Publications


In preparation

  1. G. Acosta, F. Bersetche, E. Otarola, D. Quero
    A finite element method for a fractional system.

  2. E. Otarola, A. Salgado
    Finite element discretization of $p$-Laplace problems.

  3. E. Otarola, D. Quero, M. Sasso
    A pointwise tracking optimal control problem.


Preprints

  1. D. Amigo, F. Lepe, E. Otarola, G. Rivera
    A virtual element method for a convective Brinkman-Forchheimer problem coupled with a heat equation.
    Submitted. (pdf)

  2. A. Allendes, G. Campana, E. Otarola
    Bilinear optimal control for the Stokes-Brinkman equations: a priori and a posteriori error analyses.
    Submitted. (pdf)

  3. G. Campana, P. Munoz, E. Otarola
    Finite element approximation for a convective Brinkman--Forchheimer problem coupled with a heat equation.
    Submitted. (pdf)

  4. F. Fuica and E. Otarola
    A pointwise tracking optimal control problem for the stationary Navier--Stokes equations.
    Submitted. (pdf)


Published or Accepted for Publication

  1. F. Bersetche, F. Fuica, E. Otarola, and D. Quero
    Fractional, semilinear, and sparse optimal control: a priori error bounds.
    Applied Mathematics & Optimization, 2024. (pdf)

  2. A. Allendes, G. Campana, F. Fuica, and E. Otarola
    Darcy's problem coupled with the heat equation under singular forcing: analysis and discretization.
    IMA Journal of Numerical Analysis, https://doi.org/10.1093/imanum/drad094, 2024. (pdf)

  3. E. Otarola
    Semilinear optimal control with Dirac measures.
    IMA Journal of Numerical Analysis, https://doi.org/10.1093/imanum/drad091, 2023. (pdf)

  4. T. Mengesha, E. Otarola, and A. J. Salgado
    Analysis and approximation of elliptic problems with Uhlenbeck structure in convex polytopes.
    Journal of Differential Equations, 412, 250--271, 2024. (pdf)

  5. A. Allendes, G. Campana, E. Otarola, and A. J. Salgado
    The linear elasticity system under singular forces.
    Applied Mathematics Letters, 158, Article 109258, 2024. (pdf)

  6. F. Bersetche, F. Fuica, E. Otarola, and D. Quero
    Bilinear optimal control for the fractional Laplacian: analysis and discretization.
    SIAM Journal of Numerical Analysis, 62(3), 1344--1371, 2024. (pdf)

  7. A. Allendes, G. Campana, and E. Otarola
    Finite Element Discretizations of a Convective Brinkman--Forchheimer Model Under Singular Forcing.
    Journal of Scientific Computing, 99, Article Number 58, 2024. (pdf)

  8. A. Allendes, G. Campana, and E. Otarola
    Numerical discretization of a Darcy--Forchheimer problem coupled with a singular heat equation.
    SIAM Journal on Scientific Computing, 44(5), A2755--A2780, 2023. (pdf)

  9. E. Otarola
    Error estimates for fractional semilinear optimal control on Lipschitz polytopes.
    Applied Mathematics & Optimization, 88, Article number: 40, 2023. (pdf)

  10. F. Fuica, F. Lepe, E. Otarola and D. Quero
    An optimal control problem for the Navier--Stokes equations with point sources.
    Journal of Optimization Theory and Applications, 196, 590--616, 2023. (pdf)

  11. F. Fuica and E. Otarola
    A posteriori error estimates for an optimal control problem with a bilinear state equation.
    Journal of Optimization Theory and Applications. 194, 543--569, 2022. (pdf)

  12. A. Allendes, F. Fuica and E. Otarola
    Error estimates for a pointwise tracking optimal control problem of a semilinear elliptic equation.
    SIAM Journal on Control and Optimization, 60(3), 1763--1790, 2022 (pdf)

