem (1.1)–(1.3); we show existence of solutions and obtain first and second order102

optimality conditions. In section 4 we present a finite element discretization of (1.1)–103

(1.3) and review some results related to the discretization of the state and adjoint104

equations. In section 5 we derive a nearly-optimal estimate for the error approximation105

of the control variable. We conclude in section 6 by presenting a numerical example106

that confirms our theoretical results.107

2. Notation and assumptions. Let us set notation and describe the setting108

we shall operate with.109

2.1. Notation. Throughout this work d ∈ {2, 3} and Ω ⊂ Rd is an open,110

bounded, and convex polytopal domain. If X and Y are Banach function spaces,111

we write X ↪→ Y to denote that X is continuously embedded in Y . We denote by112

‖·‖X the norm of X . Given r ∈ (1,∞), we denote by r′ its Hölder conjugate, i.e., the113

real number such that 1/r+ 1/r′ = 1. The relation a . b indicates that a ≤ Cb, with114

a positive constant that depends neither on a, b nor on the discretization parameter.115

The value of C might change at each occurrence.116

2.2. Assumptions. We will consider the following assumptions on the nonlinear117

function a. We notice, however, that some of the results that we present in this work118

hold under less restrictive requirements. When possible we explicitly mention the119

assumptions on a that are needed to obtain a particular result.120

(A.1) a : Ω × R → R is a Carathéodory function of class C2 with respect to the121

second variable and a(·, 0) ∈ L2(Ω).122

(A.2) ∂a
∂y (x, y) ≥ 0 for a.e. x ∈ Ω and for all y ∈ R.123

(A.3) For all m > 0, there exists a positive constant Cm such that124

2∑
i=1

∣∣∣∣∂ia∂yi (x, y)

∣∣∣∣ ≤ Cm ,

∣∣∣∣∂2a

∂y2
(x, v)− ∂2a

∂y2
(x,w)

∣∣∣∣ ≤ Cm |v − w|125

for a.e. x ∈ Ω and y, v, w ∈ [−m ,m ].126

2.3. State equation. Here, we collect some facts on problem (1.2) that are well-127

known and will be used repeatedly. Given f ∈ Lq(Ω), with q > d/2, we introduce the128
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following weak problem: Find y ∈ H1
0 (Ω) such that129

(2.1) (∇y,∇v)L2(Ω) + (a(·, y), v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω).130

We begin with the following result that states the well–posedness of problem (2.1)131

and further regularity properties for its solution y.132

Theorem 2.1 (well–posedness and regularity). Let f ∈ Lq(Ω) with q > d/2.133

Let a = a(x, y) : Ω× R→ R be a Carathéodory function that is monotone increasing134

and locally Lipschitz in y a.e. in Ω. If Ω denotes an open and bounded domain with135

Lipschitz boundary and a(·, 0) ∈ Lq(Ω), with q > d/2, then problem (2.1) has a unique136

solution y ∈ H1
0 (Ω)∩L∞(Ω). If, in addition, Ω is convex and f, a(·, 0) ∈ L2(Ω), then137

‖y‖H2(Ω) . ‖f − a(·, 0)‖L2(Ω).138

The hidden constant is independent of a and f .139

Proof. The existence of a unique solution y ∈ H1
0 (Ω) ∩ L∞(Ω) follows from the140

main theorem on monotone operators [33, Theorem 26.A], [28, Theorem 2.18] com-141

bined with an argument due to Stampacchia [31], [25, Theorem B.2]. The H2(Ω)-142

regularity of y follows from the fact that f, a(·, 0) ∈ L2(Ω) and that Ω is convex; see143

[24, Theorems 3.2.1.2 and 4.3.1.4] when d = 2 and [24, Theorems 3.2.1.2] and [26,144

section 4.3.1] when d = 3.145

The following result is contained in [32, Theorem 4.16].146

Theorem 2.2. Let f1, f2 ∈ Lq(Ω) with q > d/2. Let a = a(x, y) : Ω× R→ R be147

a Carathéodory function of class C1 with respect to y such that (A.2) holds. Assume148

that |∂a/∂y(x, y)| ≤ Cm for a.e. x ∈ Ω and y ∈ [−m ,m ]. If Ω denotes an open and149

bounded domain with Lipschitz boundary and a(·, 0) ∈ Lq(Ω), with q > d/2, then150

(2.2) ‖∇(y1 − y2)‖L2(Ω) + ‖y1 − y2‖L∞(Ω) . ‖f1 − f2‖Lq(Ω),151

where i ∈ {1, 2} and yi solves problem (2.1) with f replaced by fi.152

3. The pointwise tracking optimal control problem. In this section, we153

analyze the following weak version of the pointwise tracking optimal control problem154

(1.1)–(1.3): Find155

(3.1) min{J(y, u) : (y, u) ∈ H1
0 (Ω) ∩ L∞(Ω)× Uad}156

subject to the the state equation157

(3.2) (∇y,∇v)L2(Ω) + (a(·, y), v)L2(Ω) = (u, v)L2(Ω) ∀v ∈ H1
0 (Ω).158

Let a = a(x, y) : Ω × R → R be a Carathéodory function that is monotone159

increasing and locally Lipschitz in y with a(·, 0) ∈ L2(Ω). Since Ω is convex, Theorem160

2.1 yields the existence of a unique solution y ∈ H2(Ω)∩H1
0 (Ω) of problem (3.2). We161

immediately notice that, in view of the continuous embedding H2(Ω) ↪→ C(Ω̄), point162

evaluations of y in (1.1) are well-defined.163

3.1. Existence of optimal controls. As it is customary in optimal control164

theory, to analyze (3.1)–(3.2), we introduce the so-called control to state operator165

S : L2(Ω) → H2(Ω) ∩ H1
0 (Ω) which, given a control u, associates to it the unique166

state y that solves (3.2). With this operator at hand, we define the reduced cost167

functional j : L2(Ω)→ R by j(u) := J(Su, u).168
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Since the optimal control problem (3.1)–(3.2) is not convex, we discuss existence169

results and optimality conditions in the context of local solutions. A control ū ∈ Uad170

is said to be locally optimal in L2(Ω) for (3.1)–(3.2) if there exists δ > 0 such that171

J(ȳ, ū) ≤ J(y, u) for all u ∈ Uad such that ‖u−ū‖L2(Ω) ≤ δ. Here, ȳ = Sū and y = Su.172

Since the set Uad is bounded in L∞(Ω), it can be proved that local optimality in L2(Ω)173

is equivalent to local optimality in Lq(Ω) for q ∈ (1,∞); see [14, section 5] for details.174

The existence of an optimal state-control pair (ȳ, ū) is as follows.175

Theorem 3.1 (existence of an optimal pair). Let Ω be an open, bounded, and176

convex domain. Let a = a(x, y) : Ω × R → R be a Carathéodory function that is177

monotone increasing and locally Lipschitz in y with a(·, 0) ∈ L2(Ω). Thus, the optimal178

control problem (3.1)–(3.2) admits at least one solution (ȳ, ū) ∈ H1
0 (Ω)∩H2(Ω)×Uad.179

Proof. Define Φ : L2(Ω)→ R and Ψ : H2(Ω) ∩H1
0 (Ω)→ R by180

Φ(v) := α‖v‖2L2(Ω), Ψ(y) :=
∑
t∈D
|y(t)− yt|2.181

It is immediate that Φ is continuous and convex in L2(Ω). It is thus weakly lower182

semicontinuous in L2(Ω). On the other hand, Ψ is continuous as a map from H1
0 (Ω)∩183

H2(Ω) to R. The fact that Uad is weakly sequentially compact allows us to conclude;184

see [32, Theorem 4.15] for details.185

3.2. First order necessary optimality conditions. In this section, we for-186

mulate first order necessary optimality conditions. To accomplish this task, we begin187

by analyzing differentiability properties of the control to state operator S.188

Theorem 3.2 (differentiability properties of S). Assume that (A.1), (A.2), and189

(A.3) hold. Then, the control to state map S : L2(Ω) → H2(Ω) ∩ H1
0 (Ω) is of class190

C2. In addition, if u, v ∈ L2(Ω), then z = S ′(u)v ∈ H2(Ω) ∩ H1
0 (Ω) corresponds to191

the unique solution to192

(3.3) (∇z,∇w)L2(Ω) +
(
∂a
∂y (·, y)z, w

)
L2(Ω)

= (v, w)L2(Ω) ∀w ∈ H1
0 (Ω),193

where y = Su. If v1, v2 ∈ L2(Ω), then z = S ′′(u)(v1, v2) ∈ H2(Ω) ∩ H1
0 (Ω) is the194

unique solution to195

(3.4) (∇z,∇w)L2(Ω) +
(
∂a
∂y (·, y)z, w

)
L2(Ω)

= −
(
∂2a
∂y2 (·, y)zv1zv2 , w

)
L2(Ω)

196

for all w ∈ H1
0 (Ω), where zvi = S ′(u)vi, with i = 1, 2, and y = Su.197

Proof. The first order Fréchet differentiability of S from L2(Ω) intoH2(Ω)∩H1
0 (Ω)198

follows from a slight modification of the arguments of [32, Theorem 4.17] that basically199

entails replacing H1(Ω)∩C(Ω̄) by H2(Ω)∩H1
0 (Ω) and Lr(Ω) by L2(Ω). [32, Theorem200

4.17] also yields that z = S ′(u)v ∈ H2(Ω)∩H1
0 (Ω) corresponds to the unique solution201

to (3.3). The second order Fréchet differentiability of S can be obtained by using the202

implicit function theorem; see, for instance, the proof of [32, Theorem 4.24] and [14,203

Proposition 16] for details.204

We begin the analysis of optimality conditions with a classical result. If ū ∈ Uad205

denotes a locally optimal control for problem (3.1)–(3.2), then we have the variational206

inequality [32, Lemma 4.18]207

(3.5) j′(ū)(u− ū) ≥ 0 ∀u ∈ Uad.208
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We recall that, for u ∈ Uad, the reduced cost functional is defined as j(u) = J(Su, u).209

In (3.5), j′(ū) denotes the Gateâux derivative of j at ū. To explore the variational210

inequality (3.5), we introduce the adjoint variable p ∈W 1,r
0 (Ω), with r ∈ (1, d/(d−1)),211

as the unique solution to the adjoint equation212

(3.6) (∇w,∇p)L2(Ω) +
(
∂a
∂y (·, y)p, w

)
L2(Ω)

