Math 401: Sec 0401: Midterm # 2 Dec. 10, 2014

Problem 1: Consider $\mathbb{V} = \mathbb{P}_2$, i.e., the space of polynomials of degree ≤ 2 with the inner product

$$\langle p,q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

for all $p, q \in \mathbb{P}_2$.

- (1) Prove that $\langle \cdot, \cdot \rangle$ defines an inner product on \mathbb{V} .
- (2) Prove that p(x) = 1 and q(x) = x are orthogonal with respect to $\langle \cdot, \cdot \rangle$.
- (3) Find α and β such that

$$r(x) = x^2 + \alpha x + \beta,$$

is orthogonal to the set $\{p(x), q(x)\}$.

Problem 2: (1) Given the set of experimental data (1, 1), (2, 3), (3, 3), (4, 6), (5, 8), write the least squares problem $Ax \approx b$ for fitting the data with a quadratic function

$$q(x) = a + b(x - 1) + c(x - 2)^2,$$

with unknowns coefficients a, b and c. Indicate how to find a, b and c, but do not solve!

(2) Using MATLAB, find the QR factorization of the associated matrix and solve the linear system.

Problem 3:

- (1) Formulate the linear algebra problem of finding the closest polynomial $p \in \text{span}\{t, t^2\}$ to the function $f(t) = e^t \cos(t)$ with respect to the standard L^2 inner product. Do not solve!
- (2) Is the matrix of (a) symmetric and positive definite?
- (3) Using MATLAB, find the QR factorization of the associated matrix and solve the linear system.

Problem 4: (1) Find the Cholesky factor *C* of the following matrix:

$$A = \begin{pmatrix} 9 & -3 \\ -3 & 5 \end{pmatrix}$$

(2) Let $A = BB^{T}$. Under what conditions of B is the matrix A symmetric and positive definite?

Problem 5: (1) Find a set of orthogonal vectors that spand the same subspace $S \subset \mathbb{R}^4$ as

$$\mathbf{a} = (0, -1, 1, 0)^T, \qquad \mathbf{a} = (2, 0, 2, 0)^T, \qquad \mathbf{a}_3 = (-1, 0, 0, 1)^T.$$

(2) Find the projection of $\mathbf{b} = (-1, 1, 1, 1)^T$ onto S.

Problem 6: Let \mathbb{V} be a vector space and \mathbb{W} a subspace of \mathbb{V} . Consider the *orthogonal complement* $\mathbb{W}^{\perp} := \{ \mathbf{v} \in \mathbb{V} : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \quad \forall \mathbf{w} \in \mathbb{W} \}.$

- (1) Prove that \mathbb{W}^{\perp} is a subspace of \mathbb{V}
- (2) Prove that $\mathbb{W} \cap \mathbb{W}^{\perp} = \{\mathbf{0}\}.$