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Abstract. We prove the well posedness in weighted Sobolev spaces of certain linear and non-
linear elliptic boundary value problems posed on convex domains and under singular forcing. It is
assumed that the weights belong to the Muckenhoupt class Ap with p ∈ (1,∞). We also propose
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1. Introduction. In this paper we intend to provide an analysis and obtain
approximation results for problems of the following form

(1) − div a(x,∇u) = −div f + g in Ω, u = 0 on ∂Ω.

Here, for d ∈ {2, 3}, Ω ⊂ Rd is a convex polytope, a : Ω × Rd → Rd is a strongly
monotone and coercive vector field which, in addition, is linear at infinity ; see Sec-
tion 3 below for a detailed description. For a given measurable data f : Ω → Rd and
g : Ω → R, by a solution to (1) we mean any u ∈W 1,q

0 (Ω), for some q > 1, such that

(2)

ˆ
Ω

a(x,∇u) · ∇ψ dx =

ˆ
Ω

f · ∇ψ dx+

ˆ
Ω

gψ dx ∀ψ ∈ C∞
0 (Ω).

The structural assumptions we make for the nonlinearity a allow equation (2) to
make sense even if |∇u|, |f |, and g lie in L1

loc(Ω). However, it is well known that

uniqueness of solutions for problem (1) in W 1,1
0 (Ω) is not guaranteed, even for linear

equations with continuous coefficients; see [24, 30, 3] for the existence of pathological
solutions. To work with a well posed problem, we need the additional assumption
that the solutions lie in W 1,q

0 (Ω), for some q > 1. For q = 2, it can be shown that
equation (2) has a unique solution u ∈W 1,2

0 (Ω) with data |f |, g ∈ L2(Ω) under suitable
monotonicity and coercivity properties for the nonlinearity a; the main technique is
the Browder and Minty’s nonvariational method for monotone operators [14, Section
9.1], [28, Chapter 2]. For the applicability of the method, it is important that the
right-hand side of (1) belongs to the dual of the solution space. Here, we are interested
in the general scenario where the data might go beyond the natural duality class that
aligns with the operator associated with the equation (1). Specifically, we assume
that the data f and g are rough and belong to the weighted spaces Lp(ω,Ω) and
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Lp(ω,Ω), respectively, for p ∈ (1,∞) and ω ∈ Ap—the so-called Muckenhoupt class;
see Section 2 for notation. As we will review shortly, functions in W 1,p(ω,Ω) belong
to L1+ϵ(Ω) for ϵ > 0 small, but not necessarily to any higher Lp(Ω)–classes. In
this case, the solution to (1) is expected to belong in no better space than W 1,q

0 (Ω),
for 1 < q < 2, which makes the well posedness of equation (1) a more difficult
problem. We refer the reader to [5] for a detailed literature review and discussion on
the challenges in analyzing the quasilinear equation (1), which can lead to very weak
solutions, as they are commonly called.

This work is motivated by the results obtained in [5] on the existence, uniqueness,
and optimal regularity estimates of solutions for (1) and has two main goals. The first
is to prove the existence of a unique solution u ∈ W 1,p

0 (ω,Ω) to (1) corresponding to
data |f | and g in the weighted class Lp(ω,Ω), for any p > 1, when the domain Ω is
a convex polytope. While elliptic problems of type (1) have already been analyzed in
various forms in the literature, which is too extensive to cite here, the applicability
of the results is limited to problems over domains with either C1 boundary [5] or
a boundary with small Lipschitz constant [1, 8, 7], or a Riefenberg flat boundary
[26]. The argument used in the aforementioned papers to obtain global estimates
requires first deriving local interior and boundary estimates for solutions. The crucial
near-boundary estimates in turn require local estimates for flat domains, which are
then extended to the domain of interest via a flattening argument. This explains
the necessity of the flatness of the boundary. However, this strategy falls short when
dealing with problems in convex domains with large Lipschitz constants. Even when
dealing with convex domains with small Lipschitz constants, the results of these works
are not fully satisfactory due to the restriction on the range of p as a function of the
Lipschitz constant. In contrast, our work introduces a different approach to obtain
global estimates for solutions on an arbitrary convex domain; the results can be
applied for any p > 1.

Our interest in working with convex polytopes is related to the second goal of the
paper, namely the development of a finite element approximation theory for problem
(1). Since the domain Ω is a convex polytope, it can be meshed exactly. We propose
and analyze a convergent finite element discretization for problem (1). More precisely,
we will prove that a discretization of (1) that seeks for a solution in the finite element
space of continuous piecewise linear functions defined over a quasiuniform mesh of the
domain is convergent with respect to the weak topology of the weighed Sobolev space
W 1,p

0 (ω,Ω). The point here is that the approach we use allows us to approximate
problems that assume the framework of very weak solutions and, more generally, the
method is applicable to any convex domain and any p > 1 and ω ∈ Ap.

Following the argumentation in [5] (see also [7]) we show the existence of a solution
u to problem (1) via an approximation argument. In this approach, the solution is
constructed as the limit of a sequence of solutions for the same equation, but with
smooth data that converges to the original data. Performing this procedure requires
us that we first obtain an a priori estimate for any solution u ∈W 1,p

0 (ω,Ω) in terms
of the Lp(ω,Ω)-norms of |f | and g. To achieve this, we rewrite equation (1) as the
following linear equation:

(3) − div(A(x)∇u) = F in Ω, u = 0 on ∂Ω,

where F = − div f + g+div(a(x,∇u)−A(x)∇u). By choosing A(x) as a continuous
matrix such that A(x)v is uniformly close to a(x,v) at infinity (for large v), we will

show that the right hand side F lies in the dual space of W 1,p′

0 (ω′,Ω). The problem
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of obtaining a priori estimates for solutions to the nonlinear problem is then reduced
to the search of optimal regularity estimates for solutions to linear equations of type
(3) over convex domains. This is the step where our approach differs from that of
[5], which obtains the needed optimal global regularity estimates for linear problems
posed over C1 domains. As already mentioned, this is not applicable for our purposes.
Instead, we extend a result proved in [2] about the solvability of linear equations of
type (3) on convex domains over unweighted spaces to the case of weighted spaces.
We overcome the problem related to the near-boundary estimates by using available
estimates over convex domains for suitable Green’s functions. Once we establish this
result, the remaining steps follow the reasoning from [5].

The paper is structured as follows. We begin with Section 2, where we lay out
most of the notations used in this paper. We also define the class of Muckenhoupt Ap

weights and discuss some of the properties that are needed in this paper. In addition,
this section contains all the structural conditions for the nonlinearity a that specify
the type of nonlinear problems we aim to investigate. In Section 3, we establish the
solvability of linear elliptic problems with continuous coefficients on convex polytopes.
These foundations play a role in Section 4, where we sketch the procedure for proving
the existence and uniqueness of solutions to (1). We conclude the paper by proposing
and analyzing a convergent finite element discretization for problem (1).