=
∑
t∈D
〈(y(t)− yt)δt, w〉 ∀w ∈W 1,r′

0 (Ω).213

Here, r′ > d denotes the Hölder conjugate of r and y = Su corresponds to the solution214

to (3.2). We immediately notice that, in view of assumptions (A.1)–(A.3), problem215

(3.6) is well–posed; see [10, Theorem 1].216

We are now in position to present first order necessary optimality conditions for217

our PDE–constrained optimization problem.218

Theorem 3.3 (first order necessary optimality conditions). Assume that (A.1),219

(A.2), and (A.3) hold. Then every locally optimal control ū ∈ Uad for problem (3.1)–220

(3.2) satisfies the variational inequality221

(3.7) (p̄+ αū, u− ū)L2(Ω) ≥ 0 ∀u ∈ Uad,222

where p̄ ∈ W 1,r
0 (Ω), with r < d/(d− 1), denotes the unique solution to problem (3.6)223

with y replaced by ȳ = Sū.224

Proof. A simple computation reveals that the first order optimality condition225

(3.5) can be written as follows:226

(3.8)
∑
t∈D

(Sū(t)− yt) · S ′(ū)(u− ū)(t) + α(ū, u− ū)L2(Ω) ≥ 0 ∀u ∈ Uad.227

Let us concentrate on the first term of the left hand side of (3.8). To accomplish228

this task, we begin by defining z := S ′(ū)(u − ū). Since u, ū ∈ L2(Ω), the results of229

Theorem 3.2 guarantees that z ∈ H2(Ω)∩H1
0 (Ω) ↪→W 1,q

0 (Ω) for every q < 2d/(d−2)230

[1, Theorem 4.12]. In particular, since 2d/(d− 2) > d, we have that z ∈ W 1,q
0 (Ω) for231

every q ∈ (d, 2d/(d − 2)). We are thus able to set w = z as a test function in the232

adjoint problem (3.6) to obtain233

(3.9) (∇z,∇p̄)L2(Ω) +
(
∂a
∂y (·, ȳ)p̄, z

)
L2(Ω)

=
∑
t∈D

(ȳ(t)− yt) · z(t).234

On the other hand, we would like to set w = p̄ in the problem that z = S ′(ū)(u−ū)235

solves. If that were possible, we would obtain236

(3.10) (∇z,∇p̄)L2(Ω) +
(
∂a
∂y (·, ȳ)z, p̄

)
L2(Ω)

= (u− ū, p̄)L2(Ω).237

However, since p̄ ∈W 1,r
0 (Ω) with r < d/(d−1), we have that p̄ 6∈ H1

0 (Ω) so that (3.10)238

must be justified by different means. Let {pn}n∈N ⊂ C∞0 (Ω) be such that pn → p̄ in239

W 1,r
0 (Ω) for every r < d/(d − 1). Setting, w = pn, with n ∈ N, in the problem that240

z = S ′(ū)(u− ū) solves yields241

(∇z,∇pn)L2(Ω) +
(
∂a
∂y (·, ȳ)z, pn

)
L2(Ω)

= (u− ū, pn)L2(Ω).242

The right hand side of this expression converges to (u− ū, p̄)L2(Ω). In fact,243

|(u− ū, p̄)L2(Ω) − (u− ū, pn)L2(Ω)| ≤ ‖u− ū‖L∞(Ω)‖p̄− pn‖L1(Ω) → 0, n ↑ ∞.244
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Since there is m > 0 such that |ȳ(x)| ≤ m for a.e. x ∈ Ω, (A.3) reveals that245 ∣∣∣∣(∂a∂y (·, ȳ)z, p̄
)
L2(Ω)

−
(
∂a
∂y (·, ȳ)z, pn

)
L2(Ω)

∣∣∣∣ ≤ Cm‖z‖L∞(Ω)‖p̄− pn‖L1(Ω) → 0246

as n ↑ ∞; ‖z‖L∞(Ω) is uniformly bounded because z ∈ H2(Ω) ∩H1
0 (Ω). Finally,247

|(∇z,∇(p̄− pn))L2(Ω)| ≤ ‖∇z‖Lr′ (Ω)‖∇(p̄− pn)‖Lr(Ω) → 0, n ↑ ∞,248

for every r < d/(d− 1).249

The desired variational inequality (3.7) follows from (3.8), (3.9), and (3.10).250

We present the following projection formula for ū. The local optimal control ū251

satisfies (3.7) if and only if [32, section 4.6]252

(3.11) ū(x) := Π[a,b](−α−1p̄(x)) a.e. x ∈ Ω,253

where Π[a,b] : L1(Ω)→ Uad is defined by Π[a,b](v) := min{b,max{v, a}} a.e. in Ω. We254

can thus immediately conclude that ū ∈W 1,r(Ω) for every r < d/(d− 1).255

We now present the following regularity result, which will be of importance to256

derive the error estimate of Theorem 5.1.257

Theorem 3.4 (extra regularity of ū). Suppose that assumptions (A.1), (A.2),258

and (A.3) hold. Then, every locally optimal control ū ∈ H1(Ω) ∩ C0,1(Ω̄).259

Proof. The proof relies on the projection formula (3.11) and on the local regularity260

of the locally optimal adjoint state p̄. For a detailed proof we refer the reader to [16,261

Lemma 3.3] and [12, Theorem 3.4]; see also [18, Theorem 4.2].262

3.3. Second order sufficient optimality condition. In this section, we derive263

second order optimality conditions. To be precise, we formulate second order necessary264

optimality conditions in Theorem 3.6 and derive, in Theorem 3.7, sufficient optimality265

conditions with a minimal gap with respect to the necessary ones derived in Theorem266

3.6.267

We begin our analysis with the following result.268

Theorem 3.5 (j is of class C2 and j′′ is locally Lipschitz). Assume that (A.1),269

(A.2), and (A.3) hold. Then the reduced cost functional j : L2(Ω)→ R is of class C2.270

Moreover, for every u, v1, v2 ∈ L2(Ω), we have271

(3.12) j′′(u)(v1, v2) = α(v1, v2)L2(Ω) −
(
∂2a
∂y2 (·, y)zv1zv2 , p

)
L2(Ω)

+
∑
t∈D

zv1(t)zv2(t),272

where p solves (3.6) and zvi = S ′(u)vi, with i ∈ {1, 2}. In addition, if v, u1, u2 ∈273

L2(Ω) and there exists m > 0 is such that max{‖u1‖L2(Ω), ‖u2‖L2(Ω)} ≤ m, then there274

exists Cm > 0 such that275

(3.13) |j′′(u1)v2 − j′′(u2)v2| ≤ Cm‖u1 − u2‖L2(Ω)‖v‖2L2(Ω).276

Proof. The fact that j is of class C2 is an immediate consequence of the differ-277

entiability properties of the control to state map S given in Theorem 3.2. It thus278

suffices to derive (3.12) and (3.13). To accomplish this task, we begin with a basic279

computation, which reveals that, for every u, v1, v2 ∈ L2(Ω), we have280

(3.14) j′′(u)(v1, v2) = α(v1, v2)L2(Ω) +
∑
t∈D

[(z(t) · (Su(t)− yt) + zv1(t)zv2(t)] ,281
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where z, zv1 , zv2 ∈ H2(Ω) ∩H1
0 (Ω) are as in the statement of Theorem 3.2. Set w = z282

in (3.6) and invoke a similar approximation argument to that used in the proof of283

Theorem 3.3, that essentially allows us to set w = p in (3.4), to obtain284 ∑
t∈D

z(t) · (Su(t)− yt) = −
(
∂2a
∂y2 (·, y)zv1zv2 , p

)
L2(Ω)

.285

Replacing the previous identity into (3.14) yields (3.12).286

Let u1, u2, v ∈ L2(Ω) and m > 0 be such that max{‖u1‖L∞(Ω), ‖u2‖L∞(Ω)} ≤ m .287

Define χ = S ′(u1)v and ψ = S ′(u2)v. Notice that χ and ψ correspond to the unique288

solutions to (3.3) with y = yu1
:= Su1 and y = yu2

:= Su2, respectively. In view of289

the identity (3.12) we obtain290

(3.15)

j′′(u1)v2 − j′′(u2)v2 =
(
∂2a
∂y2 (·, yu2

)ψ2, pu2

)
L2(Ω)

−
(
∂2a
∂y2 (·, yu1

)χ2, pu1

)
L2(Ω)

+
∑
t∈D

(χ2(t)− ψ2(t)) =: I +
∑
t∈D

IIt.
291

Here, i = {1, 2} and pui ∈ W
1,r
0 (Ω), with r < d/(d − 1), denotes the unique solution292

to the adjoint equation (3.6) with y replaced by yui . In what follows we estimate I293

and IIt for every t ∈ D. To estimate I, we first rewrite it as follows:294

295

I =
([

∂2a
∂y2 (·, yu2)− ∂2a

∂y2 (·, yu1)
]
ψ2, pu2

)
L2(Ω)

+
(
∂2a
∂y2 (·, yu1)ψ2, pu2 − pu1

)
L2(Ω)

296

+
(
∂2a
∂y2 (·, yu1

)[ψ2 − χ2], pu1

)
L2(Ω)

=: I1 + I2 + I3.297
298

Invoke (A.3), a generalized Hölder inequality, the Sobolev embedding H1
0 (Ω) ↪→299

L4(Ω), the well–posedness of problem (3.3), and the Lipschitz property (2.2), to obtain300

(3.16) I1 . ‖yu1
− yu2

‖L∞(Ω)‖∇ψ‖2L2(Ω)‖pu2
‖L2(Ω) . ‖u1 − u2‖L2(Ω)‖v‖2L2(Ω),301

where we have also used the stability estimate302

(3.17) ‖pu2‖L2(Ω) . ‖∇pu2‖Lr(Ω) . ‖yu2‖L∞(Ω) +
∑
t∈D
|yt| . M +

∑
t∈D
|yt|.303

Notice that Theorem 2.1 and the assumption on u2 yields ‖yu2‖L∞(Ω) ≤ C‖u2‖L2(Ω) ≤304

Cm , where C > 0. To guarantee that pu2 ∈ L2(Ω) and the first estimate in (3.17) we305

further restrict the exponent r to belong to [2d/(d+ 2), d/(d− 1)) [1, Theorem 4.12].306