  13. E. Otarola, and A. J. Salgado
    On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra.
    Numerische Mathematik, 151, 185--218, 2022. (pdf)

  14. E. Otarola
    Fractional semilinear optimal control: optimality conditions, convergence, and error analysis.
    SIAM Journal on Numerical Analysis, 60(1), 1--27, 2022. (pdf)

  15. A. Allendes, F. Fuica, E. Otarola, and D. Quero
    A posteriori error estimates for semilinear optimal control problems.
    ESAIM: Mathematical Modelling and Numerical Analysis, 55(5), 2293--2322, 2021. (pdf)

  16. F. Fuica, E. Otarola, and D. Quero
    Error estimates for optimal control problems involving the Stokes system and Dirac measures.
    Applied Mathematics & Optimization, 84, 1717--1750, 2021. (pdf)

  17. A. Allendes, F. Fuica, E. Otarola, and D. Quero
    A posteriori error estimates for a distributed optimal control problem of the stationary Navier--Stokes equations.
    SIAM Journal on Control and Optimization, 59(4), 2898--2923, 2021. (pdf)

  18. A. Allendes, E. Otarola, and A. J. Salgado
    The stationary Boussinesq problem under singular forcing.
    Mathematical Models and Methods in Applied Sciences (M3AS), 31(4), 789--827, 2021. (pdf)

  19. F. Lepe, E. Otarola, and D. Quero
    Error estimates for FEM discretizations of the Navier-Stokes equations with Dirac measures.
    Journal of Scientific Computing, 87, Article number: 97 (2021). (pdf)

  20. F. Fuica, F. Lepe, E. Otarola, and D. Quero
    A posteriori error estimates in $W^{1,p} \times L^p$ spaces for the Stokes system with Dirac measures.
    Computer and Mathematics with Applications, 94, 47--59, 2021. (pdf)

  21. C. Glusa and E. Otarola.
    Error estimates for the optimal control of a parabolic fractional PDE.
    SIAM Journal of Numerical Analysis, 59(2), 1140--1165, 2021. (pdf)

  22. A. Allendes, F. Fuica, and E. Otarola
    Adaptive finite element methods for sparse PDE-constrained optimization.
    IMA Journal of Numerical Analysis, 40(3), 2106--2142, 2020. (pdf)

  23. A. Allendes, E. Otarola, and A. J. Salgado.
    A Posteriori Error Estimates for the Stationary Navier--Stokes Equations with Dirac Measures.
    SIAM Journal on Scientific Computing, 42(3), A1860--A1884, 2020. (pdf)

  24. R. G. Duran, E. Otarola, and A. J. Salgado.
    Stability of the Stokes projection on weighted spaces and applications.
    Mathematics of Computation, 89, 1581--1603, 2020. (pdf)

  25. A. Allendes, C. Naranjo, and E. Otarola.
    Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis.
    Computer Methods in Applied Mechanics and Engineering, 361, Article 112703, 2020. (pdf)

  26. E. Otarola
    An adaptive finite element method for the sparse optimal control of fractional diffusion.
    Numerical Methods for Partial Differential Equations, 36(2), 302--328, 2020. (pdf)

  27. E. Otarola and A. J. Salgado
    A weighted setting for the stationary Navier Stokes equations under singular forcing.
    Applied Mathematics Letters, 99, Article 105933, 2020. (pdf)

  28. A. Allendes, F. Fuica, E. Otarola, and D. Quero
    An adaptive FEM for the pointwise tracking optimal control problem of the Stokes equations.
    SIAM Journal on Scientific Computing, 41(5), A2967--A2998, 2019. (pdf)

  29. M. D'Elia, C. Glusa, and E. Otarola
    A priori error estimates for the optimal control of the integral fractional laplacian.
    SIAM Journal on Control and Optimization, 57(4), 2775--2798, 2019. (pdf)