2. Notations, preliminaries, and structural assumptions.

2.1. Notations. The first notation we establish is the relation A ≲ B. This
shall mean that A ≤ CB for a nonessential constant C, which can change at each
occurrence. A ≳ B means B ≲ A, and A ≂ B is the short form for A ≲ B ≲ A. If it
is necessary to explicitly mention a constant C, we assume that C > 0 and that the
value can change every time it occurs.

Throughout our work, d ∈ {2, 3} is the spatial dimension and Ω ⊂ Rd is a bounded
and convex polytope. The restriction d ∈ {2, 3} is only due to the fact that many of
the results required for our purposes, for instance those related to Green’s functions
on convex polytopes, are only known up to dimension three (d = 3). As soon as these
become available for higher dimensions, our results will follow with little or no change.
If z ∈ Rd and r > 0, we denote by B̊r(z) the (open) Euclidean ball with center at z
and radius r. Its closure is Br(z). If A,B ∈ Rd×d are symmetric, we mean by A ⪯ B
an order in the spectral sense, i.e.,

Aξ · ξ ≤ Bξ · ξ ∀ξ ∈ Rd.

Vector valued functions are written in script boldface, and their spaces are also
written in boldface characters. Matrix valued functions are denoted with capital
boldface letters, and their spaces are written in calligraphic boldface. For example,
w ∈ C(Ω̄) denotes a continuous vector valued function w : Ω̄ → Rd; while A ∈ C(Ω̄)
means that A : Ω̄ → Rd×d is continuous. If the range of a matrix valued function is
contained in the space of symmetric matrices Rd×d

sym , we denote it by, say, Csym(Ω̄).

Let K ⊂ Rd be compact. We recall that Besicovitch’s covering theorem (see
[33, Theorem 1.3.5], [15, Theorem 1.27], and [10, Theorem 1.4.6]) guarantees that
from any open cover {Om}m∈M of K we can extract a finite subcover with a finite
overlapping property. We shall quantify this by saying that if {Om}Mm=1 is such a finite
subcover satisfying max{diamOm : m ∈ {1, . . . ,M}} ≤ δ and {φm}Mm=1 ⊂ C∞

0 (Rd)
is a partition of unity subject to {Om}Mm=1, then we have

(4) ∥Dkφm∥L∞(Rd;Rdk )
≤ Cφ,kδ

−k, sup
x∈Ω̄

# {m ∈ {1, . . . ,M} : x ∈ suppφm} ≤ N ,
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where N depends only on d.

2.2. Ap weights. Whenever w : Rd → R is locally integrable with respect to the
Lebesgue measure and E ⊂ Rd has a positive and finite measure, we set 

E

w(x) dx =
1

|E|

ˆ
E

w(x) dx.

By a weight we mean a locally integrable function ω : Rd → R which is positive almost
everywhere. Given a weight ω and p ∈ [1,∞), we set Lp(ω,Ω) to be the Lebesgue
space of integrability index p on Ω with respect to the measure ω dx, i.e.,

Lp(ω,Ω) =

{
f : Ω → R : ∥f∥Lp(ω,Ω) =

(ˆ
Ω

|f(x)|pω(x) dx
) 1

p

<∞

}
.

For p ∈ [1,∞) we say that a weight ω belongs to the Muckenhoupt class Ap if
there is a constant C > 0 such that for every ball B ⊂ Rd [32, Definition 1.2.2]( 

B

ω(x) dx

)( 
B

ω(x)
− 1

p−1 dx

)p−1

≤ C, p > 1,( 
B

ω(x) dx

)
sup
x∈B

1

ω(x)
≤ C, p = 1.

We call the best constant in the previous inequalities the Muckenhoupt characteristic
of ω and denote it as [ω]Ap

. In addition, we define A∞ = ∪p≥1Ap. Note that,

ω ∈ Ap ⇐⇒ ω′ = ω
− 1

p−1 ∈ Ap′ , [ω]Ap
= [ω′]p−1

Ap′
;

for p ∈ (1,∞) [32, Remark 1.2.4], where we denoted the Hölder conjugate of p ∈ (1,∞)
by p′. Many useful properties follow from the fact that ω ∈ Ap (p ∈ [1,∞)). We
mention here those that will be useful for us in the following:
(i) Lp(ω,Ω) ⊂ L1

loc(Ω) [32, (1.2.1)–(1.2.2)]. In particular, elements of Lp(ω,Ω) are
distributions and we can talk about their distributional derivatives.

(ii) Reverse Hölder inequality : There exist constants ε > 0 and C > 0, depending
only on p and [ω]Ap

, such that for any ball B ⊂ Rd,

(5)

( 
B

ω(x)1+ε dx

)1/(1+ε)

≤ C

 
B

ω(x) dx;

see [13, Theorem 7.4] and [32, Lemma 1.2.12]. From this it first follows that
Lp(ω,Ω) ⊂ L1+ϵ(Ω) for a sufficiently small ϵ > 0. Furthermore, we can conclude
that for p ∈ (1,∞) and ω ∈ Ap, a function v belongs to Lp(ω,Ω) provided that
v ∈ Lq(Ω) for q = p(1 + ε)/ε > 1; ε is such that (5) holds.

(iii) Embedding : If 1 ≤ p < q <∞, then Ap ⊂ Aq; see [32, Remark 1.2.4].
(iv) Open ended property : If ω ∈ Ap with p ∈ (1,∞), then there is δ > 0 such that

ω ∈ Ap−δ; see [32, Corollary 1.2.17] and [13, Corollary 7.6, item (2)].
(v) Lattice property : If ω1, ω2 ∈ Ap, then min{ω1, ω2} and max{ω1, ω2} belong to

Ap.
(vi) Factorization: Let w ∈ L1

loc(Rd) be a nonnegative function that satisfiesM[w] <
∞ almost everywhere and let k be a nonnegative function such that k, k−1 ∈
L∞(Rd). Then, for every ε ∈ (0, 1),

ω(x) = k(x)M[w](x)ε
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is an A1 weight; see [20, Theorem 7.2.7] and also [13, Theorem 7.7]. Here, M
denotes the Hardy–Littlewood maximal function. Moreover, for all p ∈ (1,∞)
and all α ∈ (0, 1), there holds M[w]−α(p−1) ∈ Ap [5, Lemma 3.2].

We refer the reader to [32, 13, 23, 20] for more details on Muckenhoupt weights and
weighted-norm inequalities.

As already mentioned, for any p ∈ [1,∞) and ω ∈ Ap, the elements of Lp(ω,Ω)
are distributions. Thus, it makes sense to talk about their distributional derivatives
and define weighted Sobolev spaces:

W 1,p(ω,Ω) = {w ∈ Lp(ω,Ω) : ∂iw ∈ Lp(ω,Ω) ∀i ∈ {1, . . . , d}} ,

endowed with ∥w∥W 1,p(ω,Ω) =
(
∥w∥Lp(ω,Ω) + ∥∇w∥Lp(ω,Ω)

) 1
p . We define W 1,p

0 (ω,Ω)
as the closure of C∞

0 (Ω) in W 1,p(ω,Ω). Due to the fact that the weight ω ∈ Ap

many of the properties of the classical Sobolev spaces extend to the weighted ones
[32, 19, 25]. In particular, we have a weighted Poincaré inequality: if D ⊂ Rd is open
and bounded, p ∈ (1,∞), and ω ∈ Ap, then [16, Theorem 1.3]

(6) ∥w∥Lp(ω,D) ≤ Cp diam(D)∥∇w∥Lp(ω,Ω) ∀w ∈W 1,p
0 (ω,Ω).