To control I2, we invoke similar arguments to the ones that lead to (3.16). We obtain307

308

I2 ≤ Cm‖ψ‖2L4(Ω)‖pu1
− pu2

‖L2(Ω) . ‖∇ψ‖2L2(Ω)‖∇(pu1
− pu2

)‖Lr(Ω)309

. ‖v‖2L2(Ω)‖yu1
− yu2

‖L∞(Ω) . ‖v‖2L2(Ω)‖u1 − u2‖L2(Ω).310
311

Finally, to estimate I3, we notice that ψ − χ ∈ H1
0 (Ω) ∩ L∞(Ω) solves312

(∇(ψ − χ),∇w) +
(
∂a
∂y (·, yu2)(ψ − χ), w

)
L2(Ω)

=
([

∂a
∂y (·, yu1)− ∂a

∂y (·, yu2)
]
χ,w

)
L2(Ω)

313

for all w ∈ H1
0 (Ω). The stability estimate314

‖ψ − χ‖L∞(Ω) .
∥∥∥[∂a∂y (·, yu1

)− ∂a
∂y (·, yu2

)
]
χ
∥∥∥
L2(Ω)

,315
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combined with (A.3) and the Lipschitz property (2.2), allows us to conclude that316

(3.18) ‖ψ − χ‖L∞(Ω) . ‖yu1 − yu2‖L∞(Ω)‖χ‖L2(Ω) . ‖u1 − u2‖L2(Ω)‖v‖L2(Ω).317

Therefore, utilizing (A.3), the well-posedness of problem (3.3) and (3.18) we obtain318

I3 . ‖pu1‖L2(Ω)‖ψ − χ‖L∞(Ω)(‖ψ‖L2(Ω) + ‖χ‖L2(Ω)) . ‖u1 − u2‖L2(Ω)‖v‖2L2(Ω),319

where we have also used the stability estimate ‖ψ‖L2(Ω) + ‖χ‖L2(Ω) . ‖v‖L2(Ω) and320

an estimate for ‖pu1
‖L2(Ω) which is similar to the one derived in (3.17).321

The collection of the previous estimates allows us to arrive at322

(3.19) I = I1 + I2 + I3 . ‖u1 − u2‖L2(Ω)‖v‖2L2(Ω).323

Let t ∈ D. We now estimate IIt in (3.15). Combining the estimate (3.18) with324

an stability estimate for (3.3), it immediately follows that325

(3.20) IIt . ‖ψ − χ‖L∞(Ω)(‖ψ‖L∞(Ω) + ‖χ‖L∞(Ω)) . ‖u1 − u2‖L2(Ω)‖v‖2L2(Ω).326

We conclude the desired estimate (3.13) by replacing estimates (3.19) and (3.20)327

into (3.15). This concludes the proof.328

Let ū ∈ Uad satisfy the first order optimality conditions (3.2), (3.6), and (3.7).329

Define p̄ := p̄+ αū. The variational inequality (3.7) immediately yields330

(3.21) p̄(x)


= 0 a.e. x ∈ Ω if a < ū < b,

≥ 0 a.e. x ∈ Ω if ū = a,

≤ 0 a.e. x ∈ Ω if ū = b.

331

To formulate second order optimality conditions we introduce the cone of critical332

directions333

(3.22) Cū := {v ∈ L2(Ω) satisfying (3.23) and v(x) = 0 if p̄(x) 6= 0},334

where condition (3.23) reads as follows:335

(3.23) v(x)

{
≥ 0 a.e. x ∈ Ω if ū(x) = a,

≤ 0 a.e. x ∈ Ω if ū(x) = b.
336

From now on, we will restrict the exponent r to belong to [2d/(d + 2), d/(d − 1)) so337

that p, the solution to (3.6), belongs to L2(Ω) [1, Theorem 4.12]. This immediately338

implies that p̄ ∈ L2(Ω).339

We are now in position to present second order necessary and sufficient optimality340

conditions. While it is fair to say that for distributed and semilinear optimal control341

problems such a theory is well-understood, our main source of difficulty here is that the342

solution to the adjoint problem does not belong to H1
0 (Ω)∩C(Ω̄): p̄ ∈W 1,r

0 (Ω)\H1
0 (Ω)343

with r ∈ [2d/(d+ 2), d/(d− 1)).344

Theorem 3.6 (second order necessary optimality conditions). If ū ∈ Uad de-345

notes a locally optimal control for problem (3.1)–(3.2), then346

j′′(ū)v ≥ 0 ∀v ∈ Cū.347
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Proof. Let v ∈ Cū. Define, for every k ∈ N, the function348

vk(x) :=

{
0 if x : a < ū(x) < a + 1

k , b− 1
k < ū(x) < b,

Π[−k,k](v(x)) otherwise.
349

Notice that, since v ∈ Cū, it immediately follows that vk ∈ Cū. In fact, a.e. x ∈ Ω,350

we have v(x) = 0 =⇒ vk(x) = 0, v(x) ≥ 0 =⇒ vk(x) ≥ 0, and v(x) ≤ 0 =⇒351

vk(x) ≤ 0. In addition, |vk(x)| ≤ |v(x)| and vk(x) → v(x) as k ↑ ∞ for a.e. x ∈ Ω.352

Consequently, vk → v in L2(Ω) as k ↑ ∞. On the other hand, simple computations353

reveal that for every 0 < ρ ≤ k−2, we have ū + ρvk ∈ Uad. We can thus invoke the354

fact that ū is a local minimum to conclude that j(ū) ≤ j(ū+ ρvk) for ρ small enough.355

We now apply Taylor’s theorem for j at ū and utilize that j′(ū)vk = 0, which follows356

from the fact that vk ∈ Cū, to conclude that, for ρ sufficiently small, we have357

0 ≤ j(ū+ ρvk)− j(ū) = ρj′(ū)vk + ρ2

2 j
′′(ū+ ρθkvk)v2

k = ρ2

2 j
′′(ū+ ρθkvk)v2

k,358

with θk ∈ (0, 1). Divide by ρ2 and let ρ ↓ 0 to arrive at j′′(ū)v2
k ≥ 0. Let now k ↑ ∞359

and recall that vk → v in L2(Ω) to conclude, in view of (3.12), that j′′(ū)v2 ≥ 0. This360

concludes the proof.361

We now derive a sufficient condition with a minimal gap with respect to the362

necessary one obtained in Theorem 3.6.363

Theorem 3.7 (second order sufficient optimality conditions). Let (ȳ, p̄, ū) be364

a local minimum of (3.1)–(3.2) satisfying the first order optimality conditions (3.2),365

(3.6), and (3.7). If j′′(ū)v2 > 0 for all v ∈ Cū \ {0}, then there exist µ > 0 and σ > 0366

such that367

(3.24) j(u) ≥ j(ū) + µ
2 ‖u− ū‖

2
L2(Ω) ∀u ∈ Uad : ‖u− ū‖L2(Ω) ≤ σ.368

In particular, ū is a locally optimal control in the sense of L2(Ω).369

Proof. We will proceed by contradiction. Assume that (3.24) does not hold.370

Hence, for any k ∈ N we are able to find an element uk ∈ Uad such that371

(3.25) ‖ū− uk‖L2(Ω) <
1
k , j(uk) < j(ū) + 1

2k‖ū− uk‖
2
L2(Ω).372

Define373

(3.26) ρk := ‖uk − ū‖L2(Ω), vk := ρ−1
k (uk − ū).374

Taking a subsequence if necessary we can assume that vk ⇀ v in L2(Ω). In what375

follows we will prove, first, that the limit v ∈ Cū and thus that v = 0.376

Since the set of elements satisfying condition (3.23) is closed and convex in L2(Ω),377

it is weakly closed. Consequently, v satisfies (3.23). To verify the remaining condition378

in (3.22), we invoke the mean value theorem, (3.26), and (3.25) to arrive at379

(3.27) j′(ũk)vk = 1
ρk

(j(uk)− j(ū)) < ρk
2k → 0, k ↑ ∞,380

where ũk = ū + θk(uk − ū) and θk ∈ (0, 1). Define ỹk := Sũk and p̃k as the unique381

solution to (3.6) with y = ỹk. Since ũk → ū in L2(Ω) as k ↑ ∞, an application of382

Theorem 2.2 yields ỹk → ȳ in H1
0 (Ω)∩C(Ω̄) as k ↑ ∞. This, in view of [10, Theorem383

1], implies that p̃k → p̄ in W 1,r
0 (Ω), for every r < d/(d− 1), as k ↑ ∞. In particular,384

This manuscript is for review purposes only.



A SEMILINEAR POINTWISE TRACKING CONTROL PROBLEM 11

we have p̃k → p̄ in L2(Ω) as k ↑ ∞. Consequently, since p̃k := p̃k +αũk → p̄ = p̄+αū385

and vk ⇀ v in L2(Ω), as k ↑ ∞, we invoke (3.27) to obtain386

j′(ū)v =

ˆ
Ω

p̄(x)v(x)dx = lim
k↑∞

ˆ
Ω

p̃k(x)vk(x)dx = lim
k↑∞

j′(ũk)vk ≤ 0.387

On the other hand, in view of (3.7) we obtain
´

Ω
p̄(x)vk(x) = ρ−1

k

´
Ω
p̄(x)(uk(x) −388

ū(x))dx ≥ 0. This implies
´

Ω
p̄(x)v(x)dx ≥ 0. Consequently,

´
Ω
p̄(x)v(x)dx = 0.389

Since v satisfies the sign condition (3.23), the previous inequalities and (3.21) allow390

us to conclude that
´

Ω
|p(x)v(x)|dx =

´
Ω
p(x)v(x)dx = 0. This proves that, a.e. in Ω,391

p̄(x) 6= 0 implies that v(x) = 0. We can thus conclude that v ∈ Cū.392

We now prove that v = 0. To accomplish this task, we invoke Taylor’s theorem,393

the inequality in (3.25), and j′(ū)(uk − ū) ≥ 0, for every k ∈ N, to arrive at394