  30. L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otarola, A. J. Salgado, and C. Schwab
    Tensor FEM for spectral fractional diffusion.
    Foundations of Computational Mathematics, 19(4), 901--962, 2019. (pdf)

  31. L. Banjai and E. Otarola
    A PDE approach to fractional diffusion: a space-fractional wave equation.
    Numerische Mathematik, 143(1), 177--222, 2019. (pdf)

  32. E. Otarola, R. Rankin, and A. J. Salgado
    Maximum-norm a posteriori error estimates for an optimal control problem.
    Computational Optimization and Applications, 73(3), 997--1017, 2019. (pdf)

  33. F. Fuica, E. Otarola, and A. J. Salgado
    An a posteriori error analysis of an elliptic optimal control problem in measure space.
    Computer and Mathematics with Applications, 77(10), 2659--2675, 2019. (pdf)

  34. E. Otarola and T. N. T. Quyen
    A reaction coefficient identification problem for fractional diffusion.
    Inverse Problems, 35(4), 045010, 2019. (pdf)

  35. A. Allendes, E. Otarola, and A. J. Salgado
    A posteriori error estimates for the Stokes problem with singular sources.
    Computer Methods in Applied Mechanics and Engineering, 345, 1007--1032, 2019. (pdf)

  36. E. Otarola and A. J. Salgado
    The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing.
    Journal of Mathematical Analysis and Applications, 471(1--2), 599--612, 2019. (pdf)

  37. E. Otarola and A. J. Salgado
    Regularity of solutions to space-time fractional wave equations: A PDE approach.
    Fractional Calculus and Applied Analysis, 21(5), 1262--1290, 2018. (pdf)

  38. A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otarola, and A. J. Salgado
    Numerical methods for fractional diffusion.
    Computing and Visualization in Science, 19(5--6), 19--46, 2018. (pdf)

  39. A. Allendes, E. Otarola, A. J. Salgado, and R. Rankin
    An a posteriori error analysis for an optimal control problem with Dirac measures.
    ESAIM: Mathematical Modelling and Numerical Analysis, 52(5), 1617--1650, 2018. (pdf)

  40. E. Otarola and A. J. Salgado
    Optimization of a fractional differential equation.
    Frontiers in PDE-constrained optimization, IMA Vol. Math. Appl., 163, 291--316, 2018. (pdf)

  41. H. Antil, E. Otarola, and A. J. Salgado
    Optimization with respect to order in a fractional diffusion model: analysis, approximation and algorithmic aspects.
    Journal of Scientific Computing, 77(1), 204--224, 2018. (pdf)

  42. A. Allendes, E. Otarola, and R. Rankin
    A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations.
    SIAM Journal on Scientific Computing, 40(4), AA2200--AA2233, 2018. (pdf)

  43. A. Allendes, E. Otarola, and R. Rankin
    A posteriori error estimators for stabilized finite element approximations of an optimal control problem.
    Computer Methods in Applied Mechanics and Engineering, 340(1), 147--177, 2018. (pdf)

  44. H. Antil, E. Otarola, and A. J. Salgado
    Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems.
    IMA Journal of Numerical Analysis, 38(2), 852--883, 2018. (pdf)

  45. H. Antil and E. Otarola
    An a posteriori error analysis for an optimal control problem involving the fractional Laplacian.
    IMA Journal of Numerical Analysis, 38(1), 198--226, 2018. (pdf)

  46. E. Otarola and A. J. Salgado
    Sparse optimal control for fractional diffusion.
    Computational Methods in Applied Mathematics, 18(1), 95--110, 2018. (pdf)

  47. A. Allendes, E. Otarola, R. Rankin, and A. J. Salgado
    Adaptive finite element methods for optimal control problems involving Dirac measures.
    Numerische Mathematik, 137(1), 159--197, 2017. (pdf)

  48. E. Otarola
    A piecewise linear FEM for an optimal control problem of fractional operators: error estimates on curved domains.