The constant Cp depends on ω only through [ω]Ap
. Finally, the dual of W 1,p′

0 (ω′,Ω)
will be denoted by W−1,p(ω,Ω).

2.3. Assumptions on the nonlinearity. We now turn our attention to (1).
Our goal is to find a set of conditions for the nonlinearity and the variable coefficient
that guarantee the existence of a unique solution, together with a weighted stability
estimate. For this purpose, we shall assume that a : Ω × Rd → Rd satisfies the
following conditions.
(A) Carathéodory mapping : a : Ω×Rd → Rd is Carathéodory. In other words a(·,v)

is measurable for any fixed v ∈ Rd and a(x, ·) is continuous for almost all x ∈ Ω.
(B) Coercivity : There is α > 0 such that for almost all x ∈ Ω and every v ∈ Rd,

(7) α|v|2 ≤ a(x,v) · v.

(C) Growth: There is Λ > 0 such that for almost all x ∈ Ω and all v ∈ Rd,

(8) |a(x,v)| ≤ Λ|v|.

(D) Strict monotonicity : For almost all x ∈ Ω and every v,w ∈ Rd such that v ̸= w,

(9) (a(x,v)− a(x,w)) · (v −w) > 0.

(E) a is asymptotically Uhlenbeck : There exists A ∈ Csym(Ω̄) such that, for all ε > 0,
there is N > 0, such that for almost all x ∈ Ω and all v ∈ Rd satisfying |v| ≥ N ,
we have

(10) |a(x,v)−A(x)v| ≤ ε|v|.

(F ) a is strongly asymptotically Uhlenbeck : There exists A ∈ Csym(Ω̄) such that, for
all ε > 0, there is N > 0, such that for almost all x ∈ Ω and all v ∈ Rd satisfying
|v| ≥ N , we have

(11) |∂va(x,v)−A(x)| ≤ ε.
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Remark 1 (structure conditions). A prototypical example of a mapping a that
satisfies the asymptotically Uhlenbeck structure condition is

a(x,v) = a(x, |v|)v : lim
t↑∞

a(x, t) = ã(x) a.e. x ∈ Ω,

with ã ∈ C(Ω̄); see the discussion at the beginning of Section 2 in [5]. Note that
the coefficient a is allowed to be merely measurable in x and the required continuity
must hold only for ã. The mapping a is strongly asymptotically Uhlenbeck if a is
differentiable with respect to t for t ≫ 1 and |∂ta(x, t)t| → 0 as t ↑ ∞. We refer the
reader to [5] and our introduction for further motivation.

3. Linear elliptic problems with continuous coefficients. We begin the
analysis of (1) with the linear case, i.e.,

(12)


a(x,v) = A(x)v ∀(x,v) ∈ Ω̄× Rd,

A ∈ Csym(Ω̄), ∥A∥C(Ω̄) ≤ Λ,

∃α > 0 : αI ⪯ A(x) ∀x ∈ Ω̄.

As a first preparatory step, let us recall some known results. We begin with the
simplest variant of (1), i.e., that of the Laplacian: a(x,v) = v. This particular case
is studied in [12]. In particular, the following proposition is proved in [12, Corollary
2.7]; see also [17].

Proposition 2 (weighted stability). Let D ⊂ Rd be bounded and convex. Let
p ∈ (1,∞) and ω ∈ Ap. For every F ∈W−1,p(ω,D), there is a unique U ∈W 1,p

0 (ω,D)
such that −∆U = F in D ′(D). Moreover,

∥∇U∥Lp(ω,D) ≤ C∆∥F∥W−1,p(ω,D),

where C∆ does not depend on D and depends on ω only through [ω]Ap .

The following is the the most important result of this section, which extends the
solvability of the linear elliptic equation obtained in [2] to the weighted case.

Theorem 3 (well posedness). Let d ∈ {2, 3} and let Ω ⊂ Rd be a bounded
and convex polytope. Assume that a satisfies (12). Let p ∈ (1,∞) and let ω ∈ Ap.
Then, for any f ∈ Lp(ω,Ω) and g ∈ Lp(ω,Ω), problem (1) has a unique solution
u ∈W 1,p

0 (ω,Ω). Moreover, u satisfies

(13) ∥∇u∥Lp(ω,Ω) ≲ ∥f∥Lp(ω,Ω) + ∥g∥Lp(ω,Ω).

The hidden constant depends on ω only through its Muckenhoupt characteristic [ω]Ap

and on the coefficient A only through α and Λ.

The proof follows the argumentation in [2]. We prove an a priori estimate in
weighted spaces via the method of localization by freezing the coefficient and using
the results of Proposition 2. We then prove the existence of a solution as the limit of
a sequence of solutions to the same problem, but with smooth data converging to the
original data. We have divided the proof into several steps in which we prove several
independent statements. We begin with an a priori estimate.

Lemma 4 (G̊arding–like inequality). Let d ∈ {2, 3} and let Ω ⊂ Rd be a bounded
and convex polytope. Let B ∈ C∞

sym(Ω̄) be such that there is α > 0 for which

(14) αI ⪯ B(x) ∀x ∈ Ω̄.
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Let p ∈ (1,∞) and ω ∈ Ap. Given µ ∈ Lp(ω,Ω) and γ ∈ Lp(ω,Ω), assume that

u ∈W 1,p
0 (ω,Ω) satisfies

−div(B∇u) = −divµ+ γ in D ′(Ω).

Then,

(15) ∥∇u∥Lp(ω,Ω) ≲ ∥µ∥Lp(ω,Ω) + ∥γ∥Lp(ω,Ω) + ∥u∥Lp(ω,Ω).

The hidden constant depends on the weight ω only through its Muckenhoupt charac-
teristic [ω]Ap

and on the coefficient B only through the norm ∥B∥C(Ω̄) and α.

Proof. The estimate (15) follows from a localization argument by freezing the
coefficients. For this purpose, we set Λ = ∥B∥C(Ω̄) and let ε > 0 be sufficiently small
so that

(16) 4p−1N p+2Cp
∆Λ

p
2α−p− dp

2 (Cφ,1Cp′ + 1)pεp <
1

2
,

where N and Cφ,1 come from (4) and C∆ is as in Proposition 2. Since B ∈ Csym(Ω̄),
it is uniformly continuous in Ω̄. For every ε > 0 there is therefore δ > 0 such that for
any x0 ∈ Ω̄ and all x ∈ Ω̄ ∩Bδ(x0)

(17) |B(x)−B(x0)| ≤ ε.

By compactness of Ω̄, we deduce the existence ofM ∈ N and {xm}Mm=1 ⊂ Ω̄ such that

Ω̄ ⊂
M⋃

m=1

B̊δ(xm).