ρ2k
2 j
′′(ûk)v2

k = j(uk)− j(ū)− j′(ū)(uk − ū) ≤ j(uk)− j(ū) <
ρ2k
2k ,395

where, for k ∈ N, ûk = ū+ θk(uk − ū) with θk ∈ (0, 1). Thus, limk j
′′(ûk)v2

k ≤ 0. We396

now prove that j′′(ū)v2 ≤ lim infk j
′′(ûk)v2

k. Let ẑvk and zv be the solutions to (3.3)397

with forcing terms vk and v, respectively. Invoke (3.12) and write398

j′′(ûk)v2
k = α‖vk‖2L2(Ω) −

(
∂2a
∂y2 (·, ŷk)ẑ2

vk
, p̂k

)
L2(Ω)

+
∑
t∈D

ẑ2
vk

(t).399

Observe that,
∑
t∈D ẑ

2
vk

(t) →
∑
t∈D z

2
v(t). This is a consequence of the fact that400

vk ⇀ v in L2(Ω) implies that ẑvk ⇀ zv in H2(Ω) ∩H1
0 (Ω) as k ↑ ∞ and the compact401

embedding H2(Ω) ↪→ C(Ω̄). In addition, we have402

403

(3.28)

∣∣∣∣ˆ
Ω

(
∂2a
∂y2 (x, ȳ)z2

v p̄− ∂2a
∂y2 (x, ŷk)ẑ2

vk
p̂k

)
dx

∣∣∣∣ ≤ Cm‖zv‖2L∞(Ω)‖p̄− p̂k‖
2
L1(Ω)404

+Cm‖p̂k‖L1(Ω)

(
‖ȳ − ŷk‖L∞(Ω)‖zv‖2L∞(Ω) + ‖zv + ẑvk‖L∞(Ω)‖zv − ẑvk‖L∞(Ω)

)
→ 0405

406

as k ↑ ∞. To obtain (3.28), we used (A.3), p̃k → p̄ in W 1,r
0 (Ω), for every r < d/(d−1),407

and ỹk → ȳ in H1
0 (Ω) ∩ C(Ω̄) as k ↑ ∞. Since the square of ‖v‖L2(Ω) is continuous408

and convex, it is thus weakly lower semicontinuous in L2(Ω). We have thus proved409

that j′′(ū)v2 ≤ lim infk j
′′(ûk)v2

k.410

Therefore, since j′′(ū)v2 ≤ limk j
′′(ûk)v2

k ≤ 0 and v ∈ Cū, the second order411

optimality condition j′′(ū)v2 > 0 for all v ∈ Cū \ {0} immediately yields v = 0.412

Finally, since v = 0 we have ẑvk ⇀ 0 in H2(Ω) ∩H1
0 (Ω) as k ↑ ∞. Consequently,413

from the identity414

α = α‖vk‖2L2(Ω) = j′′(ûk)v2
k +

(
∂2a
∂y2 (·, ŷk)ẑ2

vk
, p̂k

)
L2(Ω)

−
∑
t∈D

ẑ2
vk

(t),415

and the fact that lim infk j
′′(ûk)v2

k ≤ 0, we obtain that α ≤ 0, which is a contradiction.416

This concludes the proof.417

To present the following result, we define418

Cτū := {v ∈ L2(Ω) satisfying (3.23) and v(x) = 0 if |p̄(x)| > τ}.419

Theorem 3.8 (equivalent optimality conditions). If (ȳ, p̄, ū) denotes a local min-420

imum of (3.1)–(3.2) satisfying the first order optimality conditions (3.2), (3.6), and421
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(3.7), then the following statements are equivalent:422

(3.29) j′′(ū)v2 > 0 ∀v ∈ Cū \ {0}423

and424

(3.30) ∃µ, τ > 0 : j′′(ū)v2 ≥ µ‖v‖2L2(Ω) ∀v ∈ Cτū .425

Proof. Since, for every τ > 0, we have Cū = C0
ū ⊂ Cτū , it follows immediately426

that (3.30) implies (3.29).427

To prove that (3.29) implies (3.30) we proceed by contradiction. Assume that,428

for every τ > 0, there exists wτ ∈ Cτū such that j′′(ū)w2
τ < τ‖wτ‖2L2(Ω). Define429

vτ := wτ/‖wτ‖L2(Ω). Upon taking a subsequence, if necessary, we have430

(3.31) vτ ∈ Cτū , ‖vτ‖L2(Ω) = 1, j′′(ū)v2
τ < τ, vτ ⇀ v in L2(Ω)431

as τ ↓ 0. Since the set of elements satisfying condition (3.23) is closed and convex in432

L2(Ω), it is weakly closed. Consequently, v satisfies (3.23). It suffices to prove that433

p̄(x) 6= 0 implies v(x) = 0 for a.e. x ∈ Ω to conclude that v ∈ Cū. To do so, we invoke434

property (3.21), the fact that p̄ ∈ L2(Ω), vτ ∈ Cτū , and (3.31) to conclude that435

0 ≤
ˆ

Ω

p̄(x)v(x)dx = lim
τ↓0

ˆ
Ω

p̄(x)vτ (x)dx = lim
τ↓0

ˆ
|p̄|≤τ

p̄(x)vτ (x)dx ≤ lim
τ↓0

τ
√
|Ω| = 0.436

Thus,
´

Ω
|p̄(x)v(x)|dx =

´
Ω
p̄(x)v(x)dx = 0. This proves that, a.e. in Ω, if p̄ 6= 0 then437

v = 0. Consequently, v ∈ Cū. On the other hand, on the basis of the arguments438

developed in the proof of Theorem 3.7 we invoke (3.31) and obtain439

j′′(ū)v2 ≤ lim inf
τ↓0

j′′(ū)v2
τ ≤ lim sup

τ↓0
j′′(ū)v2

τ ≤ 0.440

Since v ∈ Cū, (3.29) allows us to conclude that v = 0 and j′′(ū)v2
τ → 0 as τ ↓ 0. Now,441

since vτ ⇀ 0 in L2(Ω) implies zvτ → 0 in C(Ω̄), (3.12) yields442

lim inf
τ↓0

j′′(ū)vτ = lim inf
τ↓0

[
α−

(
∂2a
∂y2 (·, ȳ)z2

vτ , p̄
)
L2(Ω)

+
∑
t∈D

z2
vτ (t)

]
= α > 0.443

This contradicts the fact that j′′(ū)v2
τ → 0 as τ ↓ 0.444

4. Finite element approximation. We now introduce the discrete setting in445

which we will operate. We first introduce some terminology and a few basic ingredients446

[8, 20, 21] that will be common to all of our discretizations. We denote by Th = {T}447

a conforming partition, or mesh, of Ω̄ into closed simplices T with size hT = diam(T ).448

Define h := maxT∈Th hT . We denote by T = {Th}h>0 a collection of conforming and449

quasi–uniform meshes Th.450

Given a mesh Th ∈ T, we define the finite element space of continuous piecewise451

polynomials of degree one as452

(4.1) Vh := {vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th} ∩H1
0 (Ω).453

In the following sections we will present convergence properties and suitable error454

estimates for finite element approximations of the state equation, the adjoint equation,455

and the optimal control problem (3.1)–(3.2), respectively.456
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4.1. Discrete state equation. Let f ∈ L2(Ω). We define the Galerkin approx-457

imation of the solution y to problem (2.1) by458

(4.2) yh ∈ Vh : (∇yh,∇vh)L2(Ω) + (a(·, yh), vh)L2(Ω) = (f, vh)L2(Ω) ∀vh ∈ Vh.459

Let a = a(x, y) : Ω×R→ R be a Carathéodory function that is monotone increasing460

and locally Lipschitz in y, a.e. in Ω, with a(·, 0) ∈ L2(Ω). An application of Brouwer’s461

fixed point theorem yields the existence of a unique solution to (4.2). In addition, we462

have ‖∇yh‖L2(Ω) . ‖f − a(·, 0)‖L2(Ω); see [27, Theorem 3.2] and [14, Section 7].463

We now provide a local regularity result for the solution y of problem (2.1) that464

will be of importance to derive error estimates. Let Ω1 b Ω0 b Ω with Ω0 smooth.465

Let f ∈ L2(Ω) ∩ Lt(Ω0), where t ∈ [2,∞). Since y can be seen as the solution to466

y ∈ H1
0 (Ω) : (∇y,∇v)L2(Ω) = (f − a(·, y), v)L2(Ω) ∀v ∈ H1

0 (Ω),467

we can invoke [7, Lemma 4.2] to deduce that468

(4.3) ‖y‖W 2,t(Ω1) ≤ Ct
(
‖f − a(·, y)‖Lt(Ω0) + ‖f − a(·, y)‖L2(Ω)

)
,469

where Ct behaves as Ct, with C > 0, as t ↑ ∞. Notice that we further assume that a470

satisfies a(·, 0) ∈ Lt(Ω), which, since a = a(x, y) is locally Lipschitz in y, implies that471

‖a(·, y)‖Lt(Ω) . ‖f‖L2(Ω) + ‖a(·, 0)‖Lt(Ω).472

Theorem 4.1 (a priori error estimates). Let Ω ⊂ Rd be an open, bounded,473

and convex polytope. Let a = a(x, y) : Ω × R → R be a Carathéodory function474

that is monotone increasing and locally Lipschitz in y with a(·, 0) ∈ L2(Ω). Let y ∈475

H1
0 (Ω) ∩ H2(Ω) and yh ∈ Vh be the solutions to (2.1) and (4.2), respectively, with476

f ∈ L2(Ω). If h is sufficiently small, we thus have the following error estimates:477

(4.4) ‖y − yh‖L2(Ω) . h2‖f − a(·, 0)‖L2(Ω),478

and479

(4.5) ‖y − yh‖L∞(Ω) . h2− d2 ‖f − a(·, 0)‖L2(Ω).480

Let Ω1 b Ω0 b Ω with Ω0 smooth. If, in addition, f ∈ L∞(Ω0) and a(·, 0) ∈ L∞(Ω),481

we thus have the following local error estimate in maximum–norm:482

(4.6) ‖y − yh‖L∞(Ω1) . h2| log h|2.483

In all estimates the hidden constant is independent of h.484

Proof. We refer the reader to [13, Lemma 4] and [13, Theorem 1] for a proof of485

the estimates (4.4) and (4.5), respectively; see also [13, Theorem 2]. We provide a486

proof of (4.6) that is inspired in the arguments developed in [27, Theorem 3.5] and [7,487

Lemma 4.4]. We begin with a simple application of the triangle inequality and write488