    ESAIM: Mathematical Modelling and Numerical Analysis, 51(4), 1473--1500, 2017. (pdf)

  49. E. Otarola and A. J. Salgado
    Finite element approximation of the parabolic fractional obstacle problems.

    SIAM Journal on Numerical Analysis 54(4), 2619--2639, 2016. (pdf)

  50. A. Allendes, E. Hernandez, and E. Otarola.
    A robust numerical method for a control problem of singularly perturbed equations.

    Computer and Mathematics with Applications 72(4), 974--991, 2016. (pdf)

  51. L. Chen, R. H. Nochetto, E. Otarola, and A. J. Salgado.
    Multilevel methods for nonuniformly elliptic operators and fractional diffusion.

    Mathematics of Computation 85, 2583--2607, 2016. (pdf)

  52. H. Antil, E. Otarola, and A. J. Salgado
    A space-time fractional optimal control problem: analysis and discretization.

    SIAM Journal on Control and Optimization 54(3), 1295--1328, 2016. (pdf)

  53. R. H. Nochetto, E. Otarola, and A. J. Salgado.
    A PDE approach to space-time fractional parabolic problems.
    SIAM Journal on Numerical Analysis 54(2), 848--873, 2016. (pdf)

  54. R. H. Nochetto, E. Otarola, and A. J. Salgado.
    Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications.
    Numerische Mathematik 132(1), 85--130, 2016. (pdf)

  55. H. Antil and E. Otarola
    A FEM for an optimal control problem of fractional powers of elliptic operators.
    SIAM Journal on Control and Optimization 53(6), 3432--3456, 2015. (pdf)

  56. R. H. Nochetto, E. Otarola, and A. J. Salgado
    A PDE approach to numerical fractional diffusion.
    Proceedings of the 8th ICIAM, Higher Ed. Press, Beijing, 211--236, 2015. (pdf)

  57. R. H. Nochetto, E. Otarola, and A. J. Salgado
    Convergence rates for the classical, thin and fractional elliptic obstacle problems.
    Philosophical Transactions of the Royal Society A 373(2050), 2015. (pdf)

  58. L. Chen, R. H. Nochetto, E. Otarola, and A. J. Salgado
    A PDE approach to fractional diffusion: a posteriori error analysis.
    Journal of Computational Physics 293, 339--358, 2015. (pdf)

  59. R. H. Nochetto, E. Otarola, and A. J. Salgado.
    A PDE approach to fractional diffusion in general domains: a priori error analysis.
    Foundations of Computational Mathematics 15(3), 733--791, 2015. (pdf)

  60. E. Hernandez and E. Otarola.
    A superconvergent scheme for a locking-free FEM in a Timoshenko optimal control problem.
    ZAMM. Z. Angew. Math. Mech. 91(4), 288 -- 299, 2011.

  61. D. Kalise, E.Hernandez, and E. Otarola.
    A locking-free scheme for the LQR control of a Timoshenko beam.
    Journal of Computational and Applied Mathematics 235(5), 1383--1393, 2011. (pdf)

  62. D. Kalise, E. Hernandez, and E. Otarola.
    Numerical approximation of the LQR problem in a strongly damped wave equation.
    Computational Optimization and Applications 47(1), 161--178, 2010. (pdf)

  63. E. Hernandez and E. Otarola.
    A locking-free FEM in active vibration control of a Timoshenko beam.
    SIAM Journal on Numerical Analysis 47(4), 2432--2454, 2009. (pdf)

  64. E. Hernandez, E. Otarola, R. Rodriguez, and F. Sanhueza.
    Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry.
    IMA Journal of Numerical Analysis 29(1), 180--207, 2009. (pdf)

  65. E. Hernandez, E. Otarola, R. Rodriguez, and F. Sanhueza.
    Finite element approximation of the vibration problem for a Timoshenko curved rod.

    Revista de la Union Argentina 49(1), 15--28, 2008.