For m ∈ {1, . . . ,M}, we define Ω̄m := Ω̄ ∩Bδ(xm) and Bm = B(xm) ∈ Rd×d
sym . Notice

that, for every m ∈ {1, . . . ,M}, Ωm is a convex domain.
Let {φm}Mm=1 ⊂ C∞

0 (Rd) be a partition of unity subordinate to {B̊δ(xm)}Mm=1.
Without loss of generality, we may assume that {φm}Mm=1 satisfies (4).

Define um = uφm ∈W 1,p
0 (ω,Ωm), and let v ∈ C∞

0 (Ωm). Note that,

ˆ
Ωm

Bm∇um · ∇v dx =

ˆ
Ωm

Bm∇u · ∇(φmv) dx+

ˆ
Ωm

uBm∇v · ∇φm dx

−
ˆ
Ωm

vBm∇u · ∇φm dx.

If we integrate by parts the last term on the right hand side of the previous relation,
we obtain

−
ˆ
Ωm

vBm∇u · ∇φm dx =

ˆ
Ωm

udiv(vBm∇φm) dx

=

ˆ
Ωm

u
[
Bm∇φm · ∇v + vBm : D2φm

]
dx.
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To obtain the last equality, we have used that Bm is a constant matrix. Thus,

ˆ
Ωm

Bm∇um · ∇v dx =

ˆ
Ωm

Bm∇u · ∇(φmv) dx+ 2

ˆ
Ωm

uBm∇v · ∇φm dx

+

ˆ
Ωm

uvBm : D2φm dx

=

ˆ
Ω

(Bm −B)∇u · ∇(φmv) dx+

ˆ
Ω

B∇u · ∇(φmv) dx

+

ˆ
Ωm

u
[
2Bm∇v · ∇φm + vBm : D2φm

]
dx.

In other words, um ∈W 1,p
0 (ω,Ωm) satisfies

(18)

ˆ
Ωm

Bm∇um · ∇v dx = ⟨Fm, v⟩ ∀v ∈ C∞
0 (Ωm),

where the distribution Fm is defined as

(19) ⟨Fm, v⟩ =
ˆ
Ω

µ · ∇(φmv) dx+

ˆ
Ω

γφmv dx+

ˆ
Ω

(Bm −B)∇u · ∇(φmv) dx

+

ˆ
Ωm

u
[
2Bm∇v · ∇φm + vBm : D2φm

]
dx.

It is not difficult to see that the distribution Fm belongs to W−1,p(ω,Ωm).
We now note that since the matrixBm is symmetric and positive definite, up to an

affine transformation the operator in (18) is the Laplacian. In fact, Bm = Q⊺
mΛmQm

with Qm orthogonal and Λm diagonal. Define the (linear) transformation

y = Fm(x) = Λ−1/2
m Qmx, x ∈ Ωm, DFm(x) = Λ−1/2

m Qm.

With the change of variables ŵ(y) = w(x), it follows that ∇xw(x) = DF⊺
m∇yŵ(y).

Furthermore, w ∈ C∞
0 (Ωm) if and only if ŵ ∈ C∞

0 (Dm), where Dm = Fm(Ωm). It
follows that for each v ∈ C∞

0 (Ω),

ˆ
Ωm

Bm∇um · ∇v dx =

ˆ
Dm

∇y v̂
⊺DFmBmDF⊺

m∇yûm|detDFm|−1 dy

=
∣∣∣detΛ− 1

2
m

∣∣∣−1
ˆ
Dm

∇yûm · ∇y v̂ dy.

Applying a similar change of variables, we consider F̂m ∈W−1,p(ω̂m, Dm) to be such
that ⟨Fm, v⟩ = ⟨F̂m, v̂⟩ for all v ∈ C∞

0 (Ωm), where we have set ω̂m = ω ◦ F−1
m . We

now note that

∥Fm∥W−1,p(ω,Ωm) ≤
∣∣∣detΛ− 1

2
m

∣∣∣− 1
p maxi=1...d Λ

− 1
2

m,ii

mini=1...d Λ
− 1

2
m,ii

∥F̂m∥W−1,p(ω̂m,Dm),

∥F̂m∥W−1,p(ω̂m,Dm) ≤
∣∣∣detΛ 1

2
m

∣∣∣− 1
p maxi=1...d Λ

1
2
m,ii

mini=1...d Λ
1
2
m,ii

∥Fm∥W−1,p(ω,Ωm).
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Combining all of the above calculations, we obtain that ûm, which now belongs to
W 1,p

0 (ω̂m, Dm) solves the equation

−∆ûm =
∣∣∣detΛ− 1

2
m

∣∣∣ F̂m in D ′(Dm).

Now, since Dm is convex, by Proposition 2 we have

∥∇ûm∥Lp(ω̂m,Dm) ≤ C∆|detΛ
− 1

2
m |∥F̂m∥W−1,p(ω̂m,Dm)

≤ C∆

∣∣∣detΛ 1
2
m

∣∣∣−1− 1
p maxi=1...d Λ

1
2
m,ii

mini=1...d Λ
1
2
m,ii

∥Fm∥W−1,p(ω,Ωm).

A further change of variables then shows that

ˆ
Dm

|∇yûm|pω̂m dy =

ˆ
Ωm

|DF−⊺
m ∇xum|p|detDFm|ω dx

=
∣∣∣detΛ− 1

2
m

∣∣∣ˆ
Ωm

|Λ
1
2
mQm∇xum|pω dx

≥
(

min
i=1...d

Λ
1
2
m,ii

)p

|detΛ− 1
2

m |∥∇um∥pLp(ω,Ωm).

Finally, we use the spectral bounds for Bm to conclude that

∥∇um∥Lp(ω,Ωm) ≤ C∆|detΛ
1
2
m|−1

maxi=1...d Λ
1
2
m,ii

mini=1...d Λm,ii
∥Fm∥W−1,p(ω,Ωm)

≤ C∆Λ
1
2α−1− d

2 ∥Fm∥W−1,p(ω,Ωm).

Let us now estimate each of the terms that comprise Fm. Based on the scaling
properties of φm in (4) and the weighted Poincaré inequality (6), we conclude that

(20)

∣∣∣∣ˆ
Ω

µ · ∇(φmv) dx

∣∣∣∣ ≲ ∥µ∥Lp(ω,Ωm)

[
∥∇v∥Lp′ (ω′,Ωm) + δ−1∥v∥Lp′ (ω′,Ωm)

]
≲ ∥µ∥Lp(ω,Ωm)∥∇v∥Lp′ (ω′,Ωm),

and ∣∣∣∣ˆ
Ω

γφmv dx

∣∣∣∣ ≤ ∥γ∥Lp(ω,Ωm)∥v∥Lp′ (ω′,Ωm) ≲ δ∥γ∥Lp(ω,Ωm)∥∇v∥Lp′ (ω′,Ωm).