‖y − yh‖L∞(Ω1) ≤ ‖y − yh‖L∞(Ω1) + ‖yh − yh‖L∞(Ω1),489

where yh solves (4.2) with a(·, yh) replaced by a(·, y). Let Λ1 be a smooth domain490

such that Ω1 b Λ1 b Ω0. Since (∇(y − yh),∇vh)L2(Ω) = 0 for all vh ∈ Vh, we invoke491

[29, Corollary 5.1] to obtain the existence of h0 ∈ (0, 1) such that492

‖y − yh‖L∞(Ω1) . | log h|‖y − vh‖L∞(Λ1) + `−d/2‖y − yh‖L2(Ω), vh ∈ Vh,493
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14 A. ALLENDES, F. FUICA, E. OTÁROLA

for every h ≤ h0. Here, ` is such that dist(Ω1, ∂Λ1) ≥ `, dist(Λ1, ∂Ω) ≥ `, and Ch ≤ `,494

where C > 0. Since f ∈ L∞(Ω0)∩L2(Ω) and a(·, 0) ∈ L∞(Ω), the regularity estimate495

(4.3) implies that y ∈W 2,t(Λ1) ∩H2(Ω) for every t <∞. Thus496

497

‖y − yh‖L∞(Ω1) ≤ C1| log h|th2− dt
[
‖f − a(·, y)‖L∞(Ω0) + ‖f − a(·, y)‖L2(Ω)

]
498

+ C2h
2‖f − a(·, y)‖L2(Ω), C1, C2 > 0.499500

Inspired by [30, page 3], we thus set t = | log h| to arrive at the local estimate ‖y −501

yh‖L∞(Ω1) . h2| log h|2(‖f − a(·, y)‖L∞(Ω0) + ‖f − a(·, y)‖L2(Ω)). To control ‖yh −502

yh‖L∞(Ω1) we observe that503

yh − yh ∈ Vh : (∇(yh − yh),∇vh)L2(Ω) = (a(·, yh)− a(·, y), vh)L2(Ω) ∀vh ∈ Vh.504

Define y ∈ H1
0 (Ω) as the solution to (∇y,∇v)L2(Ω) = (a(·, yh)− a(·, y), v)L2(Ω) for all505

v ∈ H1
0 (Ω). Observe that yh − yh can be seen as the finite element approximation of506

y within Vh. We thus proceed as follows: ‖yh− yh‖L∞(Ω1) ≤ ‖y− (yh− yh)‖L∞(Ω1) +507

‖y‖L∞(Ω1). Invoke a stability estimate for the problem that y solves, a basic error508

estimate, and the Lipschitz property of a = a(x, y) in y to obtain509

‖yh − yh‖L∞(Ω1) . ‖a(·, yh)− a(·, y)‖L2(Ω)510

. ‖yh − y‖L2(Ω) . h2
(
‖f‖L2(Ω) + ‖a(·, y)‖L2(Ω)

)
,511512

upon using (4.4). This concludes the proof.513

4.2. Discrete adjoint equation. Let u ∈ Uad and {yt}t∈D ⊂ R. We define the514

Galerkin approximation to the adjoint equation (3.6) by515

(4.7) qh ∈ Vh : (∇wh,∇qh)L2(Ω) +
(
∂a
∂y (·, y)qh, wh

)
L2(Ω)

=
∑
t∈D
〈(y(t)− yt)δt, wh〉516

for all wh ∈ Vh. In (4.7) the variable y ∈ H1
0 (Ω)∩L∞(Ω) denotes the unique solution517

to problem (3.2) with u ∈ Uad, i.e., y = Su. Standard results yield the existence and518

uniqueness of a discrete solution.519

We present the following error estimates.520

Theorem 4.2 (error estimates). Let a = a(x, y) : Ω×R→ R be a Carathéodory521

function of class C1 with respect to the second variable such that a(·, 0) ∈ L2(Ω).522

Assume that (A.2) holds and that, for all m > 0, |∂a/∂y(x, y)| ≤ Cm for a.e. x ∈ Ω523

and y ∈ [−m ,m ]. Let p ∈ W 1,r
0 (Ω), with r ∈ [2d/(d + 2), d/(d − 1)), and qh ∈ Vh be524

the solutions to (3.6) and (4.7), respectively. Then525

(4.8) ‖p− qh‖L2(Ω) . h2− d2
∑
t∈D
|y(t)− yt| . h2− d2

[
‖u− a(·, 0)‖L2(Ω) +

∑
t∈D
|yt|

]
526

and527

(4.9) ‖p− qh‖L1(Ω) . h2| log h|2.528

In both estimates the hidden constants are independent of h.529

Proof. Define a(x) = ∂a/∂y(x, y(x)), where y = Su and u ∈ Uad. Since a ∈530

L∞(Ω) and a(x) ≥ 0 a.e. in Ω, we can apply [10, Theorem 3] in combination with531
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Theorem 2.1 to deduce (4.8). The proof of the estimate (4.9) follows similar arguments532

as the ones developed in [7, Lemma 5.3] and [22]. Let w be the solution to533

B(w, v) := (∇w,∇v)L2(Ω) +
(
∂a
∂y (·, y)w, v

)
L2(Ω)

= (f, v)L2(Ω) ∀v ∈ H1
0 (Ω)534

and let wh be the Ritz projection of w within Vh, i.e., wh ∈ Vh is such that535

B(wh, vh) = B(w, vh) for all vh ∈ Vh. Let f = sgn(p− qh). Thus,536

‖p− qh‖L1(Ω) =

ˆ
Ω

f(p− qh)dx = B(w, p)−B(wh, qh) =
∑
t∈D

(y(t)− yt)(m−mh)(t),537

where we have used that p and qh solve (3.6) and (4.7), respectively. Since D b Ω,538

similar arguments to the ones used in the proof of (4.6) yield539

‖p− qh‖L1(Ω) . h2| log h|2
(
‖y‖L∞(Ω) +

∑
t∈D
|yt|

)
‖f‖L∞(Ω).540

This concludes the proof.541

Let yh ∈ Vh be the unique solution to the discrete problem (4.2) with f = uh ∈542

Uad ⊂ L∞(Ω). Define now the discrete variable ph ∈ Vh as the unique solution to543

(4.10) (∇wh,∇ph)L2(Ω)+
(
∂a
∂y (·, yh)ph, wh

)
L2(Ω)

=
∑
t∈D
〈(yh(t)− yt)δt, wh〉 ∀wh ∈ Vh.544

We present the following error estimate, which will be of importance to perform545

an a priori error analysis for a suitable discretization of our optimal control problem.546

Theorem 4.3 (auxiliary error estimate). Let a = a(x, y) : Ω × R → R be547

a Carathéodory function of class C1 with respect to the second variable such that548

a(·, 0) ∈ L2(Ω). Assume that (A.2) holds and that, for all m > 0, |∂a/∂y(x, y)| ≤ Cm549

for a.e. x ∈ Ω and y ∈ [−m ,m ]. Let u, uh ∈ L2(Ω) be such that ‖u‖L2(Ω) ≤ C and550

‖uh‖L2(Ω) ≤ C for every h > 0, where C > 0. Let p and ph be the solutions to (3.6)551

and (4.10) with y = y(u) and yh = yh(uh), respectively. Then, we have552

(4.11) ‖p− ph‖L2(Ω) . ‖u− uh‖L2(Ω) + h2− d2 ,553

with a hidden constant that is independent of h.554

Proof. We begin by introducing the auxiliary variable p̂ as the unique solution to555

the problem: Find p̂ ∈W 1,r
0 (Ω), with r ∈ [2d/(d+ 2), d/(d− 1)), such that556

(∇w,∇p̂)L2(Ω) +
(
∂a
∂y (·, yh)p̂, w

)
L2(Ω)

=
∑
t∈D
〈(yh(t)− yt)δt, w〉 ∀w ∈W 1,r′

0 (Ω).557

With the variable p̂ at hand, a trivial application of the triangle inequality yields558

(4.12) ‖p− ph‖L2(Ω) ≤ ‖p− p̂‖L2(Ω) + ‖p̂− ph‖L2(Ω).559

We first estimate ‖p̂ − ph‖L2(Ω). Since ph corresponds to the finite element ap-560

proximation of the auxiliary variable p̂, within Vh, estimate (4.8) yields561

(4.13) ‖p̂− ph‖L2(Ω) . h2− d2
∑
t∈D
|yh(t)− yt| . h2− d2

(
‖yh‖L∞(Ω) +

∑
t∈D
|yt|

)
.562
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Observe that ‖yh‖L∞(Ω) is uniformly bounded. In fact, let us introduce the variable563

ŷ ∈ H1
0 (Ω)∩L∞(Ω) as the unique solution to problem (3.2) with u = uh. Notice that564

yh corresponds to the finite element approximation of ŷ within Vh. We thus invoke565

the error estimate (4.5), Theorem 2.1, and the assumption on uh, to obtain566

(4.14) ‖yh‖L∞(Ω) ≤ ‖ŷ− yh‖L∞(Ω) + ‖ŷ‖L∞(Ω) . (h2− d2 + 1)‖uh− a(·, 0)‖L2(Ω) ≤ C,567

where C denotes a positive constant that is independent of the involved continuous568

and discrete variables and h. Replacing estimate (4.14) into (4.13), and the obtained569

one into (4.12), we conclude the error estimate570

(4.15) ‖p− ph‖L2(Ω) . ‖p− p̂‖L2(Ω) + h2− d2 .571

We now bound ‖p− p̂‖L2(Ω) in (4.15). To accomplish this task, we introduce572

573

φ := p− p̂ ∈W 1,r
0 (Ω) : (∇w,∇φ)L2(Ω) +

(
∂a
∂y (·, y)φ,w

)
L2(Ω)

574

=
∑
t∈D
〈(y(t)− yh(t))δt, w〉+

([
∂a
∂y (·, yh)− ∂a

∂y (·, y)
]
p̂, w

)
L2(Ω)

575

576

for all w ∈ W 1,r′

0 (Ω). Here, r ∈ [2d/(d + 2), d/(d − 1)). An inf-sup condition that577

follows from [10, Theorem 1] yields the stability estimate578

‖∇φ‖Lr(Ω) .
∑
t∈D
|y(t)− yh(t)|+

∥∥∥[∂a∂y (·, yh)− ∂a
∂y (·, y)

]
p̂
∥∥∥
L2(Ω)

(4.16)579

. ‖y − yh‖L∞(Ω)(1 + ‖p̂‖L2(Ω)).580581

To obtain the last estimate we have used that ∂a/∂y = ∂a/∂y(x, y) is locally Lipschitz582

in y. We now bound the term ‖p̂‖L2(Ω). Since W 1,r
0 (Ω) ↪→ L2(Ω) for r ∈ [2d/(d +583

2), d/(d− 1)), an stability estimate for the problem that p̂ solves yields584

‖p̂‖L2(Ω) . ‖∇p̂‖Lr(Ω) . ‖yh‖L∞(Ω) +
∑
t∈D
|yt|.585

This estimate, (4.16), and (4.14) yields ‖∇φ‖Lr(Ω) . ‖y − yh‖L∞(Ω). We thus invoke586

that φ = p− p̂, r ∈ [2d/(d+ 2), d/(d− 1)), and W 1,r
0 (Ω) ↪→ L2(Ω) to arrive at587

(4.17) ‖p− p̂‖L2(Ω) = ‖φ‖L2(Ω) . ‖y − yh‖L∞(Ω),588

with a hidden constant that is independent of the involved continuous and discrete589

variables and h.590

Our final goal now is to bound ‖y − yh‖L∞(Ω). Invoke the variable ŷ and write591

‖y − yh‖L∞(Ω) ≤ ‖y − ŷ‖L∞(Ω) + ‖ŷ − yh‖L∞(Ω).592

In view of the Lipschitz property (2.2) and the estimate (4.5), we derive593

(4.18) ‖y − yh‖L∞(Ω) . ‖u− uh‖L2(Ω) + h2− d2 ‖uh − a(·, 0)‖L2(Ω).594

Replacing the estimate (4.18) into (4.17) and the obtained one into (4.15), and taking595

into account the assumption on uh, we conclude the desired estimate (4.11).596
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4.3. Discretization of the control problem. Let us introduce the finite el-597

ement space of piecewise constant functions over Th, Uh = {uh ∈ L∞(Ω) : uh|T ∈598

P0(T ) ∀T ∈ Th}, and the space of discrete admissible controls, Uad,h := Uh ∩ Uad.599

With this discrete setting at hand, we propose the following finite element discretiza-600

tion of the optimal control problem (3.1)–(3.2): Find minJ(yh, uh) subject to601

(4.19) yh ∈ Vh : (∇yh,∇vh)L2(Ω) + (a(·, yh), vh)L2(Ω) = (uh, vh)L2(Ω) ∀vh ∈ Vh,602

and the discrete constraints uh ∈ Uad,h. We recall that Vh is defined as in (4.1).603

The existence of at least one solution for the previously defined discrete optimal604

control problem follows immediately from the compactness of Uad,h and the continuity605

of the cost functional J . Let us introduce the discrete control to state map Sh :606

Uh 3 uh 7→ yh ∈ Vh, where yh solves (4.19), and define the reduced cost functional607

jh(uh) := J(Shuh, uh). With these ingredients at hand, as in the continuous case, we608

can derive first order optimality conditions for the discrete optimal control problem.609

In particular, if ūh denotes a local solution, then610

(4.20) j′h(ūh)(uh − ūh) = (p̄h + αūh, uh − ūh)L2(Ω) ≥ 0 ∀uh ∈ Uad,h,611

where p̄h ∈ Vh solves the discrete problem (4.10) with yh = ȳh := Shūh.612

The following error estimates can be found in [14, Lemmas 37 and 38].613

Theorem 4.4 (auxiliary error estimate). Let Ω be a convex polytope. Assume614

that (A.1) and (A.2) hold. Let u ∈ Uad and uh ∈ Uad,h ⊂ Uad. Let y = y(u) be the615

solution to (3.2) and let yh = yh(uh) be the solution to (4.19). Then,616

‖∇(y − yh)‖L2(Ω) . h+ ‖u− uh‖L2(Ω), ‖y − yh‖L∞(Ω) . h2− d2 + ‖u− uh‖L2(Ω).617

In addition, if uh ⇀ u in Ls(Ω) as h ↓ 0, with s > d/2, then yh → y in H1
0 (Ω)∩C(Ω̄)618

as h ↓ 0 and j(u) ≤ lim infh↓0 jh(uh).619

In what follows we provide a convergence result that, in essence, guarantees that620

the sequence of global solutions {ūh} of the discrete optimal control problems con-621

verge, as h ↓ 0, to a solution of the continuous optimal control problem.622

Theorem 4.5 (convergence of the discrete solutions). Assume that (A.1), (A.2),623

and (A.3) hold. Let h > 0 and ūh ∈ Uad,h be a global solution of the discrete optimal624

control problem. Then, there exist nonrelabeled subsequences of {ūh}h>0 such that625

ūh ⇀∗ ū in the weak? topology of L∞(Ω), as h ↓ 0, where ū corresponds to a local626

solution of the optimal control problem (3.1)–(3.2). In addition, it follows that627

(4.21) lim
h→0
‖ū− ūh‖L2(Ω) = 0, lim

h→0
jh(ūh) = j(ū).628

Proof. We begin the proof by noticing that, since ūh ∈ Uad,h ⊂ Uad for every629

h > 0, the sequence {ūh}h>0 is uniformly bounded in L∞(Ω). Then, there exists a630

nonrelabeled subsequence such that ūh ⇀
∗ ū in L∞(Ω) as h ↓ 0. In what follows, we631

prove that ū ∈ Uad is a solution to the optimal control problem (3.1)–(3.2) and that632

the convergence results in (4.21) hold.633

Let ũ ∈ Uad be a solution to (3.1)–(3.2). Define ũh := ΠL2 ũ ∈ Uad,h, the634

orthogonal projection of ũ into piecewise constant functions over Th. We recall that635

ΠL2 : L2(Ω)→ Uh, ΠL2v|T :=
1

|T |

ˆ
T

vdx, T ∈ T , v ∈ L2(Ω).636
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Since Theorem 3.4 guarantees that ũ ∈ H1(Ω), we immediately conclude that ‖ũ −637

ũh‖L2(Ω) → 0 as h ↓ 0. We thus invoke, the local optimality of ũ, Theorem 4.4, the638

global optimality of ūh, and the convergence result ũh → ũ in L2(Ω) to obtain639

j(ũ) ≤ j(ū) ≤ lim inf
h↓0

jh(ūh) ≤ lim sup
h↓0

jh(ūh) ≤ lim sup
h↓0

jh(ũh) = j(ũ).640

This proves that ū is a solution to problem (3.1)–(3.2) and that limh↓0 jh(ūh) = j(ū).641

The strong convergence ūh → ū in L2(Ω) follows from limh↓0 jh(ūh) = j(ū) and642

ȳh → ȳ in C(Ω̄); see Theorem 4.4. In fact, the latter converge result implies that643 ∑
t∈D

(yh(t)− yt)2 →
∑
t∈D

(y(t)− yt)2, h ↓ 0.644

Since limh↓0 jh(ūh) = j(ū), we thus conclude that ‖ūh‖2L2(Ω) → ‖ū‖
2
L2(Ω) as h ↓ 0.645

The weak convergence ūh ⇀ ū in L2(Ω), as h ↓ 0, allows us to conclude.646

5. Error estimates. Let {ūh}h>0 ⊂ Uad,h be a sequence of local minima of the647

discrete optimal control problems such that ūh → ū in L2(Ω), as h ↓ 0, where ū ∈ Uad648

is a local solution of (3.1)–(3.2); see Theorem 4.5. The main goal of this section is to649

derive the following a priori error estimate for ū− ūh in L2(Ω):650

Theorem 5.1 (error estimate). Assume that (A.1), (A.2), and (A.3) hold, and651

that a(·, 0) ∈ L∞(Ω). Let ū ∈ Uad satisfies the sufficient second order optimality652

condition (3.29). Then there exists h‡ > 0 such that the following inequality holds:653

(5.1) ‖ū− ūh‖L2(Ω) . h| log h| ∀h < h‡,654

with a hidden constant that is independent of h.655

To prove this result we will proceed by contradiction following [17, 11]. We656

will assume that {ūh}h>0 converges to ū as h ↓ 0 and (5.1) does not hold. If we657

assume that (5.1) is false, we can thus find, for every k ∈ N, hk > 0 such that658

‖ū− ūhk‖L2(Ω) > khk| log hk|, and thus a sequence {hk}k∈N ⊂ R+ such that659

(5.2) lim
hk↓0
‖ū− ūhk‖L2(Ω) → 0, lim

hk↓0

‖ū− ūhk‖L2(Ω)

hk| log hk|
= +∞.660

To prove the estimate in Theorem 5.1, we need some preparatory lemmas.661

Lemma 5.2 (auxiliary result). Assume that (A.1), (A.2), and (A.3) hold. Let662

ū ∈ Uad satisfies the second order optimality condition (3.29). Let us assume, in663

addition, that (5.1) is false. Then there exists h† > 0 such that664

(5.3) C‖ū− ūh‖2L2(Ω) ≤ [j′(ūh)− j′(ū)](ūh − ū) ∀h < h†,665

where C = 2−1 min{µ, α}, with α being the regularization parameter and µ the constant666

appearing in estimate (3.30).667

Proof. Since (5.1) is false, there exists a sequence {hk}k∈N such that the limits in668

(5.2) hold. In an attempt to simplify the exposition of the material, in what follows,669

we will omit the subindex k, i.e., we denote uhk = uh. Observe that h ↓ 0 as k ↑ ∞.670

Define vh := (ūh− ū)/‖ūh− ū‖L2(Ω). Upon taking a subsequence, if necessary, we671

can assume that vh ⇀ v in L2(Ω) as h ↓ 0. In what follows, we prove that v ∈ Cū,672

with Cū defined as in (3.22). Since ūh ∈ Uad,h ⊂ Uad, it is clear that vh satisfies673
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the sign conditions in (3.23). The fact that vh ⇀ v in L2(Ω) as h ↓ 0 implies that v674

satisfies (3.23) as well. To show that v(x) = 0 if p̄(x) 6= 0 for a.e. x ∈ Ω, we introduce675

(5.4) p̄h := p̄h + αūh.676

Since ‖ū− ūh‖L2(Ω) → 0 as h ↓ 0, Theorem 4.3 yields p̄h → p̄ in L2(Ω) as h ↓ 0. Thus,677