Similarly, ∣∣∣∣2ˆ
Ωm

uBm∇v · ∇φm dx

∣∣∣∣ ≲ Λ

δ
∥u∥Lp(ω,Ωm)∥∇v∥Lp′ (ω′,Ωm),

and ∣∣∣∣ˆ
Ωm

uvBm : D2φm dx

∣∣∣∣ ≲ Λ

δ2
∥u∥Lp(ω,Ωm)∥v∥Lp′ (ω′,Ωm)

≲
Λ

δ
∥u∥Lp(ω,Ωm)∥∇v∥Lp′ (ω′,Ωm),
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where we have again used (6) to obtain the last inequality. By the choice of δ, we can
therefore estimate∣∣∣∣ˆ

Ωm

(Bm −B)∇u · ∇(φmv) dx

∣∣∣∣ ≤ (Cφ,1Cp′ + 1)ε∥∇u∥Lp(ω,Ωm)∥∇v∥Lp′ (ω′,Ωm),

where Cφ,1 > 0 is defined in (4) and is independent of ε. Here, we have used the
arguments leading to (20) to control ∥∇(φmv)∥Lp′ (ω′,Ωm). To summarize, we have
then obtained that

(21)
∥∇um∥Lp(ω,Ωm) ≤ C∆Λ

1
2α−1− d

2

[
C1

(
∥µ∥Lp(ω,Ωm) + δ∥γ∥Lp(ω,Ωm)

)
+ C2Λδ

−1∥u∥Lp(ω,Ωm) + (Cφ,1Cp′ + 1)ε∥∇u∥Lp(ω,Ωm)

]
.

Having obtained the previous bound we derive an estimate for ∥∇u∥Lp(ω,Ω). Using
the finite overlapping property of our covering, it follows that

∥∇u∥pLp(ω,Ω) =

ˆ
Ω

ω|∇u|pdx ≤ N
M∑

m=1

ˆ
Ωm

ω|∇u|pdx.

We now use the partition of unity property to write u =
∑

m uφm and then use the
finite overlapping property again to obtain

(22) ∥∇u∥pLp(ω,Ω) ≤ N
M∑

m=1

ˆ
Ωm

ω

∣∣∣∣∣
M∑
i=1

∇ui

∣∣∣∣∣
p

dx ≤ N p+1
M∑

m=1

ˆ
Ωm

ω|∇um|pdx.

To obtain the last bound we have used the following easy consequence of Hölder’s
inequality: ∣∣∣∣∣

Z∑
i=1

zi

∣∣∣∣∣
p

≤ Z
p
p′

( Z∑
i=1

|zi|p
)
, ∀Z ∈ N, ∀{zi}Zi=1 ⊂ R.

This inequality will be used once more below. We now replace the bound obtained
for um in (21) into the previously derived bound (22) to deduce

(23) ∥∇u∥pLp(ω,Ω) ≤ 4p−1N p+2Cp
∆Λ

p
2α−p− dp

2

[
Cp

1∥µ∥
p
Lp(ω,Ω) + Cp

1 δ
p∥γ∥pLp(ω,Ω)

+ Cp
2Λ

pδ−p∥u∥pLp(ω,Ω) + (Cφ,1Cp′ + 1)pεp∥∇u∥pLp(ω,Ω)

]
.

It is at this point that the initially chosen value of ε becomes relevant; see (16). The
last term on the right hand side of the previous inequality can be absorbed on the
left hand side, and this completes the proof.

The following a priori estimate follows from this result.

Corollary 5 (a priori estimate). Under the conditions of Lemma 4 and assum-
ing that µ and γ are smooth, we have

(24) ∥∇u∥Lp(ω,Ω) ≲ ∥µ∥Lp(ω,Ω) + ∥γ∥Lp(ω,Ω).

The hidden constant depends on the weight ω only through [ω]Ap
and on the coefficient

B only through α and the norm ∥B∥C(Ω̄).
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Proof. To simplify the notation, we let Lϕ = − div(B∇ϕ). For Ψ ∈ Lp′
(ω′,Ω)

and smooth, we consider the following auxiliary problem:

(25) w ∈W 1,p′

0 (ω′,Ω) : L∗w = Ψ in Ω, w = 0 on ∂Ω,

where L∗ denotes the formal adjoint of L. Since B and Ψ are assumed to be smooth
and Ω convex, there is a unique solution w to problem (25) that belongs to W 1,2

0 (Ω)∩
W 2,2(Ω); see [21, Theorem 3.2.1.2]. On the other hand, it follows from [2, Theorem
1] that w ∈ W 1,q

0 (Ω) for every q ∈ (1,∞). Due to the reverse Hölder inequality,
it is therefore possible to find a q that is sufficiently large so that w ∈ W 1,q

0 (Ω) ⊂
W 1,p′

0 (ω′,Ω).
We now claim that the following regularity estimate is valid:

(26) ∥w∥Lp′ (ω′,Ω) ≲ ∥Ψ∥Lp′ (ω′,Ω).

With the estimate (26) at hand, we invoke the G̊arding–like inequality (15) of Lemma 4
with µ = 0 and γ = Ψ to obtain

(27) ∥∇w∥Lp′ (ω′,Ω) ≲ ∥Ψ∥Lp′ (ω′,Ω) + ∥w∥Lp′ (ω′,Ω) ≲ ∥Ψ∥Lp′ (ω′,Ω),

where we used (26) in the last step.
Let now Φ ∈ W−1,p(ω,Ω) be smooth and given. Consider v as the solution to

Lv = Φ in Ω together with the Dirichlet boundary conditions v = 0 on ∂Ω. In view
of [21, Theorem 3.2.1.2] and [2, Theorem 1], we have that v ∈ W 1,2

0 (Ω) ∩W 2,2(Ω) ∩
W 1,q

0 (Ω) for every q ∈ (1,∞). Again, we can choose q sufficiently large so that
v ∈W 1,q

0 (Ω) ⊂W 1,p(ω,Ω). We now compute

∥v∥Lp(ω,Ω) = sup
Ψ∈C∞

0 (Ω)

´
Ω
vΨdx

∥Ψ∥Lp′ (ω′,Ω)

= sup
Ψ∈C∞

0 (Ω)

´
Ω
vL∗w dx

∥Ψ∥Lp′ (ω′,Ω)

= sup
Ψ∈C∞

0 (Ω)

⟨Φ, w⟩dx
∥Ψ∥Lp′ (ω′,Ω)

≤ ∥Φ∥W−1,p(ω,Ω) sup
Ψ∈C∞

0 (Ω)

∥∇w∥Lp′ (ω′,Ω)

∥Ψ∥Lp′ (ω′,Ω)

≲ ∥Φ∥W−1,p(ω,Ω),

where we used (27) in the last step. To summarize, if (26) holds and v ∈W 1,p
0 (ω,Ω)

solves Lv = Φ in Ω and v = 0 on ∂Ω, then

∥v∥Lp(ω,Ω) ≲ ∥Φ∥W−1,p(ω,Ω).

Since µ and γ are smooth by assumption, Φ = − divµ+γ is also smooth and belongs
to W−1,p(ω,Ω). We now apply the above estimate for v = u and Φ = −divµ+γ and
combine it with Lemma 4 to conclude (24).

It therefore remains to prove (26). To do so, we can use, for instance, the repre-
sentation of w via the Green’s function G of L∗. In fact, we have

w(x) =

ˆ
Ω

G(x, y)Ψ(y) dy.

Since Ω is convex, the following bounds follow from [31, Theorem 4.1, estimate (4.4)]
and [22, Theorem 3.3, item (i)]: For x, y ∈ Ω, we have that

|G(x, y)| ≤ K

{
1 + | log(|x− y|)|, d = 2,

|x− y|2−d, d = 3.
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In these estimates, the constant K depends on B only through α and ∥B∥C(Ω̄). The
estimate (26) then follows quickly from the continuity in Lr(ω,Ω), with r ∈ (1,∞)
and ω ∈ Ar, of integral operators with standard kernels, i.e., kernels that satisfy the
estimates (5.12)–(5.14) in [13, page 99]. Since Ω is bounded, it follows that for d = 2

|w(x)| ≤ K

ˆ
Ω

(1 + | log(|x− y|)|) |x− y|2 |Ψ(y)|
|x− y|2

dy

≤ K diam(Ω)2 (1 + | log(diam(Ω))|)
ˆ
Ω

|Ψ(y)|
|x− y|2

dy,

where we used that R+ ∋ t 7→ t2| log(t)| ∈ R is continous and t2| log(t)| → 0 as t ↓ 0.
For d = 3, we have that

|w(x)| ≤ K diam(Ω)2
ˆ
Ω

|Ψ(y)|
|x− y|3

dy.

Define K : Rd ×Rd \ {(x, x) : x ∈ Rd} → R as K(x, y) = |x− y|−d. It follows that K is
a standard kernel in the sense that it satisfies the estimates (5.12)–(5.14) in [13, page
99]. We are thus in a position to apply the continuity of singular integral operators
on Muckenhoupt weighted spaces [13, Theorem 7.11, page 144], which guarantees the
bound (26): ∥w∥Lp′ (ω′,Ω) ≲ ∥Ψ∥Lp′ (ω′,Ω). This concludes the proof.

We are now ready to present a proof for the main result of this section.

Proof of Theorem 3. We begin with the proof of existence by means of an ap-
proximation argument. Since Ω is bounded and convex and A ∈ Csym(Ω̄), there is
a sequence {Ak}∞k=1 ⊂ C∞

sym(Ω̄) such that Ak ⇒ A in Csym(Ω̄). Due to the uniform
convergence, it can be assumed without loss of generality that for each k the matrix
valued function Ak satisfies the same lower spectral bound as A, i.e., the third con-
dition in (12). On the other hand, since ω ∈ Ap, we can find {fk}∞k=1 ⊂ C∞(Ω) such
that fk → f in Lp(ω,Ω) and {gk}∞k=1 ⊂ C∞(Ω) such that gk → g in Lp(ω,Ω).

We now consider, for each k ∈ N, the problem:

−div(Ak∇uk) = − div fk + gk in Ω, uk = 0 on ∂Ω.

The smoothness of the data is more than enough to confirm the existence and unique-
ness of a solution uk ∈ W 1,2

0 (Ω) ∩ W 2,2(Ω) for each k ∈ N. Moreover, since Ω is
convex, we have that uk ∈ W 1,q

0 (Ω) for all q ∈ (1,∞) [2, Theorem 1]. In particular,
due to the reverse Hölder inequality, uk ∈ W 1,p

0 (ω,Ω). We can therefore use (24) to
obtain the following bound for each k ∈ N:

∥∇uk∥Lp(ω,Ω) ≤ C
(
∥fk∥Lp(ω,Ω) + ∥gk∥Lp(ω,Ω)

)
,

where C is uniform in k and depends only on α and ∥A∥C(Ω̄). We may then pass to
the limit k ↑ ∞ and obtain, up to a subsequence,

u ∈W 1,p
0 (ω,Ω) : uk ⇀ u in W 1,p

0 (ω,Ω) as k ↑ ∞.

Linearity asserts that u is a solution to (1). Since u is a solution and belongs to
W 1,p

0 (ω,Ω), we can apply the estimate (24) of Corollary 5 to obtain (13).
It therefore remains to show uniqueness. Due to linearity, it suffices to show that

the homogeneous problem has only the trivial solution, i.e., f = 0 and g = 0 imply
that u = 0. Let u ∈ W 1,p

0 (ω,Ω) be a solution of the homogeneous problem. As a
consequence of the reverse Hölder inequality, there exists ε > 0 such that u belongs to
W 1,1+ε

0 (Ω). Since A ∈ Csym(Ω̄), we can conclude from [3, Theorem A5.1] that u ≡ 0
in Ω. This argument shows uniqueness of solutions and concludes the proof.
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4. Quasilinear problems. Having obtained well posedness for linear problems,
we prove the existence and uniqueness of solutions to (1). This extends the results of
[5] to the case of convex polytopal domains.

Theorem 6 (existence and uniqueness). Let d ∈ {2, 3} and let Ω ⊂ Rd be a
bounded and convex polytope. Let us assume that a satisfies the structural assumptions
(A)–(F). Let p ∈ (1,∞) and let ω ∈ Ap. Then, for any f ∈ Lp(ω,Ω) and g ∈ Lp(ω,Ω),

there exists a unique solution u ∈W 1,p
0 (ω,Ω) to problem (1) in the sense that

(28)

ˆ
Ω

a(x,∇u) · ∇φdx =

ˆ
Ω

f · ∇φdx+

ˆ
Ω

gφdx ∀φ ∈ C∞
0 (Ω).

Moreover, the following a priori estimate holds

(29) ∥∇u∥Lp(ω,Ω) ≲ 1 + ∥f∥Lp(ω,Ω) + ∥g∥Lp(ω,Ω).

The hidden constant is independent of f , g, and u; it depends on ω only through [ω]Ap .

Proof. We follow, with some modifications, the proof of [5, Theorem 2.3]. We
begin the proof by showing that the estimate (29) holds for an arbitrary u ∈W 1,q

0 (Ω)
solving (28) (q > 1). Without loss of generality we can restrict ourselves to the case
q ∈ (1, 2). We now note that due to the Rubio de Francia extrapolation (see [9, 29, 18],
and [13, Theorem 7.8]), it suffices to prove the desired estimate for the case p = 2.
For this purpose, we define the following weight for j ∈ N:

ωj = min
{
ω, j (1 +M[∇u])q−2

}
.

Since q ∈ (1, 2), it follows from the item (vi) in §2 that M[∇u]q−2 ∈ A2. We now use
that ω ∈ A2, [5, bound (3.6)], and the fact that the Ap condition is invariant under
translations and dilations [32, Remark 1.2.4, item 5] to obtain that ωj ∈ A2 and that

[ωj ]A2
≤ [ω]A2

+ [(1 +M[∇u])q−2]A2
≤ C(u, ω).

By construction, we have that u ∈W 1,2
0 (ωj ,Ω), g ∈ L2(ωj ,Ω), and f ∈ L2(ωj ,Ω).