678 ˆ
Ω

p̄(x)v(x)dx = lim
h→0

ˆ
Ω

p̄h(x)vh(x)dx = lim
h→0

1

‖ūh − ū‖L2(Ω)
679

·
(ˆ

Ω

p̄h(ΠL2 ū− ū)dx+

ˆ
Ω

p̄h(ūh −ΠL2 ū)dx

)
=: lim

h→0

I + II

‖ūh − ū‖L2(Ω)
.680

681

We recall that ΠL2 denotes the L2-orthogonal projection into piecewise constant func-682

tions over Th. The discrete variational inequality (4.20) immediately yields II ≤ 0.683

On the other hand, |I| ≤ ‖p̄h‖L2(Ω)‖ū − ΠL2 ū‖L2(Ω) . h‖∇ū‖L2(Ω), upon noticing684

that ‖p̄h‖L2(Ω) ≤ ‖p̄h − p̄‖L2(Ω) + ‖p̄‖L2(Ω) ≤ C, where C > 0. On the basis of (5.2)685

the previous inequalities yield686

ˆ
Ω

p̄(x)v(x)dx . lim
h→0

h

‖ūh − ū‖L2(Ω)
. lim
h→0

h| log h|
‖ūh − ū‖L2(Ω)

= 0.687

Since v satisfies the sign condition (3.23), then p̄(x)v(x) ≥ 0. Therefore the previous688

inequality yields
´

Ω
|p̄(x)v(x)|dx =

´
Ω
p̄(x)v(x)dx ≤ 0. Consequently, if p̄(x) 6= 0,689

then v(x) = 0 for a.e. x ∈ Ω. This allows us to conclude that v ∈ Cū.690

We now invoke the mean value theorem to deduce that691

(5.5) [j′(ūh)− j′(ū)](ūh − ū) = j′′(ûh)(ūh − ū)2, ûh = ū+ θh(ūh − ū),692

where θh ∈ (0, 1). Let yûh be unique solution to (3.2) with u = ûh and pûh be the693

unique solution to (3.6) with y = yûh . Since ūh → ū in L2(Ω) as h ↓ 0, we have694

yûh → ȳ in H1
0 (Ω) ∩ C(Ω̄) and pûh → p̄ in W 1,r

0 (Ω) as h ↓ 0. Here r < d/(d − 1).695

Similarly, vh ⇀ v in L2(Ω) implies that zvh ⇀ zv in H2(Ω) ∩H1
0 (Ω) as h ↓ 0. Hence,696

invoke (3.12), the definition of vh, and the second order condition (3.30) to obtain697

lim
h↓0

j′′(ûh)v2
h = lim

h↓0

(
α−

(
∂2a
∂y2 (·, yûh)z2

vh
, pûh

)
L2(Ω)

+
∑
t∈D

z2
vh

(t)

)
698

= α−
(
∂2a
∂y2 (·, ȳ)z2

v , p̄
)
L2(Ω)

+
∑
t∈D

z2
v(t)699

= α+ j′′(ū)v2 − α‖v‖2L2(Ω) ≥ α+ (µ− α)‖v‖2L2(Ω).700
701

Therefore, since ‖v‖L2(Ω) ≤ 1, we arrive at limh↓0 j
′′(ûh)v2

h ≥ min{µ, α} > 0, which702

proves the existence of h† > 0 such that703

j′′(ûh)v2
h ≥ 2−1 min{µ, α} ∀h < h†.704

This, in light of the definition of vh and the identity (5.5), allows us to conclude.705

Lemma 5.3 (auxiliary result). Assume that (A.1), (A.2), and (A.3) hold, and706

that a(·, 0) ∈ L∞(Ω). Let u1, u2 ∈ Uad and v ∈ L∞(Ω). Thus, we have the estimates707

(5.6) |j′(u1)v − j′h(u1)v| . h2| log h|2‖v‖L∞(Ω),708

and709

(5.7) |j′h(u1)v − j′h(u2)v| . ‖u1 − u2‖L2(Ω)‖v‖L2(Ω).710
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Proof. We proceed on the basis of two steps.711

Step 1. The goal of this step is to derive (5.6). To accomplish this task, we begin712

with a basic computation which reveals that j′(u1)v = (pu1
+ αu1, v)L2(Ω), where713

pu1 ∈W
1,r
0 (Ω) : (∇w,∇pu1)L2(Ω) +

(
∂a
∂y (·, yu1)pu1 , w

)
L2(Ω)

=
∑
t∈D
〈(yu1(t)−yt)δt, w〉714

for all w ∈W 1,r′

0 (Ω). Here, r ∈ [2d/(d+2), d/(d−1)), yu1
denotes the unique solution715

to the state equation (3.2) with u = u1, and r′ denotes the Hölder’s conjugate of r.716

A similar argument yields j′h(u1)v = (p̂h + αu1, v)L2(Ω), where p̂h is such that717

(5.8) p̂h ∈ Vh : (∇wh,∇p̂h)L2(Ω)+
(
∂a
∂y (·, ŷh)p̂h, wh

)
L2(Ω)

=
∑
t∈D
〈(ŷh(t)−yt)δt, wh〉718

for all wh ∈ Vh. In (5.8) the variable ŷh ∈ Vh corresponds to the solution to (4.19)719

with uh replaced by u1. Define p̂ ∈W 1,r
0 (Ω) as the unique solution to720

(∇w,∇p̂)L2(Ω) +
(
∂a
∂y (·, ŷh)p̂, w

)
L2(Ω)

=
∑
t∈D
〈(ŷh(t)− yt)δt, w〉 ∀w ∈W 1,r′

0 (Ω).721

Here, r ∈ [2d/(d+2), d/(d−1)). Notice that p̂h ∈ Vh corresponds to the finite element722

approximation of p̂ within Vh. We also notice the following stability estimate for p̂:723

(5.9) ‖∇p̂‖Lr(Ω) .
∑
t∈D
|ŷh(t)− yt|.724

With all these continuous and discrete variables at hand, we can write725

(5.10) j′(u1)v − j′h(u1)v = (pu1
− p̂, v)L2(Ω) + (p̂− p̂h, v)L2(Ω) := I + II.726

To estimate the term I we define ζ := pu1 − p̂ ∈W
1,r
0 (Ω) and observe that727

728

ζ ∈W 1,r
0 (Ω) : (∇w,∇ζ)L2(Ω) +

(
∂a
∂y (·, yu1

)ζ, w
)
L2(Ω)

729

=
∑
t∈D
〈(yu1

(t)− ŷh(t))δt, w〉+
([

∂a
∂y (·, ŷh)− ∂a

∂y (·, yu1
)
]
p̂, w

)
L2(Ω)

730

731

for all w ∈W 1,r′

0 (Ω). An inf-sup condition that follows from [10, Theorem 1] yields732

(5.11) ‖∇ζ‖Lr(Ω) .
∑
t∈D
|yu1

(t)− ŷh(t)|+
∥∥∥[∂a∂y (·, ŷh)− ∂a

∂y (·, yu1
)
]
p̂
∥∥∥
L2(Ω)

.733

Let us concentrate on the second term of the right hand side of (5.11). Let Λ1,Ω0734

be smooth domains such that Ω1 b Λ1 b Ω0 b Ω and D ⊂ Ω1. Observe that735
736

(5.12) I2 :=
∥∥∥[∂a∂y (·, ŷh)− ∂a

∂y (·, yu1
)
]
p̂
∥∥∥2

L2(Ω)
=
∥∥∥[∂a∂y (·, ŷh)− ∂a

∂y (·, yu1
)
]
p̂
∥∥∥2

L2(Λ1)
737

+
∥∥∥[∂a∂y (·, ŷh)− ∂a

∂y (·, yu1
)
]
p̂
∥∥∥2

L2(Ω\Λ1)
.738

739

In view of the estimates of Theorem 4.1 we can thus arrive at740

I2 . ‖p̂‖2L2(Λ1)‖ŷh − yu1
‖2L∞(Λ1) + ‖p̂‖2L∞(Ω\Λ1)‖ŷh − yu1

‖2L2(Ω)741

. h4| log h|4‖p̂‖2L2(Ω) + h4‖p̂‖2L∞(Ω\Λ1)‖u1 − a(·, 0)‖2L2(Ω).742
743
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Invoke the Sobolev embedding W 1,r
0 (Ω) ↪→ L2(Ω), with r ∈ [2d/(d + 2), d/(d − 1)),744

and the fact that u1 ∈ Uad to obtain745

(5.13) I2 . h4| log h|4‖∇p̂‖2Lr(Ω) + h4‖p̂‖2L∞(Ω\Λ1),746

where the hidden constant is independent of the involved continuous and discrete747

variables but depends on the continuous optimal control problem data. We now748

utilize [12, Theorem 3.4] to conclude that ‖p̂‖L∞(Ω\Λ1) is uniformly bounded. On the749

other hand, the stability estimate (5.9) and analogous arguments to the ones that lead750

to (4.14) allows us to conclude that ‖∇p̂‖Lr(Ω) ≤ C, where C depends on {yt}t∈D,751

a, a, and b. We thus invoke (5.13) to arrive at I . h2| log h|2. This bound, estimate752

(5.11), and the local estimate (4.6), yield753

(5.14) I ≤ ‖ζ‖L2(Ω)‖v‖L2(Ω) . ‖∇ζ‖Lr(Ω)‖v‖L2(Ω) . h2| log h|2‖v‖L2(Ω).754

The control of II in (5.10) follows immediately from the error estimate (4.9):755

(5.15) II ≤ ‖p̂− p̂h‖L1(Ω)‖v‖L∞(Ω) . h2| log h|2‖v‖L∞(Ω).756

Upon combining (5.10), (5.14), and (5.15), we obtain the estimate (5.6).757

Step 2. In this step we derive (5.7). From the previous step, we have that758

j′h(u1)v = (p̂h + αu1, v)L2(Ω), where p̂h ∈ Vh is the unique solution to problem (5.8).759

On the other hand, similar arguments yield j′h(u2)v = (p̃h + αu2, v)L2(Ω), where760

p̃h ∈ Vh is the unique solution to the discrete problem761

(∇wh,∇p̃h)L2(Ω) +
(
∂a
∂y (·, ỹh)p̃h, wh

)
L2(Ω)