The reformulation of problem (28) results in the following relation

ˆ
Ω

A(x)∇u · ∇φdx =

ˆ
Ω

f · ∇φdx+

ˆ
Ω

gφdx+

ˆ
Ω

[A(x)∇u− a(x,∇u)] · ∇φdx,

for all φ ∈ C∞
0 (Ω). Let us introduce F ∈W−1,2(ωj ,Ω) as

⟨F , φ⟩ =
ˆ
Ω

f · ∇φdx+

ˆ
Ω

gφdx+

ˆ
Ω

[A(x)∇u− a(x,∇u)] · ∇φdx.

We then use the bound (13) from Theorem 3 in order to obtain

(30)

ˆ
Ω

ωj |∇u|2 dx ≲
ˆ
Ω

ωj |f |2 dx+
ˆ
Ω

ωj |g|2 dx+
ˆ
Ω

ωj |A(x)∇u−a(x,∇u)|2 dx.

The hidden constant depends on the weight ω only through ts Muckenhoupt char-
acteristic [ω]Ap

and on the coefficient A only through the norm ∥A∥C(Ω̄). This step
is the main difference from [5], where the authors instead use [5, Theorem 2.5] to
derive the previous bound. The results of [5, Theorem 2.5] hold under the additional
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assumption that Ω is a C1-domain. We now let N > 0 to be chosen and define the
sets SN = {x ∈ Ω : |∇u(x)| ≤ N} and BN = Ω \ SN , and observe that

ˆ
SN

ωj |A(x)∇u− a(x,∇u)|2 dx ≤ 2

ˆ
SN

ωj

(
|A(x)|2|∇u|2 + |a(x,∇u)|2

)
dx

≤ 2N2
(
∥A∥2C(Ω̄) + Λ2

)ˆ
Ω

ωj dx,

where we have used (8) and the fact that A ∈ Csym(Ω̄). Let now ϵ > 0. We can
choose N = N(ϵ) > 0 so large that we can claim with (10) that

ˆ
BN

ωj |A(x)∇u− a(x,∇u)|2 dx =

ˆ
BN

|A(x)∇u− a(x,∇u)|2

|∇u|2
ωj |∇u|2 dx

≤ ϵ

ˆ
Ω

ωj |∇u|2 dx.

If we combine the previous two estimates and insert them into (30), we get

ˆ
Ω

ωj |∇u|2 dx ≲
ˆ
Ω

ωj |f |2 dx+

ˆ
Ω

ωj |g|2 dx+N2

ˆ
Ω

ωjdx+ ϵ

ˆ
Ω

ωj |∇u|2 dx.

Note that, once ϵ > 0 is chosen, N is fixed independently of j and the hidden constant
in the previous bound is independent of j. We can then choose ϵ small so that
Cϵ

´
Ω
ωj |∇u|2 dx on the right hand side of this estimate can be absorbed into the left

hand side and we obtainˆ
Ω

ωj |∇u|2 dx ≲
ˆ
Ω

ωj

(
1 + |f |2 + |g|2

)
dx.

The rest of the proof follows the arguments in [5, Theorem 2.3] without change.
This concludes the proof.

Remark 7. The generalization of [5] to incompressible fluids can be found in [6].
In this paper, the authors consider a model of a steady incompressible non-Newtonian
flow under external forcing and provide the full-range theory, i.e., existence, optimal
regularity, and uniqueness of solutions with respect to forcing belonging to Lebesgue
spaces and Muckenhoupt weighted Lebesgue spaces. For extensions of some results
from [6] to convex polyhedral domains we refer the reader to [27].

5. Discretization. In this section, we propose and analyze a convergent finite
element discretization for problem (1). We begin the discussion by noting that since we
assume that Ω is a convex polytope, it can be meshed exactly. Therefore, we introduce
a quasiuniform family T = {Th}h>0 of meshes Th of Ω̄, where the parameter h is the
mesh size. Next, we define the family of finite element spaces {V (Th)}h>0 as

V (Th) =
{
wh ∈W 1,∞

0 (Ω) : wh|T ∈ P ∀T ∈ Th

}
,

where, for a simplicial element T , P corresponds to P1—the space of polynomials of
total degree at most one. If T is a d–rectangle, then P stands for Q1—the space of
polynomials of degree not larger than 1 in each variable. We immediately note that,
for every p ∈ (1,∞) and all ω ∈ Ap, we have

V (Th) ⊂W 1,p
0 (ω,Ω) ∩W 1,p′

0 (ω′,Ω).
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5.1. The Ritz projection. We define Rh :W 1,1
0 (Ω) → V (Th) as

(31)

ˆ
Ω

∇(w − Rhw) · ∇φh dx = 0 ∀φh ∈ V (Th).

The Ritz projection Rh is the best approximation to a function with respect to the
W 1,2

0 (Ω)–norm. Moreover, Rh is stable and has optimal approximation properties in
weighted spaces.

Theorem 8 (stability, approximation, and inf-sup condition). Let T = {Th}h>0

be a quasiuniform family of triangulations of the convex polytope Ω. For every p ∈
(1,∞) and all ω ∈ Ap the Ritz projection Rh : W 1,1

0 (Ω) → V (Th) defined in (31)
satisfies

∥∇Rhw∥Lp(ω,Ω) ≤ CR∥∇w∥Lp(ω,Ω) ∀w ∈W 1,p
0 (ω,Ω).

where CR is independent of w and h. The mapping Rh also has the optimal approxi-
mation property

∥∇(w − Rhw)∥Lp(ω,Ω) ≤ (1 + CR) inf
φh∈V (Th)

∥∇(w − φh)∥Lp(ω,Ω) ∀w ∈W 1,p
0 (ω,Ω).

Finally, we have the following discrete inf-sup condition:

∥∇wh∥Lp(ω,Ω) ≤ C∆CR sup
φh∈V (Th)

´
Ω
∇wh · ∇φh dx

∥∇φh∥Lp′ (ω′,Ω)

∀wh ∈ V (Th).

Proof. The stability is proved in [11, Corollary 3.6]. The best approximation
follows directly from the fact that Rh is a projection. Finally, the claimed discrete
inf-sup condition is obtained as follows: From Proposition 2, the definition of Rh, the
stability of Rh, and a trivial fact it follows that

∥∇wh∥Lp(ω,Ω) ≤ C∆ sup
φ∈W 1,p′

0 (ω′,Ω)

´
Ω
∇wh · ∇φdx

∥∇φ∥Lp′ (ω′,Ω)

= C∆ sup
φ∈W 1,p′

0 (ω′,Ω)

´
Ω
∇wh · ∇Rhφdx

∥∇φ∥Lp′ (ω′,Ω)

≤ C∆CR sup
φ∈W 1,p′

0 (ω′,Ω)

´
Ω
∇wh · ∇Rhφdx

∥∇Rhφ∥Lp′ (ω′,Ω)

≤ C∆CR sup
φh∈V (Th)

´
Ω
∇wh · ∇φh dx

∥∇φh∥Lp′ (ω′,Ω)

.

This concludes the proof.

5.2. The linear problem. Having established from the properties of the Ritz
projection that the Poisson problem, i.e., (1) in the framework of (12) with A =
I, is discretely well posed, let us examine the case of a variable coefficient. While
we conjecture that the results we present here remain true in the case of a merely
continuous and elliptic A, we must make the following assumptions:

(32) A ∈ Csym(Ω̄), αI ⪯ A(x) ⪯ ΛI ∀x ∈ Ω̄, 2C∆CR

(
1− α

Λ

)
≤ 1.

With the latter assumption of “small oscillation”, we follow [4, Proposition 8.6.2] and
obtain the following discrete stability result.
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Theorem 9 (discrete inf-sup condition). Let p ∈ (1,∞), and let ω ∈ Ap. Let us
assume that the coefficient A satisfies (32). Then, we have

(33) ∥∇wh∥Lp(ω,Ω) ≤
2C∆CR

Λ
sup

φh∈V (Th)

´
Ω
A(x)∇wh · ∇φh dx

∥∇φh∥Lp′ (ω′,Ω)

∀wh ∈ V (Th).

In particular, if f ∈ Lp(ω,Ω) and g ∈ Lp(ω,Ω), then there is a unique solution uh of
the following discrete problem: Find uh ∈ V (Th) such thatˆ

Ω

A(x)∇uh · ∇vh dx =

ˆ
Ω

f · ∇vh dx+

ˆ
Ω

gvh dx ∀vh ∈ V (Th).

In addition, the solution uh satisfies the estimate

∥∇uh∥Lp(ω,Ω) ≤
2C∆CR

Λ

(
∥f∥Lp(ω,Ω) + CP ∥g∥Lp(ω,Ω)

)
.

CP is the best constant in ∥w∥Lp(ω,Ω) ≤ CP ∥∇w∥Lp(ω,Ω) for all w ∈W 1,p
0 (ω,Ω).

Proof. Let us begin with the proof of (33). On the basis of Theorem 8 we have

∥∇wh∥Lp(ω,Ω) ≤ C∆CR sup
φh∈V (Th)

´
Ω
∇wh · ∇φh dx

∥∇φh∥Lp′ (ω′,Ω)

∀wh ∈ V (Th).

From the preceding bound it follows that the following estimate is valid

(34) ∥∇wh∥Lp(ω,Ω) ≤
C∆CR

Λ
sup

φh∈V (Th)

´
Ω
A(x)∇wh · ∇φh dx

∥∇φh∥Lp′ (ω′,Ω)

+ C∆CR sup
φh∈V (Th)

´
Ω
(I− 1

ΛA(x))∇wh · ∇φh dx

∥∇φh∥Lp′ (ω′,Ω)

= I + II.

To control the term II, we note that from the spectral inequalities αI ⪯ A(x) ⪯ ΛI,
which hold for each x ∈ Ω̄, it follows that(α

Λ
− 1
)
I ⪯ 1

Λ
A(x)− I ⪯ O, ∀x ∈ Ω,

where O is the zero matrix. Consequently,∥∥∥∥ 1ΛA− I

∥∥∥∥
C(Ω̄)

= sup
x∈Ω̄

∣∣∣∣ 1ΛA(x)− I

∣∣∣∣ ≤ 1− α

Λ
.

On the basis of this estimate, we can conclude that the term labeled as II can be
bounded as follows:

II ≤ C∆CR

∥∥∥∥ 1ΛA− I

∥∥∥∥
C(Ω̄)

∥∇wh∥Lp(ω,Ω) ≤
1

2
∥∇wh∥Lp(ω,Ω),

where we have used (32). Replacing this estimate into (34) yields (33).
Finally, we see that the existence and uniqueness of uh is immediate, as is a

dimension–dependent (read h) estimate. The issue is to obtain a uniform estimate in
the correct norm. Such an estimate can be obtained as a consequence of (33).

Remark 10 (small oscillation). The small oscillation condition (32) essentially
means that the spread of the eigenvalues of the matrix A is globally bounded. As
mentioned above, we conjecture that condition (32) is merely an artifact of our proof,
which is of a perturbative nature.
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5.3. The quasilinear problem. Finally, we consider a convergent discretiza-
tion of (1). Namely, for p ∈ (1,∞), ω ∈ Ap, f ∈ Lp(ω,Ω), and g ∈ Lp(ω,Ω) we seek
for uh ∈ V (Th) such that

(35)

ˆ
Ω

a(x,∇uh) · ∇vh dx =

ˆ
Ω

f · ∇vh dx+

ˆ
Ω

gvh dx ∀vh ∈ V (Th).

Since this is a finite dimensional problem, the coercivity (7), the strict monotonicity
(9), and the growth (8) assumptions on a guarantee the existence and uniqueness of
a solution uh ∈ V (Th). The important point here is again the uniform estimates and
the convergence. This is the content of the next result.

Theorem 11 (uniform estimates and convergence). Assume that a satisfies the
structural assumptions (A)–(F). Let us also assume that A satisfies the small oscil-
lation condition (32). Let uh ∈ V (Th) be the solution to (35). Then,

∥∇uh∥Lp(ω,Ω) ≲ 1 + ∥f∥Lp(ω,Ω) + ∥g∥Lp(ω,Ω).

Moreover, there exists a nonrelabeled subsequence {uh}h>0 ⊂ V (Th) such that uh ⇀ u
in W 1,p

0 (ω,Ω) as h→ 0. More importantly, u solves (1) in the sense that (28) holds.

Proof. To obtain the uniform bound, we mimic the proof of Theorem 6. In fact,
we rewrite the discrete equation (35) as

ˆ
Ω

A(x)∇uh · ∇vh dx =

ˆ
Ω

[f · ∇vh + gvh] dx+

ˆ
Ω

[A(x)∇uh − a(x,∇uh)] · ∇vh dx

for all vh ∈ V (Th), and invoke Theorem 9 to assert that

∥∇uh∥Lp(ω,Ω) ≤
2C∆CR

Λ

(
∥f∥Lp(ω,Ω) + CP ∥g∥Lp(ω,Ω) + ∥Fh∥W−1,p(ω,Ω)

)
,

where Fh :W 1,p′

0 (ω′,Ω) → R is defined by

⟨Fh, v⟩ =
ˆ
Ω

[A(x)∇uh − a(x,∇uh)] · ∇v dx.

The rest of the proof of the estimate follows verbatim the proof of Theorem 6.
Since the family {uh}h>0 is uniformly bounded in W 1,p

0 (ω,Ω), we can extract
a weakly convergent subsequence. The proof that this limit is indeed a solution
to (1) follows from [5, Section 4B], where the existence is shown by means of an
approximation argument; see also [27, Theorem 15]. This concludes the proof.
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[18] J. Garćıa-Cuerva, An extrapolation theorem in the theory of Ap weights, Proc. Amer. Math.
Soc. 87 (1983), no. 3, 422–426. MR 684631

[19] V. Gol’dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems, Trans. Amer.
Math. Soc. 361 (2009), no. 7, 3829–3850. MR 2491902

[20] L. Grafakos, Classical Fourier analysis, third ed., Graduate Texts in Mathematics, vol. 249,
Springer, New York, 2014. MR 3243734

[21] P. Grisvard, Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011, Reprint
of the 1985 original [MR0775683]. MR 3396210
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