=
∑
t∈D
〈(ỹh(t)− yt)δt, wh〉 ∀wh ∈ Vh,762

and ỹh ∈ Vh corresponds to the solution to (4.19) with uh replaced by u2. Therefore,763

(5.16) |j′h(u1)v − j′h(u2)v| ≤
(
‖p̂h − p̃h‖L2(Ω) + α‖u1 − u2‖L2(Ω)

)
‖v‖L2(Ω).764

The rest of the proof is dedicated to bound ‖p̂h − p̃h‖L2(Ω). To accomplish this765

task, we define766

767

ξ ∈W 1,r
0 (Ω) : (∇w,∇ξ)L2(Ω) +

(
∂a
∂y (·, ŷh)ξ, w

)
L2(Ω)

768

=
∑
t∈D
〈(ŷh(t)− ỹh(t))δt, w〉+

([
∂a
∂y (·, ỹh)− ∂a

∂y (·, ŷh)
]
p̃h, w

)
L2(Ω)

∀w ∈W 1,r′

0 (Ω).769

770

We also define ξh := p̂h− p̃h ∈ Vh and immediately observe that ξh corresponds to the771

finite element approximation of ξ within Vh. We thus invoke basic estimates, (4.8),772

and an stability estimate for the problem that ξ solves to arrive at773

‖ξh‖L2(Ω) ≤ ‖ξ − ξh‖L2(Ω) + ‖ξ‖L2(Ω) . ‖ξ − ξh‖L2(Ω) + ‖∇ξ‖Lr(Ω)774

. (h2− d2 + 1)

(
‖ŷh − ỹh‖L∞(Ω) +

∥∥∥[∂a∂y (·, ỹh)− ∂a
∂y (·, ŷh)

]
p̃h

∥∥∥
L2(Ω)

)
.775

776

The previous estimate, in light of assumption (A.3), immediately yields777

(5.17) ‖p̂h − p̃h‖L2(Ω) = ‖ξh‖L2(Ω) . (1 + ‖p̃h‖L2(Ω))‖ŷh − ỹh‖L∞(Ω).778

We now bound ‖ŷh − ỹh‖L∞(Ω). Before proceeding with such an estimation,779

we recall that yui solves (3.2) with u = ui, where i ∈ {1, 2}, and that ŷh and ỹh780
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correspond to the finite element approximations of yu1
and yu2

, respectively. Since781

a(·, ŷh) − a(·, ỹh) = ∂a
∂y (·, yh)(ŷh − ỹh), where yh = ỹh + θh(ŷh − ỹh) and θh ∈ (0, 1),782

we deduce that ŷh − ỹh ∈ Vh solves the problem783

(∇(ŷh−ỹh),∇vh)L2(Ω)+
(
∂a
∂y (·, yh)(ŷh − ỹh), vh

)
L2(Ω)

= (u1−u2, vh)L2(Ω) ∀vh ∈ Vh.784

Define η ∈ H1
0 (Ω) as the solution to785

(∇η,∇v)L2(Ω) +
(
∂a
∂y (·, yh)η, v

)
L2(Ω)

= (u1 − u2, v)L2(Ω) ∀v ∈ H1
0 (Ω).786

Noticing that ŷh − ỹh ∈ Vh corresponds to the finite element approximation of η787

within Vh, we conclude, in view of estimate (4.5), that788

‖ŷh − ỹh‖L∞(Ω) ≤ ‖(ŷh − ỹh)− η‖L∞(Ω) + ‖η‖L∞(Ω) . (h2− d2 + 1)‖u1 − u2‖L2(Ω).789

Replace this bound into (5.17) and the obtained one into (5.16) to conclude790

(5.18) |j′h(u1)v − j′h(u2)v| . (1 + ‖p̃h‖L2(Ω) + α)‖u1 − u2‖L2(Ω)‖v‖L2(Ω).791

We finally observe that similar arguments to the ones used to derive (4.14) yield792

‖p̃h‖L2(Ω) . ‖u2 − a(·, 0)‖L2(Ω) +
∑
t∈D
|yt| . C,793

where C > 0. This concludes the proof.794

Inspired by [17, Lemma 7.5] and [15, Lemma 4.17], we now introduce a suitable795

auxiliary variable and provide an error estimate.796

Lemma 5.4 (error estimate for an auxiliary variable). There exists h? > 0 such797

that for h < h? there exists u∗h ∈ Uad,h satisfying j′(ū)(ū− u∗h) = 0 and798

‖ū− u∗h‖L2(Ω) ≤ Ch ∀h < h?, C > 0.799

Proof. Define, for each T ∈ Th, IT :=
´
T
p̄(x)dx and u∗h ∈ Uh by800

(5.19) u∗h|T :=
1

IT

ˆ
T

p̄(x)ū(x)dx if IT 6= 0, u∗h|T :=
1

|T |

ˆ
T

ū(x)dx if IT = 0.801

We recall that p̄ = p̄ + αū. In view of the fact that ū ∈ C0,1(Ω̄), which follows from802

Theorem 3.4, there exists h? > 0 such that803

|ū(x1)− ū(x2)| ≤ (b− a)/2 ∀h < h? ∀x1, x2 ∈ T.804

This implies, in particular, that, for each T ∈ Th, ū do not take both values a and805

b in T . Therefore, with (3.21) at hand, we deduce that, for a.e x ∈ T , p̄(x) ≥ 0 or806

p̄(x) ≤ 0. Consequently, we have that IT = 0 if and only if p̄(x) = 0 for a.e. x ∈ T ,807

and that, if IT 6= 0, p̄(x)/IT ≥ 0 for a.e. x ∈ T . From this fact, and in view of808

the generalized mean value theorem, we conclude the existence of xT ∈ T such that809

u∗h|T = ū(xT ). Since u∗h ∈ Uh, we have thus obtained that u∗h ∈ Uad,h. Now, let810

T ∈ Th. We estimate ‖ū− u∗h‖L2(T ) as follows:811

‖ū− u∗h‖L2(T ) ≤ ‖ū−ΠL2 ū‖L2(T ) + ‖ΠL2 ū− u∗h‖L2(T ) . h‖∇ū‖L2(T ) + h
d
2 ‖ū‖L∞(T ).812
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We finally observe that (5.19) immediately yields813

j′(ū)u∗h = (p̄, u∗h)L2(Ω) =
∑
T∈Th

(p̄, u∗h)L2(T ) =
∑
T∈Th

(p̄, ū)L2(T ) = j′(ū)ū.814

This concludes the proof.815

Proof of Theorem 5.1. Adding and subtracting the term j′h(ūh)(ū − ūh) in the816

right hand side of inequality (5.3) we obtain817

‖ū− ūh‖2L2(Ω) . [j′(ū)− j′h(ūh)](ū− ūh) + [j′h(ūh)− j′(ūh)](ū− ūh)818

for every h < h†. Invoke inequality (5.6) in conjunction with that fact that ū, ūh ∈ Uad819

to immediately arrive at820

(5.20) ‖ū− ūh‖2L2(Ω) . [j′(ū)− j′h(ūh)](ū− ūh) + h2| log h|2.821

We now estimate [j′(ū)− j′h(ūh)](ū− ūh). To accomplish this task, we set u = ūh in822

(3.5) and uh = u∗h in (4.20) to obtain823

0 ≤ j′(ū)(ūh − ū), 0 ≤ j′h(ūh)(u∗h − ūh) = j′h(ūh)(u∗h − ū) + j′h(ūh)(ū− ūh).824

Adding these inequalities we arrive at [j′(ū)− j′h(ūh)](ū− ūh) ≤ j′h(ūh)(u∗h − ū). We825

utilize that u∗h is such that j′(ū)(u∗h−ū) = 0, which follows from Lemma 5.4, to obtain826

[j′(ū)− j′h(ūh)](ū− ūh) ≤ [j′h(ūh)− j′(ū)](u∗h − ū)827

= [j′h(ūh)− j′h(ū)](u∗h − ū) + [j′h(ū)− j′(ū)](u∗h − ū).828829

We thus apply estimates (5.6) and (5.7) to obtain830

[j′(ū)− j′h(ūh)](ū− ūh) . ‖ūh − ū‖L2(Ω)‖u∗h − ū‖L2(Ω) + h2| log h|2.831

Invoke Young’s inequality and the estimate of Lemma 5.4 to arrive at832

(5.21) [j′(ū)− j′h(ūh)](ū− ūh) ≤ 1
2‖ūh − ū‖

2
L2(Ω) + Ch2(1 + | log h|2)833

for every h < h?. Here, C > 0. Finally, replacing estimate (5.21) into (5.20) we834

conclude (5.1). This, which contradicts (5.2), concludes the proof.835

6. Numerical example. In this section we conduct a numerical experiment836

that illustrates the performance of the scheme of section 4.3 when is used to approxi-837

mate the solution to (1.1)–(1.3). The numerical experiment has been carried out with838

the help of a code that was implemented using C++. All matrices have been assembled839

exactly and global linear systems were solved using the multifrontal massively parallel840

sparse direct solver (MUMPS) [2, 3]. The right hand sides and the approximation er-841

rors were computed by a quadrature formula which is exact for polynomials of degree842

nineteen (19).843

For a given partition Th, we seek (ȳh, p̄h, ūh) ∈ Vh × Vh × Uad,h that solves the844

discrete optimality problem presented in section 4.3. This problem is solved by using845

a primal–dual active set strategy [32, section 2.12.4] combined with a fixed point846

strategy.847

Example. We set Ω = (0, 1)2, a(·, y) = y3, b = −a = 10, α = 0.1,848

D = {(0.25, 0.25), (0.75, 0.25), (0.75, 0.75), (0.25, 0.75)},849
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and850

y(0.25,0.25) = 3, y(0.75,0.25) = −3, y(0.75,0.75) = 3, y(0.25,0.75) = −3.851

In the absence of an exact solution, we calculate the error committed in the852

approximation of the optimal control variable, by taking as a reference solution the853

discrete optimal control obtained on a fine triangulation Th: the mesh Th is such854

that h ≈ 9 · 10−4. In Figure 6.1, we observe that an optimal experimental order of855

convergence, in terms of approximation, is attained: O(h).856

Fig. 6.1. Experimental rate of convergence for the error ‖ū− ūh‖L2(Ω).
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